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Abstract

Techniques that transform one two-dimensionaf image into another
have gained widespread use m recent yeara. Extending these tech-
niques to transform pairs of 3D objects, as opposed to 2D images of
the objects, providea several advsntagea, including the ability to sn-
imate the objects independently of the transformation. This paper
presents an algorithm for computing such transformations. The al-
gorithm merges the topological structures of a pair of 3D polyhedral
models into a common vertex/edgeJface network. This allows trsms-
formations from one object to the other to be easily computed by in-
terpolating between corresponding v@ex positions.

Keywords: ComputerAnimation, Computer-AidedGeo-
metric Design, Interpolation, Shape Trans-
formation.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geomefry and Object Modeling; 1.3.7 -
[Computer Graphics]: Three-Dimensional
Graphics and Realism

1.0 Introduction

In recent years, image processing techniques, popularly known as
“morphing”, have achieved widespread use in the entertainment in-
dustxy. Morphirtg involves the transformation of one 2D image into
another 2D image. These techniques involve first specifying some
function that map points from one image onto points of the other
image, then simultaneously interpolating the color and the position
of corresponding points to generate intermediate images. When
viewed in sequence, these intermediate images produce an anima-
tion of the first image changing into the seared. Variations of these
techniques have beem used to create astonishing special effects for
commercisds, music videos, and movies.

While morphing is useful for mmy applications, the fact Ihat the in-
termediate stages of the transformation are images with no 3D ge-
ometry limits its use. In order to fully realize the benefits of
transformations in animation and design, 3D models of the objects
must be transformed, instead of just 2D images of these objects.
Transforming 3D models as opposed to imagw allows for the ob-
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jects to be animated independently of the trartsformatio~ using
computer animation tec~lques such as key frsming. In addition, 3D
transformations can be used in design to create objects that combine
features of the original objects ([4], [8], [14]).

This paper presents an algorithm that, given two 3-D polyhedral
models, generates two new models that have the same sh~ as the
original ones, but that allow transformations from one to another to
be easily computed. A previous paper [9] described an early version
of the algorithm that was limited to star-shapedt plyhedral solids.
Since then, the algorithm has been extended to aflow for transfor-
mations between more complex polyhedral models. In additiorL the
computational complexity and robusmess of the afgorithm have
been improved.

After some fundamental concepts are defined in Section 2, a de-

scription of the sh~ transformation problem for 3D objects is giv-
en m Section 3. This is followed by a brief review of previously
published research in Section 4. Section 5 provi&s a detailed de-

scription of the afgorithm. Section 6 addresses interpolation issues,
including transforming non-geometric stwibutes, such as surface
cmlor. Sample transformations are presented in Section 7. The paper
concludes with a discussion of open issues and future research in
Section 8.

2.0 Fundamental Concepts

fn order to dkuss the shape transformation problem, it is useful to
carefully define a few key terms. Throughout this discussion the
term objec~ will be used to refer to an entity that has a 3D surface
geometry. The shupe of an object refers to the set of points in object
space that comprise the object’s surface. The term model will be
used to refer to any complete &scription of the shape of an object.
Thus, a single object may have many different models that describe
its shape.

Following the terminology used by Weiler in [16], topofogy refers
to the vertex/edge/face network of a model. Geotrse(ry refers to an
instance of a topology for which the vertex coordinates have been
specified. Vertices, edges, and faces are collectively referred to as
topological elements.

Some concepts from mathematical topology also need to be de-
fined. Two objects are said to be homomorphic, or topologically
equivuletst, if a continuous, invertible, one-to-one mapping between

1. Star-shaped refers to models for which at least one interior point,
p, exists such that any semi-infinite ray originating at p intersects
the surface of the object at exactly one point.
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pointa on the surface of the two objects exists. Such a mapping is
referred to as a homccwnorphi.wn. Finally, an object is said to be Eu-
Ur-vufid if its topology obeys the generalized Euler formula:

V- E+ F=2-2G

where V, E, and F are, respectively, the number of vertice~ edges,
and faces of the topological network and G is the number of psa-
sages through the object (i.e. its genus).

3.0 The Shape ‘fkansformationProblem

A common approach to transforming one shape into another is to
divide the problem into two steps. The first step is to eatabliih a
mapping from each point on one surface to some point on the sec-
ond surface. Once these eorreapmdences have been establish~ the
second step is to create a sequenee of intermediate models by inter-
polating corresponding points from their position on the surface of
one object to their position on the surface of the other. The first step
will be referred to as the correspodvtce problem and the semnd
step will be referred to as the interpdufion problem. The two prob
lems are interrelated since tbe method used to solve the interpola-
tion problem is dependent upon the manner in which the
correspondences are established.

This paper presents a solution to the cmeapondence problem for
Eulm-valiA genus O, polyhedral objects. By restricting ourselves to
polyhedral objects, the correspondence step does not need to explic-
itly specify the mapping for eve~ point on the surface. A sufficient
solution is to specify correspondences for eaeh vertex of the mod-
els. The interpolation problem is then solved by interpolating the
positions of corresponding vertices. Since the main contribution of
this paper is an tdgorithm for establishing correspondences, the ma-
prity of the paper is concerned with the solution to the correspon-
dence problem. Issues that arise during the interpolation are briefly
diSCUSSed in Section 6.0.

4.0 PreviousWork

As mentioned in Section 1.0, “morphing” techniques for trartsform-
ing images have demonstrated remarkable results and have
achieved widespread use. Wolberg provides an excellent introduc-
tion to image morphing in [17]. These techniques rely on the user
to specify pairs of points in the two images that correspond

Several approaches to three-dimensional shape transformation have
been published Wyvill [18] describes a transformation algorithm
for implicit surfaeea (i.e. blobby objects). Brute force approaehea
for polyhedral models, such as that described by Tenzides’ [14], es-
sentially require the user to specifi, for every vertex, a correspond-
ing vertex from the other model. Hong et al. [7] propose a solution
for polyhedra based on matching the faces of the objects whose cen-
troids are closest. Bethel & Uselton [1] &scribe an algorithm that
adds degenerate vertices and faces to two polyhedra until a common
topology is achieved Chen & Parent [4] present a transformation
algorithm for pieawise liiear 2D contours, then briefly address an
extension for 3D lofted objects. Parent [10] describes a solution for
polyhedra that establishes correspondeawes by splitting the surface
of the models into pairs of sheets of faces, then recursively subdi-
viding them until the topology of each pair is identical. Katd & Ros-
signac [8] transform pairs of polyhedra by computing the
Minkowski sum of sealed versions of the models. By gradually
scaling one model from 100% to O% while simultaneously scsliig
the other horn O% to 100%, a transformation is obtained. Payne&
Toga [11] first convert each polyhedra into a d~tance-field volumet-
ric representation interpolate the values at each point of the 3D vol-

ume, then tind a new isosur-ke that represents some combination
of the original objects.

Techniques that make use of the topology and geometry of the mod-
els tend to yield better results. For example, since Hong et al. and
Payne & Toga do not make Ml use of the topological information,
the surfacea of the models generated at intermediate steps are not
guaranteed to remain connected. Similarly, Bethel & Uselton and
Parent rely primarily on tbe topology to establish correspondences,
ignoring most of the geometric information. This often reds in se..

verely distortedintermediate models.

Kaul & Rossign~’s technique, as well as the one described in this
pap. make full use of both the topology and the geometry of the
models, resulting in intermediate models that have connected sur-
faces and that exhibit small amounts of distortion. One Fincipal ad-
vantage of the method &scribed herein is that our correspondence
algorithm describes a homomorphism. This provides a straightfor-
ward method for interpolating the surface attributes of the objects
along with the geometry. In additi~ it seems likely tltat our ap-
proach can be more easily extended to allow for greater user control
over the transformation.

5.0 An Algorithmfor Establishing Correspondences

Suppose that two genus O solid objects are specified. Now, imagine
that it wexe pssible to irdIate these objects with air like balloons
until they became spherical. Each point on the surface of each ob-
ject maps onto a unique point on the surface of the sphere, Associ-
ating each point fknn one object with the point from the other object
that maps to the same point on the sphere establishes a one-to+ne
correspondence between points on the surface of the two objects.

The above observations form the basis for the correspondence slgo-
nthm. l%s~ the surke of each ob~t is pojected onto a unit
sphere. This mapping is used to identi~ correspondences between
points on the two original objects by associating pairs of points that
map to the same location on the sphere. This approach can p@en-
tially be applied for non-polyhedral genus O objects (e.g. spline sur-
face models) as long as a mapping horn the surface of the object to
the surface of the unit sphere can be found.

Bier and Sloan [2] describe a similar apFoach for solving the prob-
lem of wrapping a 2D texture onto a 3D object. The tit step maps
the texture onto an intermediate surface, such as a sphere or a cyl-
inder. The second step maps the intermediate surface to the surfwe
of the 3D object. Unfortunately, the techn@es used to map the in-
terme&ate surface to the 3D object are not always one-to-one, and
thus are not appropriate for our application.

This section describes an implementation of the correspondence al-
gmithm for genus Oplyhedral solids. The first step is to project the
topology of both models onto the unit sphere. Nex~ the two topol-
ogies are merged by clipping the projected f-s of one model to the
projected faces of the other. The merged topology is then mapped
onto the surfwe of both original models. This generates two new
models that have the same shape as the original two models, but that
share a common topology. This allows a transformation between
the two shapes to be easily computed by interpolating the coordi-
nates of eaeh pair of ~rrespondmg vertices. F@re 1 shows a pair
of models and the same pair with the merged topologies mapped
onto their surfaces

Throughout the dmcussi~ the original objects are refereed to as A
and B. The original polyhedral models of these objects are referred
to as Ma and Mb M, has vertices, V,, edges, E,, and faces, F,. Sim-
ilarly, Mb has vertices, V& edges, ~, and faces, F& The projection
of M, and Mb onto the unit sphere are referred to as (Ma)P and
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Wdp r=p=tiveht Witi VIXtiCCX(v,~ ad (Vb)p. ~~ referring
to a specific topological element of one of the models, lower case
letters will be used. For example, ea refers to a specific edge of ob-
ject M,, and (VIJP refers to a speafic projected vertex of Mb The
results of the correspondence algorithm (i.e. the two new models of
A and B that share a common topology) are referred to as M,* and
Mb*o

@@

Models with Merged
Original Models Topology Mapped

onto Surface

Figure 1 -An Example of The Correspondence Algorithm

5.1 Projection Methods

The firststep of the comspondence algorithm is to project the sur-
face of the two polyhedra onto the surface of the unit sphere. The
projection must satia~ two conditions. First, it must be one-to-one,
so that each point on the surface of the object projects to a unique
point on the surface of the sphere. Second, the projection must be
continuous in the sense that points withii a small radius of a given
point project to within a small radius of the projection of that point.
Any method for projecting an object that satisfies these two condi-
tions is acceptable.

The projected polyhedral models are completely specified by the to-
pology of the original model together with the coordinates of the
projected vertices. This enables the projected models to be saved,
eliminating the need to recompute them each time the model is
used.

Since the correspondences between the models are established by
their mappings onto the sphere, different mappings result in differ-
ent transformations. Thus, providing different projection methods
gives the user some degree of control over the transformation. Sec-
tions 5.1.1 through 5.1.4 describe a collection of projection meth-
ods that allow a wide variety of polyhedral models to be
transformed. While no completel y general methed has been found,
the techniques presented work for a large number of commonly en-
countered types of models.

5.1.1 Convex and Star-Shaped Objects

The definition of a star-shaped polyhedral object is that at least one
interior point of the polyhedron exists from which all the vertices of
the object are visible. This definition suggests a method for project-
ing such an object. FM~ specify such an interior poin~ O, to be the
center of the objec~ and translate the object so that O coincides with

the origin. Then, move each vertex in or out sdong the ray from O
through the vertex until it lies at unit distance from O.

A suitable center point can be algorithmically selected by first com-
puting the intersection of the interior half spaces of all the planes of
the faces of the model. The resulting volume is called the kxmel of
the polyhedral model. If the original plyhedron is star-shaped, its
kernel is a non-empty convex polyhedron. Averaging the vertices of
the kernel yields a suitable center point for the projection. The com-
plexity of computing the kernel of a three-dimensional polyhedron
is O(NlogN) [12].

Since the choice of center point affects the location of the projected
vertices, providing the ability to select a center point gives the user
some control over the transformation. Verifying that the selected
point satisfies the vertex visibility condition can be performed in
O(N) time by testing that the outward normal of each face is direct-
ed away born the point.

Note that convex polyhedra we a special case of s~-shaped poly-
hedra for which all interior points satisfy the visibility condition.
Thus, for convex polyhedrz any interior point maybe specified as
the center.

Some of the projection methods described in the following sections
project the model onto a convex polyhedron (usually the convex
hull of the object). To complete the projection to the sphere, the star-
shaped projection is applied to this convex polyhedron.

5.1.2 Methods Using Model Knowledge

Polyhedral models are often constructed using techniques such as
revolving a contour about an axis, or exlruding a planar polygon
along a line [3]. By using information about how the model is cors-
stmcted, efficient methods for pojecting the object to the unit
sphere can be found. This approach naturally lends itself to an ob-
ject-oriented methodology, where “ProjectToSphere” could be one
of the methods attached to an object.

The class of polyhedral models known as objects of revolution con-
sist of a set of planar contours (ribs) arranged at angular increments
around an axis. Such a mcdel can be pro@ted to a sphere in O(N)
time by positioning the points of each rib along a longitudinal arc
of the sphere whose “north/south” axis matches the axis of the mod-
el. Each arc should lie in the plane of the rib, have its endpoints on
the axis, and be on the same side of the axis as the rib.

Two methods for spacing the rib points along a semicircle have
been developed. The first positions them so that the arc lengths be-
tween points on the semicircle are proportional to the distance be-
tween the corresponding points on the rib. The sewnd method first
projects the rib onto its convex hull using a recursive method simi-
lar to that described by Ekoule et al. in [5]. Once the rib is mapped
onto its convex hull, each point is moved in or out to the unit sphcze
along a ray from the midpoint of the axis through the point.

Any technique that maps a rib to a semicircle can be used for spac-
ing the points with diff=ent transformations resulting. However,
methods that FeServe geometric information from the original
model, such as the two described above, generally lead to more aes-
thetic transformations.

Another common class of polyhedral models, known as extruded
objects, are generated by moving a planar polygon along a straight
line, sweeping out a solid volume. Two copies of the polygon are
used to cap the ends of the object. This class of models can be pro-
jected by mapping each of the two caps to its convex huU, using Ek-
oule’s method as above. The resulting convex model can be
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projected to the unit sphere using the star-shaped projection from
Section 5.1.l.

It is important to note that the above techniques work for any model
that can be &scribed in an appropriate farmm whether or not the
obje@ was originally modeled using the described techiiiques. For
example, data from 3D digitizers can often be easily converted into
the object of revolution format.

5.13 Phyaicaily-Baaed Methoda

As mentioned in Section 5.0, the inspiration for the shape transfor-
mation algorithm rnvolves an analogy with inflating ?lte objects liie
a balloon. This idea led to experimentation with projection methods
based upon physically-based simulation. The goal is to have the
simulation convert the object into a convex object with the same to-
pology while preserving as much of the geomernc information con-
tained in the model as possible. The simulations, based on the work
of Haumsnn [6], treat the surface of the model as a flexible object.
Each vertex of the topology is modeled as a msss and each edge of
the topology as a spring.

Several types af simulations were tried. One approach was to model
the forces involved in inflating a balloon. Weak spring forces were
applied along the edges together with internal air pressure forces.
The air pressure forces had a magnitude that was proportional to the
area of each face and were applied to the centroid of each face in the
direction of its outward normal. For some models, this approach
worked well, but in general, the simulation dld not always produce
a convex model. This was usually due to the presence of cycles of
short edges in the models. When stretched, these edges generated
large forces that resisted fhrther s~etchmg. In addition, vertices
would tend to drift aroun~ which diminished the relationship be-
tween the geometry of the original objects and theii projections.

Another approach that has been more successful is to first determine
which vertices of the model lie on its convex hull. Fining these
points, and treating the non-hull vertices as free masses cormected
by spiirtgs along the edges to each other and to the hull verticxx, a
simulation is run to “snap” the model outward to its convex hull.
Setting the strengths of the springs to be inversely propartiomd to
their original lengths preserves the ratios of edge lengths as much
ss possible. IrI addition, fixing the hull vertices minimizes the &ift-
ing problem. Although this approach generally works better than
the firsL it does not work for arbitrary models.

In performing the above experiments, ane scenario that consistently
yields the desired results was discovered. This situation occurs
whenever a concave region of the model is completely surrounded
by a planar convex ring of edges that lie on the convex hull. Run-
ning a simulation by fixing the vertices that lie an this ring, and
treating the network of edges and vertices that lie inside as a mass/
spring system quickly “snaps” out the interior into the plane of the
surrounding ring. In the following, this scenario will be referred to
as a “surrounded region”.

To better understand this situati~ consider the foUowing analogy.
Suppose you were to build a plsnar, convex wooden frame with a
nail pounded into each corner. Nex~ attach a mesh of robber bands
to the nails. No matter how one pulls upon the rubber band mesh as
soon as it is let go, it snaps back into the plane of the wooden frame.
In this analogy, the wooden iktme corresponds to the surrounding
ring of edges. The nails comespond to the vertices of the surround-
ing ring. The edges of the interior netwark are the rubber bands, and
the vertices correspond to places where rubber bands are joined.

An approach that shows promise for solving the projection problem
for arbitrary genus Opolyhedra is to attempt to divide the projection
into a set of subproblems, each of which involves a surrounded re-

gion. A heuristic approach to subdividing the problem irt this msn-
ner is to use the faces of the convex hull of the model to &line the
set of surrounded regions as follows. Start by com@ng the convex
hull of a mcdel. Nex~ tind a set of non-intersecting paths of edges
that connect each pair of vertices connected by an edge of the hull.
Fkudly, space the points of each path along the ccurespondmg hull
edge. If a set of non-intersecting paths has been found each face of
the convex hull will now detine a surrounded region. Although this
algorithm works for many models, it is not too difikult to create
models for which no appropriate set of paths can be found. Further
research is being conducted into algorithmically tinding a suitable
subdivision for arty genus Opolyhedra.

Figure 2 shows a polygonal model of a goblet in the upper left. The
set of paths of edges found by the algorithm are shown in the upper
right. Spacing the vertices of each path along the corresponding
edge of the convex hull yields the object in the lower left. The re-
sults of the simulation are shown in the lower right. Lrtthis case, the
simtdation causes the network of vertices and edges that form the
tiI& of the goblet’s bowl to snap aut onto the phme defined by the
run af the goblet

T“

p, : - (T

u

Figure 2- “Snappin~ an ObJect to its Convex Hull

5.1.4 Hybrid Methods

In addition to the projection methods described in the proceeding
three sections, two other techniques have been developed that com-
bine model knowledge with physical simulation.

Lofted and tubular objects consist of a series of planar contours that
are joiied along a (possibly curved) path. Cambining the methods
of Section 5.1.2 and 5.1.3 generates an algorithm for projecting this
class of models. Select two adjacent contours. If the contours are
not convex, project them to their cmnvex hull using Ekouie’s meth-
cd. The two contours define a pair af smounded regions as de-
scribed in Section 5.1.3. Running a “rubber-band mesh” simulation
witit the contour @rtts fixed causes the interior of each region to
snap onto the plane of the contour. Figure 3 shows a tubulsr object
with the selected contours highhghted and the same ob~t after the
simulation is completed.

Two features of this teduique may not be evident. FirsL the two
contours do not have to contain an equal number of points. The only
requirement is both contours are a simple planar polygon. Secmd
the entire procedure can be performed with na user interaction, pro-
vided that knowledge of the manner in which the models are stored
is available. However, it is desirable that the user be allowed to
specify the pair of contours which are to remain fixed.
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Ngure 3- “Snapping” a lltbttlar Model

The second hybrid method involves the user directly specitjing the
surrounded regiona of the model. For example, to project a model
of a man, the user might .spe@ rings of edges around each arm at
the shoulder, around each leg at the hip, and around the head at the
base of the neck. A “rubber-band mesh” simulation is then run to
snap in the extremities. It is up to the user to select surrounded re-
gions that result in a convex model after the simulation is per-
formed. Techniques for assisting the user in specifying the regions
are ctumntly being investigated.

Using this technique, the surrounded regions appear to “grow” out
of the other model during the transformation. This interesting effect
is due to the fact that points on the ends of the extremities have
much larger distances to cover than do those at the base, and hence
move at a greater velocity.

5.2 The Merging Algorithm

Onw both models have been projected, the second step of the cor-
respondence algorithm is to merge the topologies of the two models
by clipping the projected facea of one object to the projected faces
of the other. In an earlier paper [9], an 0(N2) algorithm based on
Weiler’s polygon clipping algorithm ([15]) is described. The algo-
rithm requires each projected edge of one model to be intersected
with each projected edge of the other. Since the edgea of the project-
ed models map onto great circles of the unit sphere, these computa-
tions involve finding the intersection of pairs of circular arcs.

This algorithm works well for merging the projected topologies of
objects that are not overly complex. However, for large models (>
1000 vertices) small numerical inaccuracies in the arc intersection
calculations often result in an improper ordering of the intersection
points along an edge. Since the algorithm is dependent upon main-
taining a valid topological structure, improper ordering can cause
the merging pceaa to fail.

The original merging algorithm was rdso quite slow. If the number
of edges of the models are N, and Nb, respectively, in the worst
case, there are of,NaNb) intersections. However, for most models,
since the faces are spread out across the entire surface of the sphere,
an edge from one model only intersects a small number of edgea of
the other model. Thus, in the vast majority of cases, the number of
intersections is much less than NaNb, This suggests that an algo-
rithm whose execution time is &pendent upon the number of inter-
sections could significantly reduce the overall execution time.

This observation led to the development of a new merging algo-
rithm that is faster and more robust than the original one described

in [9]. The improvements are the result of exploiting the topological
information contained in the models. The algorithm is similar in na-
ture to the planar overlay algorithm described by Seidel in [13].

The following paragrapha describe the steps of this new algorithm
and analyze its complexity. The &scription assumes that the faces
of the model have been triangulated prior to execution. It also as-
sumes that no projected vertices of the two models are coincident,
and that no pojected vertex of one model lies on a projected edge
of the other. These degenerate cases can be handled by simple ex-
tensions of the basic algorithm.

Figure 4 contains a pseudocode description of the algorihm. The
peudocode assumes that arrays are used to store structures for each
vertex, edge, and face of the models. For each vertex, this structure
contains the original and projected locations of the vertex, as well

(step 1)
Read in the Topology and Geometry of !4s and Mb, as
well as the Coordinates of the Projected Vertices,

(V, )p and (Vb)[. Translate the model-s so their cen-

ters are at t e origin.

(at+ 2)
VI, <-- first vertex of Ma
MaPTOBIVI@] <-- face of (~)p that contains (vI.)

1’Add the edges originating at VII to Work List (W 1
Mark those edges Used
While (WL) is Not Empty

e, <-- next edge of WL
Via, v2a c-- endpoints of ela

fb <-- MapToB [via]
Add edges of fb to Candidate List (CL)
While CL 1s Not Empty

‘b ‘-- next edge of CL
Intersect ea and eb
If Successful

Add Intersection Point, i, to Model
Create links from ea and eb to i
fb <-- Pace of won other side of eb

Add two other edqes of eb to CL
End If

End While
MapToB [V2a] <-- fb
Add the unused edges oriqlnating at v2a to WL
Mark those edges Used

End While

(atop 3)
For each edge, eb, of Mb

Vlb, V2b <-- endpoints of eb
Sort the intersections of eb using topological

Information from Ma
Set MapTOAIVlb] and MapToA [V2b] to faCeS Con-

taining VII and V2b, respectively
End For

(at* 4)
For each vertex, v,, of Ma

Calculate the barycentric coordinates of (v,)
J’with respect to the projected vertex COOK i-

nates of the face, MaPTOB[Va], of f4b
Use these barycentric coordinates and original

vertex coordinates of the face, ?4apToB[v~l
to determine where Va maps to on the SUrf aCe
of Mb

End For

(atop 5)
Repeat Step 4 for each vertex of t%, using the faces

stored in array MapToA to identify the face of ~
that contains each vertex of ~

(atop 6)
Output the combined geometry and topology of both
models, W* and Mb*

Figure 4- Pseudocode for the Merging Algorithm

51



SIGGRAPH ’92 Chicago, July 26-31, 1992

as the edges beginning at that vertex, stored in clockwise order.
Each edge structure includes the hikes of the two endpoints and
the indices of the two faces it separatea. The edge structure also cOn-
tains a pointer to the list of intersections of that edge. The face struc-
ture includes the indices of the three vertices and the three edges
that comprise the face. In addition to these structures, as each inter-
section point if found it is stored in an array of structures that cOn-
tain the indices of the two edges that intenw% the parametric vslues
of the intersection point relative to those edges, and pointers used to
order the intersections along the edge. - -

edge
from
(Ma~

Vertices from (Ma& are labelled with UPPERCASE letters
Vertices from (M~P are labelled with lowercase letters

Light edges are from (M, , Dark edges are from (lk&~
iBold edges are those for w “ch intersections are computed

Figure S - Calculating the Intersections of an Edge

The first step is straightforward and can be performed in O(N) time.
Step 2 rnvolvea intersecting each edge of (k!a)P with a subset of the
edges of (M~P as ihstrated in figure 5. FwsL vertex v* of (Ma~
is &terrnined to lie inside face f.~ of (Mb . This can be done in

kO(N) time by casting a ray from the origin ough VA and tinding
the face of (Mb) it intersects. Once this is donq the edges originst-

$ing at vA are ad ed to a list of edges to be proce.s~ the work list.
Assume em is fhe fist edge on ~s list. !$ince it k known ht vA
lies on face fab of (MJ , the tirst intersection of that edge must be

fwith one of the edgea o that face. Thus, eab eat, and ~ from (M~P
are added to a list of candidate edges that ew might intersect. In ttus
case, em intersects e~ ‘he topology of Mb can be used to deter-
mine that em cresses over to face f~ at the intemection point.
Thus, edges ~ and e~ are added to the candidate list. Similarly, at
the intersection of ea and em, edge em mosses onto face fd= and
edges em and eh are added to the caddate list. At the intersection
of ede and em, edge e*~ crosses onto fSCe f~, and edges e~ snd

k--% ~;edge

y’ “ “$;,-.L $ . ----

Numerical mom in the intersection calculations may
indicate that the ordering of the intersection points
is a-bd-c.

Using topological information about the intersected
edges yields the correct ordering a-b-cd, based
upon the faces along the edge, flg-f23-fT1-f9T-f~

It also indicates which faces contain the end@nts of
the edge being intersected (i.e. f19 snd f%).

~ are added to the csndldate list. Sime em does rmt intersect ei-
ther of these edges, vertex vB must ~e on f= fd~ This f~t is re-
corded and the edges originating at vB are added to the work list.
This continues until the work list is empty.

Step 3 of the algorithm sorts the intersection of each edge of (~~
using topological information from (Ma~ to ensure that the cmier-
ing is valid. As shown in Figure 6, basing the sort on this infortna-
tion avoids incxmsistenciea in the topology due to small numerical
emors in the intersection calculations. This step is also used to de-
termine which face of (Ma)P contains each vertex of (M~r

Steps 4 and 5 use the information that indicates which face of ~$
contains each vtxtex of (M,)r and vice versq to determine where
the vertices of one model map onto the surface of the other. This is
done using barycentric coordinates as shown in Figure 7. Step 6 rn-
volves trtming out of the faces of the mmbined models using the
original topologies and the sorted intersections of each edge and can
be performed m O(N) time.

(V2)P
V2

afl

(Vl)p
u = ().1 VI

.V=O.5 ●

w = 0.4

Find barycentric (V3)P
V3

coordkates (BC)
of vertex with respect Use BC to psition

to projected face of
vertex on originaf model

the other model
(U* V1+V*V2+W*V3)

igure 7- Determining the Vertex Locations

5.2.1 Analysis of the Merging Algorithm

Steps 1,4,5, and 6 can all lx performed in O(N) time. The timere-
quired to complete Steps 2 and 3 is dependent upon the number of
edges that intersect and is analyzed below. As in previous sections,
N, and Nb represent the number of edges of Ma and Mb

In step 2, each edge of Ma is intersected with exactly 3 + 2 * ~ edg-
es, where ~ is the number of intersections of the edge. Since this
must be done for each edge, the total number of intersections is 3 *
Na + 2 * Iu, where ~ is fhe total number of edgedge intersec-
tions. Thus the running time of step 2 is O(N, + ~. For complex
models, the distribution of the faces on the sphere ensures that ~t
<< NaNb

In step 3, the intersections of each edge of ~ must be sorted. If ~
is the number of intersections of an edge, the sorting of that edge
requires time CM&logu. Since in the worst case, each edge can be
intersected O(NJ times, the worst case complexity is O(NbN,lo-
gNa). However, in terms of the total number of intersections, since
the sum of (f~og~ for each edge is less than or equal to ~log~~,
the complexity is ~log~.

Thus, the overall complexity of the algorithm in terms of output size
equals that of step 3, O~log~). Although in the worst case, ~
is 0(N2), the distribution of the edges on the sphere causes ~ to be
much smaller than this in most cases.

Figure 6- Sorting the Intera@ons
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6.0 Interpolation  Issues

Up to now, this paper has concentrated  on the correspondence  step
of the shape transformation  problem. Once the combined models,
M,+ and Mb+ have been created, the transformation  is computed by
interpolating  between each pair of corresponding  vertex locations.
Jn  addition to linear  interpolation,  the use of a Hermite spline for the
path of each vertex, with the tangent vectors of the spline set equal
to the vertex normals, has proven effective.

Wo potential  problems  may arise during the interpolation.  First,
for faces with more than  three edges*,  interpolating  vertices from
one position  to another will not guarantee  that all faces remain pla-
nar. This problem  can be solved  by triangulating  the faces  of M,*
and Ma*. prior to the interpolation.  Second, an object  may penetrate
itself during the interpolation.  This may or may not be a problem,
depending on the application.  Possible solutions of this problem are
being investigated.

Interpolating  non-geometric  surface attributes, such  as color, tex-
turq or transparency, along with the geometry of the models  pro-
duces interesting  effects. This can be easily  done since the
correspondence  algorithm specifies  a homeomorphic  mapping be-
tween the two objects. Given a point on the surface of some inter-
mediate model, barycentric  coordinates  can be used to locate that
point  relative  to the vertices  of the face that contain it. From these
coordinates,  the corresponding  points on the original  objects can be
found.  The value of the attribute for the point on the intermediate
model is found by interpolating  the values of the attribute for these
two points.

7.0 Results

Figures 8 to 11 present  some examples  of the transformation  algo-
rithm. The examples  were rendered  using faceted shading and neu-
tral colors to better illustrate  the topological  structure of the
intermediate  models.

Figure 8 shows a glass transforming into a spiral tube.  The  projec-
tions  used for the two objects  are those illustrated  in Figure 2 and
Figure 3, respectively.  The spiral  is used again in Figure 9. this  time
transforming into a 3D digitized  sculpture. The sculpture  data was
obtained from a 3D digitizing  device and is organized  as a set of

Snapping  Technique  into a ‘IItbular  Object

Figure 9 - 1
Revolution

w Object Into an t

Figure 10 - A Pair of Transformations  Using Dimerent  Pro-
Ejection  Methods  for the ‘V-shaped Object

Figure 11 - Each Column  Illustrates  the O%, 2548, SO%,
755, and 100% Polnts  of a ‘lkansformation

planar  ribs revolved  around an axis. ‘Ihus.  the object  of revolution
technique from Section 5.1.2  was used for the projection.

2. Although M, and Mb must be triangulated,  the faces of M,* and
Mb+ will, in general, have up to six sides.

Figure 10 illustrates  the results  of using different  projection  meth-
ods upon the transformation.  In the upper sequence, the extruded
letter ‘S’ was projected  using the convex hull snapping technique
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deacrilxd in Section 5.1.3. In the lower sequence, the hybrid meth-
od for tubular objects described in Section 5.1.4 WSS used to Pruject
the ‘S’. The object of revolution method was used to project the dig-
itized head in both sequences. The two sequenms illustrate that rsd-
ically different results are possible by altering the projection
method used.

Figute 11 shows three columns, each of which represents a Eansfor-
mation betweem a a pair of objects of revolution. The objects in the
middle of each column are the models obtained at the 25%, 50%,
and 75% points of the transformation. The base objects of the left
and middle columns are objects of revolution. The base object of
the rightmost column is an extruded 6-pointed star.

As a H note, the following statistics for the transformations in
Figures 8 to 11 are provided to support the claim made in Section
5.2.1 that the total number of intersections, ~, is much leas than
N,Nb for complex models.

N, Nb NaNb It ~t
Figure 8 1.8K 2.7K 4.9M 6.5K
Figure 9 2.7K 18.7K 50.5M 19.9K
Figure 10
-- top 66 18.4K 1.2M 4.OK
-- bottom 66 18.4K 1.2M 1.9K
Figure 11
-- left 864 18.7K 16.2M 14.7K
-- middle 102 18.7K 1.9M 5.OK
-- right 72 18.7K 1.3M 3.9K

8.0 Future Research

Future research will focus on three areas. FrsG extensions of tie al-
gorithm to handle wider classes of polyhedra will be investigated.
For gems O objects, this involves developing new ways to project
the surface of a model onto a sphere. For non-genus O objects, cut-
ting the objects to eliminate the passages through therm or replacing
the sphere with a representadve manifold (e.g. a toNs for objects
with one hole) are possibdities.

The second area of interest is to examine the ~oblem of self-inter-
sections during the interpolation. A good solution to this problem
has applicability for many other problems that involve interpola-
ti~ not just shape tmmsforrnation.

The third ma of rnveatigation involves providing user control of
the transformation. The remarkable reattlts obtained by morphing
are pssible because the user maintains complete control over the
transformation. Unlike the other published techniques for 3D shape
~ansfommtiort, the algorithms presented in this paper allow some
umtrol over the transformation through mechanisms such as select-
ing the center of the object and choosing the projection technique.
However, to achieve results equivalent to those obtained by mor-
phing imttg~ techniques that provi& a tier level of control eves
the transformation are needed. One possibility is to add a watping
step after the models sre mapped to the sphere, but before the topol-
ogies are merged.

Acknowledgments

We wish to thank the Department of Computer and Information Sci-
ence, the Advanced Computing Center for the Arts and Design and
the Ohio Supercomputez Center for the use of their facilities, and
Hewlett-Pecksrd end AT & T for equipment grsnts that make this

research possible. We also wish to thank Dr. Rephael Wenger,
Kevin Rodger~ Steve May, and Stephen Spencer for useful i&ss
and criticism, and Rofessor Charles Csuri for the use of his head.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11

12.

13.

14.

15.

16.

17.

18.

Bibliography

Bethel. E. and Usel~ S. Shape Distortion in Computer-As-
sisted Keyfreme Animation. In State of the Art in Catywter
An&zion. Magnenst-Thelm~ N. and Thalmsnn, D., eds.,
Springer-Verhg, New York. 1989,215-224.

Bier, E. and Slo~ K. We-Part Texture Mappings. IEEE
Computer Graphics mtdApplication.r6, 9 (SqX. 1986), 40-53.

CarlsoYL W. An Advanced Data Generation System for Use in
Complex Object Synthesis For Computer Display. Proceed-
ings of Graphics Inter@ce ’82 (1982) 197-204.

Chen, E., and PsrenL R. Shape Averaging end Its Applications
to Industrial Des@. IEEE Computer Grophics and Applicu-
tio~ 9, 1 (Jan. 1989) 47-54.

Ekotde, A., Pefi F. and ode~ C. A Triangulation Algorithm
fium Arbitrary Shaped Multiple planar Contours. ACM TrurM-
atiotuonGrqvhtks 10,2 (April, 1991) 182-199.

H~ D. and ParenL R. ‘l’heBehavioral Test-Bed Obtain-
ing Complex Behavior tiom Simple Rules. Viiuul Conywter 4,
6 (Dec. 1988) 332-347.

Hong, T., Magnenat-lltslmann, N. and lltalrn~ D. A Gen-
eral Algorithm for 3-D Shape Interpolation in a Facet-Based
Representation. Proceedings of Graphics Interjhce ’88 (June
1988) 229-235.

Kau~ A. and Rossignac, J. Solid-Jnterpolating Deformations:
Construction end Animation of PIPs. Fmceediigs of Euro-
graphics ’91. In Computers and Graphics (1991).

KenL J, Parent, R. and Csrlso~ W. Establishing Correspon-
dences by Topological Merging: A New Approach to 3-D
Shape Transformation. Proceedings of Grqohics Interjizce ’91
(Calgary, Albert% June, 1991) 271-278.

Paren~ R. Shape Transformation by Boundary Rqmaentation
Intapolatiorx A Recursive Approach to Establishing Face
Correspon&ncea. Technical Reprt OSU-CISRC-24?21-TR7.
Computer and Information Science Research Center. The
Ohio State University (1991).

Payme, B. and Tog% A. Distance Field Manipulation of Sur-
face Models. IEEE Conputer GrWhics and Applications 12,
1 (Jan. 1992) 65-71.

Reparaw F. and Shsmo% M. Computational Geometry -An
Introduction. Springm-Verlag, New York, 1985.

seide~ R. Output-Size Sensitive Algorithm for Constructive
Problem in CotqrwtatM Geametry. Ph.D. Theais, Cornell
University, 1986.

Terridea, C. Trensformstionsl Design. Knowledge Ai&d Ar-
chitectural Problem Salving and Design, NSF project #DMC-
8609893, Fmsl Repo~ (June 1989).
Weiler, K. Polygon Comparison Usrng a Graph Represertta-
tion. Proceedings of SIGGRAPH ’80 (Seattle Washington,
Jdy 1980). In Computer Gruphics 14,3, (Aug. 1980), 10-18.

Weiler, K. Topology as a Framework for Solid Modeling. Pro-
ceedings of Grophics Int@zce %4, (May, 1984).

Wolberg, G. Digital Image Wmping. IEEE Computer Society
Press, Los Alsmitos, CA, 1990.

Wyvill, B. Metamo~hosis of Implicit Surfaces. Notes @n
SKXXAPH ’90Course 23- Modeling and Animating with Im-
plicit Surjhces, (Dallas, Texas, Aug. 1990).

54


