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Abstract

Techniques that transform one two-dimensional image into another
have gained widespread use in recent years. Extending these tech-
niques to transform pairs of 3D objects, as opposed to 2D images of
the objects, provides several advantages, including the ability to an-
imate the objects independently of the transformation. This paper
presents an algorithm for computing such transformations. The al-
gorithm merges the topological structures of a pair of 3D polyhedral
models into a common vertex/edge/face network. This allows trans-
formations from one object to the other to be easily computed by in-
terpolating between cormresponding vertex positions.

Computer Animation, Computer-Aided Geo-
metric Design, Interpolation, Shape Trans-
formation.

Keywords:

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling; 1.3.7 -
[Computer Graphics]: Three-Dimensional

Graphics and Realism

1.0 Introduction

In recent years, image processing techniques, popularly known as
“morphing”, have achieved widespread use in the entertainment in-
dustry. Morphing involves the transformation of one 2D image into
another 2D image. These techniques involve first specifying some
function that maps points from one image onto points of the other
image, then simultaneously interpolating the color and the position
of corresponding points to generate intermediate images. When
viewed in sequence, these intermediate images produce an anima-
tion of the first image changing into the second. Variations of these
techniques have been used 1o create astonishing special effects for
commercials, music videos, and movies.

‘While morphing is useful for many applications, the fact that the in-
termediate stages of the transformation are images with no 3D ge-
ometry limits its use. In order to fully realize the benefits of
transformations in animation and design, 3D models of the objects
must be transformed, instead of just 2D images of these objects.
Transforming 3D models as opposed to images allows for the ob-
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jects to be animated independently of the transformation, using
computer animation techniques such as keyframing. In addition, 3D
transformations can be used in design to create objects that combine
features of the original objects ([4], [8], [14]).

This paper presents an algorithm that, given two 3-D polyhedral
models, generates two new models that have the same shape as the
original ones, but that allow transformations from one to another to
be easily computed. A previous paper [9] described an early version
of the algorithm that was limited to star-shaped! polyhedral solids.
Since then, the algorithm has been extended to allow for transfor-
mations between more complex polyhedral models. In addition, the
computational complexity and robustness of the algorithm have
been improved.

After some fundamental concepts are defined in Section 2, a de-
scription of the shape transformation problem for 3D objects is giv-
en in Section 3. This is followed by a brief review of previously
published research in Section 4. Section 5 provides a detailed de-
scription of the algorithm. Section 6 addresses interpolation issues,
including transforming non-geometric atiributes, such as surface
color. Sample transformations are presented in Section 7. The paper
concludes with a discussion of open issues and future research in
Section 8.

2.0 Fundamental Concepts

In order to discuss the shape transformation problem, it is useful to
carefully define a few key terms. Throughout this discussion, the
term object will be used to refer to an entity that has a 3D surface
geometry. The shape of an object refers to the set of points in object
space that comprise the object’s surface. The term model will be
used to refer to any complete description of the shape of an object.
Thus, a single object may have many different models that describe
its shape.

Following the terminology used by Weiler in [16], topology refers
to the vertex/edge/face network of a model. Geometry refers to an
instance of a topology for which the vertex coordinates have been
specified. Vertices, edges, and faces are collectively referred to as
topological elements.

Some concepts from mathematical topology also need to be de-
fined. Two objects are said to be homeomorphic, or topologically
equivalent, if a continuous, invertible, one-to-one mapping between

1. Star-shaped refers to models for which at least one interior point,
P exists such that any semi-infinite ray originating at p intersects
the surface of the object at exactly one point.
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points on the surface of the two objects exists. Such a mapping is
referred to as a homeomorphism. Finally, an object is said to be Eu-
ler-valid if its topology obeys the generalized Euler formula:

V-E+F=2-2G

where V, E, and F are, respectively, the number of vertices, edges,
and faces of the topological network, and G is the number of pas-
sages through the object (i.e. its genus).

3.0 The Shape Transformation Problem

A common approach to transforming one shape into another is to
divide the problem into two steps. The first step is to establish a
mapping from each point on one surface to some point on the sec-
ond surface. Once these correspondences have been established, the
second step is to create a sequence of intermediate models by inter-
polating corresponding points from their position on the surface of
one object to their position on the surface of the other. The first step
will be referred to as the correspondence problem, and the second
step will be referred to as the interpolation problem. The two prob-
lems are interrelated since the method used to solve the interpola-
tion problem is dependent upon the manner in which the
correspondences are established.

This paper presents a solution to the correspondence problem for
Euler-valid, genus 0, polyhedral objects. By restricting ourselves to
polyhedral objects, the correspondence step does not need to explic-
itly specify the mapping for every point on the surface. A sufficient
solution is to specify correspondences for each vertex of the mod-
els. The interpolation problem is then solved by interpolating the
positions of corresponding vertices. Since the main contribution of
this paper is an algorithm for establishing correspondences, the ma-
jority of the paper is concerned with the solution to the correspon-
dence problem. Issues that arise during the interpolation are briefly
discussed in Section 6.0.

4.0 Previous Work

As mentioned in Section 1.0, “morphing” techniques for transform-
ing images have demonstrated remarkable results and have
achieved widespread use. Wolberg provides an excellent introduc-
tion to image morphing in [17]. These techniques rely on the user
to specify pairs of points in the two images that correspond.

Several approaches to three-dimensional shape transformation have
been published. Wyvill [18] describes a transformation algorithm
for implicit surfaces (i.e. blobby objects). Brute force approaches
for polyhedral models, such as that described by Terzides’ [14], es-
sentially require the user to specify, for every vertex, a correspond-
ing vertex from the other model. Hong et al. [7] propose a solution
for polyhedra based on matching the faces of the objects whose cen-
troids are closest. Bethel & Uselton [1] describe an algorithm that
adds degenerate vertices and faces to two polyhedra until a common
topology is achieved. Chen & Parent (4] present a transformation
algorithm for piecewise linear 2D contours, then briefly address an
extension for 3D lofted objects. Parent [10] describes a solution for
polyhedra that establishes correspondences by splitting the surface
of the models into pairs of sheets of faces, then recursively subdi-
viding them until the topology of each pair is identical. Kaul & Ros-
signac (8] transform pairs of polyhedra by computing the
Minkowski sum of scaled versions of the models. By gradually
scaling one mode! from 100% to 0% while simultaneously scaling
the other from 0% to 100%, a transformation is obtained. Payne &
Toga [11] first convert each polyhedra into a distance-field volumet-
ric representation, interpolate the values at each point of the 3D vol-
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ume, then find a new isosurface that represents some combination
of the original objects.

Techniques that make use of the topology and geometry of the mod-
els tend to yield better results. For example, since Hong et al. and
Payne & Toga do not make full use of the topological information,
the surfaces of the models generated at intermediate steps are not
guaranteed to remain conmected. Similarly, Bethel & Uselton and
Parent rely primarily on the topology to establish correspondences,
ignoring most of the geometric information. This often results in se-
verely distorted intermediate models.

Kaul & Rossignac's technique, as well as the one described in this
paper, make full use of both the topology and the geometry of the
models, resulting in intermediate models that have connected sur-
faces and that exhibit small amounts of distortion. One principal ad-
vantage of the method described herein is that our correspondence
algorithm describes a homeomorphism. This provides a straightfor-
ward method for interpolating the surface attributes of the objects
along with the geometry. In addition, it seems likely that our ap-
proach can be more easily extended to allow for greater user control
over the transformation.

5.0 An Algorithm for Establishing Correspondences

Suppose that two genus 0 solid objects are specified. Now, imagine
that it were possible to inflate these objects with air like balloons
until they became spherical. Each point on the surface of each ob-
ject maps onto a unique point on the surface of the sphere. Associ-
ating each point from one object with the point from the other object
that maps to the same point on the sphere establishes a one-to-one
correspondence between points on the surface of the two objects.

The above observations form the basis for the correspondence algo-
rithm. First, the surface of each object is projected onto a unit
sphere. This mapping is used to identify correspondences between
points on the two original objects by associating pairs of points that
map to the same location on the sphere. This approach can poten-
tially be applied for non-polyhedral genus 0 objects (e.g. spline sur-
face models) as long as a mapping from the surface of the object to
the surface of the unit sphere can be found.

Bier and Sloan [2] describe a similar approach for solving the prob-
lem of wrapping a 2D texture onto a 3D object. The first step maps
the texture onto an intermediate surface, such as a sphere or a cyl-
inder. The second step maps the intermediate surface to the surface
of the 3D object. Unfortunately, the techniques used to map the in-
termediate surface to the 3D object are not always one-to-one, and
thus are not appropriate for our application.

This section describes an implementation of the correspondence al-
gorithm for genus 0 polyhedral solids. The first step is to project the
topology of both models onto the unit sphere. Next, the two topol-
ogies are merged by clipping the projected faces of one model to the
projected faces of the other. The merged topology is then mapped
onto the surface of both original models. This generates two new
models that have the same shape as the original two models, but that
share a common topology. This allows a transformation between
the two shapes to be easily computed by interpolating the coordi-
nates of each pair of corresponding vertices. Figure 1 shows a pair
of models and the same pair with the merged topologies mapped
onto their surfaces

Throughout the discussion, the original objects are referred to as A
and B. The original polyhedral models of these objects are referred
to as M, and M, M, has vertices, V,, edges, E, and faces, F,. Sim-
ilarly, M, has vertices, V,, edges, E,, and faces, F,. The projection
of M, and M,, onto the unit sphere are referred to as (M,), and
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(My)p, respectively, with vertices (V,), and (V). When referring
to a specific topological element of one of the models, lower case
letters will be used. For example, e, refers to a specific edge of ob-
ject M,, and (vp), refers to a specific projecied vertex of My. The
results of the correspondence algorithm (i.e. the two new models of
A and B that share a common topology) are referred to as M,* and

—
O @&

Models with Merged
Topology Mapped
onto Surface

Original Models

Figure 1 - An Example of The Correspondence Algorithm

5.1 Projection Methods

The first step of the correspondence algorithm is to project the sur-
face of the two polyhedra onto the surface of the unit sphere. The
projection must satisfy two conditions. First, it must be one-to-one,
so that each point on the surface of the object projects to a unique
point on the surface of the sphere. Second, the projection must be
continuous in the sense that points within a small radius of a given
point project to within a small radius of the projection of that point.
Any method for projecting an object that satisfies these two condi-
tions is acceptable.

The projected polyhedral models are completely specified by the to-
pology of the original model together with the coordinates of the
projected vertices. This enables the projected models to be saved,
eliminating the need to recompute them each time the model is
used.

Since the correspondences between the models are established by
their mappings onto the sphere, different mappings result in differ-
ent transformations. Thus, providing different projection methods
gives the user some degree of control over the transformation. Sec-
tions 5.1.1 through 5.1.4 describe a collection of projection meth-
ods that allow a wide variety of polyhedral models to be
transformed. While no completely general method has been found,
the techniques presented work for a large number of commonly en-
countered types of models.

5.1.1 Convex and Star-Shaped Objects

The definition of a star-shaped polyhedral object is that at least one
interior point of the polyhedron exists from which all the vertices of
the object are visible. This definition suggests a method for project-
ing such an object. First, specify such an interior point, O, to be the
center of the object, and translate the object so that O coincides with

the origin. Then, move each vertex in or out along the ray from O
through the vertex until it lies at unit distance from O.

A suitable center point can be algorithmically selected by first com-
puting the intersection of the interior half spaces of all the planes of
the faces of the model. The resulting volume is called the kernel of
the polyhedral model. If the original polyhedron is star-shaped, its
kernel is a non-empty convex polyhedron. Averaging the vertices of
the kernel yields a suitable center point for the projection. The com-
plexity of computing the kernel of a three-dimensional polyhedron
is O(NlogN) [12].

Since the choice of center point affects the location of the projected
vertices, providing the ability to select a center point gives the user
some control over the transformation. Verifying that the selected
point satisfies the vertex visibility condition can be performed in
O(N) time by testing that the outward normal of each face is direct-
ed away from the point.

Note that convex polyhedra are a special case of star-shaped poly-
hedra for which all interior points satisfy the visibility condition.
Thus, for convex polyhedra, any interior point may be specified as
the center.

Some of the projection methods described in the following sections
project the model onto a convex polyhedron (usually the convex
hull of the object). To complete the projection to the sphere, the star-
shaped projection is applied to this convex polyhedron.

5.1.2 Methods Using Model Knowledge

Polyhedral models are often constructed using techniques such as
revolving a contour about an axis, or extruding a planar polygon
along a line [3]. By using information about how the model is con-
structed, efficient methods for projecting the object to the unit
sphere can be found. This approach naturally lends itself to an ob-
ject-oriented methodology, where “ProjectToSphere” could be one
of the methods attached to an object.

The class of polyhedral models known as objects of revolution con-
sist of a set of planar contours (ribs) arranged at angular increments
around an axis. Such a model can be projected to a sphere in O(N)
time by positioning the points of each rib along a longitudinal arc
of the sphere whose “north/south” axis matches the axis of the mod-
el. Each arc should lie in the plane of the rib, have its endpoints on
the axis, and be on the same side of the axis as the rib.

Two methods for spacing the rib points along a semicircle have
been developed. The first positions them so that the arc lengths be-
tween points on the semicircle are proportional to the distance be-
tween the corresponding points on the rib. The second method first
projects the rib onto its convex hull using a recursive method simi-
lar to that described by Ekoule et al. in [5]. Once the rib is mapped
onto its convex hull, each point is moved in or out to the unit sphere
along a ray from the midpoint of the axis through the point.

Any technique that maps a rib to a semicircle can be used for spac-
ing the points with different transformations resulting. However,
methods that preserve geometric information from the original
model, such as the two described above, generally lead to more aes-
thetic transformations.

Another common class of polyhedral models, known as extruded
objects, are generated by moving a planar polygon along a straight
line, sweeping out a solid volume. Two copies of the polygon are
used to cap the ends of the object. This class of models can be pro-
jected by mapping each of the two caps to its convex hull, using Ek-
oule’s method as above. The resulting convex model can be
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projected to the unit sphere using the star-shaped projection from
Section 5.1.1.

It is important to note that the above techniques work for any model
that can be described in an appropriate format, whether or not the
object was originally modeled using the described techniques. For
example, data from 3D digitizers can often be easily converted into
the object of revolution format.

5.13 Physically-Based Methods

As mentioned in Section 5.0, the inspiration for the shape transfor-
mation algorithm involves an analogy with inflating the objects like
a balloon. This idea led to experimentation with projection methods
based upon physically-based simulation. The goal is to have the
simulation convert the object into a convex object with the same to-
pology while preserving as much of the geometric information con-
tained in the model as possible. The simulations, based on the work
of Haumann {6], treat the surface of the model as a flexible object.
Each vertex of the topology is modeled as a mass and each edge of

the topology as a spring.

Several types of simulations were tried. One approach was to model
the forces involved in inflating a balloon. Weak spring forces were
applied along the edges together with internal air pressure forces.
The air pressure forces had a magnitude that was proportional to the
area of each face and were applied to the centroid of each face in the
direction of its outward normal. For some models, this approach
worked well, but in general, the simulation did not always produce
a convex model. This was usually due to the presence of cycles of
short edges in the models. When stretched, these edges generated
large forces that resisted further stretching. In addition, vertices
would tend to drift around, which diminished the relationship be-
tween the geometry of the original objects and their projections.

Another approach that has been more successful is to first determine
which vertices of the model lie on its convex hull. Fixing these
points, and treating the non-hull vertices as free masses connected
by springs along the edges to each other and to the hull vertices, a
simulation is run to “snap” the model outward to its convex hull.
Setting the strengths of the springs to be inversely proportional to
their original lengths preserves the ratios of edge lengths as much
as possible. In addition, fixing the hull vertices minimizes the drift-
ing problem. Although this approach generally works better than
the first, it does not work for arbitrary models.

In performing the above experiments, one scenario that consistently
yields the desired results was discovered. This situation occurs
whenever a concave region of the model is completely surrounded
by a planar convex ring of edges that lie on the convex hull. Run-
ning a simulation by fixing the vertices that lie on this ring, and
treating the network of edges and vertices that lie inside as a mass/
spring system quickly “snaps” out the interior into the plane of the
surrounding ring. In the following, this scenario will be referred to
as a “surrounded region”.

To better understand this situation, consider the following analogy.
Suppose you were to build a planar, convex wooden frame with a
nail pounded into each corner. Next, attach a mesh of rubber bands
to the nails. No matter how one pulls upon the rubber band mesh, as
soon as it is let go, it snaps back into the plane of the wooden frame.
In this analogy, the wooden frame corresponds to the surrounding
ring of edges. The nails correspond to the vertices of the surround-
ing ring. The edges of the interior network are the rubber bands, and
the vertices correspond to places where rubber bands are joined.

An approach that shows promise for solving the projection problem
for arbitrary genus 0 polyhedra is to attempt to divide the projection
into a set of subproblems, each of which involves a surrounded re-
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gion. A heuristic approach to subdividing the problem in this man-
ner is to use the faces of the convex hull of the model to define the
set of surrounded regions as follows. Start by computing the convex
hull of a model. Next, find a set of non-intersecting paths of edges
that connect each pair of vertices connected by an edge of the hull.
Finally, space the points of each path along the corresponding hull
edge. If a set of non-intersecting paths has been found, each face of
the convex hull will now define a surrounded region. Although this
algorithm works for many models, it is not too difficult to create
models for which no appropriate set of paths can be found. Further
research is being conducted into algorithmically finding a suitable
subdivision for any genus 0 polyhedra.

Figure 2 shows a polygonal model of a goblet in the upper left. The
set of paths of edges found by the algorithm are shown in the upper
right. Spacing the vertices of each path along the corresponding
edge of the convex hull yields the object in the lower left. The re-
sults of the simulation are shown in the lower right. In this case, the
simulation causes the network of vertices and edges that form the
inside of the goblet’s bowl to snap out onto the plane defined by the
rim of the goblet.
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Figure 2 - “Snapping” an Object to its Convex Hull

5.1.4 Hybrid Methods

In addition to the projection methods described in the proceeding
three sections, two other techniques have been developed that com-
bine model knowledge with physical simulation.

Lofted and wbular objects consist of a series of planar contours that
are joined along a (possibly curved) path. Combining the methods
of Section 5.1.2 and 5.1.3 generates an algorithm for projecting this
class of models. Select two adjacent contours. If the contours are
not convex, project them to their convex hull using Ekoule’s meth-
od. The two contours define a pair of surrounded regions as de-
scribed in Section 5.1.3. Running a “rubber-band mesh™ simulation
with the contour points fixed causes the interior of each region to
snap onto the plane of the contour. Figure 3 shows a tubular object
with the selected contours highlighted and the same object after the
simulation is completed.

Two features of this technique may not be evident. First, the two
contours do not have to contain an equal number of points. The only
requirement is both contours are a simple planar polygon. Second,
the entire procedure can be performed with no user interaction, pro-
vided that knowledge of the manner in which the models are stored
is available. However, it is desirable that the user be allowed to
specify the pair of contours which are to remain fixed.
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Figure 3 - “Snapping” a Tubular Model

The second hybrid method involves the user directly specitying the
surrounded regions of the model. For example, to project a model
of a man, the user might specify rings of edges around each arm at
the shoulder, around each leg at the hip, and around the head at the
base of the neck. A *“rubber-band mesh” simulation is then run to
snap in the extremities. It is up to the user to select surrounded re-
gions that result in a convex model after the simulation is per-
formed. Techniques for assisting the user in specifying the regions
are currently being investigated.

Using this technique, the surrounded regions appear to “grow” out
of the other model during the transformation. This interesting effect
is due to the fact that points on the ends of the extremities have
much larger distances to cover than do those at the base, and hence
move at a greater velocity.

5.2 The Merging Algorithm

Once both models have been projected, the second step of the cor-
respondence algorithm is to merge the topologies of the two models
by clipping the projected faces of one object to the projected faces
of the other. In an earlier paper [9], an O(N?) algorithm based on
Weiler’s polygon clipping algorithm ([15]) is described. The algo-
rithm requires each projected edge of one model to be intersected
with each projected edge of the other. Since the edges of the project-
ed models map onto great circles of the unit sphere, these computa-
tions involve finding the intersection of pairs of circular arcs.

This algorithm works well for merging the projected topologies of
objects that are not overly complex. However, for large models (>
1000 vertices) small numerical inaccuracies in the arc intersection
calculations often result in an improper ordering of the intersection
points along an edge. Since the algorithm is dependent upon main-
taining a valid topological structure, improper ordering can cause
the merging process to fail.

The original merging algorithm was also quite slow. If the number
of edges of the models are N, and Ny, respectively, in the worst
case, there are O(N,N,) intersections. However, for most models,
since the faces are spread out across the entire surface of the sphere,
an edge from one model only intersects a small number of edges of
the other model. Thus, in the vast majority of cases, the number of
intersections is much less than N,N, This suggests that an algo-
rithm whose execution time is dependent upon the number of inter-
sections could significantly reduce the overall execution time.

This observation led to the development of a new merging algo-
rithm that is faster and more robust than the original one described

in [9]. The improvements are the result of exploiting the topological
information contained in the models. The algorithm is similar in na-
ture to the planar overlay algorithm described by Seidel in [13].

The following paragraphs describe the steps of this new algorithm
and analyze its complexity. The description assumes that the faces
of the model have been triangulated prior to execution. It also as-
sumes that no projected vertices of the two models are coincident,
and that no projected vertex of one model lies on a projected edge
of the other. These degenerate cases can be handled by simple ex-
tensions of the basic algorithm.

Figure 4 contains a pseudocode description of the algorithm. The
pseudocode assumes that arrays are used to store structures for each
vertex, edge, and face of the models. For each vertex, this structure
contains the original and projected locations of the vertex, as well

(8tep 1)

Read in the Topology and Geometry of M, and My, as
well as the Coordinates of the Projected Vertices,
(Vy) and (Vb) .Translate the models so thelr cen-
ters are at tge origin.

(8tep 2)
vl, <-- flrst vertex of M,
MapToB[vl,] <-- face of (Mp}, that contalns (vl,)
Add the edges originating at vl, to Work List (WL)
Mark those edges Used
While (WL} is Not Empty
e, <-- next edge of WL
vl,, v2, <-- endpoints of el,
fp <-- MapToB[v1,]
Add edges of fj to Candidate List (CL)
While CL is Not Empty
ep <-- next edge of CL
Intersect e, and g,
If Successful
Add Intersection Point, i, to Model
Create links from e, and ey to |
fp <-- Face of Myon other side of ep
Add two other edges of e, to CL
End If
End While
MapToB[v2,] <-- fy
Add the unused edges originating at v2, to WL
Mark those edges Used
End While

(Step 3)
For each edge, ep, of M,
vly, v2p <-- endpoints of ey
Sort the intersectlons of e using topological
Information from M,
Set MapToA{vl,] and MapToA([v2y,] to faces con-
taining vl, and v2),, respectively
End For

(Step 4)
For each vertex, v,;, of M,

Calculate the barycentric coordinates of (v,)
with respect to the projected vertex coordi-
nates of the face, MapToB(v,], of My

Use these barycentric coordinates and original
vertex coordinates of the face, MapToB[v,]
to determine where v, maps to on the surface
of My

End For

(Step 5)

Repeat Step 4 for each vertex of My, using the faces
stored in array MapToA to identify the face of M,
that contains each vertex of M,

(8tep 6)
Output the combined geometry and topology of both
models, My* and My*

Figure 4 - Pseudocode for the Merging Algorithm
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as the edges beginning at that vertex, stored in clockwise order.
Each edge structure includes the indices of the two endpoints and
the indices of the two faces it separates. The edge structure also con-
tains a pointer to the list of intersections of that edge. The face struc-
ture includes the indices of the three vertices and the three edges
that comprise the face. In addition to these structures, as each inter-
section point if found, it is stored in an array of structures that con-
tain the indices of the two edges that intersect, the parametric values
of the intersection point relative to those edges, and pointers used to
order the intersections along the edge.

Vertices from (M,),, are labelled with UPPERCASE letters
Vertices from (My),, are labelled with lowercase letters

Light edges are from (M,),, Dark edges are from (Mp), -
Bold edges are those for which intersections are computed

Figure S - Calculating the Intersections of an Edge

The first step is straightforward and can be performed in O(N) time.
Step 2 involves intersecting each edge of (M, ), with a subset of the
edges of (My,),,, as illustrated in Figure 5. First, vertex v, of (M,),
is determined to lie inside face f,y, of (My),. This can be done in
O(N) time by casting a ray from the origin through v, and finding
the face of (My,),, it intersects. Once this is done, the edges originat-
ing at v, are adSed to a list of edges to be processed, the work list.
Assume e,p is the first edge on this list. Since it is known that v,
lies on face fy, of (M), the first intersection of that edge must be
with one of the edges of that face. Thus, e, €., and ey from (My,),
are added to a list of candidate edges that e, g might intersect. In this
case, e,p intersects e,.. The topology of My, can be used to deter-
mine that e,p crosses over to face fi,.4 at the intersection point.
Thus, edges e,  and e q are added to the candidate list. Similarly, at
the intersection of eq and e, g, edge e,p crosses onto face f 4., and
edges e, and ey, are added to the candidate list. At the intersection
of e4, and e,p, edge e, p crosses onto face fu ., and edges ey and

~
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(My),

Numerical errors in the intersection calculations may
indicate that the ordering of the intersection points
is a-b-d-c.

Using topological information about the intersected
edges yields the correct ordering a-b-c-d, based
upon the faces along the edge, f;9-f33-f7,-fo7-f24

It also indicates which faces contain the endpoints of
the edge being intersected (i.e. 9 and fg).

Figure 6 - Sorting the Intersections
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eg, are added to the candidate list. Since e, does not intersect ei-
ther of these edges, vertex vg must lie on face f;.¢. This fact is re-
corded and the edges originating at vy are added to the work list.
This continues until the work list is empty.

Step 3 of the algorithm sorts the intersections of each edge of (M),
using topological information from (M,),, to ensure that the order-
ing is valid. As shown in Figure 6, basing the sort on this informa-
tion avoids inconsistencies in the topology due to small numerical
errors in the intersection calculations. This step is also used to de-
termine which face of (M.)p contains each vertex of (Mb)p.

Steps 4 and 5 use the information that indicates which face of (M),
contains each vertex of (M,)., and vice versa, to determine where
the vertices of one model map onto the surface of the other. This is
done using barycentric coordinates as shown in Figure 7. Step 6 in-
volves tracing out of the faces of the combined models using the
original topologies and the sorted intersections of each edge and can
be performed in O(N) time.

(v2)
P v2
vl
) . v3
Find barycentric (v3),
g?grg;r;:lfvsigg . Use BC to position
e SP[‘_."" vertex on original model

to projec ace o (utvl+v*v2+W*V3)
the other model

Figure 7 - Determining the Vertex Locations

5.2.1 Analysis of the Merging Algorithm

Steps 1, 4, 5, and 6 can all be performed in O(N) time. The time re-
quired to complete Steps 2 and 3 is dependent upon the number of
edges that intersect and is analyzed below. As in previous sections,
N, and N, represent the number of edges of M, and My,

In step 2, each edge of M, is intersected with exactly 3 +2 * I, edg-
es, where L, is the number of intersections of the edge. Since this
must be done for each edge, the total number of intersections is 3 *
N, + 2 * I, where I, is the total number of edge-edge intersec-
tions. Thus the running time of step 2 is O(N, + I,)). For complex
models, the distribution of the faces on the sphere ensures that I,
<<N,N,.

In step 3, the intersections of each edge of My, must be sorted. If I,
is the number of intersections of an edge, the sorting of that edge
requires time O(I logl,). Since in the worst case, each edge can be
intersected O(N,) times, the worst case complexity is O(NpN,lo-
gN,). However, in terms of the total number of intersections, since
the sum of (I logl,) for each edge is less than or equal to (I, ,logl,).

the complexity is O(I ,logl,,)-
Thus, the overall complexity of the algorithm in terms of output size
equals that of step 3, O(L,,Jogl,,). Although in the worst case, I,

is O(N2), the distribution of the edges on the sphere causes I, to be
much smaller than this in most cases.
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6.0 Interpolation Issues

Up to now, this paper has concentrated on the correspondence step
of the shape transformation problem. Once the combined models,
M, * and M * have been created, the transformation is computed by
interpolating between each pair of corresponding vertex locations.
In addition to linear interpolation, the use of a Hermite spline for the
path of each vertex, with the tangent vectors of the spline set equal
to the vertex normals, has proven effective.

Two potential problems may arise during the interpolation. First,
for faces with more than three edges?, interpolating vertices from
one position to another will not guarantee that all faces remain pla-
nar. This problem can be solved by triangulating the faces of M, *
and My*, prior to the interpolation. Second, an object may penetrate
itself during the interpolation. This may or may not be a problem,
depending on the application. Possible solutions of this problem are
being investigated.

Interpolating non-geometric surface attributes, such as color, tex-
ture, or transparency, along with the geometry of the models pro-
duces interesting effects. This can be easily done since the
correspondence algorithm specifies a homeomorphic mapping be-
tween the two objects. Given a point on the surface of some inter-
mediate model, barycentric coordinates can be used to locate that
point relative to the vertices of the face that contain it. From these
coordinates, the corresponding points on the original objects can be
found. The value of the attribute for the point on the intermediate
model is found by interpolating the values of the attribute for these
two points.

7.0 Results

Figures 8 to 11 present some examples of the transformation algo-
rithm. The examples were rendered using faceted shading and neu-
tral colors to better illustrate the topological structure of the
intermediate models.

Figure 8 shows a glass transforming into a spiral tube. The projec-
tions used for the two objects are those illustrated in Figure 2 and
Figure 3, respectively. The spiral is used again in Figure 9, this time
transforming into a 3D digitized sculpture. The sculpture data was
obtained from a 3D digitizing device and is organized as a set of

Figure 8 - Transforming an Object Using the Convex-Hull
Snapping Technique into 2 Tubular Object

2. Although M, and M, must be triangulated, the faces of M, * and
M,* will, in general, have up to six sides.

Figure 9 - Transforming a Tubular Object into an Object of
Revolution

Figure 10 - A Pair of Transformations Using Different Pro-
Jection Methods for the “S”-shaped Object

Figure 11 - Each Column Illustrates the 0%, 25%, 50%,
75%, and 100% Points of a Transformation

planar ribs revolved around an axis. ‘T hus, the object of revolution
technique from Section 5.1.2 was used for the projection.

Figure 10 illustrates the results of using different projection meth-
ods upon the transformation. In the upper sequence, the extruded
letter ‘S’ was projected using the convex hull snapping technique
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described in Section 5.1.3. In the lower sequence, the hybrid meth-
od for tubular objects described in Section 5.1.4 was used to project
the *S’. The object of revolution method was used to project the dig-
itized head in both sequences. The two sequences illustrate that rad-
ically different results are possible by altering the projection
method used.

Figure 11 shows three columns, each of which represents a transfor-
mation between a a pair of objects of revolution. The objects in the
middle of each column are the models obtained at the 25%, 50%,
and 75% points of the transformation. The base objects of the left
and middle columns are objects of revolution. The base object of
the rightmost column is an extruded 6-pointed star.

As a final note, the following statistics for the transformations in
Figures 8 to 11 are provided to support the claim made in Section
5.2.1 that the total number of intersections, I, is much less than
N.N, for complex models.

Na Nb NaNb Itot
Figure 8 1.8K 2.7K 4.9M 6.5K
Figure 9 2.7K 18.7K 50.5M 19.9K
Figure 10
-— top 66 18.4K 1.2M 4.0K
-- bottom 66 18.4K 1.2 1.9K
Figure 11
-- left 864 18.7K 16.2M 14.7K
-- middle 102 18.7K 1.9M 5.0K
-- right 72 18.7K 1.3M 3.9K

8.0 Future Research

Future research will focus on three areas. First, extensions of the al-
gorithm to handle wider classes of polyhedra will be investigated.
For genus 0 objects, this involves developing new ways to project
the surface of a model onto a sphere. For non-genus 0 objects, cut-
ting the objects to eliminate the passages through them, or replacing
the sphere with a representative manifold (e.g. a torus for objects
with one hole) are possibilities.

The second area of interest is to examine the problem of self-inter-
sections during the interpolation. A good solution to this problem
has applicability for many other problems that involve interpola-
tion, not just shape transformation.

The third area of investigation involves providing user control of
the transformation. The remarkable results obtained by morphing
are possible because the user maintains complete control over the
transformation. Unlike the other published techniques for 3D shape
transformation, the algorithms presented in this paper allow some
control over the transformation through mechanisms such as select-
ing the center of the object and choosing the projection technique.
However, to achieve results equivalent to those obtained by mor-
phing images, techniques that provide a finer level of control over
the transformation are needed. One possibility is to add a warping
step after the models are mapped to the sphere, but before the topol-
ogies are merged.
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