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ABSTRACT 

A systematic methodology for generating software-based 
self-tests for microprocessor cores is introduced in 
this paper. The produced software tests emulate the 
functionality of a scan path design, and can be applied 
during the normal-operation mode of the microprocessor, 
thus enabling at-speed testing. A major advantage of the 
proposed approach lies in the fact that the generation of 
the software tests does not require any knowledge about 
the low-level implementation of the microprocessor and is 
only based on its RT-level description and its instruction set 
architecture. 

1. INTRODUCTION 

Modern microprocessors impose significant challenges 
to the test community, due to their high complexity 
and heterogeneity. The gap between the operating 
frequencies of microprocessors and that of the Automatic 
Test Equipment (ATE) is steadily increasing, a fact that 
leads to the escape of failures, which can only be detected, 
when testing is applied at-speed. 

One of the most promising solutions to at-speed testing 
is the application of self-testing techniques such as Built- 
In Self-Test (BIST). In BIST both test pattern generation 
and .response monitoring and evaluation are performed 
on-chip by dedicated hardware modules such as Linear- 
Feedback Shift Registers (LFSRs). The application of 
BIST can significantly reduce the design and test generation 
time.improving in this way the time-to-market of the final 
product. Nevertheless, in order for BIST to he able to 
generate high quality tests, certain modifications should be 
applied to the microprocessor-under-test, such as test-point 
insertion, which significantly increase the circuit area and 
may lead to performance degradation. 

:An alternative to hardware-based self testing is 
software-based self testing, which involves the testing of a 
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microprocessor using its instruction set. The main benefit 
of software-based self-test is that it can be applied in 
the normal operation mode of the microprocessor, thus 
applying the required tests at-speed. Additionally, software- 
based self-testing does not require any design changes 
neither the insertion of any additional test hardware, and 
its efficiency has been proven both for stuck-at [I]-[3] and 
delay faults [4]. 

Recently, several methods for generating software tests 
that target structural faults of the microprocessor were 
presented [1]-[3]. In [ I ]  the application of random 
instruction sequences with randomly selected operands was 
investigated, but the obtained fault coverage remained low, 
due to the lack of information concerning the internal 
structure of the microprocessor. In [2] a method to construct 
software tests composed of predetermined and manually- 
generated test macros was proposed. On the contrary, in [3] 
a method which relied both on random and deterministic 
test data was presented. The generated instruction 
sequences are very effective but their generation relies 
on detailed structural information of the microprocessor- 
under-test and cannot be applied to a general design in a 
straightforward manner. 

In this paper a new methodology for software test 
program generation is introduced. The approach followed 
for the generation of software-based structural tests does 
not require any low-level implementation information of 
the microprocessor, as needed in [3], and it is only 
based on its RT-level description and its instruction set 
architecture. The software-tests generated according to 
the proposed methodology emulate the functionality of a 
scan-chain architecture to the microprocessor-under-test. In 
order software tests to be generated the microprocessor 
is enhanced with a virtual scan chain. During test time 
the software tests are applied in normal operation mode, 
emulating the virtual scan design. The test responses 
(registers' values) are stored to the memory from where they 
can be later retrieved by a slow-speed ATE. 

The rest of the paper is organized as follows. Section 2 
introduces the proposed methodology for generating 
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Figure I : PARWAN Microprocessor Core 

software tests based only on a RT-level description (VHDL) 
of the microprocessor. In Section 3 the proposed test 
generation and validation flow is presented while in 
Section 4 experimental results are discussed. Finally, 
conclusions are drawn in Section 5. 

2. T H E  PROPOSED METHODOLOGY 

The main goal of the proposed software-test generation 
methodology is to generate software tests that can be 
applied at-speed, based only on a RT-level description of the 
microprocessor and its instruction set. In particular, we are 
only interested in extracting from the microprocessor’s RTL 
description, the nominal values assumed by its registers 
during normal-operation mode. 

In order to present our approach a simple accumulator- 
based microprocessor will be used, named PARWAN [5 ] .  
The architecture of PARWAN includes the following 
components, as shown in Fig. 1: An arithmetic logic unit 
(ALU), an accumulator (ACC), a program counter unit 
(PC), a memory address register (MAR), a shifter unit 
(SHU), a status register unit (SR), and a controller (CTRL), 
which controls the functionality of all the aforementioned 
components and is implemented as a Finite-State Machine 
(FSM). Additionally it consists of an %bit data bus and 12- 
bit address bus that covers a total of 4KBytes of memory 
space and it is divided into 16 segments. 

The scan chain design-for-testability technique connects 
the registers of the microprocessor-under-test to a single 
shift register. In this way the the values of the registers of 
the circuit can be directly controlled and observed through 
the scan input and output pins respectively, in a bit-serial 
manner. The insertion of a shan chain to the PARWAN 
microprocessor would connect its registers according to 
Fig. 2. It should he noted that except the state register of the 
controller, all the other flip-flops of the scan chain belong 
to functional registers of the microprocessor. In this case 
the Instruction Register (IR), the Program Counter (PC), or 
the Accumulator (ACC), can be set to specific values via an 
instruction or a certain sequence of instructions assuming 
certain values for their operands. For example the value 

Figure 2: The virtual scan chain of PARWAN 

of the ACC can be directly set via a load-accumulator 
instruction and its contents can be observed by applying 
a store-accumulator instruction. In a similar manner the 
contents of the PC can be controlled by a jump instruction 
to a certain memory address. 

Therefore the aim of the proposed methodology is 
at first to generate test vectors as if the microprocessor 
employed a scan chain and second to generate the 
proper sequence of instructions that would emulate 
the functionality of the scan chain to the non-scan 
microprocessor. Note that the microprocessor does not 
contain any scan chain. The scan chain insertion takes place 
so that the constrained test vectors to be derived by the 
Automatic Test Pattern Generation (ATPG) engine. 

2.1. Constrained Test Pat tern Generation 

In order the generated ATPG vectors to be realizable 
by processor’s instructions, the values that appear on 
the registers of the microprocessor during test application 
time should correspond to nominal values of the normal- 
operation mode. For example, the IR can only assume 
values that correspond to valid opcodes. In a similar 
manner, the zero (z) and the negative (n) flags of the status 
register cannot he asserted simultaneously. 

The constraints extraction leads to a set of logic 
equations that the bits of microprocessor’s registers should 
satisfy. For example the constraint that the zero (2) and the 
negative (n) flags of the status register cannot be asserted 
simultaneously is translated to to z @ n = 1, where @ 
denotes the logical exclusive-OR operation. The produced 
set of logic equations that describe the imposed constraints 
is given to the ATPG tool in order the constrained test 
vectors to be generated. Finally, the value assumed by 
the state register of the controller is chosen to be equal to 
the encoding hits of the execution state. This constraint 
is imposed since the execution phase of an instruction 
resembles better the capture cycle of a scan chain design, 
than other machine cycles, i.e., instruction fetch. 

11 should be noted that the imposed constraints 
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do not rely on detailed gate-level information of the 
microprocessor but concern only nominal registers’ values 
(during normal operation), and thus can he easily extracted 
from the RT-level description. 

2.2. Test Program Synthesis 

For each test vector generated through the constrained 
ATPG procedure a certain software routine is created, which 
is called the test-vector application routine. The test- 
vector application routine is responsible for the emulation 
of the application of the corresponding test vector to 
the microprocessor-under-test, as if the microprocessor 
included a scan chain. 

The instructions that constitute each test vector 
application routine are divided into three groups. The first 
group sets the proper values to the registers, the second 
applies the virtual scan test vector, and the third group of 
instructions writes back to memory the new state of the 
microprocessor, Proper care is taken in order the values 
of certain registers not to change until their values are 
observed, that is their contents are written back to memory 
in order to be compared with the pre-computed values of the 
non-fault behaviour. 

In order to clarify the generation of a test-vector 
application routine, assume that the ATPG tool has 
generated a vector V ,  which includes the following values 
for PARWAN’s registers: The PC is set to 007H. the IR 
contains the value POH, the SR tbc value IH, the MAR is 
set to address 028H, and the ACC contains the value 15H. 
The software routine that emulates the application of vector 
V to PARWAN is shown in Fig. 3. The registers’ values, as 
selected by vector V, will appear during the execution cycle 
of the instruction on line 6, which emulates the capture cycle 
of a virtual scan chain. 

1: 10281 int var 0001 // V a r i a b l e  Declaration 

2 :  10011 Ida 1100-0000 // Load dccumulatar 
3 :  LO031 as1 // Arithmetic Shift Left 
4 :  [ O n 4 1  cmc // complement carry 
5 :  I 0 0 5 1  Ida 0001_0101 // Load AccumulaCDr 
6 :  10071 add var // Add var to ACC 

7 :  [ O O g ]  j a r  observe // JUW to observe routine 

Figure 3: A sample test-vector application routine. 

At first the value of the status register is set to IH, 
through the code shown in lines 2 4 ,  which corresponds to 
a negative flag equal to 1 while the rest flags are equal 0. In 
the following the value of ACC is set by a load instruction 
in line 5 ,  while the add instruction that appears on line 
6 corresponds to the value assumed by the IR, according 

to test vector V .  Additionally, since the value of the PC 
needs to he equd to 007H. when instruction in line 6 is 
executed (virtual capture cycle) the software routine starts 
from address 001H. In a similar manner the data variable 
(var) needed by the add instruction of line 6 is placed on 
address 028H so that the value of MAR during the virtual 
capture cycle to he equal to 028H, as dictated by vector V .  
Note that although the value of the ACC can he directly 
controlled by an Ida instruction, the values of the PC and 
MAR are implicitly controlled by the address space selected 
for storing the instructions and the data of the test-vector 
application routine. 

After the application of each test vector, via its 
equivalent software routine, an observation routine is called 
(line 7), which is responsible, according to [3], to store 
the contents of certain registers, such as the ACC or the 
SR, back to memory in order to he observed. It should be 
noted that this observation routine is produced once and is 
common for all test-vector application routines. 

As shown by the previous example, during the test 
application phase the instruction groups of each test vector 
lie in  specific memory locations. In case that more than 
one test vectors impose their corresponding instruction 
sequences to lie in  the same memory area, then a conflict 
is caused. Hence, the conflicting instruction groups are 
scheduled to different test sessions, i.e., different assembly 
programs, that are applied separately to the microprocessor- 
under-test. 

3. SOFTWARE-TEST GENERATION FLOW 

In this section the proposed software-based test generation 
flow, shown in Fig.4, will be presented. The main steps of 
the proposed flow are the following: 
A. Virtual Scan Chain Insertion : In this step the gate- 
level netlist of the microprocessor is enhanced with a scan 
chain in order the test vectors to be generated. The gate- 
level netlist is produced by synthesizing the RTL VHDL 
description. 
B. Constrainrs Extraction : The RT-level description of 
the microprocessor is analyzed in order the nominal values 
assumed by its registers to be identified. The output of the 
constraints extraction procedure is a set of logic equations 
that can he directly used by the ATPG tool. 
C. Tesr Vectors Generarion : This step involves the 
generation of the constrained test vectors. 
D. Tesr Program Synthesis : The test vectors derived by the 
ATPG engine are transformed automatically to test-vector 
application routines, in the form of assembly programs, 
according to the methodology presented in Section 2.2. 
In general the sequence of instructions used to emulate 
the application of one test vector to the microprocessor, 
assuming a virtual scan path, consists of 5-7 instructions. 

In the following the test programs produced by the 
test-program synthesis procedure are simulated in order 
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all the values that appear on the primary inputs of the 
microprocessor to be captured. The captured vectors are 
used as test stimuli for the fault simulation procedure, which 
derives the fault coverage obtained by the software tests. 

4. EXPERIMENTAL RESULTS 

We applied the design flow of Fig. 4 to the PARWAN 
microprocessor. At first, the RTL VHDL description 
was synthesized using the Design Compiler tool set of 
Synopsys. In the following the gate-level netlist was 
enhanced with a scan chain in order the constrained 
ATPG vectors to be generated. The ATPG tool used was 
the FastScan of Mentor Graphics, and the obtained fault 
coverage is shown in the first column of Table I. In 
the following the produced constrained test vectors were 
transformed to software routines that were simulated using 
the FlexTest of Mentor Graphics. 

The final obtained fault coverage is shown in the second 
column of Table I, along with the needed clock cycles. 
The fault coverage obtained by the test-vector application 
routines is very close to that obtained by the ATPG test 
vectors. The 16% difference in the final fault coverage 
obtained by the proposed software tests and the ATPG 
test vectors is due to the reduced observability of the 
microprocessors’ internal state, when the test is applied 
during normal-mode operation. 

It is evident that the number of clock cycles needed 
by the proposed approach is impressively less than that of 
the approach presented in [3]. Therefore, in an attempt to 
increase the final fault coverage 1000 random test vectors 
were generated, along with their corresponding software 

ATPG Deterministic Software Cycles Determ. and Random Software Cycles 
88.3% 86.7% 1018 87.8% 46692 
- - - 91.4% 137649 

routines. The randomly generated software tests required 
45674 additional clock cycles in  order to be applied, and 
resulted in an improved fault coverage equal to 87.8%. 

5. CONCLUSIONS 

A novel methodology for the generation of software tests 
for microprocessors is introduced in this paper. The 
main benefit of the introduced approach is that the only 
knowledge required for the microprocessor-under-test lies 
in the architectural level and thus can be very easily 
extracted by its RT-level description. 
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