
VIRTUAL-SCAN : A NOVEL APPROACH FOR SOFTWARE-BASED
SELF-TESTING OF MICROPROCESSORS

Giorgos Dimitrakopoulost , Xrisovalantis Kavousianosi , and Dimitris Nikolosts

+Computer Engineering and Informatics Dept., University of Patras, 26500 Patras, Greece
tDept. of Computer Science & Technology, Univ. of Peloponnese, 22100, Tripoli, Greece

§Computer Technology Institute, 3 Kolokotroni Str., 26221 Patras, Greece

ABSTRACT

A systematic methodology for generating software-based
self-tests for microprocessor cores is introduced in
this paper. The produced software tests emulate the
functionality of a scan path design, and can be applied
during the normal-operation mode of the microprocessor,
thus enabling at-speed testing. A major advantage of the
proposed approach lies in the fact that the generation of
the software tests does not require any knowledge about
the low-level implementation of the microprocessor and is
only based on its RT-level description and its instruction set
architecture.

1. INTRODUCTION

Modern microprocessors impose significant challenges
to the test community, due to their high complexity
and heterogeneity. The gap between the operating
frequencies of microprocessors and that of the Automatic
Test Equipment (ATE) is steadily increasing, a fact that
leads to the escape of failures, which can only be detected,
when testing is applied at-speed.

One of the most promising solutions to at-speed testing
is the application of self-testing techniques such as Built-
In Self-Test (BIST). In BIST both test pattern generation
and .response monitoring and evaluation are performed
on-chip by dedicated hardware modules such as Linear-
Feedback Shift Registers (LFSRs). The application of
BIST can significantly reduce the design and test generation
time.improving in this way the time-to-market of the final
product. Nevertheless, in order for BIST to he able to
generate high quality tests, certain modifications should be
applied to the microprocessor-under-test, such as test-point
insertion, which significantly increase the circuit area and
may lead to performance degradation.

:An alternative to hardware-based self testing is
software-based self testing, which involves the testing of a

''This work has been supponed by GiGA Hellas S.A. an Intel

t This work has been supponed by the State Scholarships' Foundation
Company.

of G m c e via iui Past-doctoral research scholarship programs.

microprocessor using its instruction set. The main benefit
of software-based self-test is that it can be applied in
the normal operation mode of the microprocessor, thus
applying the required tests at-speed. Additionally, software-
based self-testing does not require any design changes
neither the insertion of any additional test hardware, and
its efficiency has been proven both for stuck-at [I]-[3] and
delay faults [4].

Recently, several methods for generating software tests
that target structural faults of the microprocessor were
presented [1]-[3]. In [I] the application of random
instruction sequences with randomly selected operands was
investigated, but the obtained fault coverage remained low,
due to the lack of information concerning the internal
structure of the microprocessor. In [2] a method to construct
software tests composed of predetermined and manually-
generated test macros was proposed. On the contrary, in [3]
a method which relied both on random and deterministic
test data was presented. The generated instruction
sequences are very effective but their generation relies
on detailed structural information of the microprocessor-
under-test and cannot be applied to a general design in a
straightforward manner.

In this paper a new methodology for software test
program generation is introduced. The approach followed
for the generation of software-based structural tests does
not require any low-level implementation information of
the microprocessor, as needed in [3], and it is only
based on its RT-level description and its instruction set
architecture. The software-tests generated according to
the proposed methodology emulate the functionality of a
scan-chain architecture to the microprocessor-under-test. In
order software tests to be generated the microprocessor
is enhanced with a virtual scan chain. During test time
the software tests are applied in normal operation mode,
emulating the virtual scan design. The test responses
(registers' values) are stored to the memory from where they
can be later retrieved by a slow-speed ATE.

The rest of the paper is organized as follows. Section 2
introduces the proposed methodology for generating

V-237 0.7803-776 I- 3/03i$I7.00 02003 IEEE

Figure I : PARWAN Microprocessor Core

software tests based only on a RT-level description (VHDL)
of the microprocessor. In Section 3 the proposed test
generation and validation flow is presented while in
Section 4 experimental results are discussed. Finally,
conclusions are drawn in Section 5.

2. T H E PROPOSED METHODOLOGY

The main goal of the proposed software-test generation
methodology is to generate software tests that can be
applied at-speed, based only on a RT-level description of the
microprocessor and its instruction set. In particular, we are
only interested in extracting from the microprocessor’s RTL
description, the nominal values assumed by its registers
during normal-operation mode.

In order to present our approach a simple accumulator-
based microprocessor will be used, named PARWAN [5] .
The architecture of PARWAN includes the following
components, as shown in Fig. 1: An arithmetic logic unit
(ALU), an accumulator (ACC), a program counter unit
(PC), a memory address register (MAR), a shifter unit
(SHU), a status register unit (SR), and a controller (CTRL),
which controls the functionality of all the aforementioned
components and is implemented as a Finite-State Machine
(FSM). Additionally it consists of an %bit data bus and 12-
bit address bus that covers a total of 4KBytes of memory
space and it is divided into 16 segments.

The scan chain design-for-testability technique connects
the registers of the microprocessor-under-test to a single
shift register. In this way the the values of the registers of
the circuit can be directly controlled and observed through
the scan input and output pins respectively, in a bit-serial
manner. The insertion of a shan chain to the PARWAN
microprocessor would connect its registers according to
Fig. 2. It should he noted that except the state register of the
controller, all the other flip-flops of the scan chain belong
to functional registers of the microprocessor. In this case
the Instruction Register (IR), the Program Counter (PC), or
the Accumulator (ACC), can be set to specific values via an
instruction or a certain sequence of instructions assuming
certain values for their operands. For example the value

Figure 2: The virtual scan chain of PARWAN

of the ACC can be directly set via a load-accumulator
instruction and its contents can be observed by applying
a store-accumulator instruction. In a similar manner the
contents of the PC can be controlled by a jump instruction
to a certain memory address.

Therefore the aim of the proposed methodology is
at first to generate test vectors as if the microprocessor
employed a scan chain and second to generate the
proper sequence of instructions that would emulate
the functionality of the scan chain to the non-scan
microprocessor. Note that the microprocessor does not
contain any scan chain. The scan chain insertion takes place
so that the constrained test vectors to be derived by the
Automatic Test Pattern Generation (ATPG) engine.

2.1. Constrained Test Pat tern Generation

In order the generated ATPG vectors to be realizable
by processor’s instructions, the values that appear on
the registers of the microprocessor during test application
time should correspond to nominal values of the normal-
operation mode. For example, the IR can only assume
values that correspond to valid opcodes. In a similar
manner, the zero (z) and the negative (n) flags of the status
register cannot he asserted simultaneously.

The constraints extraction leads to a set of logic
equations that the bits of microprocessor’s registers should
satisfy. For example the constraint that the zero (2) and the
negative (n) flags of the status register cannot be asserted
simultaneously is translated to to z @ n = 1, where @
denotes the logical exclusive-OR operation. The produced
set of logic equations that describe the imposed constraints
is given to the ATPG tool in order the constrained test
vectors to be generated. Finally, the value assumed by
the state register of the controller is chosen to be equal to
the encoding hits of the execution state. This constraint
is imposed since the execution phase of an instruction
resembles better the capture cycle of a scan chain design,
than other machine cycles, i.e., instruction fetch.

11 should be noted that the imposed constraints

V-238

do not rely on detailed gate-level information of the
microprocessor but concern only nominal registers’ values
(during normal operation), and thus can he easily extracted
from the RT-level description.

2.2. Test Program Synthesis

For each test vector generated through the constrained
ATPG procedure a certain software routine is created, which
is called the test-vector application routine. The test-
vector application routine is responsible for the emulation
of the application of the corresponding test vector to
the microprocessor-under-test, as if the microprocessor
included a scan chain.

The instructions that constitute each test vector
application routine are divided into three groups. The first
group sets the proper values to the registers, the second
applies the virtual scan test vector, and the third group of
instructions writes back to memory the new state of the
microprocessor, Proper care is taken in order the values
of certain registers not to change until their values are
observed, that is their contents are written back to memory
in order to be compared with the pre-computed values of the
non-fault behaviour.

In order to clarify the generation of a test-vector
application routine, assume that the ATPG tool has
generated a vector V , which includes the following values
for PARWAN’s registers: The PC is set to 007H. the IR
contains the value POH, the SR tbc value IH, the MAR is
set to address 028H, and the ACC contains the value 15H.
The software routine that emulates the application of vector
V to PARWAN is shown in Fig. 3. The registers’ values, as
selected by vector V, will appear during the execution cycle
of the instruction on line 6, which emulates the capture cycle
of a virtual scan chain.

1: 10281 int var 0001 // V a r i a b l e Declaration

2 : 10011 Ida 1100-0000 // Load dccumulatar
3 : LO031 as1 // Arithmetic Shift Left
4 : [O n 4 1 cmc // complement carry
5 : I 0 0 5 1 Ida 0001_0101 // Load AccumulaCDr
6 : 10071 add var // Add var to ACC

7 : [O O g] j a r observe // JUW to observe routine

Figure 3: A sample test-vector application routine.

At first the value of the status register is set to IH,
through the code shown in lines 2 4 , which corresponds to
a negative flag equal to 1 while the rest flags are equal 0. In
the following the value of ACC is set by a load instruction
in line 5 , while the add instruction that appears on line
6 corresponds to the value assumed by the IR, according

to test vector V . Additionally, since the value of the PC
needs to he equd to 007H. when instruction in line 6 is
executed (virtual capture cycle) the software routine starts
from address 001H. In a similar manner the data variable
(var) needed by the add instruction of line 6 is placed on
address 028H so that the value of MAR during the virtual
capture cycle to he equal to 028H, as dictated by vector V .
Note that although the value of the ACC can he directly
controlled by an Ida instruction, the values of the PC and
MAR are implicitly controlled by the address space selected
for storing the instructions and the data of the test-vector
application routine.

After the application of each test vector, via its
equivalent software routine, an observation routine is called
(line 7), which is responsible, according to [3], to store
the contents of certain registers, such as the ACC or the
SR, back to memory in order to he observed. It should be
noted that this observation routine is produced once and is
common for all test-vector application routines.

As shown by the previous example, during the test
application phase the instruction groups of each test vector
lie in specific memory locations. In case that more than
one test vectors impose their corresponding instruction
sequences to lie in the same memory area, then a conflict
is caused. Hence, the conflicting instruction groups are
scheduled to different test sessions, i.e., different assembly
programs, that are applied separately to the microprocessor-
under-test.

3. SOFTWARE-TEST GENERATION FLOW

In this section the proposed software-based test generation
flow, shown in Fig.4, will be presented. The main steps of
the proposed flow are the following:
A. Virtual Scan Chain Insertion : In this step the gate-
level netlist of the microprocessor is enhanced with a scan
chain in order the test vectors to be generated. The gate-
level netlist is produced by synthesizing the RTL VHDL
description.
B. Constrainrs Extraction : The RT-level description of
the microprocessor is analyzed in order the nominal values
assumed by its registers to be identified. The output of the
constraints extraction procedure is a set of logic equations
that can he directly used by the ATPG tool.
C. Tesr Vectors Generarion : This step involves the
generation of the constrained test vectors.
D. Tesr Program Synthesis : The test vectors derived by the
ATPG engine are transformed automatically to test-vector
application routines, in the form of assembly programs,
according to the methodology presented in Section 2.2.
In general the sequence of instructions used to emulate
the application of one test vector to the microprocessor,
assuming a virtual scan path, consists of 5-7 instructions.

In the following the test programs produced by the
test-program synthesis procedure are simulated in order

V-239

Proposed
[31

all the values that appear on the primary inputs of the
microprocessor to be captured. The captured vectors are
used as test stimuli for the fault simulation procedure, which
derives the fault coverage obtained by the software tests.

4. EXPERIMENTAL RESULTS

We applied the design flow of Fig. 4 to the PARWAN
microprocessor. At first, the RTL VHDL description
was synthesized using the Design Compiler tool set of
Synopsys. In the following the gate-level netlist was
enhanced with a scan chain in order the constrained
ATPG vectors to be generated. The ATPG tool used was
the FastScan of Mentor Graphics, and the obtained fault
coverage is shown in the first column of Table I. In
the following the produced constrained test vectors were
transformed to software routines that were simulated using
the FlexTest of Mentor Graphics.

The final obtained fault coverage is shown in the second
column of Table I, along with the needed clock cycles.
The fault coverage obtained by the test-vector application
routines is very close to that obtained by the ATPG test
vectors. The 16% difference in the final fault coverage
obtained by the proposed software tests and the ATPG
test vectors is due to the reduced observability of the
microprocessors’ internal state, when the test is applied
during normal-mode operation.

It is evident that the number of clock cycles needed
by the proposed approach is impressively less than that of
the approach presented in [3]. Therefore, in an attempt to
increase the final fault coverage 1000 random test vectors
were generated, along with their corresponding software

ATPG Deterministic Software Cycles Determ. and Random Software Cycles
88.3% 86.7% 1018 87.8% 46692
- - - 91.4% 137649

routines. The randomly generated software tests required
45674 additional clock cycles in order to be applied, and
resulted in an improved fault coverage equal to 87.8%.

5. CONCLUSIONS

A novel methodology for the generation of software tests
for microprocessors is introduced in this paper. The
main benefit of the introduced approach is that the only
knowledge required for the microprocessor-under-test lies
in the architectural level and thus can be very easily
extracted by its RT-level description.

6. REFERENCES

[I] K. Bachter and C. Papachristou, “Instruction
randomization self-test for processor cores,” in Proc.
of IEEE VLSI Test symposium, May 1999, pp. 3440.

[Z] F. Corno, M. Sonza Reorda G. Squillero, and
M. Violante, “On the test of microprocessors IP cores,”
in Design Automation and Test in Europe (DATE),
March 2001, pp. zn9-213.

[3] L. Chen and S. Dey, “Software-based self-testing
methodology for processor cores:’ IEEE Trans.
Computer-Aided Design, vol. 20, no. 3, pp. 369-380,
Mar 2001.

[4] W. C . Lai et al., “On testing the path delay faults of a
microprocessor using its instruction set.,’’ in Proc. 18th
IEEE VLSl Test symposium, 2000, pp. 15-20.

[5] 2. Navadi, VHDL: Annlysis and Modeling of Digital
Systems, McGraw-Hill, New York, 1993.

