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Abstract

Constrained isometric planar parameterizations are central to a broad spectrum of applications. In this work, we
present a non linear solver developed on OpenCL that is efficiently parallelizable on modern massively parallel ar-
chitectures. We establish how parameterization relates tomesh smoothing and show how to efficiently and robustly
solve the planar mesh parameterization problem with constraints. Furthermore, we demonstrate the applicability of
our approach to real-time cut-and-paste editing and interactive mesh deformation.

1. Introduction

The purpose of mesh parameterization is to obtain a
piecewise linear map, associating each face of the mesh
with a surface patch on the parameterization domain.
The parameterization domain is the surface that the
mesh is parameterized on. Since the geometric shape
of the parameterization surface will typically be differ-
ent than the shape of the original mesh, angle and area
distortion is introduced. Maps that minimize the angu-
lar distortion are calledconformal, maps that minimize
area distortion are calledauthalic, and maps that min-
imize distance distortion are calledisometric. In this
work, we deal with constrainedisometric planar param-
eterizations. These maps are central to a broad spectrum
of applications such as texture mapping, mesh comple-
tion, morphing and deformation transfer.

An important goal of parameterization is to obtain
bijective (invertible) maps. The bijectivity of the map
guarantees that there is no triangle flipping or overlap-
ping. This is an important guarantee for certain appli-
cations, especially in the presence of user defined con-
straints on the vertices. On a planar parameterization
domain a map may exhibit local or global bijectivity.
Local bijectivity is achieved when there are no local
triangle flips in the local neighborhoods of the mesh,
whereas global bijectivity is achieved when there is no
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global mesh overlapping. Generally, global bijectivity
is harder to achieve. Nevertheless, for most applications
local bijectivity is sufficient.

The existing planar parameterization methods can be
classified into two categories (for an extensive survey
see [1]) : (i) methods that solve only linear systems, for
example [2],[3],[4] and (ii) methods that use some kind
of non-linear optimization. Typical methods of the for-
mer category, especially the earlier ones, have no guar-
antee for local or global bijectivity and usually offer in-
ferior results as compared to the latter. Nevertheless,
they are usually very fast and can be useful even as an
initial solution for non-linear approaches. For example,
in [5] although the energy minimized is non linear, a lin-
ear system is solved to obtain an initial parameterization
of the mesh on the plane.

Amongst the latter category, several methods use
some form of constrained or unconstrained non-linear
optimization. These methods either reformulate the
problem (resulting in non linearity) [6],[7] or directly
minimize a non linear energy term [5],[8]. An indicative
example is the work of [6] where the parametrization
problem is reformulated in terms of angles subject to a
set of constraints that ensure planarity and triangle va-
lidity of the final parameterization. Another example is
the work of [7] where the authors use a set of vertices of
the mesh calledcone singularities to absorb the Gaus-
sian curvature. This idea was further extended in [9]
where the authors first determine automatically the loca-
tion and the target curvatures of the singularities. They
then proceed by solving a discrete Poisson equation on
the mesh vertices to compute edge lengths and compute
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the final embedding using a linear least squares method-
ology based on the computed edge lengths. A related
work is [10] based also oncone singularities where a
non linear solver is used to minimize the corresponding
metric and compute the final parameterization.

For practical applications there is usually an addi-
tional requirement to accommodate user defined or au-
tomatically imposed constraints on the vertices of the
parameterization. Generally, these constraints can be
categorized into two groups:soft constraints that are ap-
proximately satisfied in the least squares sense andhard
constraints that are precisely satisfied. Methods based
on energy minimization can support soft constraints by
adding a quadratic term to the energy function that mea-
sures the distance between the vertices and the desired
location. Nevertheless, for linear approaches the addi-
tional term usually breaks the guarantees for bijectivity
even for parameterizations on convex domains [1]. Hard
constraints are even more difficult to support. Some
methods can be extended to enforce hard constraints
by the use ofLagrange multipliers [3]. However, such
methods do not guarantee parameterization bijectivity.

In this work, we deal with the problem of computing
a bijective planar parameterization of a mesh, subject to
hard constraints. Additionally, soft constraints can be
trivially supported due to the formulation of the prob-
lem. More specifically, this paper makes the following
technical contributions:

• Establishes the relation between mesh smoothing
and parameterization techniques and derives a sim-
plified formulation for theisometric parameteriza-
tion problem.

• Presents an efficient parallel implementation of a
non-linear solver along with a number of heuristics
that speed up substantially the parallel realization
on modern hardware.

• Presents an iterative topological untangling pro-
cess that solves efficiently the constrained parame-
terization problem.

• Demonstrates the applicability of the parallel
solver on realizing the feature cut-and-paste design
paradigm.

The rest of the paper is organized as follows. Section
2 offers theoretical background for mesh smoothing and
establishes how it is related to parameterization. Section
3 describes the core of our constrained parallel solver
for isometric parameterizations. Section 4 presents an
application of our solver on cut-and-paste design. Fi-
nally, Section 5 offers conclusions.

2. Isometric parameterization

2.1. Mesh Smoothing Preliminaries

Before explaining the connection between the param-
eterization and the smoothing problem, we define three
element types: (i) thephysical element which is ob-
tained through a mapping, possibly with area and angle
distortion, of an element of the original mesh on the pa-
rameterization space, (ii) thereference element which
is constructed by placing one node at the origin and
the other nodes at unit lengths along the cartesian axes,
and (iii) theideal element which depends on the desired
properties of the final mesh (see [11], [12]).

Furthermore, we define two affine mappings. The
first mapping from thereference elementxr to theideal
elementxi is defined as :

xi =W ∗ xr (1)

where matrixW is the edge matrix of theideal element.
The second mapping from thereference elementxr to
thephysical elementx is defined as :

x = A ∗ xr + x0 (2)

where matrixA is the edge (Jacobian) matrix of the
physical element andx0 is the vector with the coordi-
nates of the first vertex. The matrixA holds informa-
tion about the volume, the area, and the orientation of
thephysical element whilex0 controls its translation.

Based on the above definitions the shape matrix from
theideal to thephysical element was defined in [11] as:

S = AW−1 (3)

and the associated barriershape quality metric (ηshape) :
R

n×n → R as :

ηshape =
‖S‖2F

n det(S)2/n
(4)

where for surface and volume meshesn is 2 and 3 re-
spectively. The above metric can be used in an opti-
mization process as an objective function to minimize
over the vertices to obtain an optimal mesh. This qual-
ity metric assumes that each element has positive and
non-zero determinants and consequently non-zero local
area or volume. Furthermore, the barrier form is used to
enforce positive Jacobian determinants to prevent fold-
ing. The mappings are depicted in Figure 1.
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Figure 1: Ideal triangle△v0v1v2 and its similar triangle△v′0v′1v′2 on
R

2 along with the corresponding mappings.

2.2. Shape matrix construction for conformal parame-
terization

As noted in the previous section the definition of the
ideal element depends on the desired properties of the
final mesh. Therefore to preserve the angles of a triangle
of the original mesh, we define on the parameterization
space anideal triangle△v0v1v2 with the same angles.
Moreover for reasons that will become apparent, we de-
fine its similar triangle△v′0v′1v′2 with base||v′0v′1|| = 1
andv′0 = v0 (see Figure 1) where:

||v′0v′1||

||v0v1||
= λ, λ > 0 (5)

with the use of basic trigonometry on△v′0v′1v′2 we may
further define the coordinates of the pointv′2 as :

v′2x =
cotα̂

cotα̂ + cotβ̂
, v′2y =

1

cotα̂ + cotβ̂
(6)

Therefore, from (5) and the definition ofW :

W =
[

v1x v2x

v1y v2y

]

=
1
λ

[

1 v′2x
0 v′2y

]

=
1
λ

W′ (7)

and from equations (6) and (7) :

W−1 = λW′−1 (8)

= λ



















1 −
v′2x
v′2y

0 1
v′2y



















= λ

[

1 − cotα̂
0 cotα̂ + cotβ̂

]

(9)

it follows that :

S = AW−1 = A(λW′−1) = λAW′−1
= λS′ (10)

MatricesW′ andS ′ are defined on the triangle△v′0v′1v′2.
Moreover, using (10) the barriershape metric (4) is de-
fined as :

ηshape =
‖S‖2F

det(S)
(10)
=
‖λS′‖2F

det(λS′)

=
λ2‖S′‖2F
λ2 det(S′)

=
‖S′‖2F

det(S′)
= η′shape (11)

showing that the barriershape quality metric is scale
invariant. Therefore, to obtain angle preserving param-
eterizations, only the angles of the triangles are required
to compute the above matrices.

2.3. Connection with MIPS energy

Hormann and Greiner’s MIPS method [5] was
the first parameterization method that supported free
boundaries and aimed at computing a parameteriza-
tion that minimized theDirichlet energy per parameter-
space area. Since this energy is minimal for confor-
mal mappings this gives parameterizations that are ”as
conformal as possible”. To show how it relates to the
shape quality metric that targets angle preserving map-
pings we start with the definition ofA :

A = [ ~v1 − ~v0, ~v2 − ~v0] =

[

v1x − v0x v2x − v0x

v1y − v0y v2y − v0y

]

(12)

and the shape matrixS′:

S′ = AW′−1 (12)
= [ ~v1 − ~v0, ~v2 − ~v0]W′−1

(9)
= [ ~v1 − ~v0, ~v2 − ~v0]

[

1 − cotα̂
0 cotα̂ + cotβ̂

]

= [ ~v1 − ~v0, (~v2 − ~v1) cotα̂ + (~v2 − ~v0) cotβ̂] (13)

Furthermore, we have for det(S′) :

det(S′)
(8)
= det(AW′−1)

= det(A) det(W′−1)

(9)
= (cotα̂ + cotβ̂) det(A) (14)

Finally, it can be shown (see Appendix A) that :

‖S′‖2F = (cotα̂+cotβ̂)
(

c2 cotγ̂+a2 cotα̂+b2 cotβ̂
)

(15)

Using (11),(14) and (15) we get :

η′shape =
1
2

a2 cotα̂ + b2 cotβ̂ + c2 cotγ̂
det(A)

(16)

From (16), we derive that the barrier shape quality met-
ric is equal to the half of the MIPS energy [5].
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2.4. Isometric parameterization

To obtain an area-preserving parameterization the
area of each triangle on the parameterization space
should tend to match its original area (E) on the mesh :
det(A) → 2E. To measure this deviation a usual metric
is [13]:

2E
det(A)

+
det(A)

2E
(17)

Therefore, a metric for the area preservation can be de-
fined as:

ηarea
(17,14)
=

2E(cotα̂ + cotβ̂)
det(S′)

+
det(S′)

2E(cotα̂ + cotβ̂)
(10)
= det(S) +

1
detS

(18)

where we define for eachideal triangle 1
λ
=

√

2E(cotα̂ + cotβ̂). Unlike the shape metric,ηarea is
not scale invariant. More specifically, the scale factor of
eachideal triangle defines the desired area on the final
parameterization. By combining the two metricsηshape

for shape preservation andηarea for area preservation,
we get the simplified combined metric that targets iso-
metric parameterizations :

ηisometric = ηshape · ηarea = ||S|| +
||S||

det(S)2
(19)

Therefore, to define theS for each trianglei we need
three scaling factors [λi, λi cotα̂i, λi cotβ̂i] computed
from the original mesh.

3. Constrained isometric parameterizations

There are several alternatives in minimizing the non
linear metric for isometric parameterizations. For ex-
ample, in the works of [5] and [12] a non-linear solver
is used in which each node is individually optimized
based on the objective function. However, it is not al-
ways feasible to efficienlty parallelize such an approach
due to the arising data dependencies. For this reason,
we have opted to use a preconditioned conjugate gradi-
ent approach and optimize all nodes simultaneously.

Conjugate gradient methods comprise a class of al-
gorithms for unconstrained optimization. These meth-
ods have very low memory requirements and have lin-
ear convergence for most problems. An advantage of
this class of algorithms is that only the objective func-
tion value and the gradient of the objective function are
used during the optimization phase. Therefore, they do
not require knowledge of the sparsity structure of the
Hessian and are suitable for large scale optimization.

(a) Initial (b) Untangling

(c) Isometric parameterization (d) Texture mapping

Figure 2: Constrained parameterization of the Casting model [14].
Area deformation is also depicted (blue and red colors correspond to
high and low distorted areas respectively).

Another important advantage of these algorithms is that
it is possible to implement them with only BLAS-1 op-
erations. There operations can be implemented very ef-
ficiently on modern hardware [16].

To obtain an initial solution to the parameterization
problem we may use one of the established linear pa-
rameterization approaches. This can be easily done by
using the standard parameterization techniques based on
barycentric coordinates [17],[18]. The boundary ver-
tices are mapped to the boundary vertices of a convex
polygon with the same number of vertices and in the
same order. Then, the interior vertices are placed in
such a way that each vertex is the centroid of its neigh-

ARAP

ABF++

Our method

Figure 5: Comparison of parameterization results for the Gargoyle
model. The ARAP parameterization is non bijective in the highlighted
area.
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(a) Initial (b) ABF++ (c) Untangled (d) Isometric parameterization

Figure 3: Constrained parameterization comparison. The constraints are : (i) the outer boundary and (ii) a set of internal nodes around the eyes and
the nose area.

boring vertices. Following this approach, there are two
issues to take into account : (1) the shape of the bound-
ary polygon and (2) how to map the boundary vertices
to the polygon. For the boundary polygon usual choices
are the unit circle and the unit quad whereas for the
mapping usual approaches are parameterization meth-
ods such as thechord length or centripetal parameteri-
zation.

In this process, an important problem is that for most
practical examples the boundary vertices do not form a
convex polygon and therefore the obtained parameteri-
zations may not be bijective. Another issue is that if we
use this parameterization as an initial solution for conju-
gate gradient this can be very far from the optimal solu-
tion resulting in slow convergence. A better alternative
for computing an initial solution in our approach, is to
use a parameterization technique such as [2],[3], or even
[6] that minimize angular distortion. Naturally, in the
presence of additional internal constraints and non con-
vex boundaries the resulting mapping is not expected
to be bijective. For example, as demonstrated in Figure
3(b), constraining a set of internal vertices and using the
ABF++ method [6] results in a final parameterization
that is not bijective.

3.1. Preconditioning

Non linear CG can be preconditioned by choosing
an appropriate positive definite preconditioner matrix.
Any matrix that approximates∇2 f (x∗)−1 is a good pre-
conditioner for nonlinear functions. Therefore, a rea-

ARAP Our method

Figure 6: Comparison between the ARAP parameterization andour
solver result. The highlighted region is not locally bijective.

sonable choice for such a matrix is the inverse of the
diagonal of the Hessian matrix. Nevertheless, ifx is
far from a local minimum, the diagonal of the Hessian
may not be positive-definite. Another possible CG pre-
conditioning strategy is to compute an approximation to
∇2 f (x∗)−1 generated by a quasi-Newton update formula
of the Broyden family [19], [20]:

Hk+1 = vT
k Hkvk + ρk sk sT

k (20)

whereρk = 1/yT
k sk, and

vk = I − ρkyk sT
k (21)

here,sk = xk+1 − xk, gk = ∇ f (xk)T , andyk = gk+1 − gk.
The above mentioned approach is known as Limited-
memory BFGS (L-BFGS) and is useful for solving large
problems since this method maintains a simple and
compact approximation of the Hessian matrices. There-
fore, it is suitable when the Hessian is dense or the sec-
ond derivatives are costly to compute. A modified ver-
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(a) Initial (b) ABF++

(c) Untangled (d) Isometric parameterization

Figure 4: Constrained parameterization of the Suzanne model [15]. The constrained nodes consist of the outer boundary (86 nodes) and 45 internal
nodes (Figure a) that are translated to new positions (Figure b).

sion ofHk is stored implicitly, by storing a certain num-
ber (m) of the vector pairs (si, yi) that are used in (20)
and (21). Figure 7 demonstrates the convergence of the
BFGS preconditioned nonlinear CG, with Hestenes and
Stiefel [21] update formula and different choices ofm.
The basic Hessian matrixH0

k plays an important role in
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Figure 7: Comparison of the Conjugate Gradient convergencewith
and without preconditioning.

the performance and the robustness of the algorithm. A
popular choice is to setH0

k = γkI whereγk is a scal-
ing factor. The scale factor generally is used as an es-
timate of the size of the true Hessian matrix to ensure
that the search direction is well scaled, and as a result

the full step length can be accepted (usually if it satis-
fies theWolfe conditions [22]). Moreover, the scaling
prohibits the eigenvalues of the approximate Hessian
from becoming large. There are several approaches in
the literature for computingγk, such as those presented
in [23],[20] and [24]. In practice, we found the scaling
factor proposed by [24] to perform the best.

3.2. Parallel implementation and results

As an API for our implementation, we have used
OpenCL 1.1. The core of our solver is the L-BFGS
method described in [19] and the software is available
athttp://www.cs.uoi.gr/~fudos/smi2013.html.
Algorithm 1 summarizes the basic steps of the solver.
To maximize the performance of our implementation,

Algorithm 1 Preconditioned Conjugate Gradient
1: d0 = −H0g0

2: βk =
yT

k−1gk

yT
k−1dk−1

3: dk = −Hkgk + βkdk−1

4: xk+1 = xk + akdk

we have considered a number of factors. Two impor-
tant considerations in modern GPUs are: (i) the effi-
cient memory usage so as to achieve maximum mem-
ory bandwidth and (ii) tuning the instruction usage so
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as to achieve the maximum instruction throughput [25].
Therefore, we have used a number of heuristics to op-
timize the parallel performance of our non linear solver
such as :

• Reduction of the divergence of the parallel kernels.

• Coalesced memory operations.

• Exact line searches.
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Figure 8: The vector∇ f can be computed in parallel for each ver-
tex with indirect memory access and execution divergence (left) or
for each face with more coalesced memory transactions and without
divergence (right).

The costlier step in the solver is the computation of the
gradient∇ f . The gradient can be computed per vertex,
where each computation should access the adjacency
list of the vertex and the corresponding scaling factors
of the adjacent faces. If we use this straightforward
approach to parallelize the computation, two problems
arise on massively parallel platforms: random memory
access patterns and divergence due to the different ad-
jacency lists. In our implementation, we follow a two
step approach to tackle these problems. First, we use
an auxiliary buffer where we store the contribution of
each face to its adjacent vertex gradients and then we
add up the corresponding partial contributions to obtain
the final gradient vector. This process is an efficient way
to parallelize the computation on the faces (see Figure
8). Each face accesses only its three scaling factors and
its vertices; consequently there are fewer levels of indi-
rection while most of the read accesses are coalesced.
The summation step still requires to randomly access
the auxiliary buffer to compute the final gradient, but
the most computationally intensive first part of the gra-
dient computation is accelerated substantially.

The other major performance issue in the perfor-
mance of conjugate gradient methods is the line search,
which requires sufficient accuracy to ensure that the
search direction yields a descent. The line search is

typically performed in two stages: a bracketing phase
where we constrain the desirable step length, and an in-
terpolation phase that computes the step length within
this bracketed interval. Ideally, we would like to find
the global minimizer forf . However, this approach usu-
ally requires many evaluations of the objective function
f and possibly the gradient∇ f . Therefore, there is a
trade-off between the accuracy of the line search and
the computational cost. A common approach is to per-
form inexact line searches until some accuracy criteria
are met. Common criteria are theWolfe conditions [22].

The usual ”strong”Wolfe condition requires an ex-
tra evaluation of the gradient of the function. This ap-
proach performs well for applications running on plat-
forms with only a few threads like CPUs. On the con-
trary, the evaluation of the gradient on massively paral-
lel platforms is relatively expensive. Even though we
improved the speed of this computation with the previ-
ously described approach, due to the complexity of the
gradients the evaluation of∇ f on such platforms is still
an order of magnitude slower than the evaluation off .
Thus, in many cases it is more efficient to carry out more
function evaluations instead of using the ”strong”Wolfe
condition to stop the line search process prematurely. A
related issue is the scaling of the Hessian matrix, the
scaling ensures that the search direction is well-scaled
and that the full step (ak = 1) is accepted in most itera-
tions.

Having made the above observations, we have opted
for a hybrid approach. First we scale the Hessian and
check the strongWolfe condition with the full step. If
the step is rejected, we perform an exact line search us-
ing the derivative freeBrent method [26] having as a
limit the square of the hardware double accuracy. This
is also the accuracy limit for the specific line search
method. Since theBrent method needs a bracketing
triplet (xa, xb, xc), satisfying f (xb) < f (xa) and f (xb) <
f (xc), in the case of the isometric metric, we take into
account the discontinuity of the function when an ele-
ment becomes inverted. This discontinuity occurs along
the search directiondk using a negative step. To avoid
this case, and assuming that the line search begins with
a bijective mapping, we find a low boundǫ where the
function is defined. To computeǫ, we start from a small
value and follow a procedure similar to the backtrack-
ing line search approach. This approach worked reliably
in our experiments; the initial bracketing phase typi-
cally costs three or four function evaluations whereas
theBrent line search method usually costs less than ten
function evaluations.

Figures 5 and 6 illustrate the parameterization of two
meshes from [14] with our solver and show a compar-

7



ison with the ARAP method that also targets isomet-
ric parameterizations [4]. In both the cases the ARAP
method failed to produce bijective parameterizations.

Furthermore, we have obtained performance results
minimizing the isometric metric and using an NVIDIA
Tesla c2070 and an Intel i7-2600k processor. Table 1
illustrates the scalability of the solver while running a
fixed number of iterations with different level of detail
whereas Table 2 and Table 3 provide a comparison with
the publicly available parameterization software of [4]
in terms of running times and parameterization quality.

(a) Feature (b) Planar projection

(c) Untangling (d) Isometric

Figure 9: Constrained boundary parameterization (a) Original feature
(b) Planar projection (not bijective) (c) Untangled mesh (with area
deformation) (d) Further optimized isometric parameterization (also
showing area deformation).

3.3. Parameterization with hard constraints

Computing a parameterization with positional con-
straints is a difficult research problem. Tradition-
ally, planar parameterization methods support such con-
straints. For example Levy et al [2] incorporates soft
and hard constraints in the linear system formed while
Desbrun et al [3] use Lagrange multipliers to add posi-
tional constraints. However in the presence of a lot of
constraints, these methods can fail to compute a bijec-
tive parameterization even if such a parameterization is
known to exist. The inherent problem is that the bijec-
tivity of the resulting map is based on certain proper-
ties of the energy minimized. Thus, adding linear terms
in the system formed for soft constraints or removing
variables for hard constraints can break theoretical guar-
antees for bijectivity. More recent methods methods

such as [6] also support positional constraints but bijec-
tive parameterizations are not guaranteed (Figures 3,4).
Other methods proceed by adding Steiner vertices to en-
sure the bijectivity [27] or compute a parameterization
by partitioning the mesh into patches that are then pa-
rameterized while maintaining the smoothness and con-
tinuity between them [28].

When the boundary vertices are fixed, the constrained
parameterization problem is equivalent to mesh untan-
gling. Existing methods for untangling employ geomet-
ric or optimization-based approaches. For example in
[29] the authors seek to maximize the minimum element
area and formulate the mesh untangling problem as a se-
ries of local linear programming problems. Knupp et al
[30] optimize a global function that measures the dif-
ference between the absolute and signed element area.
The latter requires a custom solver and a modified line
search approach since the gradient of that function is not
continuous.

Another approach to handle folded meshes is to mod-
ify the shape quality metricηshape so as to incorporate
an untangling process as suggested by [31]. Having
established the connection between the parameteriza-
tion and the shape metric based smoothing, we may
use this method with the appropriate isometric equa-
tions of section 2 and solve the resulting convex prob-
lem. In our experiments this approach worked reason-
ably well for small to medium sized meshes. Neverthe-
less, it further requires the solution of a series of non
linear problems. More importantly, this objective func-
tion can take extreme values on large meshes and con-
sequently it is very difficult to optimize it effectively.
For the above reasons we follow a different two step ap-
proach. First, we consider the boundary of the param-
eterization along the constraints imposed fixed and we
treat the constrained parameterization problem as an un-
tangling problem which is solved with simple topolog-
ical operations. Afterwards, we proceed by optimizing
the untangled map with the non linear solver in order to
improve the quality of the parameterization. For such
an approach to work in the case of free boundaries a
good initial solution should be available. In this case of
free boundaries we use the method of [6] to obtain this
solution.

To derive the topological operator per vertex we for-
mulate the untangling problem as a minimization prob-
lem on the inverted elements:

min f (x) = −
n
∑

i

det(A) (22)

For the above function if we compute the gradients of
a triangle with verticesv0,v1,v2 and edgese0,e1,e2 with
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respect to vertexv0 we obtain:

detA = (e0y · e2x − e0x · e2y)⇒

−
∂ det(A)
∂v0x

= −(v2y − v1y) = −e1y (23)

−
∂ det(A)
∂v0y

= (v2x − v1x) = e1x (24)

This means that the gradient of the negative triangle area
with respect to one of its vertices is equal to the opposite
triangle edge rotatedπ2 clockwise about the triangle nor-
mal. If we sum all the gradients of the adjacent triangles
this gives a decent direction and therefore we can move
all the vertices along the corresponding lines:

vk+1
i = vk

i + δ
∑

j∈Ni

CW π
2
(eopposite) (25)

whereNi is the set of adjacent inverted triangles around
vertexi. Unfortunately, if we only apply the above oper-
ator there are numerical instability issues. The problem
is directly related to the invariance of the area deforma-
tion under shears [13]. A shear does not change the area
of a triangle and therefore extremely sheared triangles
may occur during the minimization process. The prob-
lem becomes severe when the total area of the triangles
around a vertex is very small and the corresponding val-
ley has almost collapsed. In that case the edge lengths
may become arbitrarily large especially if we use a bad
initial solution. For this reason, we added a correction
term that also reduces the shearing of a triangle when
the area of that triangle drops below a certain thresh-
old. This correction term is a vector perpendicular to
the gradient of the area and the orientation depends on
the angles of the triangle as illustrated in Figure 10. The
shear direction is perpendicular to the gradient and the
addition of this term keeps the decent property of the
total operator. The addition of this term topologically
”bends” the decent direction of the vertex towards the
centroid of the valley resulting in reduced edge lengths.

Algorithm 2 summarizes the basic steps of the untan-
gling process. where the factors are defined based on a
user defined minimum areaβ as :

f actor j =















1− | det(A j)|
β

,−β ≤ det(A j) ≤ β

0 , otherwise
(26)

This way we move all the vertices along the decent di-
rection according to aδ value without performing an
exact line search. We have avoided exact line searches
for two reasons. First, the gradient computations are

v
0

γdarea

dshear

v1 v2

v
0

β darea

dshear

v1 v2

Figure 10: Shear operator for two different triangle configurations.
The shear operator is parallel to the opposite edge and the direction
depends on which of the two opposite angles is greater thanπ

2 . If both
angles are acute then no shear operator is applied.

Algorithm 2 Untangling Process

1: δ← 1
2

2: for k = 0 to convergence orδ < ǫ do
3: for i = 0 to N do
4: darea =

∑

j∈Ni
CW π

2
(eopposite)

5: dshear =
∑

j∈Ni
f actor j · shear(eopposite)

6: vk+1
i = vk

i + δ(darea + dshear)
7: end for
8: if

∑

| det(Ak+1)| ≥
∑

| det(Ak)| then
9: δ← δ

2
10: end if
11: k = k + 1
12: end for

affordable, unlike the non linear functions of the previ-
ous section, and therefore it is better to perform more
gradient than function evaluations. Second, in this way
we only need local topological operations that are more
robust arithmetically. The latter is important especially
for modern GPUs since it allows us to use only single
precision operations that reduce the memory bandwidth
requirements and are much faster than the correspond-
ing double precision operations. Figures 2,3,9,4 and 14
illustrate some untangling results that are used as an in-
termediate step for computing isometric parameteriza-
tions. The running time of the untangling process de-
pends on the number of constraint vertices and the ini-
tial solution. For example, for the mesh of Figure 3 with
13095 faces and 241 constrained vertices the time for
the untangling process was 100ms on a Tesla c2070. In
all the experiments performed, the running time is pri-
marily affected by the non linear optimization step that
follows the untangling process. For typical meshes of
up to 50k triangles, with hundreds of constraints, the
average time for untangling was less than a second.
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4. An application: mesh editing through cut-and-
paste

In the context of mesh editing, the cut-and-paste
paradigm extracts a characteristic feature from a source
surface and copies it on a target surface. The user usu-
ally selects a surface region which has two parts: the
base surface and the detail surface. The base surface is
a connected subset of the original surface and the de-
tail surface is used as a feature to be copied/pasted. The
goal is to replace the detail part of the target surface with
the detail part of the source surface. The key question is
how to transfer correctly the details from the source sur-
face to the target. The target base surface may be altered
as well to achieve smooth blending.

The detail surface can be stored either as a height-
field or a parametric volume map [32]. The drawback
of the height-field representation is that usually general
features may be thick or contain overhangs and they can
not be properly represented. To paste the detail surface
to a target model, the corresponding vertices of the tar-
get model are moved based on the detail map. In 3D,
a smooth attachment of boundaries between the pasted
feature and its base is sometimes required. One possi-
ble way to resolve this issue is to perform a union oper-
ation between the two models and then apply a blend-
ing function along the boundaries of the features [33].
However, blending functions for arbitrary meshes is a
difficult problem to solve efficiently and robustly. Snap-
paste [34] suggests an iterative algorithm for aligning
the feature and the base surface, by positioning and de-
forming both surfaces. However they do not avoid the
need for remeshing.

Another approach [35],[36],[37] is the modification
of differential coordinates instead of directly changing
spatial coordinates. The mesh geometry is then im-
plicitly modified after reconstructing the surface from
the differential coordinates. This method has the ad-
vantage of reducing deformation artifacts that may ap-
pear after feature pasting. Nevertheless, sharp features
are difficult to support. A tool for interactive cut-and-
paste operations that uses the above approach is Mesh
Mixer [38]. A distance preserving local parameteriza-
tion is computed around the pasted area using approxi-
mate geodesic distances [39] and both the base surface
and the feature are deformed using variational surface
deformation techniques [37]. This method is very fast
but suffers from some robustness issues as mentioned
by the authors [39].

Existing cut-and-paste editing methods can be
roughly categorized into two broad groups. The first
group, uses mesh fusion to blend the source surface

and target surface directly [40],[33]. The second group
first extracts a base surface as a medium between the
source surface and the target surface, and then trans-
fers the details to the target surface via the base surface
[32],[41],[42]. The former pays more attention to the
smoothness of the boundaries at the joint of the source
and target surfaces. The latter focuses on the global de-
formation of the source surface according to the target
surface.

4.1. Our approach

In our approach, we have adapted tools and tech-
niques from the differential coordinate and the mesh fu-
sion scheme. We use an adaptive tessellation scheme
that is built on top of the GPU tessellation unit. The
tessellation is adaptive in the sense that only areas of in-
terest are tessellated while the rest of the mesh remains
untessellated. The feature area is parameterized with
our non-linear solver and is subsequently stored in a 2D
floating point texture. This texture is used in the tessel-
lation evaluation shader to offset the base surface so as
to create the feature in real time. The two main prob-
lems we address in this approach are: (i) how to support
arbitrary features for pasting operations and (ii) how to
smoothly blend the pasted feature and the base surface.
Our approach is fast enough to support interactive oper-
ations.

The parameterization of the pasted feature should sat-
isfy the following requirements to support arbitrary fea-
tures:

• The boundary of the parameterization should be
arbitrary. Convex boundary parameterizations are
useful only for simple features and usually exhibit
high distortion.

• The parameterization should be bijective and iso-
metric. This allows us to store the feature in a 2D
texture. The area and angular distortion of the pa-
rameterization should be minimal to avoid under
sampling during the storage phase.

• Hard and soft constraints on the vertices should be
handled robustly. This implies that the parameter-
ization is bijective regardless of the constraints on
the vertices (if such a parameterization exists).

All the above requirements can be satisfied by our non-
linear solver. Therefore, provided that we have parame-
terized the base area using one of the established meth-
ods, we proceed by computing a constrained parame-
terization of the feature. More specifically, we fix the
boundary along with other user defined internal points
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on corresponding positions of the base surface parame-
terization. To find the specific correspondences we may
follow either an automatic or a user-driven approach.
To automatically compute the constraints we project the
feature boundary on the base surface and use the corre-
sponding (s,t) parameterization coordinates of the base
surface to constrain the feature parameterization. A lim-
ited user intervention may be necessary in cases of very
complex boundaries. Aletrnatively, other methods can
be used such as the snapping algorithm of [34].

Regarding the smooth attachment problem, a way to
paste the feature without distorting its form is to treat the
base surface as an elastic object and smoothly deform it
to produce an appropriate area for pasting. The above
observation led us to use a method that works very well
in practice and produces intuitive results without de-
formin the feature surface. Our approach is based on the
use of Radial basis functions (RBFs) [43],[44]. RBFs
are a tool for interpolating data and are used to derive
the displacement in any location in the space. RBF ap-
plications include mesh warping, medical imaging, and
surface reconstruction [45],[46].

An RBF, s, is a function of the form:

s(y) =
N
∑

i=1

wiφ(||y − xi||) + pm(y) (27)

whereφ is called the basic function,wi is a scalar coef-
ficient, x1, ..., xN are the pairwise distinct control points
of the RBF, andp(x) is anm degree polynomial. Popu-
lar choices of basic function include the thin-plane and
the polyharmonic splines. To compute the coefficients
we need to solve a linear system of order equal to the
number of RBF control points. The right part of the
system is filled with the known values at the control
points and the left part is filled with the values of the
basis function between the control points and values
that depend on the polynomial used. Once the coeffi-
cients have been calculated, any arbitrary point can be
expressed through the functions (27). In our experi-
ments we have observed that the polyharmonic and the
Wendland [47] basic functions produce the most natural
looking results. Furthermore, we use two sets of con-
trol points. The first set of stationary control points is
positioned at the boundaries of the base region and fixes
the boundaries of the domain. The coordinates of each
control point are used to set the right part. The second
set of moving control points is positioned at the bound-
aries of the pasted feature. More specifically, we project
the boundary points of the pasted feature on the base
surface and use the projected points as control points.
To set the right part for this set of control points we

use the corresponding coordinates from the boundary
of the feature. Having established an initial correspon-
dence between the boundary of the feature and the base
surface, we may apply an additional transformation on
the feature to better place it on top of the surface. This
additional transformation only affects the right part of
the linear system. Therefore, for reasons of efficiency
we compute and store the LU factorization only once
and perform a back substitution when this transforma-
tion matrix changes. This way, the user can interactively
move and rotate the feature on the base surface.

(a) Undeformed (b) RBF Interpolation

Figure 12: Base surface deformation.

After transforming the base surface with RBFs the
feature is pasted with the use of the tessellation unit.
More specifically, in the tessellation control shader we
sample the feature texture to decide if the base surface
needs tessellation. If the base surface is tessellated, we
offset the new vertices using the feature texture and ap-
ply the additional transformation matrix (if there is one).

The process of RBF interpolation and pasting is il-
lustrated in Figure 11 whereas Figures 12 and 13 illus-
trate the deformation result for different base surfaces.
The reader is also referred to the supplementary mate-
rial that accompanies this work and is also available at
http://www.cs.uoi.gr/~fudos/smi2013.html.

5. Conclusions

We presented an efficient parallel scheme to compute
isometric parameterizations subject to soft and hard
constraints. Our approach is based on establishing a
theoretical connection between the well studied non lin-
ear mesh smoothing and theisometric parameterization.
Using this scheme, we have successfully carried out a
large number of experiments to validate the solver on
parameterizing meshes up to one million triangles in a
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(a) (b) (c) (d)

Figure 11: Overview of the pasting process. (a) Base surface, fixed and movable control points are colored red and orange respectively. (b) Pasted
feature, the boundary of the feature is green. (c ) We may apply an additional transformation on the feature and deform thebase surface with RBFs.
(d) Final pasting result.

(a) Base surface (b) Cut-and-paste without RBF (c) RBF Interpolation

Figure 13: Cut-and-paste example.

(a) Final Mapping

 0.38
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 0.23  0.24  0.25  0.26  0.27  0.28  0.29  0.3  0.31

pinned

(b) Detail

Figure 14: Mapping the Julius model to the plank model. We first
parameterize the plank model (right) with ABF++ and we pin the
vertices around the ears and eyes of the Julius model (left) at the cor-
responding positions of the plank parameterization. (a) The final un-
folded parameterization is locally bijective (b) Detail ofthe final pa-
rameterization.

few seconds on a modern GPU. Finally, as an applica-
tion of our solver, we have parameterized and stored
free form features on floating point textures and then
by exploiting the capabilities of the tessellation unit on
modern GPUs we have supported cut and paste opera-
tions in real time.

A possible extension of our work would be the usage
of a hierarchical decimation scheme similar to [5] or [6]
to accelerate the convergence of the non-linear solver.
Going a step further, we could exploit the connection
between the parameterization and the smoothing prob-

lem to compute theisometric parameterization of vol-
ume meshes on 3D domains. By doing so, more proper-
ties of the original mesh could be preserved such as the
volume preserving morphing and blending operations.

Another direction for future research is to provide
a formal proof regarding regarding the convergence of
the untangling process. This could be reached from
connecting our process to standard gradient decent ap-
proaches and analysing the numerical instabilities that
occur near the solution.

Appendix

‖S′‖2F = trace(S′T S′)
(13)
= (~v1 − ~v0) · (~v1 − ~v0) + ((~v2 − ~v1) cotα̂+

(~v2 − ~v0) cotβ̂) · ((~v2 − ~v1) cotα̂ + (~v2 − ~v0) cotβ̂)

= ‖~v1 − ~v0‖
2
2 + ‖~v2 − ~v1‖

2
2 cotα̂2 + ‖~v2 − ~v0‖

2
2 cotβ̂2+

2(~v2 − ~v1) · (~v2 − ~v0) cotα̂ cotβ̂
(CL)
= ‖~v1 − ~v0‖

2
2 + ‖~v2 − ~v1‖

2
2 cotα̂2 + ‖~v2 − ~v0‖

2
2 cotβ̂2+

(‖~v2 − ~v1‖
2
2 + ‖~v2 − ~v0‖

2
2 − ‖~v1 − ~v0‖

2
2) cotα̂ cotβ̂ (28)

where we use thecosine law (CL) on the last equation,
if we further define the triangle edge lengths as :

a = ‖~v2 − ~v1‖2, b = ‖~v2 − ~v0‖2, c = ‖~v1 − ~v0‖2 (29)
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Table 1: Numerical results for different levels of detail while running a fixed number of iterations (=1000) on the Blech mesh (Area(rms) =
0.490457 andAngular = 0.101195).

Level # vertices # faces i7 (ms) c2070 (ms) SpeedupArea(rms)1000 Angular1000

Lod1 1815 3456 999 1072 0.93 0.114456 0.0058238
Lod2 7085 13824 1704 1196 1.42 0.114835 0.0052326
Lod3 27993 55296 4708 1744 2.69 0.142656 0.0069087
Lod4 111281 221184 18156 3322 5.46 0.319943 0.0464538
Lod5 443745 884736 73828 9795 7.53 0.452182 0.0741808

Table 2: Time comparison between our solver and ARAP

method model # vertices # faces bijectivity iters # evalsf time(s)

ARAP Blech 27993 55296 yes 7 - 1.95
Solver(1000) Blech 27993 55296 yes 1000 2633 1.65
Solver(1500) Blech 27993 55296 yes 1500 3658 2.38
ARAP gargoyle 24406 48672 no 4 - 1.08
solver(5000) gargoyle 24406 48672 yes 5000 15570 10.16
solver(10000) gargoyle 24406 48672 yes 10000 30551 19.88
ARAP julius 209083 416286 yes 28 - 59.02
solver(2500) julius 209083 416286 yes 2500 5583 14.71
solver(4000) julius 209083 416286 yes 4000 8943 23.92

it follows that :

‖S′‖2F
(28),(29)
= (1− cotα̂ cotβ̂)c2 + (cotα̂ + cotβ̂)(a2 cotα̂ + b2 cotβ̂)

= c2 sinα̂ sinβ̂ − cosα̂ cosβ̂

sinα̂ sinβ̂
+

(a2 cotα̂ + b2 cotβ̂)
cosα̂ sinβ̂ + sinα̂ cosβ̂

sinα̂ sinβ̂

= c2− cos(α̂ + β̂)

sinα̂ sinβ̂
+ (a2 cotα̂ + b2 cotβ̂)

sin(α̂ + β̂)

sinα̂ sinβ̂

= c2− cos(π − γ̂)

sinα̂ sinβ̂
+ (a2 cotα̂ + b2 cotβ̂)

sin(π − γ̂)

sinα̂ sinβ̂

= c2 cosγ̂

sinα̂ sinβ̂
+ (a2 cotα̂ + b2 cotβ̂)

sinγ̂

sinα̂ sinβ̂

=
sinγ̂

sinα̂ sinβ̂

(

c2 cotγ̂ + a2 cotα̂ + b2 cotβ̂
)

= (cotα̂ + cotβ̂)
(

c2 cotγ̂ + a2 cotα̂ + b2 cotβ̂
)

(30)
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