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Introduction 
 

One of the most empowering new components of DirectX 9 is the High Level 
Shading Language (HLSL).  Using this standard high level language, shader writers are 
able to think at the algorithm level while implementing shaders, rather than worry about 
meddlesome hardware details such as register allocation, register read-port limits, 
instruction co-issuing and so on.  In addition to freeing the developer from hardware 
details, the HLSL also has all of the usual advantages of a high level language such as 
easy code reuse, improved readability and the presence of an optimizing compiler.  Many 
of the chapters in this book and in the ShaderX2 - Shader Tips & Tricks book will utilize 
shaders which are written in HLSL.  As a result, it will be much easier for you to 
understand and work with those shaders after reading this introductory chapter. 
 

In this chapter, we will outline the basic structure of the language itself as well as 
strategies for integrating HLSL shaders into your application. 
 
A Simple Example 
 
 Before presenting an exhaustive description of the HLSL, let’s first have a look at 
one HLSL vertex shader and one HLSL pixel shader taken from an application which 
renders simple procedural wood.  The first HLSL shader shown below is a simple vertex 
shader: 
 

 
float4x4 view_proj_matrix; 
float4x4 texture_matrix0; 
 
struct VS_OUTPUT 
{ 
   float4 Pos     : POSITION; 
   float3 Pshade  : TEXCOORD0; 
}; 
 
 
VS_OUTPUT main (float4 vPosition : POSITION) 
{ 
   VS_OUTPUT Out = (VS_OUTPUT) 0;  
 



From ShaderX2 - Introduction and Tutorials with DirectX 9 

2 

   // Transform position to clip space 
   Out.Pos = mul (view_proj_matrix, vPosition); 
 
   // Transform Pshade 
   Out.Pshade = mul (texture_matrix0, vPosition); 
 
   return Out; 
} 
 

 
 The first two lines of this shader declare a pair of 4×4 matrices called 
view_proj_matrix and texture_matrix0.  Following these global-scope matrices, a 
structure is declared.  This VS_OUTPUT structure has two members: a float4 called Pos 
and a float3 called Pshade. 

The main function for this shader takes a single float4 input parameter and 
returns a VS_OUTPUT structure.  The float4 input vPosition is the sole input to the 
shader while the returned VS_OUTPUT struct defines this vertex shader’s output.  For now, 
don’t worry about the POSITION and TEXCOORD0 keywords following these parameters 
and structure members.  These are called semantics and their meaning will be discussed 
later in this chapter. 

Looking at the actual code body of the main function, you’ll see that an intrinsic 
function called mul is used to multiply the input vPosition vector by the 
view_proj_matrix matrix.  This intrinsic is very commonly used in vertex shaders to 
perform vector-matrix multiplication.  In this case, vPosition is treated as a column 
vector since it is the second parameter to mul.  If the vPosition vector were the first 
parameter to mul, it would be treated as a row vector.  The mul intrinsic and other 
intrinsics will be discussed in more detail later in the chapter.  Following the 
transformation of the input position vPosition to clip space, vPosition is multiplied by 
another matrix called texture_matrix0 to generate a 3D texture coordinate.  The results 
of both of these transformations have been written to members of a VS_OUTPUT structure, 
which is returned.  A vertex shader must always output a clip-space position at a 
minimum.  Any additional values output from the vertex shader are interpolated across 
the rasterized polygon and are available as inputs to the pixel shader.  In this case, the 3D 
Pshade is passed from the vertex to the pixel shader via an interpolator. 

 
Below, we see a simple HLSL procedural wood pixel shader.  This pixel shader, 

which is written to work with the vertex shader we just described, will be compiled for 
the ps_2_0 target. 

 
 
float4 lightWood; // xyz == Light Wood Color 
float4 darkWood;  // xyz == Dark Wood Color 
float  ringFreq;  // ring frequency 
 
sampler PulseTrainSampler; 
 
float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR 
{ 
    float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq; 
 
    float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis); 
  
    return lerp (darkWood, lightWood, blendFactor); 
} 
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The first few lines of this shader are the declaration of a pair of floating-point 4-
tuples and one scalar float at global scope.  Following these variables, a sampler called 
PulseTrainSampler is declared.  Samplers will be discussed in more detail later in the 
chapter but for now you can just think of a sampler as a window into video memory with 
associated state defining things like filtering, and texture coordinate addressing modes.  
With variable and sampler declarations out of the way, we move on to the body of the 
shader code.  You can see that there is one input parameter called Pshade, which is 
interpolated across the polygon.  This is the value that was computed at each vertex by 
the vertex shader above.  In the pixel shader, the Cartesian distance from the shader-space 
z axis is computed, scaled and used as a 1D texture coordinate to access the texture bound 
to the PulseTrainSampler.  The scalar color that is returned from the tex1D() sampling 
function is used as a blend factor to blend between the two constant colors (lightWood 
and darkWood) declared at global scope of the shader.  The 4D vector result of this blend 
is the final output of the pixel shader.  All pixel shaders must return a 4D RGBA color at 
a minimum.  We will discuss additional optional pixel shader outputs later in the chapter. 
 
Assembly Language and Compile Targets 
 
 Now that we have seen a few HLSL shaders, we’ll discuss briefly how the 
language relates to Direct3D, D3DX, assembly shader models and your application.  
Shaders were first added to Direct3D in DirectX 8.  At that time, several virtual shader 
machines were defined—each roughly corresponding to a particular graphics processor 
produced by each of the top 3D graphics hardware vendors.  For each of these virtual 
shader machines, an assembly language was designed.  In DirectX 8.0 and DirectX 8.1, 
programs written to these shader models (named vs_1_1 and ps_1_1 through ps_1_4) 
were relatively short and were generally written by developers directly in the appropriate 
assembly language.  As shown on the left side of Figure 1, the application would pass this 
human-readable assembly language code to the D3DX library via 
D3DXAssembleShader()and get back a binary representation of the shader which would 
in turn be passed to Direct3D via CreatePixelShader() or CreateVertexShader().  
For more on the details of the legacy assembly shader models, please refer to the many 
resources available online and offline, including Shader X and the DirectX SDK. 
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Figure 1 – Use of D3DX for Assembly and Compilation in DirectX 8 and DirectX 9 
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As shown on the right side of Figure 1, the situation in DirectX 9 is very similar 
in that the application passes an HLSL shader to D3DX via the D3DXCompileShader() 
API and gets back a binary representation of the compiled shader which is in turn passed 
to Direct3D via CreatePixelShader() or CreateVertexShader().  The binary asm 
code generated is a function only of the compile target chosen, not the specific graphics 
device in the user’s or developer’s system.  That is, the binary asm which is generated is 
vendor-neutral and will be the same no matter where you compile or run it.  In fact, the 
Direct3D runtime itself does not know anything about HLSL, only the binary assembly 
shader models.  This is nice because it means that the HLSL compiler can be updated 
independent of the Direct3D runtime.  In fact, between press time and the release of the 
first printing of this book in late summer 2003, Microsoft plans to release a DirectX SDK 
Update which will contain an updated HLSL compiler. 
 
 In addition to the development of the HLSL compiler in D3DX, DirectX 9.0 also 
introduced additional assembly-level shader models to expose the functionality of the 
latest generation of 3D graphics hardware.  Application developers can feel free to work 
directly in the assembly languages for these new models (vs_2_0, vs_3_0, ps_2_0 and 
ps_3_0) but we expect most developers to move wholesale to HLSL for shader 
development. 
 
Hardware Realities 
 
 Of course, just because you can write an HLSL program to express a particular 
shading algorithm doesn’t mean it will run on a given piece of hardware.  As we 
discussed earlier, an application calls D3DX to compile an HLSL shader to binary asm 
via the D3DXCompileShader() API.  One of the parameters to this API entrypoint is a 
parameter which defines which of the assembly language models (or compile targets) the 
HLSL compiler should use to express the final shader code.  If an application is doing 
HLSL shader compilation at run time (as opposed to offline), the application could 
examine the capabilities of the Direct3D device and select the compile target to match.  If 
the algorithm expressed in the HLSL shader is too complex to execute on the selected 
compile target, compilation will fail.  What this means is that while HLSL is a huge 
benefit to shader development, it does not free developers from the realities of shipping 
games to a target audience which owns graphics devices of varying capabilities.  As a 
game developer, you still have to manage a tiered approach to your visuals, writing better 
shaders for better graphics cards and more basic versions for older cards.  With well-
written HLSL, however, this burden can be eased significantly. 
 
Compilation Failure 
 
 As mentioned above, failure of a given HLSL shader to compile for a particular 
compile target is an indication that the shader is too complex for the compile target.  This 
can mean that the shader either requires too many resources or it requires some capability, 
such as dynamic branching, that is not supported by the chosen compile target.  For 
example, an HLSL shader could be written to access a given texture map six times in a 
shader.  If this shader is compiled for the ps_1_1 compile target, compilation will fail 
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since the ps_1_1 model supports only four textures.  Another common source of 
compilation failure is exceeding the maximum instruction count of the chosen compile 
target.  An algorithm expressed in HLSL may simply require too many instructions to be 
executed by a given compile target. 
 
 It is important to note that the choice of compile target does not restrict the HLSL 
syntax that a shader writer can use.  For example, a shader writer can use ‘for’ loops, 
subroutines, ‘if-else’ statements etc. and still compile for targets which don’t natively 
support looping, branching or ‘if-else’ statements.  In such cases, the compiler will unroll 
loops, inline function calls and execute both branches of an ‘if-else’ statement, selecting 
the proper result based upon the original value used in the ‘if-else’ statement.  Of course, 
if the resulting shader is too long or otherwise exceeds the resources of the compile target, 
compilation will fail.   
 
The Commandline Compiler - fxc 
 
 Rather than compile HLSL shaders using D3DX on the customer’s machine at 
application load time or at first use, many developers choose to compile their shaders 
from HLSL to binary asm before they even ship.  This keeps their HLSL source away 
from prying eyes and also ensures that all of the shaders that their app will ever run have 
gone through their internal quality assurance process.  A convenient utility which allows 
developers to compile shaders offline is the fxc commandline compiler which is provided 
in the DirectX 9.0 SDK.  This utility has a number of convenient options that you can use 
to not only compile your shaders on the commandline but also generate disassembled 
code for the specified compile target.  Studying the disassembled output can be very 
educational during development if you want to optimize your shaders or just generally 
get to know the virtual shader machine’s capabilities at a more detailed level.  These 
commandline options are summarized in Table 1. 
 

Option Description 
-T target compile target (default: vs_2_0) 
-E name entrypoint name (default: main) 
-Od disable optimizations 
-Vd disable validation 
-Zi enable debugging information 
-Zpr pack matrices in row-major order 
-Zpc pack matrices in column-major order 
-Fo file output object file 
-Fc file output listing of generated code 
-Fh file output header containing generated code 
-D id = text define macro 
-nologo suppress copyright message 

Table 1 – fxc Commandline Options. 

 



From ShaderX2 - Introduction and Tutorials with DirectX 9 

6 

 Now that you understand the context in which the HLSL compiler can be used for 
shader development, we will discuss the actual mechanics of the language.  As we 
progress, it is important to keep the notion of a compile target and the varying 
capabilities of the underlying assembly shader models in mind. 
 
Language basics 
 
 Now that you have a sense of what HLSL vertex and pixel shaders look like and 
how they interact with the low-level assembly shaders, we’ll discuss some of the details 
of the language itself. 
 
Keywords 

Keywords are predefined identifiers that are reserved for the HLSL language and 
cannot be used as identifiers in your program.  Keywords marked with '*' are case 
insensitive. 

asm * bool compile const 
decl* do double else 
extern false float for 
half if  in inline 
inout int matrix * out 
pass * pixelshader * return sampler 
shared static string * struct 
technique * texture * true typedef 
uniform vector * vertexshader * void 
volatile while   

The following keywords are currently unused, but are reserved for potential future use: 

auto break compile const 
char class case catch 
default delete const_cast continue 
explicit friend dynamic_cast enum 
mutable namespace goto long 
private protected new operator 
reinterpret_cast short public register 
static_cast switch signed sizeof 
throw try template this 
typename unsigned using union 
virtual    
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Datatypes 
 
 The HLSL has support for a variety of data types, from simple scalars to more 
complex types such as vectors and matrices. 
Scalar Types 
 

The language supports the following scalar datatypes: 
 

Datatype  Representable Values 
bool true or false 
int 32-bit signed integer 
half 16-bit floating point value 
float 32-bit floating point value 
double 64-bit floating point value 

If you are already familiar with the assembly-level programming models, you will 
know that graphics processors do not currently have native support for all of these 
datatypes.  As a result, integers may need to be emulated using floating point hardware.  
This means that integer operations that go outside the range of integers that can be 
expressed as floats on these platforms are not guaranteed to function as expected.  
Additionally, not all target platforms have native support for half or double values.  If the 
target platform does not, these will be emulated using float. 

Vector Types 
 
 You will often find yourself declaring vector variables in your HLSL shaders.  
There are a variety of ways that these vectors can be declared, including the following: 
 

vector 

A vector of 
dimension 4; each 
component is of type 
float. 

vector < type, size >

A vector of 
dimension size; each 
component is of 
scalar type type. 

Vector Types 
 

The most common way that you will see shader authors declare vectors, however, 
is by using the name of a type followed by an integer from 2 to 4.  To declare a 4-tuple of 
floats, for example, you could use any of the following vector declarations: 
 

float4 fVector0; 
float  fVector1[4]; 
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vector fVector2; 
vector <float, 4> fVector3; 

 
To declare a 3-tuple of bools, for example, you could use any of the following 

declarations: 
 

bool3 bVector0; 
bool  bVector1[3]; 
vector <bool, 3> bVector2; 

Once you have defined a vector, you may access its individual components by 
using the array access syntax or using a swizzle.  In the swizzle case, the components 
must come from either the {x. y, z, w} or {r, g, b, a} name-space (but not both).   For 
example: 

float4 pos = {3.0f, 5.0f, 2.0f, 1.0f}; 
float  value0 = pos[0]; // value0 is 3.0f 
float  value1 = pos.x;  // value1 is 3.0f 
float  value2 = pos.g;  // value2 is 5.0f 
float2 vec0   = pos.xy; // vec0 is {3.0f, 5.0f} 
float2 vec1   = pos.ry; // INVALID because of bad swizzle 

 
It should be noted that the ps_2_0 and lower pixel shader models do not have 

native support for arbitrary swizzles.  Hence, concise high level code which uses swizzles 
can result in fairly nasty binary asm when compiling to these targets.  You should 
familiarize yourself with the native swizzles available in these assembly models. 
 
Matrix Types 
 
 Another very common type of variable you will find yourself using in HLSL 
shaders is matrices, which are 2D arrays of data.  Like scalars and vectors, matrices may 
be composed of any of the basic datatypes: bool, int, half, float or double.  Matrices may 
be of any size, but you will typically find shader writers using matrices with up to 4 rows 
and columns.  You will recall that the example vertex shader shown at the beginning of 
the chapter declared two 4×4 float matrices at global scope:  
 

float4x4 view_proj_matrix; 
float4x4 texture_matrix0; 

 
 Naturally, other dimensions of matrices can be used.  For example, we could 
declare a floating-point matrix with 3 rows and 4 columns in a variety of ways: 
 

float3x4            mat0; 
matrix<float, 3, 4> mat1; 

 
  Like vectors, the individual elements of matrices can be accessed using array or 
structure/swizzle syntax.  For example, the following array indexing syntax can be used 
to access the top-left element of the matrix view_proj_matrix: 
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  float fValue = view_proj_matrix[0][0]; 
  

There is also a structure syntax defined for access to and swizzling of matrix 
elements.  For zero-based row-column position, you can use any of the following: 

 
  _m00, _m01, _m02, _m03 
  _m10, _m11, _m12, _m13 
  _m20, _m21, _m22, _m23 
  _m30, _m31, _m32, _m33 

 
For one-based row-column position, you can use any of the following: 
 
  _11, _12, _13, _14 
  _21, _22, _23, _24 
  _31, _32, _33, _34 
  _41, _42, _43, _44 

 
 Matrices may also be accessed using array notation:  For example: 
 

float2x2 fMat = {3.0f, 5.0f,  // row 1 
                 2.0f, 1.0f}; // row 2 
 
float  value0 = fMat[0];      // value0 is 3.0f 
float  value1 = fMat._m00;    // value1 is 3.0f 
float  value2 = fMat._12      // value2 is 5.0f 
float  value3 = fMat[1][1]    // value3 is 1.0f 
float2 vec0   = fMat._21_22;  // vec0 is {2.0f, 1.0f} 
float2 vec1   = fMat[1];      // vec1 is {2.0f, 1.0f} 

 
 
Type Modifiers 
 
 There are a couple of optional type modifiers in the HLSL which you may want to 
use in your shaders.  The familiar const type modifier is used to specify a variable whose 
value cannot be changed by the shader code.  Using such a variable on the left sign of an 
assignment (i.e. as an lval) will result in a compilation error. 
 
 The row_major and col_major type modifiers can be used to specify the 
expected layout of a matrix within the hardware constant store.  The row_major type 
modifier indicates that each row of the matrix will be stored in a single constant register.  
Likewise, using col_major indicates that each column of the matrix will be stored in a 
single constant register.  Column-major is the default. 
 
Storage Class Modifiers 
 
 Storage class modifiers inform the compiler about the intended scope and lifetime 
of a given variable.  These modifiers are optional and may appear in any order as long as 
they appear before the variable type. 
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 Like in C, a variable may be declared as static or extern.  (These two modifiers 
are mutually exclusive.)  At global scope, the static storage class modifier indicates that 
the variable is only to be accessed by the shader and not by the application via the API.  
Any non-static variable which is declared at global scope may be modified by the 
application through the API.  Like in C, using the static modifier at local scope 
indicates that the variable contains data that is to persist between invocations of the 
declaring function. 
 
 The extern modifier can be used on a global variable to indicate that it can be 
modified from outside of the shader via the API.  This is redundant, however, as this is 
the default behavior for variables declared at global scope. 
 
 The shared modifier is used to specify that a given global variable is to be shared 
between effects. 
 
 A variable which is uniform is assumed to have been set externally to the HLSL 
shader (i.e. via the Set*ShaderConstant*() API).  Global variables are treated as if they 
were declared uniform.  Such variables are not assumed to be const, however, as their 
values can be modified in the shader. 
 
 For example, say you declare the following variables at global scope: 
 

extern float translucencyCoeff; 
const  float gloss_bias; 
static float gloss_scale; 
float diffuse; 

 
 The variables diffuse and translucencyCoeff are settable by the 
Set*ShaderConstant*() API and can be modified by the shader itself.  The const 
variable gloss_bias is settable by the Set*ShaderConstant*() API but cannot be 
modified in the shader code.  Finally, the static variable gloss_scale is not settable 
by the Set*ShaderConstant*() API but can be modified within the shader only. 
 
Initializers 
 
 As we have shown in some of the preceding examples, it is possible to initialize 
variables at declaration time in the same manner used in C.  For example: 
 

float2x2 fMat = {3.0f, 5.0f,  // row 1 
                 2.0f, 1.0f}; // row 2 
float4   vPos = {3.0f, 5.0f, 2.0f, 1.0f}; 
float fFactor = 0.2f; 

 
Working with Vectors 
 

In HLSL, there are a few gotchas to look out for when performing math on 
vectors.  Fortunately, most of them are quite intuitive given that we are writing shaders 
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for 3D graphics.  For example, standard binary operators are defined to work per 
component: 

 
float4 vTone = vBrightness * vExposure; 

 
Assuming vBrightness and vExposure are both of type float4, this is 

equivalent to: 
 

float4 vTone; 
vTone.x = vBrightness.x * vExposure.x; 
vTone.y = vBrightness.y * vExposure.y; 
vTone.z = vBrightness.z * vExposure.z; 
vTone.w = vBrightness.w * vExposure.w; 

 
 Note that this is not a dot product between the 4D vectors vBrightness and 
vExposure.  Additionally, multiplying matrix variables in this way does not result in a 
matrix multiply.  Dot products and matrix multiplies are applied via the intrinsic function 
mul() which we will discuss later in the chapter. 
  
Constructors 
 

Another language feature that you will often see in HLSL shaders is the 
constructor, which is similar to C++ but has some enhancements to deal with complex 
datatypes.  Example uses of constructors include: 
 

float3   vPos     = float3(4.0f, 1.0f, 2.0f); 
float    fDiffuse = dot(vNormal, float3(1.0f, 0.0f, 0.0f)); 
float4   vPack    = float4(vPos, fDiffuse); 

 
Constructors are commonly used when a shader writer wants to temporarily 

define a quantity with literal values (as in dot(vNormal, float3(1.0f, 0.0f, 0.0f)) 
above) or when a shader writer wants to explicitly pack smaller datatypes together (as in 
float4(vPos, fDiffuse) above).  In this case, the float4 constructor takes in a 
float3 and a float and returns a float4 with the data packed together. 
 
Type Casting 
 

To aid in shader writing and in the efficiency of the generated code, it is a good 
idea to be familiar with HLSL’s type casting behavior.  Type casting often happens in 
order to promote or demote a given variable to match a variable to which it is being 
assigned.  For example, in the following case, a literal float 0.0f is being cast to a float4 
{0.0f , 0.0f , 0.0f , 0.0f } to initialize vResult. 
 

float4   vResult = 0.0f; 
 
 Similar casting can occur when assigning a higher dimensional datatype like a 
vector or matrix to a lower dimensional datatype.  In these cases, the extra data is 
effectively omitted.  For example, we may write the following code: 
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float3   vLight; 
float    fFinal, fColor; 
fFinal = vLight * fColor; 

 
 In this case, vLight is cast to a float by using only the first component in the 
multiply with the scalar float fColor.  In this case, fFinal is equal to vLight.x * 
fColor. 
 
 It is a good idea to be familiar with the following table of type casting rules:  
 

Type of cast Casting Behavior 

Scalar-to-scalar 

Always valid. When casting from bool type to an integer or 
floating point type, false is considered to be zero, and true is 
considered to be one. When casting from an integer or floating 
point type to bool, a zero value is considered to be false, and a 
nonzero value is considered to be true. When casting from a 
floating point type to an integer type, the value is rounded toward 
zero.  This is the same truncation behavior as C. 

Scalar-to-vector Always valid. This cast operates by replicating the scalar to fill 
the vector. 

Scalar-to-matrix Always valid. This cast operates by replicating the scalar to fill 
the matrix. 

Scalar-to-structure This cast operates by replicating the scalar to fill the structure. 
Vector-to-scalar Always valid. This selects the first component of the vector 

Vector-to-vector 

The destination vector must not be larger than the source vector. 
The cast operates by keeping the left-most values, and truncating 
the rest. For the purposes of this cast, column matrices, row 
matrices, and numeric structures are treated as vectors. 

Vector-to-matrix The size of the vector must be equal to the size of the matrix. 

Vector-to-structure Valid if the structure is not larger than the vector, and all 
components of the structure are numeric. 

Matrix-to-scalar Always valid. This selects the upper-left component of the matrix.
Matrix-to-vector The size of the matrix must be equal to the size of the vector. 

Matrix-to-matrix 
The destination matrix must not be larger than the source matrix, 
in both dimensions. The cast operates by keeping the upper-left 
values, and truncating the rest. 

Matrix-to-structure The size of the structure must be equal to the size of the matrix, 
and all components of the structure are numeric. 

Structure-to-scalar The structure must contain at least one member. 
Structure-to-vector The structure must be at least the size of the vector. The first 



Introduction to the DirectX® 9 High Level Shading Language 

 13 

components must be numeric, up to the size of the vector. 

Structure-to-matrix The structure must be at least the size of the matrix. The first 
components must be numeric, up to the size of the matrix. 

Structure-to-object The structure must contain at least one member. The type of this 
member must be identical to the type of the object. 

Structure-to-structure 
The destination structure must not be larger than the source 
structure. A valid cast must exist between all respective source 
and destination components. 

 
Structures 
 

As we showed in the first example shader above, it is often convenient to be able 
to define structures in HLSL shaders.  For example, many shader writers will define an 
output structure in their vertex shader code and use this structure as the return type from 
their vertex shader’s main function.  (It is less common to do this with a pixel shader 
since most pixel shaders have only one float4 output.)  An example structure taken from 
the NPR Metallic shader that we will discuss later is shown below: 
 

 
struct VS_OUTPUT 
{ 
   float4 Pos   : POSITION; 
   float3 View  : TEXCOORD0; 
   float3 Normal: TEXCOORD1; 
   float3 Light1: TEXCOORD2; 
   float3 Light2: TEXCOORD3; 
   float3 Light3: TEXCOORD4; 
}; 
 

 
 Structures may be declared for general use in an HLSL shader as well.  They 
follow the type-casting rules outlined above. 
 
Samplers 
 

For each different texture map that you plan to sample in a pixel shader, you must 
declare a sampler.  Recall the hlsl_rings() shader described earlier: 

  
 
float4 lightWood; // xyz == Light Wood Color 
float4 darkWood;  // xyz == Dark Wood Color 
float  ringFreq;  // ring frequency 
 
sampler PulseTrainSampler; 
 
float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR 
{ 
    float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq; 
 
    float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis); 
  
    return lerp (darkWood, lightWood, blendFactor); 
} 
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In this shader, we declared a sampler called PulseTrainSampler at global scope 
and passed it as the first parameter to the tex1D() intrinsic function (we will discuss 
intrinsics in the next section).  An HLSL sampler has a very direct mapping to the API 
concept of a sampler and, in turn, to the actual silicon in the 3D graphics processor which 
is responsible for addressing and filtering textures.  A sampler must be defined for every 
texture map that you plan to access in a given shader, but you may use a given sampler 
multiple times in a shader.  This usage is very common in image processing applications 
as discussed in the ShaderX2 - Shader Tips & Tricks chapter “Advanced Image 
Processing with DirectX 9 Pixel Shaders” since the input image is often sampled multiple 
times with different texture coordinates to provide data to a filter kernel expressed in 
shader code.  For example, the following shader uses the rasterizer to convert a height 
map to a normal map with a pair of Sobel filters. 
 

 
sampler InputImage; 
 
float4 main( float2 topLeft    : TEXCOORD0, float2 left        : TEXCOORD1, 
             float2 bottomLeft : TEXCOORD2, float2 top         : TEXCOORD3, 
             float2 bottom     : TEXCOORD4, float2 topRight    : TEXCOORD5, 
             float2 right      : TEXCOORD6, float2 bottomRight : TEXCOORD7): COLOR 
{ 
   // Take all eight taps 
   float4 tl = tex2D (InputImage, topLeft); 
   float4  l = tex2D (InputImage, left); 
   float4 bl = tex2D (InputImage, bottomLeft); 
   float4  t = tex2D (InputImage, top); 
   float4  b = tex2D (InputImage, bottom); 
   float4 tr = tex2D (InputImage, topRight); 
   float4  r = tex2D (InputImage, right); 
   float4 br = tex2D (InputImage, bottomRight); 
 
   // Compute dx using Sobel operator: 
   // 
   //           -1 0 1  
   //           -2 0 2 
   //           -1 0 1 
   float dX = -tl.a - 2.0f*l.a - bl.a + tr.a + 2.0f*r.a + br.a; 
 
   // Compute dy using Sobel operator: 
   // 
   //           -1 -2 -1  
   //            0  0  0 
   //            1  2  1 
   float dY = -tl.a - 2.0f*t.a - tr.a + bl.a + 2.0f*b.a + br.a; 
 
   // Compute cross-product and renormalize 
   float4 N = float4(normalize(float3(-dX, -dY, 1)), tl.a); 
 
   // Convert signed values from -1..1 to 0..1 range and return 
   return N * 0.5f + 0.5f; 
} 
 

 
 
 This shader uses only one sampler, InputImage, but samples from it eight times 
using the tex2D() intrinsic function. 
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Intrinsics 
 

As mentioned in the preceding section, there are a number of intrinsics built into 
the DirectX 9 High Level Shading Language for your convenience.  Many intrinsics, 
such as mathematical functions, are provided for convenience, while others, such as the 
tex1D() and tex2D() functions mentioned above, are necessary for accessing texture 
data via samplers. 
 
Math Intrinsics 
 

The math intrinsics listed in the table below will be converted to micro operations 
by the HLSL compiler.  In some cases, such as abs() and dot(), these intrinsics will 
map directly to single assembly-level operations while in other cases, such as refract() 
and step(), they will map to multiple assembly instructions.  There are even a couple of 
cases, notably ddx(), ddy()and fwidth(), which are not supported for all compile 
targets.  The math intrinsics are shown below: 
 
Intrinsic Description 
abs(x) Absolute value (per component). 

acos(x) Returns the arccosine of each component of x. Each component should be in the 
range [-1, 1]. 

all(x) Test if all components of x are nonzero. 
any(x) Test is any component of x is nonzero. 

asin(x) Returns the arcsine of each component of x. Each component should be in the 
range [-π/2, π /2]. 

atan(x) Returns the arctangent of x. The return values are in the range [-π /2, π /2]. 

atan2(y, x) 
Returns the arctangent of y/x. The signs of y and x are used to determine the 
quadrant of the return values in the range [-π, π]. atan2 is well-defined for every 
point other than the origin, even if x equals 0 and y does not equal 0. 

ceil(x) Returns the smallest integer which is greater than or equal to x. 
clamp(x, min, max) Clamps x to the range [min, max]. 

clip(x) 
Discards the current pixel, if any component of x is less than zero. This can be 
used to simulate clip planes, if each component of x represents the distance from 
a plane.  This is the intrinsic you use when you want to generate an asm texkill

cos(x) Returns the cosine of x 
cosh(x) Returns the hyperbolic cosine of x 
cross(a, b) Returns the cross product of two 3D vectors a and b. 

D3DCOLORtoUBYTE4(x) Swizzles and scales components of the 4D vector x to compensate for the lack of 
UBYTE4 stream component support in some hardware. 

ddx(x) Returns the partial derivative of x with respect to the screen-space x-coordinate. 
ddy(x) Returns the partial derivative of x with respect to the screen-space y-coordinate 
degrees(x) Converts x from radians to degrees 
determinant(m) Returns the determinant of the square matrix m 
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distance(a, b) Returns the distance between two points a and b 
dot(a, b) Returns the dot product of two vectors a and b 
exp(x) Returns the base-e exponent ex 
exp2(a) Base 2 Exp (per component) 
faceforward(n, i, ng) Returns -n * sign(dot(i, ng)) 
floor(x) Returns the greatest integer which is less than or equal to x 

fmod(a, b) 
Returns the floating point remainder f of a / b such that a = i * b + f, where i is an 
integer, f has the same sign as x, and the absolute value of f is less than the 
absolute value of b. 

frac(x) Returns the fractional part f of x, such that f is a value greater than or equal to 0, 
and less than 1. 

frexp(x, out exp) 
Returns the mantissa and exponent of x. frexp returns the mantissa, and the 
exponent is stored in the output parameter exp. If x is 0, the function returns 0 for 
both the mantissa and the exponent. 

fwidth(x) Returns abs(ddx(x))+abs(ddy(x)). 
isfinite(x) Returns true if x is finite, false otherwise. 
isinf(x) Returns true if x is +INF or -INF, false otherwise 
isnan(x) Returns true if x is NAN or QNAN, false otherwise 
ldexp(x, exp) Returns x * 2exp 
len(v) Vector length 
length(v) Returns the length of the vector v 

lerp(a, b, s) Returns a + s(b - a). This linearly interpolates between a and b, such that the 
return value is a when s is 0, and b when s is 1. 

log(x) Returns the base-e logarithm of x. If x is negative, the function returns indefinite. 
If x is 0, the function returns +INF. 

log10(x) Returns the base-10 logarithm of x. If x is negative, the function returns 
indefinite. If x is 0, the function returns +INF. 

log2(x) Returns the base-2 logarithm of x. If x is negative, the function returns indefinite. 
If x is 0, the function returns +INF. 

max(a, b) Selects the greater of a and b 
min(a, b) Selects the lesser of a and b 

modf(x, out ip) 
Splits the value x into fractional and integer parts, each of which has the same 
sign as x. The signed fractional portion of x is returned. The integer portion is 
stored in the output parameter ip. 

mul(a, b) 
Performs matrix multiplication between a and b. If a is a vector, it is treated as a 
row vector. If b is a vector, it is treated as a column vector.  The inner dimension 
acolumns and brows must be equal. The result has the dimension arows × bcolumns. 

normalize(v) Returns the normalized vector v / length(v). If the length of v is 0, the result is 
indefinite. 

pow(x, y) Returns xy 
radians(x) Converts x from degrees to radians 

reflect(i, n) Returns the reflection vector v, given the entering ray direction i, and the surface 
normal n. Such that v = i - 2 * dot(i, n) * n 

refract(i, n, eta) Returns the refraction vector v, given the entering ray direction i, the surface 
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normal n, and the relative index of refraction eta. If the angle between i and n is 
too great for a given eta, refract returns (0,0,0). 

round(x) Rounds x to the nearest integer. 
rsqrt(x) Returns 1 / sqrt(x). 
saturate(x) Clamps x to the range [0, 1]. 

sign(x) Computes the sign of x. Returns -1 if x is less than 0, 0 if x equals 0, and 1 if x is 
greater than zero. 

sin(x) Returns the sine of x 

sincos(x, out s, out c) Returns the sine and cosine of x. sin(x) is stored in the output parameter s. cos(x) 
is stored in the output parameter c 

sinh(x) Returns the hyperbolic sine of x 

smoothstep(min, max, x) Returns 0 if x < min. Returns 1 if x > max. Returns a smooth Hermite 
interpolation between 0 and 1, if x is in the range [min, max]. 

sqrt(x) Square root (per component). 
step(a, x) Returns (x ≥ a) ? 1 : 0. 
tan(x)  Returns the tangent of x 
tanh(x) Returns the hyperbolic tangent of x 

transpose(m) Returns the transpose of the matrix m. If the source is dimension mrows × mcolumns, 
the result is dimension mcolumns × mrows 

 
 
Texture Sampling Intrinsics 
 

There are sixteen texture sampling intrinsics used for sampling texture data into a 
shader.  There are four types of textures (1D, 2D, 3D and cube map) and four types of 
loads (regular, with derivatives, projective and biased) with an intrinsic for each of the 
sixteen combinations: 
 
Intrinsic Description 
tex1D(s, t) 1D texture lookup. s is a sampler. t is a scalar. 
tex1D(s, t, ddx, ddy) 1D texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are scalars. 

tex1Dproj(s, t) 1D projective texture lookup. s is a sampler. t is a 4D vector. t is divided by its 
last component before the lookup takes place. 

tex1Dbias(s, t) 1D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is 
biased by t.w before the lookup takes place. 

tex2D(s, t) 2D texture lookup. s is a sampler. t is a 2D texture coordinate. 

tex2D(s, t, ddx, ddy) 2D texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are 2D 
vectors. 

tex2Dproj(s, t) 2D projective texture lookup. s is a sampler. t is a 4D vector. t is divided by its 
last component before the lookup takes place. 

tex2Dbias(s, t) 2D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is 
biased by t.w before the lookup takes place. 

tex3D(s, t) 3D volume texture lookup. s is a sampler. t is a 3D texture coordinate. 
tex3D(s, t, ddx, ddy) 3D volume texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are 
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3D vectors. 

tex3Dproj(s, t) 3D projective volume texture lookup. s is a sampler. t is a 4D vector. t is 
divided by its last component before the lookup takes place. 

tex3Dbias(s, t) 3D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is 
biased by t.w before the lookup takes place. 

texCUBE(s, t) Cubemap lookup. s is a sampler. t is a 3D texture coordinate. 

texCUBE(s, t, ddx, ddy) Cubemap lookup, with derivatives. s is a sampler. t, ddx, and ddy are 3D 
vectors. 

texCUBEproj(s, t) Projective cubemap lookup. s is a sampler. t is a 4D vector. t is divided by its 
last component before the lookup takes place. 

texCUBEbias(s, t) Biased cubemap lookup. s is a sampler. t is a 4D vector. The mip level is biased 
by t.w before the lookup takes place.  

 
 
 The tex1D(), tex2D(), tex3D() and texCUBE() intrinsics are the most 
commonly used to sample textures.  The texture loading intrinsics which take ddx and 
ddy parameters compute texture LOD using these explicit derivatives, which would 
typically have been previously calculated with the ddx() and ddy() math intrinsics.  
These are particularly important when writing procedural pixel shaders, but are not 
supported on ps_2_0 or lower compile targets. 
 

The tex*proj() intrinsics are used to do projective texture reads, where the 
texture coordinates used to sample the texture are divided by the last component prior to 
accessing the texture.  Of these, tex2Dproj() is the most commonly used, since it is 
necessary for projective shadow maps and similar effects. 
 

The tex*bias() intrinsics are used to perform biased texture sampling, where the 
bias can be computed per-pixel.  This is typically done to induce some over-blurring of 
the texture for a special effect.  For example, as discussed in the ShaderX2 - Shader Tips 
& Tricks chapter “Motion Blur Using Geometry and Shading Distortion,” the pixel 
shader used on the motion-blurred balls in the RADEON™ 9700 Animusic Pipe Dream 
demo uses the texCUBEbias() intrinsic to access the cubic environment map of the local 
scene: 
 
… 
   // Blur reflection by extension amount. 
   float3 vCubeLookup = vReflection + i.Pos/fEnvMapRadius; 
   float4 cReflection = texCUBEbias(tCubeEnv, float4(vCubeLookup, fBlur * fTextureBlur)) 
* vReflectionColor; 
… 

 
 In this code snippet, fBlur * fTextureBlur is stored in the fourth component of 
the texture coordinate used in the texCUBEbias() call and determines the bias to be used 
when accessing the cube map. 
 
 Now that we have introduced some of the mechanics of the language, we will 
discuss how data is input to and output from HLSL shaders in DirectX 9. 
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Shader Inputs 
 
 Vertex and pixel shaders have two types of input data, varying and uniform.  The 
varying input is the data that is unique to each execution of a shader.  For a vertex shader, 
the varying data (i.e. position, normals, etc.) comes from the vertex streams.  The uniform 
data (i.e. material color, world transform, etc.) is constant for multiple executions of a 
shader.  If you are familiar with the assembly models, uniform data is specified in 
constant registers, and varying data in the ‘v’/‘t’ registers in vertex and pixel shaders. 
 
Uniform input 
 
 Uniform data can be specified by two methods in HLSL.  The most common 
method is to declare global variables and use them within the vertex or pixel shaders.  
Any use of a global variable within a shader will result in the addition of the variable to a 
list of uniform variables required by the shader.  The second method is to mark an input 
parameter of the top-level shader function as uniform.  This marking specifies that the 
given variable should be added to the list of uniform variables used by the shader.  Both 
of these methods are illustrated in the following code snippet: 
 
 
 
// Declare a global uniform variable  
// Appears in constant table under name ‘UniformGlobal’ 
float4 UniformGlobal; 
 
// Declare a uniform input parameter 
// Appears in constant table under name ‘$UniformParam’  
float4 main( uniform float4 UniformParam ) : POSITION 
{ 
   return UniformGlobal * UniformParam; 
} 
 

 
 

The uniform variables used by a shader are communicated back to the application 
via the constant table.  The constant table a symbol table which defines how the uniform 
variables used by a shader must be loaded into the constant registers prior to shader 
execution.   (NOTE:  the uniform input function parameters appear in the constant table 
with a ‘$’ pre-pended unlike the global variables.  The ‘$’ is required to avoid name 
collisions between “local” uniform inputs and global variables of the same name.) 
 

The constant table contains the constant register locations of all uniform variables 
used by the shader.  The table also includes the type information and the default value, if 
specified, for each constant table entry.  The following is an example of what a constant 
table looks like when printed out.  The constant table generated by the compiler is stored 
in a compact binary form.  The API to interpret the table at runtime will be discussed 
later in the section on HLSL integration without the use of D3DX Effects. 
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Textual printout of constant table emitted by fxc.exe for a sample shader: 
 

// 
// Generated by Microsoft (R) D3DX9 Shader Compiler 
// 
//  Source: hemisphere.fx 
//  Flags: /E:VS /T:vs_1_1 
// 
 
// Registers: 
// 
//     Name         Reg   Size 
//     ------------ ----- ---- 
//     Projection   c0       4 
//     WorldView    c4       3 
//     DirFromLight c7       1 
//     DirFromSky   c8       1 
//     $bHemi       c18      1 
//     $bDiff       c19      1 
//     $bSpec       c20      1 
// 
// 
// Default values: 
// 
//     DirFromLight 
//       c7   = { 0.577, -0.577, 0.577, 0 }; 
// 
//     DirFromSky 
//       c8   = { 0, -1, 0, 0 }; 

 

 
Varying input 
 Varying data is specified by marking the input parameters of the top-level shader 
function with an input semantic.   All top-level shader inputs must either be marked as 
varying by using semantics or marked with the keyword ‘uniform’ indicating that the 
value is constant for the execution of the shader.  If a top-level shader input is not marked 
with a semantic or ‘uniform’ keyword, then the shader will fail to compile. 

The input semantic is a name used to link the given shader input to an output of 
the previous stage of the graphics pipeline.  For example, the input semantic POSITION0 
is used by vertex shaders to specify where the position data from the vertex buffer should 
be linked. 

 Pixel and vertex shaders have different sets of input semantics due to the different 
parts of the graphics pipeline that feed into each shader unit.  Vertex shader input 
semantics describe the per vertex information to be loaded from a vertex buffer into a 
form that can be consumed by the vertex shader (i.e. positions, normals, texture 
coordinates, colors, tangents, binormals, etc).  These input semantics directly map to the 
combination of the D3DDECLUSAGE enum and UsageIndex that is used to describe vertex 
data elements in a vertex buffer. 

 Pixel shader input semantics describe the information that is provided per pixel by 
the rasterization unit.  This data is generated by interpolating between the outputs of the 
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vertex shader for each vertex of the current primitive.  The basic pixel shader input 
semantics link the input color and texture coordinate information to input parameters. 

 Input semantics can be assigned to shader input by two methods.  The first 
method is by appending a colon, ‘:’, and the input semantic name to the input parameter 
declaration.  The second method is to define an input structure with input semantics 
assigned to each element of the input structure.  You will see both of these styles used in 
the example shaders in this chapter and throughout the ShaderX books. 

 
Input semantic example: 
 
// Declare an input structure with a semantic binding 
struct InStruct 
{ 

float4 Pos1 : POSITION1 
}; 
 
// Declare the Pos variable as containing position data 
float4 main( float4 Pos : POSITION0, InStruct In ) : POSITION 
{ 

return Pos * In.Pos1; 
} 

 
// Declare the Col variable as containing the interpolated COLOR0 value 
float4 mainPS( float4 Col : COLOR0 ) : COLOR 
{ 

return Col; 
}  

Vertex Shader Input Semantics 

Semantic Description 
POSITIONn Position 
BLENDWEIGHTn  Blend weights 
BLENDINDICESn  Blend indices 
NORMALn  Normal vector 
PSIZEn  Point size 
COLORn  Color 
TEXCOORDn  Texture coordinates 
TANGENTn  Tangent 
BINORMALn  Binormal 
TESSFACTORn  Tessellation factor 
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Pixel Shader Input Semantics 

Semantic Description 
COLORn  Color 
TEXCOORDn  Texture coordinates

n is an optional integer. As an example, PSIZE0, DIFFUSE1, etc. 

Shader Outputs 

Vertex and pixel shaders provide output data to the subsequent graphics pipeline 
stage.  Output semantics are used to specify how data generated by the shader should be 
linked to the inputs of the next stage.  For example, the output semantics for a vertex 
shader are used to link the outputs with the interpolators in the rasterizer to generate the 
input data for the pixel shader.  The pixel shader outputs are the values provided to the 
alpha blending unit for each of the render targets or the depth value to be written to the 
depth buffer. 

Vertex shader output semantics are used to link the shader both to the pixel shader 
and the rasterizer stage.  The POSITION output is a required output from each vertex 
shader that is consumed by the rasterizer and not exposed to the pixel shader.  TEXCOORDn 
and COLORn denote outputs that are made available to the pixel shader post interpolation.   

Pixel shader output semantics bind the output colors of a pixel shader with the 
correct render target.  The colors output from the pixel shader are linked to the alpha 
blend stage, which determines how the destination render targets are modified.  The 
DEPTH output semantics can be used to change the destination depth value at the current 
raster location.  NOTE: DEPTH and multiple render targets (also known as “MRT”) are 
only supported with some shader models. 

The syntax for output semantics is identical to the syntax for specifying input 
semantics.  The semantics can be either specified directly on parameters declared as ‘out’ 
parameters, or assigned during the definition of a structure that is either returned as an out 
parameter or the return value of the function. 

Vertex Shader Output Semantics 

Semantic Description 
POSITION Position 
PSIZE Point size 
FOG Vertex fog 
COLORn Color (example: COLOR0) 
TEXCOORDn Texture coordinates (example: TEXCOORD0) 
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Pixel Shader Output Semantics 

Semantic Description 
COLORn Color for render target n 
DEPTH Depth value 

n is an optional, integer. As an example, TEXCOORD3, COLOR0 

 
 The following code snippets illustrate the variety of ways in which data can be 
output from HLSL shaders: 
 
 
// Declare an output structure with a semantic binding 
struct OutStruct 
{ 

float2 Tex2 : TEXCOORD2 
}; 
 
// Declare the Tex0 out parameter as containing TEXCOORD0 data 
float4 main(out float2 Tex0 : TEXCOORD0, out OutStruct Out ) : POSITION 
{ 
 Tex0 = float2(1.0, 0.0); 
      Out.Tex2 = float2(0.1, 0.2); 

return float4(0.5, 0.5, 0.5, 1); 
} 

 
// Declare the Col variable as containing the interpolated COLOR0 value 
float4 mainPS( out float4 Col1 : COLOR1) : COLOR 
{ 
 // write out to render target 1 using out parameter 
 Col1 = float4(0.0, 0.0, 0.0, 0.0); 
 
 // write to render target 0 using the declared return destination 

return float4(1.0, 0.9722, 0.3333334, 0); 
} 

 

 
 
struct PS_OUT 
{ 
 float4 Color: COLOR; 
 float  Depth: DEPTH; 
}; 
 
// 
// Three different ways to output from a pixel shader: 
// 
 
PS_OUT PSFunc1() { ... } 
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void PSFunc2(out float4 Color : COLOR, 
   out float Depth : DEPTH) 
{ 
  ... 
} 
 
void PSFunc3(out PS_OUT Out) 
{ 
  ... 
} 
 
 
 
 
An Example Shader 
 

Now that we’ve discussed the language itself and how it connects with the rest of 
the graphics pipeline via inputs and outputs, we will discuss an example shader called 
NPR Metallic.  We call it this since it was designed to look like a metallic surface which 
would exist in a world rendered in a cel-animation style (Figure 2).  This effect ships with 
the RenderMonkey shader development environment discussed in the chapter “Shader 
Programming with RenderMonkey” and is available on the ATI Developer Relations 
website (www.ati.com/developer). 

 

 
Figure 2 – NPR Metallic 

 
First, let’s look at the NPR Metallic vertex shader written in HLSL: 

 
 
float4x4 view_proj_matrix; 
 
float4 view_position; 
float4 light0; 
float4 light1; 
float4 light2; 
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struct VS_OUTPUT 
{ 
   float4 Pos   : POSITION; 
   float3 View  : TEXCOORD0; 
   float3 Normal: TEXCOORD1; 
   float3 Light1: TEXCOORD2; 
   float3 Light2: TEXCOORD3; 
   float3 Light3: TEXCOORD4; 
}; 
 
VS_OUTPUT main( float4 inPos    : POSITION,  
                float3 inNorm   : NORMAL ) 
{ 
   VS_OUTPUT Out = (VS_OUTPUT) 0; 
 
   // Output transformed vertex position:  
   Out.Pos = mul( view_proj_matrix, inPos ); 
 
   Out.Normal = inNorm; 
 
   // Compute the view vector:  
   Out.View = normalize( view_position - inPos ); 
 
   // Compute vectors to three lights from the current vertex position:  
   Out.Light1 = normalize (light0 - inPos);   // Light 1 
   Out.Light2 = normalize (light1 - inPos);   // Light 2 
   Out.Light3 = normalize (light2 - inPos);   // Light 3 
 
   return Out; 
} 
 

NPR Metallic Vertex Shader 
 
 
 The first thing that we see in this vertex shader is the declaration of a matrix and a 
set of floats at global scope: view_proj_matrix, view_position, light0, light1, and 
light2.   These are all implicitly uniform variables which are externally settable by the 
API and modifiable in the shader itself. 
 

Following these global variables, we see the definition of a structure called 
VS_OUTPUT, which is also the return type of our main function.  This means that this 
vertex shader will output five 3D texture coordinates in addition to the required 4D 
position. 
 

Looking at the main function, we see that the vertex shader takes a 4D vector as 
input position, a 3D vector as input normal and a 2D vector as a texture coordinate.  The 
input position, inPos, is transformed by the view_proj_matrix using the mul() intrinsic, 
while the normal, inNorm, is passed through to the output untouched. 
 

Finally, 3D vectors from the object space vertex position to the three lights and 
the view position are all computed.  These 3D vectors are passed to the normalize() 
intrinsic to guarantee that they are of unit length.  These normalized 3D vectors are all 
output from the vertex shader as 3D texture coordinates which will be interpolated across 
the polygon. 
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To reinforce the earlier discussion about compile targets and assembly models, we 
will compile this shader and have a look at the assembly output.  First, we have written 
the above code into a file called NPRMetallic.vhl.  Next, we can compile it on the 
commandline with fxc: 

 
 

fxc -nologo -T vs_1_1 -Fc -Vd NPRMetallic.vhl 
 
 
 Because this vertex shader does not require flow control, we select the vs_1_1 
compile target.  We also set the flags to generate a code file and disable validation.  A 
portion of the generated code file is shown below: 
 
 
// Parameters: 
//     float4 light0; 
//     float4 light1; 
//     float4 light2; 
//     float4 view_position; 
//     float4x4 view_proj_matrix; 
// 
// Registers: 
//     Name             Reg   Size 
//     ---------------- ----- ---- 
//     view_proj_matrix c0       4 
//     view_position    c4       1 
//     light1           c5       1 
//     light2           c6       1 
//     light0           c7       1 
 
    vs_1_1 
    dcl_position v0 
    dcl_normal v1 
    mul r0, v0.x, c0 
    mad r2, v0.y, c1, r0 
    mad r4, v0.z, c2, r2 
    mad oPos, v0.w, c3, r4 
    add r1, -v0, c4 
    dp4 r1.w, r1, r1 
    rsq r1.w, r1.w 
    mul oT0.xyz, r1, r1.w 
    add r8, -v0, c7 
    dp4 r8.w, r8, r8 
    rsq r8.w, r8.w 
    mul oT2.xyz, r8, r8.w 
    add r3, -v0, c5 
    add r10, -v0, c6 
    dp4 r3.w, r3, r3 
    rsq r3.w, r3.w 
    mul oT3.xyz, r3, r3.w 
    dp4 r10.w, r10, r10 
    rsq r10.w, r10.w 
    mul oT4.xyz, r10, r10.w 
    mov oT1.xyz, v1 
 

 
At the top of the code file, we see the parameters to this vertex shader.  That is, 

we see the global scope variables which will need to be set from the API for this shader 
to work properly in a given application.  The next section shows the hardware registers to 
which these parameters must be loaded by the application for the assembly shader to 
work properly.  Next, we have the shader code itself, which as been compiled to 21 
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assembly instructions.  We won’t go through all of the code, but you should take note of 
the dcl_position and dcl_normal statements, which are a direct result of the POSITION 
and NORMAL semantics on the inputs to the shader’s main function.  Additionally, note the 
storage of final results in the oPos, oT0, oT1, oT2, oT3 and oT4 registers.  This is caused 
by the return type of the function being a structure whose members are tagged with the 
corresponding semantics.  While not strictly necessary, knowing how to use fxc to 
generate assembly code from HLSL and how to read through it can be beneficial at some 
stages of development, particularly when trying to write more optimal HLSL. 
 
 Now that we have used the vertex shader to transform the geometry into clip 
space and define the values which will be interpolated across the polygons, we can move 
on to the pixel shader which will make use of all of these interpolated quantities. 
 
 
float4 Material; 
 
sampler Outline; 
 
float4 main( float3 View:   TEXCOORD0, 
             float3 Normal: TEXCOORD1, 
             float3 Light1: TEXCOORD2, 
             float3 Light2: TEXCOORD3, 
             float3 Light3: TEXCOORD4 ) : COLOR 
{ 
   // Normalize input normal vector: 
   float3 norm = normalize (Normal); 
   
   float4 outline = tex1D(Outline, 1 - dot (norm, normalize(View))); 
 
   float lighting = (dot (normalize (Light1), norm) * 0.5 + 0.5) + 
                    (dot (normalize (Light2), norm) * 0.5 + 0.5) + 
                    (dot (normalize (Light3), norm) * 0.5 + 0.5); 
 
   return outline * Material * lighting; 
} 
 

NPR Metallic Pixel Shader 
 

As before, we see that this shader has declared some variables at global scope.  In 
this case, we have a 4D vector Material which defines material values for the object to 
be rendered, and a single sampler Outline which we will use to access a special texture 
used for outlining the object.  The five 3D texture coordinates computed in the vertex 
shader are the inputs to the main function of this pixel shader and define the view vector, 
the normal vector and three light vectors. 
 

Since the texture coordinates are linearly interpolated across the polygon, it is 
possible for them to contain non-normalized values at a given pixel.  Thus, this shader 
first renormalizes the interpolated normal vector using the normalize() intrinsic.  
Subsequently, the outline texture is sampled using the dot product of the normalized 
normal and view vectors.  The lighting is then computed by summing a series of scaled 
and biased dot products of the normal with normalized light vectors. 
 

In the last line of this pixel shader, we return the product of the variables outline, 
Material and lighting.  The first two of these are 4D vectors while the last is a scalar.  
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If you recall from our earlier discussion of type casting, the multiplication of the scalar by 
a vector temporarily promotes the scalar to a vector whose components are all equivalent 
to the original scalar.  That is, the following two expressions are equivalent: 
 

 
   return outline * Material * lighting; 
 
 
   return outline * Material * float4(lighting, lighting, lighting, lighting); 
 
 

Thus, the end result is that all of the channels are multiplied by the scalar 
lighting, giving us the final result you see in Figure 2. 
 

As we did with the NPRMetallic vertex shader, we will generate a code file for 
the pixel shader using fxc: 
  

fxc -nologo -T ps_2_0 -Fc -Vd NPRMetallic.phl 
 
 This compilation uses the same flags as before but is compiled for the ps_2_0 
target.  The resulting 29 instruction shader is shown below: 
 
 
// Parameters: 
//     float4 Material; 
//     sampler Outline; 
// 
// Registers: 
//     Name         Reg   Size 
//     ------------ ----- ---- 
//     Material     c0       1 
//     Outline      s0       1 
 
    ps_2_0 
    def c1, 1, 0, 0, 0.5 
    dcl t0.xyz 
    dcl t1.xyz 
    dcl t2.xyz 
    dcl t3.xyz 
    dcl t4.xyz 
    dcl_2d s0 
    dp3 r0.w, t1, t1 
    rsq r2.w, r0.w 
    mul r9.xyz, r2.w, t1 
    dp3 r9.w, t0, t0 
    rsq r9.w, r9.w 
    mul r4.xyz, r9.w, t0 
    dp3 r9.w, r9, r4 
    add r11.xy, -r9.w, c1.x 
    texld r6, r11, s0 
    dp3 r9.w, t2, t2 
    rsq r9.w, r9.w 
    mul r1.xyz, r9.w, t2 
    dp3 r9.w, r1, r9 
    mad r9.w, r9.w, c1.w, c1.w 
    dp3 r8.w, t3, t3 
    rsq r10.w, r8.w 
    mul r5.xyz, r10.w, t3 
    dp3 r0.w, r5, r9 
    mad r9.w, r0.w, c1.w, r9.w 
    add r9.w, r9.w, c1.w 
    dp3 r2.w, t4, t4 
    rsq r11.w, r2.w 
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    mul r1.xyz, r11.w, t4 
    dp3 r8.w, r1, r9 
    mad r10.w, r8.w, c1.w, r9.w 
    add r5.w, r10.w, c1.w 
    mul r6, r6, r5.w 
    mul r0, r6, c0 
    mov oC0, r0 
 

 
 As before, the variables (in this case the constant Material and the sampler 
Outline) are listed at the top of the file.  These must be set properly by the application 
via the API in order for the shader to function correctly. 
 

After the ps_2_0 instruction, there is a def instruction of some magic constants.  
This def instruction is a free instruction which appears in the actual assembly instruction 
stream that defines constants which will be used by the subsequent ALU operations.  This 
kind of constant definition is generally the result of literal values appearing in the HLSL 
shader, as in the following statements taken from the NPRMetallic pixel shader: 
 
 … 

1 - dot (norm, normalize(View) 

… 
dot (normalize (Light1), norm) * 0.5 + 0.5 

… 
 
 Following this constant definition, there are five 3D texture coordinate 
declarations of the form dcl tn.xyz.  As in the vertex shader, these are a result of the 
semantics of the input parameters to this HLSL shader’s main function.  Following the 
texture coordinate declarations, there is a sampler declaration dcl_2d s0.  This indicates 
that a 2D texture must be bound to sampler zero.  This may seem odd since the tex1D() 
intrinsic was used in the HLSL shader.  This discrepancy exists since there is no such 
thing as a 1D texture in the Direct3D API or shader assembly language.  The tex1D() 
intrinsic is actually just a way for the HLSL shader writer to indicate to the compiler that 
only one component of the texture coordinate needs to be populated, shaving off an 
assembly instruction in some cases. 
 
 Now that you are familiar with some of the correspondence between HLSL and 
assembly code, we will discuss optimization strategies so that you can be sure that you 
are writing the best HLSL possible. 
 
Optimization 

While the DirectX HLSL compiler has an excellent optimizer built in, there are 
things you can do as an HLSL coder to help shave off a few more cycles here and there.  
While this is probably more of an academic exercise in the long term, it may make the 
difference between being able to target a legacy 1.x shader model using HLSL or not. 

The most important thing to remember about writing high performance shaders is 
that the compiler is required to do what you ask it to.  That is, if you write your shader to 
require a certain number of math operations or a particular value in an output component, 
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then it will need to perform those operations.  The compiler is smart about removing dead 
code, but it cannot know about values that do not ultimately matter due to circumstances 
outside of a given shader.  For example, if the pixel shader is not using the second texture 
coordinate, the vertex shader probably shouldn’t compute it.  The HLSL compiler, of 
course, has no way of knowing this when you compile the vertex shader.  Additionally, 
you may know that you will always use an n×1 function lookup texture at a given 
sampler and hence it is not necessary to compute the 2nd texture coordinate for use in the 
sampling intrinsic.  If you use the tex2D() intrinsic, however, the HLSL compiler will 
require you to compute the 2nd texture coordinate even though it is ultimately 
unnecessary.  The compiler is designed to build an assembly program that does exactly 
what you asked without making any visual quality vs performance tradeoffs. 

Another extremely important objective for high performance shaders is to make 
sure that a computation only runs at the required frequency.  If you can get away with 
doing a calculation per-vertex rather than per-pixel, then do so.  These types of operations 
are where the biggest wins often come from.  The same optimization is true for 
operations on values which are uniform (i.e. operations that do not change for the entire 
execution of the shader).  An example of this would be pre-multiplying the world 
ambient color value by an object’s material ambient value and passing their product to 
the shader instead of redundantly calculating the product per vertex or per pixel. 

The following sections go into some detail on how language features are mapped 
into assembly constructs.  While it is not necessary to understand how to write vertex or 
pixel shader assembly, it can be quite helpful to understand the basic limitations and 
efficiencies of the assembly models.  Understanding key assembly features is essential to 
generating compact and efficient shaders.    

 

Matrix Datatype Usage 
 
 One of HLSL’s more obvious departures from the C standard is the introduction 
of vector and matrix datatypes.  The datatypes were added to enable easier writing of 
code and to enable intrinsic functions to work properly, but correct usage of the datatypes 
allows for better code generation as well.  The usage of vector types enables the compiler 
to more easily use all of the capabilities of the vector instructions.  The compiler will 
automatically vectorize scalar operations when possible, but in general it is better to write 
your HLSL code in a vector-friendly form for best performance. 

 Although you can implement shaders with arrays of vectors instead of matrices, 
the recommended way to store a matrix is with a matrix datatype.  By using a matrix 
datatype, the compiler has the choice to store internal matrices in either column major or 
row major order depending on how the matrix is used.  This optimization can be quite 
useful for situations in which a matrix is generated in either a pixel or vertex shader.  As 
mentioned earlier, for input matrices, the compiler always uses either column major or 
row major storage format based on a compiler flag, with column major being the default 
method. 
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Integer Datatype Usage 
 

 The int datatype is important to understand and use correctly in HLSL.  It is very 
easy to generate extra instructions by using the int datatype in places that it should not 
be used.  The int datatype was added to HLSL to make relative addressing familiar as 
well as efficient.  A problem with using float datatypes for addressing purposes without 
truncation rules is that incorrect access to arrays can occur.  For example, if the index 
variable is 2.5 and a float4x4 matrix is being accessed, half of matrix 2 and half of 
matrix 3 will be used instead of truncating to access matrix 2 before accessing the matrix.  
In order to fix this, all floats that are used for accessing arrays must be rounded before 
being multiplied by the size of each element.  This can be an expensive operation, since 
correct C rounding rules are not easily accomplished using the available instructions. 

  In order to avoid unwanted rounding or truncation operations, the int datatype 
was added to mark values as being integer values.   In order to properly avoid treating 
input data incorrectly as floating point data, all inputs that are going to be used as integers 
should be defined as ints.  For example, matrix palette indices read from a vertex stream 
component should be marked as ints.  Declaring an input as int is a “free” operation in 
that no truncation will be performed and the value is assumed to be an integer value.  If 
the input is not declared as an int, the shader will not do what you expect.  If, on the 
other hand, you cast a float to int in your shader or use a float for addressing 
purposes, a truncation will happen.  Casting non-int intermediate values to int will also 
result in truncation overhead. 

 
OutPos = mul(Pos, WorldArray[Index]); 

 
// Index declared as float 
frc r0.w, r1.w 
add r2.w, -r0.w, r1.w 
mul r9.w, r2.w, c61.x 
mova a0.x, r9.w 
m4x4 oPos, v0, c0[a0.x] 
 

// Index declared as int 
mul r0.w, c60.x, r1.w 
mova a0.x, r0.w 
m4x4 oPos, v0, c0[a0.x] 
 

Code generated with float index vs integer index 
 
 
Flow Control and Performance 
 
 Most current vertex and pixel shader hardware does not support flow control.  The 
hardware is designed to run a shader linearly, executing each instruction once.  Newer 
hardware supports limited forms of flow control: static branching, predicated 
instructions, static looping, dynamic branching, and dynamic looping.  Since HLSL can 
be compiled down to any or all of the models that support various degrees of flow control, 
it must be taken into consideration when writing shaders designed to run on more 
restricted models.  As mentioned earlier, no restrictions are placed on the syntax of HLSL 
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based on the compile target, but compile time errors will occur if a shader is impossible 
to implement on the compile target used. 
 Loops are a form of flow control that occur quite often in shaders.  Some 
hardware allows for either static or dynamic looping, but most require linear execution.  
On the models that do not support looping, all loops must be unrolled.  While this can be 
an expensive operation, it can be used to generate excellent code with minimal effort.  A 
good example is the DepthOfField sample from the DirectX 9 SDK that uses unrolled 
loops even for ps_1_1 shaders.  In order to write high performance shaders, you should 
keep this in mind, either for using the compiler to do the work of unrolling for you, or 
realizing when shaders will become unbounded and perform poorly or exceed instruction 
limits. 
 Using ‘if’ statements can have large performance implications due to the lack of 
support for branching in most assembly-level shader models.  In models that do not 
support any form of branching, both sides of an ‘if’ must be executed and the output 
chosen based on which side of the ‘if’ would have been taken.  Having come from the 
CPU programming world, this form of execution is a bit different than most HLSL shader 
writers would expect.  Common optimizations that you would use on a CPU to avoid 
expensive operations will not work as expected on shader models that don’t support 
branches, since both the expensive path and the cheap path will be executed.  Some 
shader models support different levels of branching: predicated instructions, static if 
blocks, and dynamic if blocks. 
 

Example using if in vs_1_1: 
 

if (Value > 0) 
    Position = Value1; 
else 
    Position = Value2; 

 
 

Assembly Generated: 
 

// calculate lerp value based on Value > 0 
mov r1.w, c2.x 
slt r0.w, c3.x, r1.w 
// lerp between Value1 and Value2 
mov r7, -c1 
add r2, r7, c0 
mad oPos, r0.w, r2, c1 

 
The most common branching support in current hardware shading models is static 

branching.  Static branching is a capability in a shader model that allows for blocks of 
code to be switched on or off based on a Boolean shader constant.  This is a very 
convenient method for enabling/disabling potentially expensive code paths based on the 
type of object currently being rendered.  Between Draw calls, you can decide the various 
features you want to support with the current shader and then set the Boolean flags 
required to get that behavior.  The best part about this method is that any instructions that 
are ‘disabled’ by the Boolean constant are completely skipped during execution.  The 
disadvantage is that you can only change which if blocks are enabled/disabled at a low 
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frequency (i.e. between draw calls).  In contrast, using the execute-both-sides approach, it 
is possible to dynamically choose between the outputs of the two paths dynamically at a 
per-pixel or per-vertex level. 
 
  The most familiar branching support is dynamic branching.  The dynamic 
branching support offered by some shader models is very similar to that offered by a 
standard CPU.  The performance hit is the cost of the branch plus the cost of the 
instructions on the side of the branch taken.  This execution cost is comparable to what 
most people are familiar with optimizing for in CPU-side code.  The problem with this 
form of branching is that it is not available on most hardware and is currently only 
available for vertex shaders.  Optimizing shaders that work with these models is very 
similar to optimizing code that runs on a CPU. 
 
Importance of input type declarations 
 
 The type of an input to a shader is used differently than you might expect.  The 
method in which data is loaded into the registers either from a vertex buffer into a vertex 
shader or from the vertex shader output to the pixel shader input registers is well-defined 
in the Direct3D spec.  That is, shader input values are always expanded into a vector of 
four floats.  This means that the datatype declaration is more of a hint than a specification 
of how the data is loaded into the shader.  Taking advantage of this provides a couple of 
optimization opportunities. 
 A common optimization used by shader assembly writers is to take advantage of 
the way in which data is expanded when loaded into registers.  For example, in vertex 
shaders, the w component will be set to 1.0 if no w component is present in the vertex 
buffer.  The y and z components will be set to 0.0 if not present in the vertex buffer.  The 
most common place for this to be useful is for the position in vertex shaders.  It is very 
common to need the w component to be set to 1.0 when multiplying by the World matrix, 
but the vertex buffer typically only contains x, y and z components.  If the position input 
parameter is declared as a float3, then an extra instruction to copy a 1.0 into the w 
component would be required.  If the parameter were declared as a float4, then the w 
component would be set to 1.0f by the hardware loading the input registers.  The 
compiler cannot do this type of optimization automatically since this optimization 
requires knowledge of what data is in the vertex buffer. 
 Another optimization is to make sure and declare all input parameters with the 
appropriate type for their usage in the shader.  For example, if the incoming data is 
integer and the data is going to be used for addressing purposes, then it is important to 
declare the parameter as an int to avoid truncation.  The subtle issue with declaring 
inputs as ints is that the values in the input should truly be integer values.  Otherwise, 
the generated code might not run correctly due to the optimizations the compiler will 
make based upon the assumption that the input data is truly integer data. 
 
Precision issues (logp, expp, lit) 
 
 A good understanding of precision is necessary for writing shaders that give 
correct results and reasonable performance.  With most shader compile targets, the 
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internal precision is fixed and needs to be taken into account for correct results.  For 
example, the ps_1_x models have relatively low precision fixed-point registers.  Raising a 
number to even a low power for specular highlights can quickly generate banding. 
 

In some other models, such as vs_1_1 and vs_2_0, there are low-precision 
versions of some instructions.  Specifically logp, expp, and lit can be used as low-
precision versions of log, exp, and pow.  On some hardware, the performance difference 
between the low and high precision variants is not significant.  Since log and exp count 
for 10 instruction slots each and logp and expp only count as one instruction each, it is 
possible to balloon the size of the generated asm code and potentially run out of 
instructions, particularly on the vs_1_1 compile target.  Accessing these low-precision 
instructions is accomplished by declaring the output to be either cast to or stored into the 
low precision datatype called ‘half’.  A low precision output from an operation informs 
the compiler that the operation should be performed with the lowest precision possible.  
Some pixel shader hardware can take advantage of performing other operations at a lower 
precision as well.  
 
float LogValue = log(Value); 
 
// counts as 10 instructions  
//                 on vs_1_1 
log r0, c0 
 

float LogValue = (half)log(Value); 
 
// counts as 1 instruction on        
//                     vs_1_1 
logp r0, c0 
 

Example of log vs logp 
 

Using the ps_1_x Compile Targets 
 
 The original pixel shader models (ps_1_1, ps_1_2, ps_1_3 and ps_1_4) offer a 
large degree of programmability, but have some restrictions in what can be done.  It is 
possible to efficiently target the ps_1_x compile targets using HLSL, but it is imperative 
for the shader writer to understand the underlying set of limitations.  This is important in 
order to write high performance shaders, but more importantly to even get your shader to 
compile.  Instruction count is probably the first limitation that most people hit, but this is 
usually due to ignoring other limitations of the ps_1_x compile targets. 

 The first thing to remember about the ps_1_x compile targets is that the target 
hardware does not have arbitrary swizzles.  This limitation means that the compiler must 
use extra instructions anytime a swizzle is required.  The extra instructions generated can 
quickly cause programs to overrun the total instructions possible in these compile targets.  
The ps_1_1 through ps_1_3 targets do not support arbitrary write masks or replicate 
swizzles (i.e. .r, .g, .b or .a) and can cause the same situation.  The ps_1_4 compile 
target does have support for replicate swizzles and arbitrary write masks.  Even with 
these limitations it is quite easy to write interesting and complex shaders.  This is just 
something to keep in mind when writing HLSL code targeted at the ps_1_x compile 
targets. 
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 While the ps_1_x targets naturally have disadvantages relative to the newer pixel 
shader models, one advantage that they do have is the existence of “free” source and dest 
modifiers (i.e. the ability to clamp values to the 0 to 1 range, take the complement of a 
source, negate a source, bias a source, etc).  These modifiers are extremely handy when 
generating shaders that accomplish a lot in a small number of instructions.  The compiler 
automatically matches all modifiers that it can, but it is helpful if the HLSL shader writer 
thinks in terms of using these modifiers to accomplish certain operations.  In fact, some 
intrinsics were added to HLSL to make this type of shader writing easier.  For example, it 
is recommended that you use the saturate() intrinsic when trying to generate a free 
_sat modifier in a pixel shader.  We will now present a series of HLSL code sequences 
which will generate free source modifiers when compiling to ps_1_x targets. 

 

The _bx2 Modifier 
 

To cause the HLSL compiler to generate _bx2 modifiers, there are a number of 
different HLSL code sequences that can be used.  Any of the following main functions 
will cause the compiler to generate a _bx2 modifier: 
 

 
float4 main( float3 Col : COLOR0, float3 Tex : TEXCOORD0 ) : COLOR0 
{ 
    return dot(Col, Tex*2 - 1); 
} 
 
float4 main( float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0 
{ 
    float3 val = Tex*2; 
    val = val -1; 
    return dot(Col,val); 
} 
 
float4 main( float3 Col : COLOR0, float3 Tex : TEXCOORD0 ) : COLOR0 
{ 
    return dot(Col, (Tex -.5f)*2 ); 
} 
 

 
 All of these main functions will generate the same asm shader: 
 

 
ps_1_1 
texcoord t0 
dp3 r0, v0, t0_bx2 
 

 
 
 It is important to note that the Tex*2 -1 version is recommend because it 
generates more optimal code in ps_2_0 targets and beyond. 
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The _bias Modifier 
 
 The following code causes the HLSL compiler to generate a _bias modifier 
 

 
float4 main( float3 Col : COLOR0, float3 Tex : TEXCOORD0 ) : COLOR0 
{ 
    return dot(Col, (Tex - .5f)); 
} 
 

 
 This main function generates the following assembly shader: 
 

 
ps_1_1 
texcoord t0 
dp3 r0, v0, t0_bias 
 

 
Note that _bias cannot be done in ps_1_1, ps_1_2 or ps_1_3 unless the source is 

known to be in the range of 0 to 1.  That is, it must have been previously saturated. 
 

 
The _x2 Modifier (ps_1_4 only) 

 
The following code causes the HLSL compiler to generate a _x2 source modifier: 

 
 
float4 main( float3 Col : COLOR0, float3 Tex : TEXCOORD0 ) : COLOR0 
{ 
    return dot(Col, Tex*2); 
} 
 

 
This HLSL code results in the following asm shader code: 
 
  
ps_1_4 
texcrd r0.xyz, t0 
dp3 r0, v0, r0_x2 
 

 
The _x2, _x4, _x8, _d2, _d4 and _d8 Destination Write Modifiers 
 

A set of destination write modifiers existed in the ps_1_x models and it is possible 
to write HLSL code to cause the compiler to generate them in the resulting asm.  The 
modifiers to double (_x2), quadruple (_x4), and halve (_d2) the result of the instruction 
are supported on ps_1_1 through ps_1_3 models while the ps_1_4 model supports all six 
of the _x2, _x4, _x8, _d2, _d4 and _d8 modifiers.  The following code will generate the 
corresponding modifiers for N = 2, 4, 8, 0.5, 0.25 or 0.125: 
 

 
static const float N = 2; 
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float4 main( float4 Col[2] : COLOR0) : COLOR0 
{ 
    return (Col[0] + Col[1] )*N; 
} 
 

 
The above HLSL code will result in the following asm output: 
 
 
ps_1_1 
add_x2 r0, v0, v1 
 

 
The Complement Modifier  
 

It is also possible to write HLSL code which will allow the compiler to generate a 
complement modifier when compiling to a ps_1_x target.  Note that this will only work if 
the quantity being complemented is known to be in the 0 to 1 range (i.e. the quantity has 
previously been saturated).  The following HLSL code will cause the compiler to 
generate a free complement modifier: 

 
 
 
float4 main( float4 Col[2] : COLOR0) : COLOR0 
{ 
    return (1-Col[0]) * (Col[1]); 
} 
 

 
 This HLSL code results in the following asm shader: 
 

 
ps_1_1 
mul r0, 1-v0, v1 
 

 
 
The Saturate Modifier  
 

The following two shaders will generate a _sat modifier.  This modifier is 
available on all pixel shader compile targets: 
 

 
float4 main( float4 Col[2] : COLOR0) : COLOR0 
{ 
    return saturate(Col[0]); 
} 
 
float4 main( float4 Col[2] : COLOR0) : COLOR0 
{ 
    return clamp(Col[0],0,1); 
} 
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 Both of these HLSL shaders will result in the following asm shader: 
 

 
ps_1_1 
mov_sat r0, v0 
 

 
 
The Negate Modifier  
 

The following shader will generate a negate modifier, which is also available on 
all shader targets.  (Note that on ps_1_x, constant registers cannot be directly negated and 
hence will not result in a single free negation since the constant will have to be moved to 
a temp before it can be negated.) 

 
 
float4 main( float4 Col[2] : COLOR0) : COLOR0 
{ 
    return -Col[0]; 
} 
 

 
 This HLSL code will result in the following asm shader: 
 

 
ps_1_1 
mov r0, -v0 
 

 
 
Strategy for Targeting ps_1_x 
 
 The best strategy that we have found to optimize for ps_1_x compile targets is to 
first write your shader on ps_2_0 since this allows for quick and easy prototyping on 
ps_2_0 capable hardware.  Once the shader is working as desired, cross-compile it for the 
desired ps_1_x model.  Using the disable validation option, -Vd for fxc.exe, you can see 
how many instructions the shader would be if there were no instruction limits on the 
chosen ps_1_x model.  If the shader did not fit, you can at least see what you are up 
against and begin paring away the least necessary pieces of your shader to get an efficient 
ps_1_x fallback up and running. 

 Now that we have presented HLSL shaders in detail, we will discuss the issues 
involved in integrating HLSL shader support into an application.  HLSL can be integrated 
into your engine with or without the use of D3DX Effects and we will now discuss both 
approaches.  It is also worth mentioning that it is possible to start experimenting with 
HLSL without writing any application code by using a shader development environment 
such as RenderMonkey.  For more on RenderMonkey, please consult the chapter “Shader 
Programming with RenderMonkey.” 
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Integration into an engine using D3DX Effects 
 

The D3DX Effects framework is a very useful component of the D3DX library 
that is gaining more adoption among professional developers.  Naturally, in DirectX 9, 
D3DX Effects were updated to include support for HLSL.  If you aren’t familiar with 
D3DX Effects, they are an abstraction designed to conveniently encapsulate rendering 
special effects in 3D applications.  Effects can encapsulate rendering state as well as 
shaders written in asm or HLSL, including fall-back versions targeted at legacy hardware.  
A given Effect is generally stored in a single .fx or .fxl file and the file itself can contain 
multiple versions of the Effect called Techniques.  For example, you may want to create a 
more basic version of a given Effect that you can use on older hardware with legacy 
shader support or no shaders at all.  An excellent example of this kind of use of 
Techniques is the Water sample in the DirectX SDK.  This sample uses several different 
Techniques which are targeted at different generations of hardware.  Of course, the more 
basic Techniques which require less textures and generally less sophistication don’t look 
as impressive, but that’s the point: D3DX Effects let you manage this quality/speed trade-
off very naturally. 

 
 
Effect Files 
 

We won’t go into all of the facets of Effects here, but you should understand the 
basic structure of an Effect file in order to see how it can be used with HLSL.  A typical 
effect file might look something like this: 
 
 
// Lighting constants 
VECTOR g_Leye; 
float4 GlobalAmbient = 0.5; 
float Ka = 1; 
float Kd = 0.8; 
float Ks = 0.9; 
float roughness = 0.1; 
float noiseFrequency; 
 
MATRIX matWorldViewProj; 
MATRIX matWorldView; 
MATRIX matITWorldView; 
MATRIX matWorld; 
MATRIX matTex0; 
 
TEXTURE tVolumeNoise; 
TEXTURE tMarbleSpline; 
 
sampler NoiseSampler = sampler_state 
{ 
   Texture = (tVolumeNoise); 
 
   MinFilter = Linear; 
   MagFilter = Linear; 
   MipFilter = Linear; 
   AddressU  = Wrap; 
   AddressV  = Wrap; 
   AddressW  = Wrap; 
   MaxAnisotropy = 16; 
}; 



From ShaderX2 - Introduction and Tutorials with DirectX 9 

40 

 
sampler MarbleSplineSampler = sampler_state 
{ 
   Texture = (tMarbleSpline); 
 
   MinFilter = Linear; 
   MagFilter = Linear; 
   MipFilter = Linear; 
   AddressU  = Clamp; 
   AddressV  = Clamp; 
   MaxAnisotropy = 16; 
}; 
 
float3 snoise (float3 x) 
{ 
    return 2.0f * tex3D (NoiseSampler, x) - 1.0f; 
} 
 
float4 ambient(void) 
{ 
   return GlobalAmbient; 
} 
 
float4 soft_diffuse(float3 Neye, float3 Peye) 
{ 
   // Compute normalized vector from vertex to light in eye space  (Leye) 
   float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye); 
 
   float NdotL = dot(Neye, Leye) * 0.5f + 0.5f; 
 
   // N.L 
   return float4(NdotL, NdotL, NdotL, NdotL); 
} 
 
float4 specular(float3 NNeye, float3 Peye, float k) 
{ 
    // Compute normalized vector from vertex to light in eye space  (Leye) 
    float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye); 
 
    // Compute Veye 
    float3 Veye = -(Peye / length(Peye)); 
 
    // Compute half-angle 
    float3 Heye = (Leye + Veye) / length(Leye + Veye); 
 
    // Compute N.H 
    float NdotH = clamp(dot(NNeye, Heye), 0.0f, 1.0f); 
 
    float NdotH_2  = NdotH    * NdotH; 
    float NdotH_4  = NdotH_2  * NdotH_2; 
    float NdotH_8  = NdotH_4  * NdotH_4; 
    float NdotH_16 = NdotH_8  * NdotH_8; 
    float NdotH_32 = NdotH_16 * NdotH_16; 
 
    return NdotH_32 * NdotH_32; 
} 
 
float4 hlsl_bluemarble (float3 P    : TEXCOORD0, 
                        float3 Peye : TEXCOORD1, 
                        float3 Neye : TEXCOORD2) : COLOR 
{ 
   float4 Ct; 
   float4 Ci; 
   float3 NNeye; 
   float marble; 
   float f; 
 
   // Divide down to nice frequency 
   P = P/16; 
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   marble = -2.0f * snoise(P * noiseFrequency) + 0.75f; 
 
   NNeye = normalize(Neye); 
 
   // Cubic interpolation of f along color spline (gloss in alpha) 
   Ct = tex1D (MarbleSplineSampler, marble); 
 
   // Color from illumination 
   Ci = Ct * (Ka * ambient() + Kd * soft_diffuse(NNeye, Peye)) + 
        Ct.w * Ks * specular(NNeye, Peye, roughness); 
 
   return Ci; 
} 
 
VERTEXSHADER asm_marble_vs = 
decl {} 
asm 
{ 
   vs.1.1 
 
   dcl_position v0 
   dcl_normal   v3 
 
   m4x4 oPos, v0, c[0]           // Transform position to clip space 
 
   m4x4 r0, v0, c[17]            // Transformed Pshade (using texture matrix 0) 
   mov oT0, r0 
 
   m4x4 oT1, v0, c[4]            // Transform position to eye space 
   m3x3 oT2.xyz, v3, c[8]        // Transform normal to eye space 
}; 
 
 
technique technique_hlsl_bluemarble 
{ 
   pass P0 
   {         
      // Only need to map variable names to hardware 
      // registers like this for asm shaders: 
      VertexShaderConstant[0]  = <matWorldViewProj>; 
      VertexShaderConstant[4]  = <matWorldView>; 
      VertexShaderConstant[8]  = <matITWorldView>; 
      VertexShaderconstant[12] = <matWorld>; 
      VertexShaderConstant[17] = <matTex0>;      
 
      VertexShader = <asm_marble_vs>; 
      PixelShader  = compile ps_2_0 hlsl_bluemarble(); 
 
      CullMode = CCW; 
   } 
} 
 

 
We will now explain this example Effect file from the bottom up.  The very last 

block of code in this Effect file defines a technique called technique_hlsl_bluemarble 
which has only one rendering pass.  This single pass will use a vertex shader written in 
assembly language and a pixel shader written in HLSL.  The first several lines in this 
pass declare five different matrices which will be loaded into specific hardware constant 
registers from high level Effect variables when this pass is invoked.  This explicit 
mapping is only done in the Effect file for asm shaders.  There are no explicit mappings 
done like this for the pixel shader, since it is written in HLSL.  The next line declares the 
vertex shader to be used in this pass, an assembly shader called asm_marble_vs: 
 

 VertexShader = <asm_marble_vs>; 
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 The following line defines the pixel shader, which will be compiled for the 
ps_2_0 target using the hlsl_bluemarble() function as its main entrypoint: 
 
      PixelShader  = compile ps_2_0 hlsl_bluemarble(); 
 
 The block of code preceding the technique definition is the vertex shader written 
by hand in assembly language.  Above this is hlsl_bluemarble, the main entrypoint for 
our HLSL pixel shader.  If you have a look at this code, you will see that, in addition to 
the tex1D() intrinsic, this function calls several other utility functions such as 
ambient() and soft_diffuse().  These utility functions are defined earlier in this 
Effect and, since we’re compiling for the ps_2_0 target, they are inlined into the resulting 
assembly. 
 
 If you look above the utility functions, you’ll see the declaration of a pair of 
samplers called NoiseSampler and MarbleSplineSampler.  These are declared just as 
before except that when used in an Effect file they can also be followed by the bracketed 
code defining the addressing and filtering sampler state to be used.  Textures may also be 
defined in Effect files as shown above the sampler declarations.  At the very top of the 
Effect, we see the declaration of a series of global variables which will be settable from 
the application level. 
 
The Effect API 
 
 Now that we have written an effect and stored it in a file, we wish to use it from 
our application code.  Naturally, the first thing that we will do is create the effect using 
the D3DXCreateEffectFromFile() API.  Assuming this succeeds, we can use the Effect 
API to set the appropriate variables needed by our Effect.  For example, we can set the 
matrices with the SetMatrix() entrypoint: 
 
 
m_pEffect->SetMatrix ("matWorldViewProj", &m_matWorldViewProj); 
m_pEffect->SetMatrix ("matWorldView", &m_matWorldView); 
m_pEffect->SetMatrix ("matITWorldView", &m_matITWorldView); 
m_pEffect->SetMatrix ("matWorld", &m_matWorld); 
m_pEffect->SetMatrix ("matTex0", &m_ObjectParameters.m_matTex0); 
 

 
 We could also set any floats and vectors similarly: 
 
 
m_pEffect->SetFloat ("noiseFrequency ", &m_fNoiseFreq); 
m_pEffect->SetVector("g_Leye", &g_Leye); 
 

 
 Likewise, with textures: 
 
 
m_pEffect->SetTexture("tVolumeNoise",  m_pVolumeNoiseTexture); 
m_pEffect->SetTexture("tMarbleSpline", m_pMarbleColorSplineTexture); 
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 With all of the proper constants set up, we can set the desired technique and 
render all of its passes (in this case, just one): 
 
 
m_pEffect->SetTechnique(m_pEffect->GetTechniqueByName("technique_hlsl_bluemarble")); 
 
m_pEffect->Begin(&cPasses, 0); 
for (iPass = 0; iPass < cPasses; iPass++) 
{ 
   m_pEffect->Pass(iPass); 
 
   // Render geometry 
} 
m_pEffect->End(); 
 

 
 As you can see, this is a straightforward process which hides several unnecessary 
burdens from the application.  For example, the application never needs to know what 
hardware constant register to load g_Leye into or which sampler the noise texture should 
be bound to.  These details are all managed by the D3DX Effects framework. 
 
 
Integration into an engine without using D3DX Effects 
 

We have found that some ISVs prefer not to wed their code too closely to D3DX 
because of cross-platform development or overhead concerns.  As a result, while the use 
of D3DX Effects for HLSL shader management is very convenient, it is not required.  Of 
course, giving up the convenience of D3DX Effects means that the application will have 
to take responsibility for tracking and setting up the appropriate constants and samplers 
prior to rendering with a given shader.  We will now discuss how this is done. 

 
Since you won’t be creating D3DX Effects which trigger compilation of HLSL 

code, you must invoke the HLSL compiler explicitly in your application.  In fact, this is 
very similar to the application code you would write for use of assembly shaders except 
that you call one of the D3DXCompileShader*() routines instead of one of the 
D3DXAssembleShader*() routines.  You then pass the resulting asm code to the 
appropriate CreatePixelShader() or CreateVertexShader() entrypoint just as you 
would for an assembly shader that was assembled rather than compiled.  An example of 
this usage is shown in the following code snippet: 
 
 
if (FAILED (hr = D3DXCompileShaderFromFile (g_strVHLFile, NULL, NULL, "main", "vs_1_1", 
NULL, &pCode, NULL, &m_VS_ConstantTable))) 
{ 
   return hr; 
} 
 
if (FAILED (hr = m_pd3dDevice->CreateVertexShader ((DWORD*)pCode->GetBufferPointer(), 
&m_HLSLVertexShader))) 
{ 
   return hr; 
} 
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 You’ll notice in the above code that the D3DXCompileShader*() routines have 
some additional parameters not found in the D3DXAssembleShader*() routines.  
Specifically, it is necessary to specify the name of the main entrypoint for the shader as 
well as the compile target (“main” and “vs_1_1” above).  You can also optionally specify 
values of #defines, include files and flags to control generation of debug information, 
optimization, validation and matrix data ordering.  All of these inputs are passed to the 
D3DXCompileShader*() routines via the first six parameters.  The last three parameters 
are pointers to buffers which get filled in by the compiler: the binary assembly code, 
human-readable error messages (optional) and the constant table.  The binary assembly 
code is what gets passed to CreatePixelShader() or CreateVertexShader(), while 
the constant table must be used by the application to know how to load the proper 
constant data prior to executing a given HLSL shader.  We will devote the remainder of 
this discussion to the final parameter returned from the D3DXCompileShader*() routine, 
as this is the most critical piece to understand when integrating HLSL shaders into an 
application without the use of Effects.  You can refer to the documentation for discussion 
of the other parameters. 
 
 
The Constant Table 
 
 The constant table returned from the D3DXCompileShader*() routine is used to 
map high level constants and samplers to specific hardware constants and samplers.  
Non-static variables declared at global scope are considered input parameters to the 
compiled shader and must be properly initialized in order for the shader to execute 
correctly.  The constant table provides this mapping.  Typically, it is most convenient for 
an application to use the ID3DXConstantTable interface directly, as this does not require 
the application to parse the actual data structures of the constant table.  The 
ID3DXConstantTable interface provides a number of convenient methods for looking up 
handles of known HLSL variables based upon their ASCII names.  The appropriate 
values for these HLSL variables may then be set as shown in the following code snippet: 
 
 

 
D3DXHANDLE handle;  
 
if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "ringFreq")) 
{ 
   m_PS_ConstantTable->SetFloat(m_pd3dDevice, handle, m_fRingFrequency); 
} 
 
if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "lightWood")) 
{ 
   m_PS_ConstantTable->SetVector(m_pd3dDevice, handle, &lightWood); 
} 
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 Likewise, textures and sampler state must be set up correctly as shown in the 
following code snippet: 
 

 
if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "NoiseSampler")) 
{ 
   m_PS_ConstantTable->GetConstantDesc(handle, &constDesc, &count); 
 
   if (constDesc.RegisterSet == D3DXRS_SAMPLER) 
   { 
      m_pd3dDevice->SetTexture (constDesc.RegisterIndex, m_pVolumeNoiseTexture); 
 
      // Set sampler states appropriate for the Noise Sampler 
      m_pd3dDevice->SetSamplerState (constDesc.RegisterIndex, …, …); 
 
   } 
} 
 

 
 The implication of this, of course, is that render states, texture stage states and 
sampler states must be maintained by the application and are in no way encapsulated in 
the HLSL shader code as they would be using D3DX Effects. 
 
 Of course, particularly in any kind of shader-authoring tool, there may be no a 
priori application knowledge of the names of variables or samplers expected.  In this case, 
it will be necessary to use the ID3DXConstantTable::GetDesc() method to determine 
the number of constants in the constant table.  Subsequently, the application can use the 
ID3DXConstantTable::GetConstantElement() method rather than the 
ID3DXConstantTable::GetConstantByName() method used in the code snippets above.  
In general, it is a good idea to familiarize yourself with the ID3DXConstantTable 
interface if you intend to integrate support for HLSL shaders into your application 
without the use of D3DX Effects. 
 
SDK Updates 
  

Since the release of DirectX 9.0 and the subsequent DirectX 9.0a patch, Microsoft 
has committed to releasing periodic SDK updates for developers.  These SDK updates do 
not contain Direct3D runtime changes, but do include upgrades to important D3DX tools 
including the HLSL compiler.  It is highly recommended that you keep up to date with 
the latest released DirectX SDK updates so that you are using the latest compiler revision 
and generating the best possible asm from your HLSL source. 
 
Conclusion 
 

We have presented a detailed description of the Direct3D High Level Shading 
Language (HLSL) which is one of the most significant new features of DirectX 9.  We 
have presented an introduction to the mechanics of the language itself and reinforced key 
concepts with sample shaders.  We have also given some insights into the compilation 
process and how you can best write shaders for optimal performance.  We hope this 
introduction has provided you with a solid foundation so that you can understand the 
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HLSL shaders presented in later chapters and begin integrating HLSL shaders into your 
own projects. 
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