
Introduction to the DirectX® 9 High Level Shading Language

 1

Introduction to the DirectX® 9
High Level Shading Language

 Craig Peeper Jason L. Mitchell
CraigP@microsoft.com JasonM@ati.com
 Development Lead 3D Application Research Group Lead
 Microsoft Corporation ATI Research

Introduction

One of the most empowering new components of DirectX 9 is the High Level
Shading Language (HLSL). Using this standard high level language, shader writers are
able to think at the algorithm level while implementing shaders, rather than worry about
meddlesome hardware details such as register allocation, register read-port limits,
instruction co-issuing and so on. In addition to freeing the developer from hardware
details, the HLSL also has all of the usual advantages of a high level language such as
easy code reuse, improved readability and the presence of an optimizing compiler. Many
of the chapters in this book and in the ShaderX2 - Shader Tips & Tricks book will utilize
shaders which are written in HLSL. As a result, it will be much easier for you to
understand and work with those shaders after reading this introductory chapter.

In this chapter, we will outline the basic structure of the language itself as well as
strategies for integrating HLSL shaders into your application.

A Simple Example

 Before presenting an exhaustive description of the HLSL, let’s first have a look at
one HLSL vertex shader and one HLSL pixel shader taken from an application which
renders simple procedural wood. The first HLSL shader shown below is a simple vertex
shader:

float4x4 view_proj_matrix;
float4x4 texture_matrix0;

struct VS_OUTPUT
{
 float4 Pos : POSITION;
 float3 Pshade : TEXCOORD0;
};

VS_OUTPUT main (float4 vPosition : POSITION)
{
 VS_OUTPUT Out = (VS_OUTPUT) 0;

From ShaderX2 - Introduction and Tutorials with DirectX 9

2

 // Transform position to clip space
 Out.Pos = mul (view_proj_matrix, vPosition);

 // Transform Pshade
 Out.Pshade = mul (texture_matrix0, vPosition);

 return Out;
}

 The first two lines of this shader declare a pair of 4×4 matrices called
view_proj_matrix and texture_matrix0. Following these global-scope matrices, a
structure is declared. This VS_OUTPUT structure has two members: a float4 called Pos
and a float3 called Pshade.

The main function for this shader takes a single float4 input parameter and
returns a VS_OUTPUT structure. The float4 input vPosition is the sole input to the
shader while the returned VS_OUTPUT struct defines this vertex shader’s output. For now,
don’t worry about the POSITION and TEXCOORD0 keywords following these parameters
and structure members. These are called semantics and their meaning will be discussed
later in this chapter.

Looking at the actual code body of the main function, you’ll see that an intrinsic
function called mul is used to multiply the input vPosition vector by the
view_proj_matrix matrix. This intrinsic is very commonly used in vertex shaders to
perform vector-matrix multiplication. In this case, vPosition is treated as a column
vector since it is the second parameter to mul. If the vPosition vector were the first
parameter to mul, it would be treated as a row vector. The mul intrinsic and other
intrinsics will be discussed in more detail later in the chapter. Following the
transformation of the input position vPosition to clip space, vPosition is multiplied by
another matrix called texture_matrix0 to generate a 3D texture coordinate. The results
of both of these transformations have been written to members of a VS_OUTPUT structure,
which is returned. A vertex shader must always output a clip-space position at a
minimum. Any additional values output from the vertex shader are interpolated across
the rasterized polygon and are available as inputs to the pixel shader. In this case, the 3D
Pshade is passed from the vertex to the pixel shader via an interpolator.

Below, we see a simple HLSL procedural wood pixel shader. This pixel shader,

which is written to work with the vertex shader we just described, will be compiled for
the ps_2_0 target.

float4 lightWood; // xyz == Light Wood Color
float4 darkWood; // xyz == Dark Wood Color
float ringFreq; // ring frequency

sampler PulseTrainSampler;

float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR
{
 float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq;

 float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis);

 return lerp (darkWood, lightWood, blendFactor);
}

Introduction to the DirectX® 9 High Level Shading Language

 3

The first few lines of this shader are the declaration of a pair of floating-point 4-
tuples and one scalar float at global scope. Following these variables, a sampler called
PulseTrainSampler is declared. Samplers will be discussed in more detail later in the
chapter but for now you can just think of a sampler as a window into video memory with
associated state defining things like filtering, and texture coordinate addressing modes.
With variable and sampler declarations out of the way, we move on to the body of the
shader code. You can see that there is one input parameter called Pshade, which is
interpolated across the polygon. This is the value that was computed at each vertex by
the vertex shader above. In the pixel shader, the Cartesian distance from the shader-space
z axis is computed, scaled and used as a 1D texture coordinate to access the texture bound
to the PulseTrainSampler. The scalar color that is returned from the tex1D() sampling
function is used as a blend factor to blend between the two constant colors (lightWood
and darkWood) declared at global scope of the shader. The 4D vector result of this blend
is the final output of the pixel shader. All pixel shaders must return a 4D RGBA color at
a minimum. We will discuss additional optional pixel shader outputs later in the chapter.

Assembly Language and Compile Targets

 Now that we have seen a few HLSL shaders, we’ll discuss briefly how the
language relates to Direct3D, D3DX, assembly shader models and your application.
Shaders were first added to Direct3D in DirectX 8. At that time, several virtual shader
machines were defined—each roughly corresponding to a particular graphics processor
produced by each of the top 3D graphics hardware vendors. For each of these virtual
shader machines, an assembly language was designed. In DirectX 8.0 and DirectX 8.1,
programs written to these shader models (named vs_1_1 and ps_1_1 through ps_1_4)
were relatively short and were generally written by developers directly in the appropriate
assembly language. As shown on the left side of Figure 1, the application would pass this
human-readable assembly language code to the D3DX library via
D3DXAssembleShader()and get back a binary representation of the shader which would
in turn be passed to Direct3D via CreatePixelShader() or CreateVertexShader().
For more on the details of the legacy assembly shader models, please refer to the many
resources available online and offline, including Shader X and the DirectX SDK.

D3DXD3DX
Binary
asm

asm

DirectX 8
Application

B
in

ar
y

as
m

DirectX 8
Runtime

Binary
asm

HLSL

DirectX 9
Application

B
in

ar
y

as
m

DirectX 9
Runtime

Figure 1 – Use of D3DX for Assembly and Compilation in DirectX 8 and DirectX 9

From ShaderX2 - Introduction and Tutorials with DirectX 9

4

As shown on the right side of Figure 1, the situation in DirectX 9 is very similar
in that the application passes an HLSL shader to D3DX via the D3DXCompileShader()
API and gets back a binary representation of the compiled shader which is in turn passed
to Direct3D via CreatePixelShader() or CreateVertexShader(). The binary asm
code generated is a function only of the compile target chosen, not the specific graphics
device in the user’s or developer’s system. That is, the binary asm which is generated is
vendor-neutral and will be the same no matter where you compile or run it. In fact, the
Direct3D runtime itself does not know anything about HLSL, only the binary assembly
shader models. This is nice because it means that the HLSL compiler can be updated
independent of the Direct3D runtime. In fact, between press time and the release of the
first printing of this book in late summer 2003, Microsoft plans to release a DirectX SDK
Update which will contain an updated HLSL compiler.

 In addition to the development of the HLSL compiler in D3DX, DirectX 9.0 also
introduced additional assembly-level shader models to expose the functionality of the
latest generation of 3D graphics hardware. Application developers can feel free to work
directly in the assembly languages for these new models (vs_2_0, vs_3_0, ps_2_0 and
ps_3_0) but we expect most developers to move wholesale to HLSL for shader
development.

Hardware Realities

 Of course, just because you can write an HLSL program to express a particular
shading algorithm doesn’t mean it will run on a given piece of hardware. As we
discussed earlier, an application calls D3DX to compile an HLSL shader to binary asm
via the D3DXCompileShader() API. One of the parameters to this API entrypoint is a
parameter which defines which of the assembly language models (or compile targets) the
HLSL compiler should use to express the final shader code. If an application is doing
HLSL shader compilation at run time (as opposed to offline), the application could
examine the capabilities of the Direct3D device and select the compile target to match. If
the algorithm expressed in the HLSL shader is too complex to execute on the selected
compile target, compilation will fail. What this means is that while HLSL is a huge
benefit to shader development, it does not free developers from the realities of shipping
games to a target audience which owns graphics devices of varying capabilities. As a
game developer, you still have to manage a tiered approach to your visuals, writing better
shaders for better graphics cards and more basic versions for older cards. With well-
written HLSL, however, this burden can be eased significantly.

Compilation Failure

 As mentioned above, failure of a given HLSL shader to compile for a particular
compile target is an indication that the shader is too complex for the compile target. This
can mean that the shader either requires too many resources or it requires some capability,
such as dynamic branching, that is not supported by the chosen compile target. For
example, an HLSL shader could be written to access a given texture map six times in a
shader. If this shader is compiled for the ps_1_1 compile target, compilation will fail

Introduction to the DirectX® 9 High Level Shading Language

 5

since the ps_1_1 model supports only four textures. Another common source of
compilation failure is exceeding the maximum instruction count of the chosen compile
target. An algorithm expressed in HLSL may simply require too many instructions to be
executed by a given compile target.

 It is important to note that the choice of compile target does not restrict the HLSL
syntax that a shader writer can use. For example, a shader writer can use ‘for’ loops,
subroutines, ‘if-else’ statements etc. and still compile for targets which don’t natively
support looping, branching or ‘if-else’ statements. In such cases, the compiler will unroll
loops, inline function calls and execute both branches of an ‘if-else’ statement, selecting
the proper result based upon the original value used in the ‘if-else’ statement. Of course,
if the resulting shader is too long or otherwise exceeds the resources of the compile target,
compilation will fail.

The Commandline Compiler - fxc

 Rather than compile HLSL shaders using D3DX on the customer’s machine at
application load time or at first use, many developers choose to compile their shaders
from HLSL to binary asm before they even ship. This keeps their HLSL source away
from prying eyes and also ensures that all of the shaders that their app will ever run have
gone through their internal quality assurance process. A convenient utility which allows
developers to compile shaders offline is the fxc commandline compiler which is provided
in the DirectX 9.0 SDK. This utility has a number of convenient options that you can use
to not only compile your shaders on the commandline but also generate disassembled
code for the specified compile target. Studying the disassembled output can be very
educational during development if you want to optimize your shaders or just generally
get to know the virtual shader machine’s capabilities at a more detailed level. These
commandline options are summarized in Table 1.

Option Description
-T target compile target (default: vs_2_0)
-E name entrypoint name (default: main)
-Od disable optimizations
-Vd disable validation
-Zi enable debugging information
-Zpr pack matrices in row-major order
-Zpc pack matrices in column-major order
-Fo file output object file
-Fc file output listing of generated code
-Fh file output header containing generated code
-D id = text define macro
-nologo suppress copyright message

Table 1 – fxc Commandline Options.

From ShaderX2 - Introduction and Tutorials with DirectX 9

6

 Now that you understand the context in which the HLSL compiler can be used for
shader development, we will discuss the actual mechanics of the language. As we
progress, it is important to keep the notion of a compile target and the varying
capabilities of the underlying assembly shader models in mind.

Language basics

 Now that you have a sense of what HLSL vertex and pixel shaders look like and
how they interact with the low-level assembly shaders, we’ll discuss some of the details
of the language itself.

Keywords

Keywords are predefined identifiers that are reserved for the HLSL language and
cannot be used as identifiers in your program. Keywords marked with '*' are case
insensitive.

asm * bool compile const
decl* do double else
extern false float for
half if in inline
inout int matrix * out
pass * pixelshader * return sampler
shared static string * struct
technique * texture * true typedef
uniform vector * vertexshader * void
volatile while

The following keywords are currently unused, but are reserved for potential future use:

auto break compile const
char class case catch
default delete const_cast continue
explicit friend dynamic_cast enum
mutable namespace goto long
private protected new operator
reinterpret_cast short public register
static_cast switch signed sizeof
throw try template this
typename unsigned using union
virtual

Introduction to the DirectX® 9 High Level Shading Language

 7

Datatypes

 The HLSL has support for a variety of data types, from simple scalars to more
complex types such as vectors and matrices.
Scalar Types

The language supports the following scalar datatypes:

Datatype Representable Values
bool true or false
int 32-bit signed integer
half 16-bit floating point value
float 32-bit floating point value
double 64-bit floating point value

If you are already familiar with the assembly-level programming models, you will
know that graphics processors do not currently have native support for all of these
datatypes. As a result, integers may need to be emulated using floating point hardware.
This means that integer operations that go outside the range of integers that can be
expressed as floats on these platforms are not guaranteed to function as expected.
Additionally, not all target platforms have native support for half or double values. If the
target platform does not, these will be emulated using float.

Vector Types

 You will often find yourself declaring vector variables in your HLSL shaders.
There are a variety of ways that these vectors can be declared, including the following:

vector

A vector of
dimension 4; each
component is of type
float.

vector < type, size >

A vector of
dimension size; each
component is of
scalar type type.

Vector Types

The most common way that you will see shader authors declare vectors, however,
is by using the name of a type followed by an integer from 2 to 4. To declare a 4-tuple of
floats, for example, you could use any of the following vector declarations:

float4 fVector0;
float fVector1[4];

From ShaderX2 - Introduction and Tutorials with DirectX 9

8

vector fVector2;
vector <float, 4> fVector3;

To declare a 3-tuple of bools, for example, you could use any of the following

declarations:

bool3 bVector0;
bool bVector1[3];
vector <bool, 3> bVector2;

Once you have defined a vector, you may access its individual components by
using the array access syntax or using a swizzle. In the swizzle case, the components
must come from either the {x. y, z, w} or {r, g, b, a} name-space (but not both). For
example:

float4 pos = {3.0f, 5.0f, 2.0f, 1.0f};
float value0 = pos[0]; // value0 is 3.0f
float value1 = pos.x; // value1 is 3.0f
float value2 = pos.g; // value2 is 5.0f
float2 vec0 = pos.xy; // vec0 is {3.0f, 5.0f}
float2 vec1 = pos.ry; // INVALID because of bad swizzle

It should be noted that the ps_2_0 and lower pixel shader models do not have

native support for arbitrary swizzles. Hence, concise high level code which uses swizzles
can result in fairly nasty binary asm when compiling to these targets. You should
familiarize yourself with the native swizzles available in these assembly models.

Matrix Types

 Another very common type of variable you will find yourself using in HLSL
shaders is matrices, which are 2D arrays of data. Like scalars and vectors, matrices may
be composed of any of the basic datatypes: bool, int, half, float or double. Matrices may
be of any size, but you will typically find shader writers using matrices with up to 4 rows
and columns. You will recall that the example vertex shader shown at the beginning of
the chapter declared two 4×4 float matrices at global scope:

float4x4 view_proj_matrix;
float4x4 texture_matrix0;

 Naturally, other dimensions of matrices can be used. For example, we could
declare a floating-point matrix with 3 rows and 4 columns in a variety of ways:

float3x4 mat0;
matrix<float, 3, 4> mat1;

 Like vectors, the individual elements of matrices can be accessed using array or
structure/swizzle syntax. For example, the following array indexing syntax can be used
to access the top-left element of the matrix view_proj_matrix:

Introduction to the DirectX® 9 High Level Shading Language

 9

 float fValue = view_proj_matrix[0][0];

There is also a structure syntax defined for access to and swizzling of matrix
elements. For zero-based row-column position, you can use any of the following:

 _m00, _m01, _m02, _m03
 _m10, _m11, _m12, _m13
 _m20, _m21, _m22, _m23
 _m30, _m31, _m32, _m33

For one-based row-column position, you can use any of the following:

 _11, _12, _13, _14
 _21, _22, _23, _24
 _31, _32, _33, _34
 _41, _42, _43, _44

 Matrices may also be accessed using array notation: For example:

float2x2 fMat = {3.0f, 5.0f, // row 1
 2.0f, 1.0f}; // row 2

float value0 = fMat[0]; // value0 is 3.0f
float value1 = fMat._m00; // value1 is 3.0f
float value2 = fMat._12 // value2 is 5.0f
float value3 = fMat[1][1] // value3 is 1.0f
float2 vec0 = fMat._21_22; // vec0 is {2.0f, 1.0f}
float2 vec1 = fMat[1]; // vec1 is {2.0f, 1.0f}

Type Modifiers

 There are a couple of optional type modifiers in the HLSL which you may want to
use in your shaders. The familiar const type modifier is used to specify a variable whose
value cannot be changed by the shader code. Using such a variable on the left sign of an
assignment (i.e. as an lval) will result in a compilation error.

 The row_major and col_major type modifiers can be used to specify the
expected layout of a matrix within the hardware constant store. The row_major type
modifier indicates that each row of the matrix will be stored in a single constant register.
Likewise, using col_major indicates that each column of the matrix will be stored in a
single constant register. Column-major is the default.

Storage Class Modifiers

 Storage class modifiers inform the compiler about the intended scope and lifetime
of a given variable. These modifiers are optional and may appear in any order as long as
they appear before the variable type.

From ShaderX2 - Introduction and Tutorials with DirectX 9

10

 Like in C, a variable may be declared as static or extern. (These two modifiers
are mutually exclusive.) At global scope, the static storage class modifier indicates that
the variable is only to be accessed by the shader and not by the application via the API.
Any non-static variable which is declared at global scope may be modified by the
application through the API. Like in C, using the static modifier at local scope
indicates that the variable contains data that is to persist between invocations of the
declaring function.

 The extern modifier can be used on a global variable to indicate that it can be
modified from outside of the shader via the API. This is redundant, however, as this is
the default behavior for variables declared at global scope.

 The shared modifier is used to specify that a given global variable is to be shared
between effects.

 A variable which is uniform is assumed to have been set externally to the HLSL
shader (i.e. via the Set*ShaderConstant*() API). Global variables are treated as if they
were declared uniform. Such variables are not assumed to be const, however, as their
values can be modified in the shader.

 For example, say you declare the following variables at global scope:

extern float translucencyCoeff;
const float gloss_bias;
static float gloss_scale;
float diffuse;

 The variables diffuse and translucencyCoeff are settable by the
Set*ShaderConstant*() API and can be modified by the shader itself. The const
variable gloss_bias is settable by the Set*ShaderConstant*() API but cannot be
modified in the shader code. Finally, the static variable gloss_scale is not settable
by the Set*ShaderConstant*() API but can be modified within the shader only.

Initializers

 As we have shown in some of the preceding examples, it is possible to initialize
variables at declaration time in the same manner used in C. For example:

float2x2 fMat = {3.0f, 5.0f, // row 1
 2.0f, 1.0f}; // row 2
float4 vPos = {3.0f, 5.0f, 2.0f, 1.0f};
float fFactor = 0.2f;

Working with Vectors

In HLSL, there are a few gotchas to look out for when performing math on
vectors. Fortunately, most of them are quite intuitive given that we are writing shaders

Introduction to the DirectX® 9 High Level Shading Language

 11

for 3D graphics. For example, standard binary operators are defined to work per
component:

float4 vTone = vBrightness * vExposure;

Assuming vBrightness and vExposure are both of type float4, this is

equivalent to:

float4 vTone;
vTone.x = vBrightness.x * vExposure.x;
vTone.y = vBrightness.y * vExposure.y;
vTone.z = vBrightness.z * vExposure.z;
vTone.w = vBrightness.w * vExposure.w;

 Note that this is not a dot product between the 4D vectors vBrightness and
vExposure. Additionally, multiplying matrix variables in this way does not result in a
matrix multiply. Dot products and matrix multiplies are applied via the intrinsic function
mul() which we will discuss later in the chapter.

Constructors

Another language feature that you will often see in HLSL shaders is the
constructor, which is similar to C++ but has some enhancements to deal with complex
datatypes. Example uses of constructors include:

float3 vPos = float3(4.0f, 1.0f, 2.0f);
float fDiffuse = dot(vNormal, float3(1.0f, 0.0f, 0.0f));
float4 vPack = float4(vPos, fDiffuse);

Constructors are commonly used when a shader writer wants to temporarily

define a quantity with literal values (as in dot(vNormal, float3(1.0f, 0.0f, 0.0f))
above) or when a shader writer wants to explicitly pack smaller datatypes together (as in
float4(vPos, fDiffuse) above). In this case, the float4 constructor takes in a
float3 and a float and returns a float4 with the data packed together.

Type Casting

To aid in shader writing and in the efficiency of the generated code, it is a good
idea to be familiar with HLSL’s type casting behavior. Type casting often happens in
order to promote or demote a given variable to match a variable to which it is being
assigned. For example, in the following case, a literal float 0.0f is being cast to a float4
{0.0f , 0.0f , 0.0f , 0.0f } to initialize vResult.

float4 vResult = 0.0f;

 Similar casting can occur when assigning a higher dimensional datatype like a
vector or matrix to a lower dimensional datatype. In these cases, the extra data is
effectively omitted. For example, we may write the following code:

From ShaderX2 - Introduction and Tutorials with DirectX 9

12

float3 vLight;
float fFinal, fColor;
fFinal = vLight * fColor;

 In this case, vLight is cast to a float by using only the first component in the
multiply with the scalar float fColor. In this case, fFinal is equal to vLight.x *
fColor.

 It is a good idea to be familiar with the following table of type casting rules:

Type of cast Casting Behavior

Scalar-to-scalar

Always valid. When casting from bool type to an integer or
floating point type, false is considered to be zero, and true is
considered to be one. When casting from an integer or floating
point type to bool, a zero value is considered to be false, and a
nonzero value is considered to be true. When casting from a
floating point type to an integer type, the value is rounded toward
zero. This is the same truncation behavior as C.

Scalar-to-vector Always valid. This cast operates by replicating the scalar to fill
the vector.

Scalar-to-matrix Always valid. This cast operates by replicating the scalar to fill
the matrix.

Scalar-to-structure This cast operates by replicating the scalar to fill the structure.
Vector-to-scalar Always valid. This selects the first component of the vector

Vector-to-vector

The destination vector must not be larger than the source vector.
The cast operates by keeping the left-most values, and truncating
the rest. For the purposes of this cast, column matrices, row
matrices, and numeric structures are treated as vectors.

Vector-to-matrix The size of the vector must be equal to the size of the matrix.

Vector-to-structure Valid if the structure is not larger than the vector, and all
components of the structure are numeric.

Matrix-to-scalar Always valid. This selects the upper-left component of the matrix.
Matrix-to-vector The size of the matrix must be equal to the size of the vector.

Matrix-to-matrix
The destination matrix must not be larger than the source matrix,
in both dimensions. The cast operates by keeping the upper-left
values, and truncating the rest.

Matrix-to-structure The size of the structure must be equal to the size of the matrix,
and all components of the structure are numeric.

Structure-to-scalar The structure must contain at least one member.
Structure-to-vector The structure must be at least the size of the vector. The first

Introduction to the DirectX® 9 High Level Shading Language

 13

components must be numeric, up to the size of the vector.

Structure-to-matrix The structure must be at least the size of the matrix. The first
components must be numeric, up to the size of the matrix.

Structure-to-object The structure must contain at least one member. The type of this
member must be identical to the type of the object.

Structure-to-structure
The destination structure must not be larger than the source
structure. A valid cast must exist between all respective source
and destination components.

Structures

As we showed in the first example shader above, it is often convenient to be able
to define structures in HLSL shaders. For example, many shader writers will define an
output structure in their vertex shader code and use this structure as the return type from
their vertex shader’s main function. (It is less common to do this with a pixel shader
since most pixel shaders have only one float4 output.) An example structure taken from
the NPR Metallic shader that we will discuss later is shown below:

struct VS_OUTPUT
{
 float4 Pos : POSITION;
 float3 View : TEXCOORD0;
 float3 Normal: TEXCOORD1;
 float3 Light1: TEXCOORD2;
 float3 Light2: TEXCOORD3;
 float3 Light3: TEXCOORD4;
};

 Structures may be declared for general use in an HLSL shader as well. They
follow the type-casting rules outlined above.

Samplers

For each different texture map that you plan to sample in a pixel shader, you must
declare a sampler. Recall the hlsl_rings() shader described earlier:

float4 lightWood; // xyz == Light Wood Color
float4 darkWood; // xyz == Dark Wood Color
float ringFreq; // ring frequency

sampler PulseTrainSampler;

float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR
{
 float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq;

 float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis);

 return lerp (darkWood, lightWood, blendFactor);
}

From ShaderX2 - Introduction and Tutorials with DirectX 9

14

In this shader, we declared a sampler called PulseTrainSampler at global scope
and passed it as the first parameter to the tex1D() intrinsic function (we will discuss
intrinsics in the next section). An HLSL sampler has a very direct mapping to the API
concept of a sampler and, in turn, to the actual silicon in the 3D graphics processor which
is responsible for addressing and filtering textures. A sampler must be defined for every
texture map that you plan to access in a given shader, but you may use a given sampler
multiple times in a shader. This usage is very common in image processing applications
as discussed in the ShaderX2 - Shader Tips & Tricks chapter “Advanced Image
Processing with DirectX 9 Pixel Shaders” since the input image is often sampled multiple
times with different texture coordinates to provide data to a filter kernel expressed in
shader code. For example, the following shader uses the rasterizer to convert a height
map to a normal map with a pair of Sobel filters.

sampler InputImage;

float4 main(float2 topLeft : TEXCOORD0, float2 left : TEXCOORD1,
 float2 bottomLeft : TEXCOORD2, float2 top : TEXCOORD3,
 float2 bottom : TEXCOORD4, float2 topRight : TEXCOORD5,
 float2 right : TEXCOORD6, float2 bottomRight : TEXCOORD7): COLOR
{
 // Take all eight taps
 float4 tl = tex2D (InputImage, topLeft);
 float4 l = tex2D (InputImage, left);
 float4 bl = tex2D (InputImage, bottomLeft);
 float4 t = tex2D (InputImage, top);
 float4 b = tex2D (InputImage, bottom);
 float4 tr = tex2D (InputImage, topRight);
 float4 r = tex2D (InputImage, right);
 float4 br = tex2D (InputImage, bottomRight);

 // Compute dx using Sobel operator:
 //
 // -1 0 1
 // -2 0 2
 // -1 0 1
 float dX = -tl.a - 2.0f*l.a - bl.a + tr.a + 2.0f*r.a + br.a;

 // Compute dy using Sobel operator:
 //
 // -1 -2 -1
 // 0 0 0
 // 1 2 1
 float dY = -tl.a - 2.0f*t.a - tr.a + bl.a + 2.0f*b.a + br.a;

 // Compute cross-product and renormalize
 float4 N = float4(normalize(float3(-dX, -dY, 1)), tl.a);

 // Convert signed values from -1..1 to 0..1 range and return
 return N * 0.5f + 0.5f;
}

 This shader uses only one sampler, InputImage, but samples from it eight times
using the tex2D() intrinsic function.

Introduction to the DirectX® 9 High Level Shading Language

 15

Intrinsics

As mentioned in the preceding section, there are a number of intrinsics built into
the DirectX 9 High Level Shading Language for your convenience. Many intrinsics,
such as mathematical functions, are provided for convenience, while others, such as the
tex1D() and tex2D() functions mentioned above, are necessary for accessing texture
data via samplers.

Math Intrinsics

The math intrinsics listed in the table below will be converted to micro operations
by the HLSL compiler. In some cases, such as abs() and dot(), these intrinsics will
map directly to single assembly-level operations while in other cases, such as refract()
and step(), they will map to multiple assembly instructions. There are even a couple of
cases, notably ddx(), ddy()and fwidth(), which are not supported for all compile
targets. The math intrinsics are shown below:

Intrinsic Description
abs(x) Absolute value (per component).

acos(x) Returns the arccosine of each component of x. Each component should be in the
range [-1, 1].

all(x) Test if all components of x are nonzero.
any(x) Test is any component of x is nonzero.

asin(x) Returns the arcsine of each component of x. Each component should be in the
range [-π/2, π /2].

atan(x) Returns the arctangent of x. The return values are in the range [-π /2, π /2].

atan2(y, x)
Returns the arctangent of y/x. The signs of y and x are used to determine the
quadrant of the return values in the range [-π, π]. atan2 is well-defined for every
point other than the origin, even if x equals 0 and y does not equal 0.

ceil(x) Returns the smallest integer which is greater than or equal to x.
clamp(x, min, max) Clamps x to the range [min, max].

clip(x)
Discards the current pixel, if any component of x is less than zero. This can be
used to simulate clip planes, if each component of x represents the distance from
a plane. This is the intrinsic you use when you want to generate an asm texkill

cos(x) Returns the cosine of x
cosh(x) Returns the hyperbolic cosine of x
cross(a, b) Returns the cross product of two 3D vectors a and b.

D3DCOLORtoUBYTE4(x) Swizzles and scales components of the 4D vector x to compensate for the lack of
UBYTE4 stream component support in some hardware.

ddx(x) Returns the partial derivative of x with respect to the screen-space x-coordinate.
ddy(x) Returns the partial derivative of x with respect to the screen-space y-coordinate
degrees(x) Converts x from radians to degrees
determinant(m) Returns the determinant of the square matrix m

From ShaderX2 - Introduction and Tutorials with DirectX 9

16

distance(a, b) Returns the distance between two points a and b
dot(a, b) Returns the dot product of two vectors a and b
exp(x) Returns the base-e exponent ex
exp2(a) Base 2 Exp (per component)
faceforward(n, i, ng) Returns -n * sign(dot(i, ng))
floor(x) Returns the greatest integer which is less than or equal to x

fmod(a, b)
Returns the floating point remainder f of a / b such that a = i * b + f, where i is an
integer, f has the same sign as x, and the absolute value of f is less than the
absolute value of b.

frac(x) Returns the fractional part f of x, such that f is a value greater than or equal to 0,
and less than 1.

frexp(x, out exp)
Returns the mantissa and exponent of x. frexp returns the mantissa, and the
exponent is stored in the output parameter exp. If x is 0, the function returns 0 for
both the mantissa and the exponent.

fwidth(x) Returns abs(ddx(x))+abs(ddy(x)).
isfinite(x) Returns true if x is finite, false otherwise.
isinf(x) Returns true if x is +INF or -INF, false otherwise
isnan(x) Returns true if x is NAN or QNAN, false otherwise
ldexp(x, exp) Returns x * 2exp
len(v) Vector length
length(v) Returns the length of the vector v

lerp(a, b, s) Returns a + s(b - a). This linearly interpolates between a and b, such that the
return value is a when s is 0, and b when s is 1.

log(x) Returns the base-e logarithm of x. If x is negative, the function returns indefinite.
If x is 0, the function returns +INF.

log10(x) Returns the base-10 logarithm of x. If x is negative, the function returns
indefinite. If x is 0, the function returns +INF.

log2(x) Returns the base-2 logarithm of x. If x is negative, the function returns indefinite.
If x is 0, the function returns +INF.

max(a, b) Selects the greater of a and b
min(a, b) Selects the lesser of a and b

modf(x, out ip)
Splits the value x into fractional and integer parts, each of which has the same
sign as x. The signed fractional portion of x is returned. The integer portion is
stored in the output parameter ip.

mul(a, b)
Performs matrix multiplication between a and b. If a is a vector, it is treated as a
row vector. If b is a vector, it is treated as a column vector. The inner dimension
acolumns and brows must be equal. The result has the dimension arows × bcolumns.

normalize(v) Returns the normalized vector v / length(v). If the length of v is 0, the result is
indefinite.

pow(x, y) Returns xy
radians(x) Converts x from degrees to radians

reflect(i, n) Returns the reflection vector v, given the entering ray direction i, and the surface
normal n. Such that v = i - 2 * dot(i, n) * n

refract(i, n, eta) Returns the refraction vector v, given the entering ray direction i, the surface

Introduction to the DirectX® 9 High Level Shading Language

 17

normal n, and the relative index of refraction eta. If the angle between i and n is
too great for a given eta, refract returns (0,0,0).

round(x) Rounds x to the nearest integer.
rsqrt(x) Returns 1 / sqrt(x).
saturate(x) Clamps x to the range [0, 1].

sign(x) Computes the sign of x. Returns -1 if x is less than 0, 0 if x equals 0, and 1 if x is
greater than zero.

sin(x) Returns the sine of x

sincos(x, out s, out c) Returns the sine and cosine of x. sin(x) is stored in the output parameter s. cos(x)
is stored in the output parameter c

sinh(x) Returns the hyperbolic sine of x

smoothstep(min, max, x) Returns 0 if x < min. Returns 1 if x > max. Returns a smooth Hermite
interpolation between 0 and 1, if x is in the range [min, max].

sqrt(x) Square root (per component).
step(a, x) Returns (x ≥ a) ? 1 : 0.
tan(x) Returns the tangent of x
tanh(x) Returns the hyperbolic tangent of x

transpose(m) Returns the transpose of the matrix m. If the source is dimension mrows × mcolumns,
the result is dimension mcolumns × mrows

Texture Sampling Intrinsics

There are sixteen texture sampling intrinsics used for sampling texture data into a
shader. There are four types of textures (1D, 2D, 3D and cube map) and four types of
loads (regular, with derivatives, projective and biased) with an intrinsic for each of the
sixteen combinations:

Intrinsic Description
tex1D(s, t) 1D texture lookup. s is a sampler. t is a scalar.
tex1D(s, t, ddx, ddy) 1D texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are scalars.

tex1Dproj(s, t) 1D projective texture lookup. s is a sampler. t is a 4D vector. t is divided by its
last component before the lookup takes place.

tex1Dbias(s, t) 1D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is
biased by t.w before the lookup takes place.

tex2D(s, t) 2D texture lookup. s is a sampler. t is a 2D texture coordinate.

tex2D(s, t, ddx, ddy) 2D texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are 2D
vectors.

tex2Dproj(s, t) 2D projective texture lookup. s is a sampler. t is a 4D vector. t is divided by its
last component before the lookup takes place.

tex2Dbias(s, t) 2D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is
biased by t.w before the lookup takes place.

tex3D(s, t) 3D volume texture lookup. s is a sampler. t is a 3D texture coordinate.
tex3D(s, t, ddx, ddy) 3D volume texture lookup, with derivatives. s is a sampler. t, ddx, and ddy are

From ShaderX2 - Introduction and Tutorials with DirectX 9

18

3D vectors.

tex3Dproj(s, t) 3D projective volume texture lookup. s is a sampler. t is a 4D vector. t is
divided by its last component before the lookup takes place.

tex3Dbias(s, t) 3D biased texture lookup. s is a sampler. t is a 4D vector. The mip level is
biased by t.w before the lookup takes place.

texCUBE(s, t) Cubemap lookup. s is a sampler. t is a 3D texture coordinate.

texCUBE(s, t, ddx, ddy) Cubemap lookup, with derivatives. s is a sampler. t, ddx, and ddy are 3D
vectors.

texCUBEproj(s, t) Projective cubemap lookup. s is a sampler. t is a 4D vector. t is divided by its
last component before the lookup takes place.

texCUBEbias(s, t) Biased cubemap lookup. s is a sampler. t is a 4D vector. The mip level is biased
by t.w before the lookup takes place.

 The tex1D(), tex2D(), tex3D() and texCUBE() intrinsics are the most
commonly used to sample textures. The texture loading intrinsics which take ddx and
ddy parameters compute texture LOD using these explicit derivatives, which would
typically have been previously calculated with the ddx() and ddy() math intrinsics.
These are particularly important when writing procedural pixel shaders, but are not
supported on ps_2_0 or lower compile targets.

The tex*proj() intrinsics are used to do projective texture reads, where the
texture coordinates used to sample the texture are divided by the last component prior to
accessing the texture. Of these, tex2Dproj() is the most commonly used, since it is
necessary for projective shadow maps and similar effects.

The tex*bias() intrinsics are used to perform biased texture sampling, where the
bias can be computed per-pixel. This is typically done to induce some over-blurring of
the texture for a special effect. For example, as discussed in the ShaderX2 - Shader Tips
& Tricks chapter “Motion Blur Using Geometry and Shading Distortion,” the pixel
shader used on the motion-blurred balls in the RADEON™ 9700 Animusic Pipe Dream
demo uses the texCUBEbias() intrinsic to access the cubic environment map of the local
scene:

…
 // Blur reflection by extension amount.
 float3 vCubeLookup = vReflection + i.Pos/fEnvMapRadius;
 float4 cReflection = texCUBEbias(tCubeEnv, float4(vCubeLookup, fBlur * fTextureBlur))
* vReflectionColor;
…

 In this code snippet, fBlur * fTextureBlur is stored in the fourth component of
the texture coordinate used in the texCUBEbias() call and determines the bias to be used
when accessing the cube map.

 Now that we have introduced some of the mechanics of the language, we will
discuss how data is input to and output from HLSL shaders in DirectX 9.

Introduction to the DirectX® 9 High Level Shading Language

 19

Shader Inputs

 Vertex and pixel shaders have two types of input data, varying and uniform. The
varying input is the data that is unique to each execution of a shader. For a vertex shader,
the varying data (i.e. position, normals, etc.) comes from the vertex streams. The uniform
data (i.e. material color, world transform, etc.) is constant for multiple executions of a
shader. If you are familiar with the assembly models, uniform data is specified in
constant registers, and varying data in the ‘v’/‘t’ registers in vertex and pixel shaders.

Uniform input

 Uniform data can be specified by two methods in HLSL. The most common
method is to declare global variables and use them within the vertex or pixel shaders.
Any use of a global variable within a shader will result in the addition of the variable to a
list of uniform variables required by the shader. The second method is to mark an input
parameter of the top-level shader function as uniform. This marking specifies that the
given variable should be added to the list of uniform variables used by the shader. Both
of these methods are illustrated in the following code snippet:

// Declare a global uniform variable
// Appears in constant table under name ‘UniformGlobal’
float4 UniformGlobal;

// Declare a uniform input parameter
// Appears in constant table under name ‘$UniformParam’
float4 main(uniform float4 UniformParam) : POSITION
{
 return UniformGlobal * UniformParam;
}

The uniform variables used by a shader are communicated back to the application
via the constant table. The constant table a symbol table which defines how the uniform
variables used by a shader must be loaded into the constant registers prior to shader
execution. (NOTE: the uniform input function parameters appear in the constant table
with a ‘$’ pre-pended unlike the global variables. The ‘$’ is required to avoid name
collisions between “local” uniform inputs and global variables of the same name.)

The constant table contains the constant register locations of all uniform variables
used by the shader. The table also includes the type information and the default value, if
specified, for each constant table entry. The following is an example of what a constant
table looks like when printed out. The constant table generated by the compiler is stored
in a compact binary form. The API to interpret the table at runtime will be discussed
later in the section on HLSL integration without the use of D3DX Effects.

From ShaderX2 - Introduction and Tutorials with DirectX 9

20

Textual printout of constant table emitted by fxc.exe for a sample shader:

//
// Generated by Microsoft (R) D3DX9 Shader Compiler
//
// Source: hemisphere.fx
// Flags: /E:VS /T:vs_1_1
//

// Registers:
//
// Name Reg Size
// ------------ ----- ----
// Projection c0 4
// WorldView c4 3
// DirFromLight c7 1
// DirFromSky c8 1
// $bHemi c18 1
// $bDiff c19 1
// $bSpec c20 1
//
//
// Default values:
//
// DirFromLight
// c7 = { 0.577, -0.577, 0.577, 0 };
//
// DirFromSky
// c8 = { 0, -1, 0, 0 };

Varying input
 Varying data is specified by marking the input parameters of the top-level shader
function with an input semantic. All top-level shader inputs must either be marked as
varying by using semantics or marked with the keyword ‘uniform’ indicating that the
value is constant for the execution of the shader. If a top-level shader input is not marked
with a semantic or ‘uniform’ keyword, then the shader will fail to compile.

The input semantic is a name used to link the given shader input to an output of
the previous stage of the graphics pipeline. For example, the input semantic POSITION0
is used by vertex shaders to specify where the position data from the vertex buffer should
be linked.

 Pixel and vertex shaders have different sets of input semantics due to the different
parts of the graphics pipeline that feed into each shader unit. Vertex shader input
semantics describe the per vertex information to be loaded from a vertex buffer into a
form that can be consumed by the vertex shader (i.e. positions, normals, texture
coordinates, colors, tangents, binormals, etc). These input semantics directly map to the
combination of the D3DDECLUSAGE enum and UsageIndex that is used to describe vertex
data elements in a vertex buffer.

 Pixel shader input semantics describe the information that is provided per pixel by
the rasterization unit. This data is generated by interpolating between the outputs of the

Introduction to the DirectX® 9 High Level Shading Language

 21

vertex shader for each vertex of the current primitive. The basic pixel shader input
semantics link the input color and texture coordinate information to input parameters.

 Input semantics can be assigned to shader input by two methods. The first
method is by appending a colon, ‘:’, and the input semantic name to the input parameter
declaration. The second method is to define an input structure with input semantics
assigned to each element of the input structure. You will see both of these styles used in
the example shaders in this chapter and throughout the ShaderX books.

Input semantic example:

// Declare an input structure with a semantic binding
struct InStruct
{

float4 Pos1 : POSITION1
};

// Declare the Pos variable as containing position data
float4 main(float4 Pos : POSITION0, InStruct In) : POSITION
{

return Pos * In.Pos1;
}

// Declare the Col variable as containing the interpolated COLOR0 value
float4 mainPS(float4 Col : COLOR0) : COLOR
{

return Col;
}

Vertex Shader Input Semantics

Semantic Description
POSITIONn Position
BLENDWEIGHTn Blend weights
BLENDINDICESn Blend indices
NORMALn Normal vector
PSIZEn Point size
COLORn Color
TEXCOORDn Texture coordinates
TANGENTn Tangent
BINORMALn Binormal
TESSFACTORn Tessellation factor

From ShaderX2 - Introduction and Tutorials with DirectX 9

22

Pixel Shader Input Semantics

Semantic Description
COLORn Color
TEXCOORDn Texture coordinates

n is an optional integer. As an example, PSIZE0, DIFFUSE1, etc.

Shader Outputs

Vertex and pixel shaders provide output data to the subsequent graphics pipeline
stage. Output semantics are used to specify how data generated by the shader should be
linked to the inputs of the next stage. For example, the output semantics for a vertex
shader are used to link the outputs with the interpolators in the rasterizer to generate the
input data for the pixel shader. The pixel shader outputs are the values provided to the
alpha blending unit for each of the render targets or the depth value to be written to the
depth buffer.

Vertex shader output semantics are used to link the shader both to the pixel shader
and the rasterizer stage. The POSITION output is a required output from each vertex
shader that is consumed by the rasterizer and not exposed to the pixel shader. TEXCOORDn
and COLORn denote outputs that are made available to the pixel shader post interpolation.

Pixel shader output semantics bind the output colors of a pixel shader with the
correct render target. The colors output from the pixel shader are linked to the alpha
blend stage, which determines how the destination render targets are modified. The
DEPTH output semantics can be used to change the destination depth value at the current
raster location. NOTE: DEPTH and multiple render targets (also known as “MRT”) are
only supported with some shader models.

The syntax for output semantics is identical to the syntax for specifying input
semantics. The semantics can be either specified directly on parameters declared as ‘out’
parameters, or assigned during the definition of a structure that is either returned as an out
parameter or the return value of the function.

Vertex Shader Output Semantics

Semantic Description
POSITION Position
PSIZE Point size
FOG Vertex fog
COLORn Color (example: COLOR0)
TEXCOORDn Texture coordinates (example: TEXCOORD0)

Introduction to the DirectX® 9 High Level Shading Language

 23

Pixel Shader Output Semantics

Semantic Description
COLORn Color for render target n
DEPTH Depth value

n is an optional, integer. As an example, TEXCOORD3, COLOR0

 The following code snippets illustrate the variety of ways in which data can be
output from HLSL shaders:

// Declare an output structure with a semantic binding
struct OutStruct
{

float2 Tex2 : TEXCOORD2
};

// Declare the Tex0 out parameter as containing TEXCOORD0 data
float4 main(out float2 Tex0 : TEXCOORD0, out OutStruct Out) : POSITION
{
 Tex0 = float2(1.0, 0.0);
 Out.Tex2 = float2(0.1, 0.2);

return float4(0.5, 0.5, 0.5, 1);
}

// Declare the Col variable as containing the interpolated COLOR0 value
float4 mainPS(out float4 Col1 : COLOR1) : COLOR
{
 // write out to render target 1 using out parameter
 Col1 = float4(0.0, 0.0, 0.0, 0.0);

 // write to render target 0 using the declared return destination

return float4(1.0, 0.9722, 0.3333334, 0);
}

struct PS_OUT
{
 float4 Color: COLOR;
 float Depth: DEPTH;
};

//
// Three different ways to output from a pixel shader:
//

PS_OUT PSFunc1() { ... }

From ShaderX2 - Introduction and Tutorials with DirectX 9

24

void PSFunc2(out float4 Color : COLOR,
 out float Depth : DEPTH)
{
 ...
}

void PSFunc3(out PS_OUT Out)
{
 ...
}

An Example Shader

Now that we’ve discussed the language itself and how it connects with the rest of
the graphics pipeline via inputs and outputs, we will discuss an example shader called
NPR Metallic. We call it this since it was designed to look like a metallic surface which
would exist in a world rendered in a cel-animation style (Figure 2). This effect ships with
the RenderMonkey shader development environment discussed in the chapter “Shader
Programming with RenderMonkey” and is available on the ATI Developer Relations
website (www.ati.com/developer).

Figure 2 – NPR Metallic

First, let’s look at the NPR Metallic vertex shader written in HLSL:

float4x4 view_proj_matrix;

float4 view_position;
float4 light0;
float4 light1;
float4 light2;

Introduction to the DirectX® 9 High Level Shading Language

 25

struct VS_OUTPUT
{
 float4 Pos : POSITION;
 float3 View : TEXCOORD0;
 float3 Normal: TEXCOORD1;
 float3 Light1: TEXCOORD2;
 float3 Light2: TEXCOORD3;
 float3 Light3: TEXCOORD4;
};

VS_OUTPUT main(float4 inPos : POSITION,
 float3 inNorm : NORMAL)
{
 VS_OUTPUT Out = (VS_OUTPUT) 0;

 // Output transformed vertex position:
 Out.Pos = mul(view_proj_matrix, inPos);

 Out.Normal = inNorm;

 // Compute the view vector:
 Out.View = normalize(view_position - inPos);

 // Compute vectors to three lights from the current vertex position:
 Out.Light1 = normalize (light0 - inPos); // Light 1
 Out.Light2 = normalize (light1 - inPos); // Light 2
 Out.Light3 = normalize (light2 - inPos); // Light 3

 return Out;
}

NPR Metallic Vertex Shader

 The first thing that we see in this vertex shader is the declaration of a matrix and a
set of floats at global scope: view_proj_matrix, view_position, light0, light1, and
light2. These are all implicitly uniform variables which are externally settable by the
API and modifiable in the shader itself.

Following these global variables, we see the definition of a structure called
VS_OUTPUT, which is also the return type of our main function. This means that this
vertex shader will output five 3D texture coordinates in addition to the required 4D
position.

Looking at the main function, we see that the vertex shader takes a 4D vector as
input position, a 3D vector as input normal and a 2D vector as a texture coordinate. The
input position, inPos, is transformed by the view_proj_matrix using the mul() intrinsic,
while the normal, inNorm, is passed through to the output untouched.

Finally, 3D vectors from the object space vertex position to the three lights and
the view position are all computed. These 3D vectors are passed to the normalize()
intrinsic to guarantee that they are of unit length. These normalized 3D vectors are all
output from the vertex shader as 3D texture coordinates which will be interpolated across
the polygon.

From ShaderX2 - Introduction and Tutorials with DirectX 9

26

To reinforce the earlier discussion about compile targets and assembly models, we
will compile this shader and have a look at the assembly output. First, we have written
the above code into a file called NPRMetallic.vhl. Next, we can compile it on the
commandline with fxc:

fxc -nologo -T vs_1_1 -Fc -Vd NPRMetallic.vhl

 Because this vertex shader does not require flow control, we select the vs_1_1
compile target. We also set the flags to generate a code file and disable validation. A
portion of the generated code file is shown below:

// Parameters:
// float4 light0;
// float4 light1;
// float4 light2;
// float4 view_position;
// float4x4 view_proj_matrix;
//
// Registers:
// Name Reg Size
// ---------------- ----- ----
// view_proj_matrix c0 4
// view_position c4 1
// light1 c5 1
// light2 c6 1
// light0 c7 1

 vs_1_1
 dcl_position v0
 dcl_normal v1
 mul r0, v0.x, c0
 mad r2, v0.y, c1, r0
 mad r4, v0.z, c2, r2
 mad oPos, v0.w, c3, r4
 add r1, -v0, c4
 dp4 r1.w, r1, r1
 rsq r1.w, r1.w
 mul oT0.xyz, r1, r1.w
 add r8, -v0, c7
 dp4 r8.w, r8, r8
 rsq r8.w, r8.w
 mul oT2.xyz, r8, r8.w
 add r3, -v0, c5
 add r10, -v0, c6
 dp4 r3.w, r3, r3
 rsq r3.w, r3.w
 mul oT3.xyz, r3, r3.w
 dp4 r10.w, r10, r10
 rsq r10.w, r10.w
 mul oT4.xyz, r10, r10.w
 mov oT1.xyz, v1

At the top of the code file, we see the parameters to this vertex shader. That is,

we see the global scope variables which will need to be set from the API for this shader
to work properly in a given application. The next section shows the hardware registers to
which these parameters must be loaded by the application for the assembly shader to
work properly. Next, we have the shader code itself, which as been compiled to 21

Introduction to the DirectX® 9 High Level Shading Language

 27

assembly instructions. We won’t go through all of the code, but you should take note of
the dcl_position and dcl_normal statements, which are a direct result of the POSITION
and NORMAL semantics on the inputs to the shader’s main function. Additionally, note the
storage of final results in the oPos, oT0, oT1, oT2, oT3 and oT4 registers. This is caused
by the return type of the function being a structure whose members are tagged with the
corresponding semantics. While not strictly necessary, knowing how to use fxc to
generate assembly code from HLSL and how to read through it can be beneficial at some
stages of development, particularly when trying to write more optimal HLSL.

 Now that we have used the vertex shader to transform the geometry into clip
space and define the values which will be interpolated across the polygons, we can move
on to the pixel shader which will make use of all of these interpolated quantities.

float4 Material;

sampler Outline;

float4 main(float3 View: TEXCOORD0,
 float3 Normal: TEXCOORD1,
 float3 Light1: TEXCOORD2,
 float3 Light2: TEXCOORD3,
 float3 Light3: TEXCOORD4) : COLOR
{
 // Normalize input normal vector:
 float3 norm = normalize (Normal);

 float4 outline = tex1D(Outline, 1 - dot (norm, normalize(View)));

 float lighting = (dot (normalize (Light1), norm) * 0.5 + 0.5) +
 (dot (normalize (Light2), norm) * 0.5 + 0.5) +
 (dot (normalize (Light3), norm) * 0.5 + 0.5);

 return outline * Material * lighting;
}

NPR Metallic Pixel Shader

As before, we see that this shader has declared some variables at global scope. In
this case, we have a 4D vector Material which defines material values for the object to
be rendered, and a single sampler Outline which we will use to access a special texture
used for outlining the object. The five 3D texture coordinates computed in the vertex
shader are the inputs to the main function of this pixel shader and define the view vector,
the normal vector and three light vectors.

Since the texture coordinates are linearly interpolated across the polygon, it is
possible for them to contain non-normalized values at a given pixel. Thus, this shader
first renormalizes the interpolated normal vector using the normalize() intrinsic.
Subsequently, the outline texture is sampled using the dot product of the normalized
normal and view vectors. The lighting is then computed by summing a series of scaled
and biased dot products of the normal with normalized light vectors.

In the last line of this pixel shader, we return the product of the variables outline,
Material and lighting. The first two of these are 4D vectors while the last is a scalar.

From ShaderX2 - Introduction and Tutorials with DirectX 9

28

If you recall from our earlier discussion of type casting, the multiplication of the scalar by
a vector temporarily promotes the scalar to a vector whose components are all equivalent
to the original scalar. That is, the following two expressions are equivalent:

 return outline * Material * lighting;

 return outline * Material * float4(lighting, lighting, lighting, lighting);

Thus, the end result is that all of the channels are multiplied by the scalar
lighting, giving us the final result you see in Figure 2.

As we did with the NPRMetallic vertex shader, we will generate a code file for
the pixel shader using fxc:

fxc -nologo -T ps_2_0 -Fc -Vd NPRMetallic.phl

 This compilation uses the same flags as before but is compiled for the ps_2_0
target. The resulting 29 instruction shader is shown below:

// Parameters:
// float4 Material;
// sampler Outline;
//
// Registers:
// Name Reg Size
// ------------ ----- ----
// Material c0 1
// Outline s0 1

 ps_2_0
 def c1, 1, 0, 0, 0.5
 dcl t0.xyz
 dcl t1.xyz
 dcl t2.xyz
 dcl t3.xyz
 dcl t4.xyz
 dcl_2d s0
 dp3 r0.w, t1, t1
 rsq r2.w, r0.w
 mul r9.xyz, r2.w, t1
 dp3 r9.w, t0, t0
 rsq r9.w, r9.w
 mul r4.xyz, r9.w, t0
 dp3 r9.w, r9, r4
 add r11.xy, -r9.w, c1.x
 texld r6, r11, s0
 dp3 r9.w, t2, t2
 rsq r9.w, r9.w
 mul r1.xyz, r9.w, t2
 dp3 r9.w, r1, r9
 mad r9.w, r9.w, c1.w, c1.w
 dp3 r8.w, t3, t3
 rsq r10.w, r8.w
 mul r5.xyz, r10.w, t3
 dp3 r0.w, r5, r9
 mad r9.w, r0.w, c1.w, r9.w
 add r9.w, r9.w, c1.w
 dp3 r2.w, t4, t4
 rsq r11.w, r2.w

Introduction to the DirectX® 9 High Level Shading Language

 29

 mul r1.xyz, r11.w, t4
 dp3 r8.w, r1, r9
 mad r10.w, r8.w, c1.w, r9.w
 add r5.w, r10.w, c1.w
 mul r6, r6, r5.w
 mul r0, r6, c0
 mov oC0, r0

 As before, the variables (in this case the constant Material and the sampler
Outline) are listed at the top of the file. These must be set properly by the application
via the API in order for the shader to function correctly.

After the ps_2_0 instruction, there is a def instruction of some magic constants.
This def instruction is a free instruction which appears in the actual assembly instruction
stream that defines constants which will be used by the subsequent ALU operations. This
kind of constant definition is generally the result of literal values appearing in the HLSL
shader, as in the following statements taken from the NPRMetallic pixel shader:

 …

1 - dot (norm, normalize(View)

…
dot (normalize (Light1), norm) * 0.5 + 0.5

…

 Following this constant definition, there are five 3D texture coordinate
declarations of the form dcl tn.xyz. As in the vertex shader, these are a result of the
semantics of the input parameters to this HLSL shader’s main function. Following the
texture coordinate declarations, there is a sampler declaration dcl_2d s0. This indicates
that a 2D texture must be bound to sampler zero. This may seem odd since the tex1D()
intrinsic was used in the HLSL shader. This discrepancy exists since there is no such
thing as a 1D texture in the Direct3D API or shader assembly language. The tex1D()
intrinsic is actually just a way for the HLSL shader writer to indicate to the compiler that
only one component of the texture coordinate needs to be populated, shaving off an
assembly instruction in some cases.

 Now that you are familiar with some of the correspondence between HLSL and
assembly code, we will discuss optimization strategies so that you can be sure that you
are writing the best HLSL possible.

Optimization

While the DirectX HLSL compiler has an excellent optimizer built in, there are
things you can do as an HLSL coder to help shave off a few more cycles here and there.
While this is probably more of an academic exercise in the long term, it may make the
difference between being able to target a legacy 1.x shader model using HLSL or not.

The most important thing to remember about writing high performance shaders is
that the compiler is required to do what you ask it to. That is, if you write your shader to
require a certain number of math operations or a particular value in an output component,

From ShaderX2 - Introduction and Tutorials with DirectX 9

30

then it will need to perform those operations. The compiler is smart about removing dead
code, but it cannot know about values that do not ultimately matter due to circumstances
outside of a given shader. For example, if the pixel shader is not using the second texture
coordinate, the vertex shader probably shouldn’t compute it. The HLSL compiler, of
course, has no way of knowing this when you compile the vertex shader. Additionally,
you may know that you will always use an n×1 function lookup texture at a given
sampler and hence it is not necessary to compute the 2nd texture coordinate for use in the
sampling intrinsic. If you use the tex2D() intrinsic, however, the HLSL compiler will
require you to compute the 2nd texture coordinate even though it is ultimately
unnecessary. The compiler is designed to build an assembly program that does exactly
what you asked without making any visual quality vs performance tradeoffs.

Another extremely important objective for high performance shaders is to make
sure that a computation only runs at the required frequency. If you can get away with
doing a calculation per-vertex rather than per-pixel, then do so. These types of operations
are where the biggest wins often come from. The same optimization is true for
operations on values which are uniform (i.e. operations that do not change for the entire
execution of the shader). An example of this would be pre-multiplying the world
ambient color value by an object’s material ambient value and passing their product to
the shader instead of redundantly calculating the product per vertex or per pixel.

The following sections go into some detail on how language features are mapped
into assembly constructs. While it is not necessary to understand how to write vertex or
pixel shader assembly, it can be quite helpful to understand the basic limitations and
efficiencies of the assembly models. Understanding key assembly features is essential to
generating compact and efficient shaders.

Matrix Datatype Usage

 One of HLSL’s more obvious departures from the C standard is the introduction
of vector and matrix datatypes. The datatypes were added to enable easier writing of
code and to enable intrinsic functions to work properly, but correct usage of the datatypes
allows for better code generation as well. The usage of vector types enables the compiler
to more easily use all of the capabilities of the vector instructions. The compiler will
automatically vectorize scalar operations when possible, but in general it is better to write
your HLSL code in a vector-friendly form for best performance.

 Although you can implement shaders with arrays of vectors instead of matrices,
the recommended way to store a matrix is with a matrix datatype. By using a matrix
datatype, the compiler has the choice to store internal matrices in either column major or
row major order depending on how the matrix is used. This optimization can be quite
useful for situations in which a matrix is generated in either a pixel or vertex shader. As
mentioned earlier, for input matrices, the compiler always uses either column major or
row major storage format based on a compiler flag, with column major being the default
method.

Introduction to the DirectX® 9 High Level Shading Language

 31

Integer Datatype Usage

 The int datatype is important to understand and use correctly in HLSL. It is very
easy to generate extra instructions by using the int datatype in places that it should not
be used. The int datatype was added to HLSL to make relative addressing familiar as
well as efficient. A problem with using float datatypes for addressing purposes without
truncation rules is that incorrect access to arrays can occur. For example, if the index
variable is 2.5 and a float4x4 matrix is being accessed, half of matrix 2 and half of
matrix 3 will be used instead of truncating to access matrix 2 before accessing the matrix.
In order to fix this, all floats that are used for accessing arrays must be rounded before
being multiplied by the size of each element. This can be an expensive operation, since
correct C rounding rules are not easily accomplished using the available instructions.

 In order to avoid unwanted rounding or truncation operations, the int datatype
was added to mark values as being integer values. In order to properly avoid treating
input data incorrectly as floating point data, all inputs that are going to be used as integers
should be defined as ints. For example, matrix palette indices read from a vertex stream
component should be marked as ints. Declaring an input as int is a “free” operation in
that no truncation will be performed and the value is assumed to be an integer value. If
the input is not declared as an int, the shader will not do what you expect. If, on the
other hand, you cast a float to int in your shader or use a float for addressing
purposes, a truncation will happen. Casting non-int intermediate values to int will also
result in truncation overhead.

OutPos = mul(Pos, WorldArray[Index]);

// Index declared as float
frc r0.w, r1.w
add r2.w, -r0.w, r1.w
mul r9.w, r2.w, c61.x
mova a0.x, r9.w
m4x4 oPos, v0, c0[a0.x]

// Index declared as int
mul r0.w, c60.x, r1.w
mova a0.x, r0.w
m4x4 oPos, v0, c0[a0.x]

Code generated with float index vs integer index

Flow Control and Performance

 Most current vertex and pixel shader hardware does not support flow control. The
hardware is designed to run a shader linearly, executing each instruction once. Newer
hardware supports limited forms of flow control: static branching, predicated
instructions, static looping, dynamic branching, and dynamic looping. Since HLSL can
be compiled down to any or all of the models that support various degrees of flow control,
it must be taken into consideration when writing shaders designed to run on more
restricted models. As mentioned earlier, no restrictions are placed on the syntax of HLSL

From ShaderX2 - Introduction and Tutorials with DirectX 9

32

based on the compile target, but compile time errors will occur if a shader is impossible
to implement on the compile target used.
 Loops are a form of flow control that occur quite often in shaders. Some
hardware allows for either static or dynamic looping, but most require linear execution.
On the models that do not support looping, all loops must be unrolled. While this can be
an expensive operation, it can be used to generate excellent code with minimal effort. A
good example is the DepthOfField sample from the DirectX 9 SDK that uses unrolled
loops even for ps_1_1 shaders. In order to write high performance shaders, you should
keep this in mind, either for using the compiler to do the work of unrolling for you, or
realizing when shaders will become unbounded and perform poorly or exceed instruction
limits.
 Using ‘if’ statements can have large performance implications due to the lack of
support for branching in most assembly-level shader models. In models that do not
support any form of branching, both sides of an ‘if’ must be executed and the output
chosen based on which side of the ‘if’ would have been taken. Having come from the
CPU programming world, this form of execution is a bit different than most HLSL shader
writers would expect. Common optimizations that you would use on a CPU to avoid
expensive operations will not work as expected on shader models that don’t support
branches, since both the expensive path and the cheap path will be executed. Some
shader models support different levels of branching: predicated instructions, static if
blocks, and dynamic if blocks.

Example using if in vs_1_1:

if (Value > 0)
 Position = Value1;
else
 Position = Value2;

Assembly Generated:

// calculate lerp value based on Value > 0
mov r1.w, c2.x
slt r0.w, c3.x, r1.w
// lerp between Value1 and Value2
mov r7, -c1
add r2, r7, c0
mad oPos, r0.w, r2, c1

The most common branching support in current hardware shading models is static

branching. Static branching is a capability in a shader model that allows for blocks of
code to be switched on or off based on a Boolean shader constant. This is a very
convenient method for enabling/disabling potentially expensive code paths based on the
type of object currently being rendered. Between Draw calls, you can decide the various
features you want to support with the current shader and then set the Boolean flags
required to get that behavior. The best part about this method is that any instructions that
are ‘disabled’ by the Boolean constant are completely skipped during execution. The
disadvantage is that you can only change which if blocks are enabled/disabled at a low

Introduction to the DirectX® 9 High Level Shading Language

 33

frequency (i.e. between draw calls). In contrast, using the execute-both-sides approach, it
is possible to dynamically choose between the outputs of the two paths dynamically at a
per-pixel or per-vertex level.

 The most familiar branching support is dynamic branching. The dynamic
branching support offered by some shader models is very similar to that offered by a
standard CPU. The performance hit is the cost of the branch plus the cost of the
instructions on the side of the branch taken. This execution cost is comparable to what
most people are familiar with optimizing for in CPU-side code. The problem with this
form of branching is that it is not available on most hardware and is currently only
available for vertex shaders. Optimizing shaders that work with these models is very
similar to optimizing code that runs on a CPU.

Importance of input type declarations

 The type of an input to a shader is used differently than you might expect. The
method in which data is loaded into the registers either from a vertex buffer into a vertex
shader or from the vertex shader output to the pixel shader input registers is well-defined
in the Direct3D spec. That is, shader input values are always expanded into a vector of
four floats. This means that the datatype declaration is more of a hint than a specification
of how the data is loaded into the shader. Taking advantage of this provides a couple of
optimization opportunities.
 A common optimization used by shader assembly writers is to take advantage of
the way in which data is expanded when loaded into registers. For example, in vertex
shaders, the w component will be set to 1.0 if no w component is present in the vertex
buffer. The y and z components will be set to 0.0 if not present in the vertex buffer. The
most common place for this to be useful is for the position in vertex shaders. It is very
common to need the w component to be set to 1.0 when multiplying by the World matrix,
but the vertex buffer typically only contains x, y and z components. If the position input
parameter is declared as a float3, then an extra instruction to copy a 1.0 into the w
component would be required. If the parameter were declared as a float4, then the w
component would be set to 1.0f by the hardware loading the input registers. The
compiler cannot do this type of optimization automatically since this optimization
requires knowledge of what data is in the vertex buffer.
 Another optimization is to make sure and declare all input parameters with the
appropriate type for their usage in the shader. For example, if the incoming data is
integer and the data is going to be used for addressing purposes, then it is important to
declare the parameter as an int to avoid truncation. The subtle issue with declaring
inputs as ints is that the values in the input should truly be integer values. Otherwise,
the generated code might not run correctly due to the optimizations the compiler will
make based upon the assumption that the input data is truly integer data.

Precision issues (logp, expp, lit)

 A good understanding of precision is necessary for writing shaders that give
correct results and reasonable performance. With most shader compile targets, the

From ShaderX2 - Introduction and Tutorials with DirectX 9

34

internal precision is fixed and needs to be taken into account for correct results. For
example, the ps_1_x models have relatively low precision fixed-point registers. Raising a
number to even a low power for specular highlights can quickly generate banding.

In some other models, such as vs_1_1 and vs_2_0, there are low-precision
versions of some instructions. Specifically logp, expp, and lit can be used as low-
precision versions of log, exp, and pow. On some hardware, the performance difference
between the low and high precision variants is not significant. Since log and exp count
for 10 instruction slots each and logp and expp only count as one instruction each, it is
possible to balloon the size of the generated asm code and potentially run out of
instructions, particularly on the vs_1_1 compile target. Accessing these low-precision
instructions is accomplished by declaring the output to be either cast to or stored into the
low precision datatype called ‘half’. A low precision output from an operation informs
the compiler that the operation should be performed with the lowest precision possible.
Some pixel shader hardware can take advantage of performing other operations at a lower
precision as well.

float LogValue = log(Value);

// counts as 10 instructions
// on vs_1_1
log r0, c0

float LogValue = (half)log(Value);

// counts as 1 instruction on
// vs_1_1
logp r0, c0

Example of log vs logp

Using the ps_1_x Compile Targets

 The original pixel shader models (ps_1_1, ps_1_2, ps_1_3 and ps_1_4) offer a
large degree of programmability, but have some restrictions in what can be done. It is
possible to efficiently target the ps_1_x compile targets using HLSL, but it is imperative
for the shader writer to understand the underlying set of limitations. This is important in
order to write high performance shaders, but more importantly to even get your shader to
compile. Instruction count is probably the first limitation that most people hit, but this is
usually due to ignoring other limitations of the ps_1_x compile targets.

 The first thing to remember about the ps_1_x compile targets is that the target
hardware does not have arbitrary swizzles. This limitation means that the compiler must
use extra instructions anytime a swizzle is required. The extra instructions generated can
quickly cause programs to overrun the total instructions possible in these compile targets.
The ps_1_1 through ps_1_3 targets do not support arbitrary write masks or replicate
swizzles (i.e. .r, .g, .b or .a) and can cause the same situation. The ps_1_4 compile
target does have support for replicate swizzles and arbitrary write masks. Even with
these limitations it is quite easy to write interesting and complex shaders. This is just
something to keep in mind when writing HLSL code targeted at the ps_1_x compile
targets.

Introduction to the DirectX® 9 High Level Shading Language

 35

 While the ps_1_x targets naturally have disadvantages relative to the newer pixel
shader models, one advantage that they do have is the existence of “free” source and dest
modifiers (i.e. the ability to clamp values to the 0 to 1 range, take the complement of a
source, negate a source, bias a source, etc). These modifiers are extremely handy when
generating shaders that accomplish a lot in a small number of instructions. The compiler
automatically matches all modifiers that it can, but it is helpful if the HLSL shader writer
thinks in terms of using these modifiers to accomplish certain operations. In fact, some
intrinsics were added to HLSL to make this type of shader writing easier. For example, it
is recommended that you use the saturate() intrinsic when trying to generate a free
_sat modifier in a pixel shader. We will now present a series of HLSL code sequences
which will generate free source modifiers when compiling to ps_1_x targets.

The _bx2 Modifier

To cause the HLSL compiler to generate _bx2 modifiers, there are a number of
different HLSL code sequences that can be used. Any of the following main functions
will cause the compiler to generate a _bx2 modifier:

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{
 return dot(Col, Tex*2 - 1);
}

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{
 float3 val = Tex*2;
 val = val -1;
 return dot(Col,val);
}

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{
 return dot(Col, (Tex -.5f)*2);
}

 All of these main functions will generate the same asm shader:

ps_1_1
texcoord t0
dp3 r0, v0, t0_bx2

 It is important to note that the Tex*2 -1 version is recommend because it
generates more optimal code in ps_2_0 targets and beyond.

From ShaderX2 - Introduction and Tutorials with DirectX 9

36

The _bias Modifier

 The following code causes the HLSL compiler to generate a _bias modifier

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{
 return dot(Col, (Tex - .5f));
}

 This main function generates the following assembly shader:

ps_1_1
texcoord t0
dp3 r0, v0, t0_bias

Note that _bias cannot be done in ps_1_1, ps_1_2 or ps_1_3 unless the source is

known to be in the range of 0 to 1. That is, it must have been previously saturated.

The _x2 Modifier (ps_1_4 only)

The following code causes the HLSL compiler to generate a _x2 source modifier:

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{
 return dot(Col, Tex*2);
}

This HLSL code results in the following asm shader code:

ps_1_4
texcrd r0.xyz, t0
dp3 r0, v0, r0_x2

The _x2, _x4, _x8, _d2, _d4 and _d8 Destination Write Modifiers

A set of destination write modifiers existed in the ps_1_x models and it is possible
to write HLSL code to cause the compiler to generate them in the resulting asm. The
modifiers to double (_x2), quadruple (_x4), and halve (_d2) the result of the instruction
are supported on ps_1_1 through ps_1_3 models while the ps_1_4 model supports all six
of the _x2, _x4, _x8, _d2, _d4 and _d8 modifiers. The following code will generate the
corresponding modifiers for N = 2, 4, 8, 0.5, 0.25 or 0.125:

static const float N = 2;

Introduction to the DirectX® 9 High Level Shading Language

 37

float4 main(float4 Col[2] : COLOR0) : COLOR0
{
 return (Col[0] + Col[1])*N;
}

The above HLSL code will result in the following asm output:

ps_1_1
add_x2 r0, v0, v1

The Complement Modifier

It is also possible to write HLSL code which will allow the compiler to generate a
complement modifier when compiling to a ps_1_x target. Note that this will only work if
the quantity being complemented is known to be in the 0 to 1 range (i.e. the quantity has
previously been saturated). The following HLSL code will cause the compiler to
generate a free complement modifier:

float4 main(float4 Col[2] : COLOR0) : COLOR0
{
 return (1-Col[0]) * (Col[1]);
}

 This HLSL code results in the following asm shader:

ps_1_1
mul r0, 1-v0, v1

The Saturate Modifier

The following two shaders will generate a _sat modifier. This modifier is
available on all pixel shader compile targets:

float4 main(float4 Col[2] : COLOR0) : COLOR0
{
 return saturate(Col[0]);
}

float4 main(float4 Col[2] : COLOR0) : COLOR0
{
 return clamp(Col[0],0,1);
}

From ShaderX2 - Introduction and Tutorials with DirectX 9

38

 Both of these HLSL shaders will result in the following asm shader:

ps_1_1
mov_sat r0, v0

The Negate Modifier

The following shader will generate a negate modifier, which is also available on
all shader targets. (Note that on ps_1_x, constant registers cannot be directly negated and
hence will not result in a single free negation since the constant will have to be moved to
a temp before it can be negated.)

float4 main(float4 Col[2] : COLOR0) : COLOR0
{
 return -Col[0];
}

 This HLSL code will result in the following asm shader:

ps_1_1
mov r0, -v0

Strategy for Targeting ps_1_x

 The best strategy that we have found to optimize for ps_1_x compile targets is to
first write your shader on ps_2_0 since this allows for quick and easy prototyping on
ps_2_0 capable hardware. Once the shader is working as desired, cross-compile it for the
desired ps_1_x model. Using the disable validation option, -Vd for fxc.exe, you can see
how many instructions the shader would be if there were no instruction limits on the
chosen ps_1_x model. If the shader did not fit, you can at least see what you are up
against and begin paring away the least necessary pieces of your shader to get an efficient
ps_1_x fallback up and running.

 Now that we have presented HLSL shaders in detail, we will discuss the issues
involved in integrating HLSL shader support into an application. HLSL can be integrated
into your engine with or without the use of D3DX Effects and we will now discuss both
approaches. It is also worth mentioning that it is possible to start experimenting with
HLSL without writing any application code by using a shader development environment
such as RenderMonkey. For more on RenderMonkey, please consult the chapter “Shader
Programming with RenderMonkey.”

Introduction to the DirectX® 9 High Level Shading Language

 39

Integration into an engine using D3DX Effects

The D3DX Effects framework is a very useful component of the D3DX library
that is gaining more adoption among professional developers. Naturally, in DirectX 9,
D3DX Effects were updated to include support for HLSL. If you aren’t familiar with
D3DX Effects, they are an abstraction designed to conveniently encapsulate rendering
special effects in 3D applications. Effects can encapsulate rendering state as well as
shaders written in asm or HLSL, including fall-back versions targeted at legacy hardware.
A given Effect is generally stored in a single .fx or .fxl file and the file itself can contain
multiple versions of the Effect called Techniques. For example, you may want to create a
more basic version of a given Effect that you can use on older hardware with legacy
shader support or no shaders at all. An excellent example of this kind of use of
Techniques is the Water sample in the DirectX SDK. This sample uses several different
Techniques which are targeted at different generations of hardware. Of course, the more
basic Techniques which require less textures and generally less sophistication don’t look
as impressive, but that’s the point: D3DX Effects let you manage this quality/speed trade-
off very naturally.

Effect Files

We won’t go into all of the facets of Effects here, but you should understand the
basic structure of an Effect file in order to see how it can be used with HLSL. A typical
effect file might look something like this:

// Lighting constants
VECTOR g_Leye;
float4 GlobalAmbient = 0.5;
float Ka = 1;
float Kd = 0.8;
float Ks = 0.9;
float roughness = 0.1;
float noiseFrequency;

MATRIX matWorldViewProj;
MATRIX matWorldView;
MATRIX matITWorldView;
MATRIX matWorld;
MATRIX matTex0;

TEXTURE tVolumeNoise;
TEXTURE tMarbleSpline;

sampler NoiseSampler = sampler_state
{
 Texture = (tVolumeNoise);

 MinFilter = Linear;
 MagFilter = Linear;
 MipFilter = Linear;
 AddressU = Wrap;
 AddressV = Wrap;
 AddressW = Wrap;
 MaxAnisotropy = 16;
};

From ShaderX2 - Introduction and Tutorials with DirectX 9

40

sampler MarbleSplineSampler = sampler_state
{
 Texture = (tMarbleSpline);

 MinFilter = Linear;
 MagFilter = Linear;
 MipFilter = Linear;
 AddressU = Clamp;
 AddressV = Clamp;
 MaxAnisotropy = 16;
};

float3 snoise (float3 x)
{
 return 2.0f * tex3D (NoiseSampler, x) - 1.0f;
}

float4 ambient(void)
{
 return GlobalAmbient;
}

float4 soft_diffuse(float3 Neye, float3 Peye)
{
 // Compute normalized vector from vertex to light in eye space (Leye)
 float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye);

 float NdotL = dot(Neye, Leye) * 0.5f + 0.5f;

 // N.L
 return float4(NdotL, NdotL, NdotL, NdotL);
}

float4 specular(float3 NNeye, float3 Peye, float k)
{
 // Compute normalized vector from vertex to light in eye space (Leye)
 float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye);

 // Compute Veye
 float3 Veye = -(Peye / length(Peye));

 // Compute half-angle
 float3 Heye = (Leye + Veye) / length(Leye + Veye);

 // Compute N.H
 float NdotH = clamp(dot(NNeye, Heye), 0.0f, 1.0f);

 float NdotH_2 = NdotH * NdotH;
 float NdotH_4 = NdotH_2 * NdotH_2;
 float NdotH_8 = NdotH_4 * NdotH_4;
 float NdotH_16 = NdotH_8 * NdotH_8;
 float NdotH_32 = NdotH_16 * NdotH_16;

 return NdotH_32 * NdotH_32;
}

float4 hlsl_bluemarble (float3 P : TEXCOORD0,
 float3 Peye : TEXCOORD1,
 float3 Neye : TEXCOORD2) : COLOR
{
 float4 Ct;
 float4 Ci;
 float3 NNeye;
 float marble;
 float f;

 // Divide down to nice frequency
 P = P/16;

Introduction to the DirectX® 9 High Level Shading Language

 41

 marble = -2.0f * snoise(P * noiseFrequency) + 0.75f;

 NNeye = normalize(Neye);

 // Cubic interpolation of f along color spline (gloss in alpha)
 Ct = tex1D (MarbleSplineSampler, marble);

 // Color from illumination
 Ci = Ct * (Ka * ambient() + Kd * soft_diffuse(NNeye, Peye)) +
 Ct.w * Ks * specular(NNeye, Peye, roughness);

 return Ci;
}

VERTEXSHADER asm_marble_vs =
decl {}
asm
{
 vs.1.1

 dcl_position v0
 dcl_normal v3

 m4x4 oPos, v0, c[0] // Transform position to clip space

 m4x4 r0, v0, c[17] // Transformed Pshade (using texture matrix 0)
 mov oT0, r0

 m4x4 oT1, v0, c[4] // Transform position to eye space
 m3x3 oT2.xyz, v3, c[8] // Transform normal to eye space
};

technique technique_hlsl_bluemarble
{
 pass P0
 {
 // Only need to map variable names to hardware
 // registers like this for asm shaders:
 VertexShaderConstant[0] = <matWorldViewProj>;
 VertexShaderConstant[4] = <matWorldView>;
 VertexShaderConstant[8] = <matITWorldView>;
 VertexShaderconstant[12] = <matWorld>;
 VertexShaderConstant[17] = <matTex0>;

 VertexShader = <asm_marble_vs>;
 PixelShader = compile ps_2_0 hlsl_bluemarble();

 CullMode = CCW;
 }
}

We will now explain this example Effect file from the bottom up. The very last

block of code in this Effect file defines a technique called technique_hlsl_bluemarble
which has only one rendering pass. This single pass will use a vertex shader written in
assembly language and a pixel shader written in HLSL. The first several lines in this
pass declare five different matrices which will be loaded into specific hardware constant
registers from high level Effect variables when this pass is invoked. This explicit
mapping is only done in the Effect file for asm shaders. There are no explicit mappings
done like this for the pixel shader, since it is written in HLSL. The next line declares the
vertex shader to be used in this pass, an assembly shader called asm_marble_vs:

 VertexShader = <asm_marble_vs>;

From ShaderX2 - Introduction and Tutorials with DirectX 9

42

 The following line defines the pixel shader, which will be compiled for the
ps_2_0 target using the hlsl_bluemarble() function as its main entrypoint:

 PixelShader = compile ps_2_0 hlsl_bluemarble();

 The block of code preceding the technique definition is the vertex shader written
by hand in assembly language. Above this is hlsl_bluemarble, the main entrypoint for
our HLSL pixel shader. If you have a look at this code, you will see that, in addition to
the tex1D() intrinsic, this function calls several other utility functions such as
ambient() and soft_diffuse(). These utility functions are defined earlier in this
Effect and, since we’re compiling for the ps_2_0 target, they are inlined into the resulting
assembly.

 If you look above the utility functions, you’ll see the declaration of a pair of
samplers called NoiseSampler and MarbleSplineSampler. These are declared just as
before except that when used in an Effect file they can also be followed by the bracketed
code defining the addressing and filtering sampler state to be used. Textures may also be
defined in Effect files as shown above the sampler declarations. At the very top of the
Effect, we see the declaration of a series of global variables which will be settable from
the application level.

The Effect API

 Now that we have written an effect and stored it in a file, we wish to use it from
our application code. Naturally, the first thing that we will do is create the effect using
the D3DXCreateEffectFromFile() API. Assuming this succeeds, we can use the Effect
API to set the appropriate variables needed by our Effect. For example, we can set the
matrices with the SetMatrix() entrypoint:

m_pEffect->SetMatrix ("matWorldViewProj", &m_matWorldViewProj);
m_pEffect->SetMatrix ("matWorldView", &m_matWorldView);
m_pEffect->SetMatrix ("matITWorldView", &m_matITWorldView);
m_pEffect->SetMatrix ("matWorld", &m_matWorld);
m_pEffect->SetMatrix ("matTex0", &m_ObjectParameters.m_matTex0);

 We could also set any floats and vectors similarly:

m_pEffect->SetFloat ("noiseFrequency ", &m_fNoiseFreq);
m_pEffect->SetVector("g_Leye", &g_Leye);

 Likewise, with textures:

m_pEffect->SetTexture("tVolumeNoise", m_pVolumeNoiseTexture);
m_pEffect->SetTexture("tMarbleSpline", m_pMarbleColorSplineTexture);

Introduction to the DirectX® 9 High Level Shading Language

 43

 With all of the proper constants set up, we can set the desired technique and
render all of its passes (in this case, just one):

m_pEffect->SetTechnique(m_pEffect->GetTechniqueByName("technique_hlsl_bluemarble"));

m_pEffect->Begin(&cPasses, 0);
for (iPass = 0; iPass < cPasses; iPass++)
{
 m_pEffect->Pass(iPass);

 // Render geometry
}
m_pEffect->End();

 As you can see, this is a straightforward process which hides several unnecessary
burdens from the application. For example, the application never needs to know what
hardware constant register to load g_Leye into or which sampler the noise texture should
be bound to. These details are all managed by the D3DX Effects framework.

Integration into an engine without using D3DX Effects

We have found that some ISVs prefer not to wed their code too closely to D3DX
because of cross-platform development or overhead concerns. As a result, while the use
of D3DX Effects for HLSL shader management is very convenient, it is not required. Of
course, giving up the convenience of D3DX Effects means that the application will have
to take responsibility for tracking and setting up the appropriate constants and samplers
prior to rendering with a given shader. We will now discuss how this is done.

Since you won’t be creating D3DX Effects which trigger compilation of HLSL

code, you must invoke the HLSL compiler explicitly in your application. In fact, this is
very similar to the application code you would write for use of assembly shaders except
that you call one of the D3DXCompileShader*() routines instead of one of the
D3DXAssembleShader*() routines. You then pass the resulting asm code to the
appropriate CreatePixelShader() or CreateVertexShader() entrypoint just as you
would for an assembly shader that was assembled rather than compiled. An example of
this usage is shown in the following code snippet:

if (FAILED (hr = D3DXCompileShaderFromFile (g_strVHLFile, NULL, NULL, "main", "vs_1_1",
NULL, &pCode, NULL, &m_VS_ConstantTable)))
{
 return hr;
}

if (FAILED (hr = m_pd3dDevice->CreateVertexShader ((DWORD*)pCode->GetBufferPointer(),
&m_HLSLVertexShader)))
{
 return hr;
}

From ShaderX2 - Introduction and Tutorials with DirectX 9

44

 You’ll notice in the above code that the D3DXCompileShader*() routines have
some additional parameters not found in the D3DXAssembleShader*() routines.
Specifically, it is necessary to specify the name of the main entrypoint for the shader as
well as the compile target (“main” and “vs_1_1” above). You can also optionally specify
values of #defines, include files and flags to control generation of debug information,
optimization, validation and matrix data ordering. All of these inputs are passed to the
D3DXCompileShader*() routines via the first six parameters. The last three parameters
are pointers to buffers which get filled in by the compiler: the binary assembly code,
human-readable error messages (optional) and the constant table. The binary assembly
code is what gets passed to CreatePixelShader() or CreateVertexShader(), while
the constant table must be used by the application to know how to load the proper
constant data prior to executing a given HLSL shader. We will devote the remainder of
this discussion to the final parameter returned from the D3DXCompileShader*() routine,
as this is the most critical piece to understand when integrating HLSL shaders into an
application without the use of Effects. You can refer to the documentation for discussion
of the other parameters.

The Constant Table

 The constant table returned from the D3DXCompileShader*() routine is used to
map high level constants and samplers to specific hardware constants and samplers.
Non-static variables declared at global scope are considered input parameters to the
compiled shader and must be properly initialized in order for the shader to execute
correctly. The constant table provides this mapping. Typically, it is most convenient for
an application to use the ID3DXConstantTable interface directly, as this does not require
the application to parse the actual data structures of the constant table. The
ID3DXConstantTable interface provides a number of convenient methods for looking up
handles of known HLSL variables based upon their ASCII names. The appropriate
values for these HLSL variables may then be set as shown in the following code snippet:

D3DXHANDLE handle;

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "ringFreq"))
{
 m_PS_ConstantTable->SetFloat(m_pd3dDevice, handle, m_fRingFrequency);
}

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "lightWood"))
{
 m_PS_ConstantTable->SetVector(m_pd3dDevice, handle, &lightWood);
}

Introduction to the DirectX® 9 High Level Shading Language

 45

 Likewise, textures and sampler state must be set up correctly as shown in the
following code snippet:

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "NoiseSampler"))
{
 m_PS_ConstantTable->GetConstantDesc(handle, &constDesc, &count);

 if (constDesc.RegisterSet == D3DXRS_SAMPLER)
 {
 m_pd3dDevice->SetTexture (constDesc.RegisterIndex, m_pVolumeNoiseTexture);

 // Set sampler states appropriate for the Noise Sampler
 m_pd3dDevice->SetSamplerState (constDesc.RegisterIndex, …, …);

 }
}

 The implication of this, of course, is that render states, texture stage states and
sampler states must be maintained by the application and are in no way encapsulated in
the HLSL shader code as they would be using D3DX Effects.

 Of course, particularly in any kind of shader-authoring tool, there may be no a
priori application knowledge of the names of variables or samplers expected. In this case,
it will be necessary to use the ID3DXConstantTable::GetDesc() method to determine
the number of constants in the constant table. Subsequently, the application can use the
ID3DXConstantTable::GetConstantElement() method rather than the
ID3DXConstantTable::GetConstantByName() method used in the code snippets above.
In general, it is a good idea to familiarize yourself with the ID3DXConstantTable
interface if you intend to integrate support for HLSL shaders into your application
without the use of D3DX Effects.

SDK Updates

Since the release of DirectX 9.0 and the subsequent DirectX 9.0a patch, Microsoft
has committed to releasing periodic SDK updates for developers. These SDK updates do
not contain Direct3D runtime changes, but do include upgrades to important D3DX tools
including the HLSL compiler. It is highly recommended that you keep up to date with
the latest released DirectX SDK updates so that you are using the latest compiler revision
and generating the best possible asm from your HLSL source.

Conclusion

We have presented a detailed description of the Direct3D High Level Shading
Language (HLSL) which is one of the most significant new features of DirectX 9. We
have presented an introduction to the mechanics of the language itself and reinforced key
concepts with sample shaders. We have also given some insights into the compilation
process and how you can best write shaders for optimal performance. We hope this
introduction has provided you with a solid foundation so that you can understand the

From ShaderX2 - Introduction and Tutorials with DirectX 9

46

HLSL shaders presented in later chapters and begin integrating HLSL shaders into your
own projects.

Acknowledgements

Thanks to ATI’s 3D Application Research Group for providing the sample HLSL
shaders. Thanks to Dan Baker and Loren McQuade of Microsoft for their feedback and
specifically their contributions to the section on optimizations. Thanks also to Mark
Wang and Wolfgang Engel for valuable comments which resulted in greater clarity.

