
Software-Based Self-Testing of Microprocessors
by Exploiting a Virtual Scan Path

Giorgos Dimitrakopoulos, Xrisovalantis Kavousianos, and Dimitris Nikolos

Computer Engineering and Informatics Dept., University of Patras, Greece
{dimitrak, kavousia}@ceid.upatras.gr nikolosd@cti.gr

Abstract. A systematic methodology for generating software-based self-
tests for microprocessor cores that can be applied at-speed is introduced
in this paper. The test programs emulate the functionality of a scan-path
design and their generation is based only on a RT-level VHDL description
of the microprocessor.

1 Introduction

Modern GHz microprocessors impose significant challenges to the test commu-
nity, due to their high complexity and heterogeneity. An alternative to hardware-
based self-testing is software-based self-testing, which involves the testing of a
microprocessor using its instruction set [1]. The main benefit of software-based
self test is that it can be applied in the normal operation mode of the micropro-
cessor, thus applying the required tests at-speed. Additionally, software-based
self-testing does not require any design changes neither the insertion of any addi-
tional test hardware, and its efficiency has been proven both for stuck-at [1] and
delay faults [2]. In this paper a new methodology for software test program gen-
eration is introduced. The approach followed for the generation of software-based
structural tests does not require any low-level implementation information of the
microprocessor, as needed in [1], and it is only based on its RT-level description
and its instruction set architecture.

2 The Proposed Methodology

In a non-pipelined microprocessor or microcontroller the existent registers, such
as the Instruction Register (IR), the Program Counter (PC), and the Accumula-
tor (ACC), can be set to specific values via an instruction or a certain sequence
of instructions assuming certain values for their operands. For example the value
of the ACC can be directly set via a load-accumulator instruction and its con-
tents can be observed by applying a store-accumulator instruction. In a similar
manner the contents of the PC can be controlled by a jump instruction to a
certain memory address.

The scan chain design-for-testability technique allows the values of the regis-
ters of the circuit to be directly controlled and observed through the scan input
and output pins respectively, in a bit-serial manner.



Test Program
Synthesis

Constraints
Extraction

Test Vectors
Generation

Scan Chain
Insertion

Assembler

Capture
Processor

Inputs

VHDL
description

Gate-level
Netlist

VHDL
Testbench

VHDL Simulation

Fault Simulation

Fault
Coverage

Fig. 1. The proposed flow for the generation of software-based test programs.

Therefore the aim of the proposed methodology is at first to generate test
vectors as if the microprocessor employed a scan chain and second to generate
the proper sequence of instructions that would emulate the functionality of the
scan chain to the non-scan microprocessor. Note that the microprocessor does
not contain any scan chain. The scan chain insertion takes place only for test
pattern derivation purposes by the ATPG. In order the generated ATPG vectors
to be realizable by processor’s instructions, certain constraints are applied to the
ATPG tool. For example the nominal values assumed by the IR are limited to
the opcodes of the processor’s instructions.

The proposed software-based test generation flow is shown in Fig. 1. The
main step of the proposed methodology is the test program synthesis procedure,
which generates an assembly program that contains the instructions sequences
needed to emulate each test vector. In general the sequence of instructions used
to emulate the application of one test vector to the microprocessor, assuming
a virtual scan path, consists of 6–8 instructions, which are divided into three
groups. The first group sets the proper values to the registers, the second applies
the virtual scan test vector, and the third group of instructions writes back to
memory the new state of the microprocessor. Proper care is taken in order the
values of certain registers not to change until their values are observed, that is
their contents are written back to memory in order to be compared with the pre-
computed values of the non-fault behaviour. During the test application phase
the instruction groups lie in specific memory locations. In case that more than
one test vectors impose their corresponding instruction sequences to lie in the
same memory area, then a conflict is caused. Hence, the conflicting instruction
groups are scheduled to different test sessions, i.e. different assembly programs.

The proposed methodology was applied to the PARWAN microprocessor [1]
achieving 82% fault coverage after applying an automatically generated test
program that consisted of 262 instructions, which were executed in 984 cycles.

References

1. L. Chen, S. Dey: Software-Based Self-Testing Methodology for Processor Cores.
IEEE Trans. Computer-Aided Design, Vol. 20, No.3, pp. 369–380, March 2001.

2. W. C. Lai, et al.: On testing the path delay faults of a microprocessor using its
instruction set. Proc. 18th VLSI Test Symp., pp. 15-20, May 2000.


