AAyo6pi10uol kail ZuotApara yia 3A Mpagikda

Tunpa MAnpogopikng
MavemoTAuio lwavvivwyv
Xeipepivo ESaunvo 2006-2007

A2ZKHZH 1:Raytracing ka1 Supersampling

MapadwoTte TNV doknon héExP! TNV Tetdptn 22/11/2006. Oa TTapadwaoTe JIa EIKOVA Yia KABE
MEPOG TNG AOKNONG Kal TOV TEAIKO uévo KwdIka 6Aa padi os éva CD.

0. Mpiv apyiocere

KarteBdoTe Tov TTNyaio kwdika aTrod T0: http://www.cs.uoi.gr/~fudos/grad-exer1/source.zip

Emiong karepdoTte 10 zexr http://www.cs.uoi.gr/~fudos/grad-exer1/zexr_pc.zip TTPOYypaAUPa
yla va BAETTETE .exr apXeia Kal KAvTe TO unzip oTov idlo KATAAOYO UE TOV TTNYAio KWAIKA TNG
AaoKnong.

XpnoiyotroimoTe Visual Studio 2003 i petayevéoTepo, KAVTE TIG PUBUICEIG TTOU XPEIGCovTAl.
Xpnoiyotroijote 70 Release mode kaBwg 10 Debug mode ptropei va eivalr oAU apyd.
Katroia atrd 1a warnings yia eEwTtepIkES PIBAIOBAKES pTTOPEITE Va Ta ayvoroeTe. OTav KAVETE
emTuxnuévo compilation Ba dnuioupynBei éva ekteAéoiyo (asrTracer.exe) OoTov KATGAOYO
TTOU €PYACEOTE.

Avoitte éva command prompt kai kavte cd oTov KatdAoyo epyaciag. EkteAéaTe TO asrTracer
Kal pEAETAOTE TN £€000 TOU (apxeio output.exr) pe 1o zexr. H £€6000¢ cival pia yaupoaoTrpn
eIkOva 512x512 n otroia €xel dotrpa pixels GTToU N AKTiva XTUTTA TNV OKNVH Kal Jaupa aAAou

KoITd&Te TOV KWAIKA Kal TNV 0gAida

http://www.cs.uoi.gr/~fudos/grad-exer1/doc/hierarchy.html.

2UYKEKPIUEVO KOITAETE TTEPIOCOTEPO TO main.cpp Kal TG classes Raytracerand
WhittedTracer. Ztnv doknon autr] Ba kavete 6An tnv uAotroinn otnv class WhittedTracer
class.

1. Direct lllumination

When the function computelmage() is called from the main function, the raytracer loops
over all pixels in the image and calls tracePixel(x,y) for each of them. The
tracePixel function is responsible for computing the output color of the pixel at coordinate
(x,y) and is implemented in the WhittedTracer class. Look at the implementatation in
WhittedTracer: :tracePixel.

http://www.cs.uoi.gr/%7Efudos/grad-exer1/source.zip
http://www.cs.uoi.gr/%7Efudos/grad-exer1/source.zip
http://www.cs.uoi.gr/%7Efudos/grad-exer1/doc/hierarchy.html

First, it computes the coordinate for the center of the pixel and then asks the camera to
setup a suitable ray that goes from the camera origin through the pixel center. We trace this
ray in the trace(ray,depth) function. In the trace function, the ray is intersection tested
against the scene by the lines:

Intersection is;
bool hit = mScene->intersect(ray,is);

The intersect function returns true if the ray hits the scene, and information about the
intersection point is returned in the Intersection object. In the default implementation, the
output color is simply set to white by: out = Color(1,1,1) if the ray hits the scene.

Your first task is to implement direct illumination to make the scene look a little nicer.
Replace the constant output color with the call: out = directlllumination(is). This
function takes the Intersection object as input and should compute the direct illumination
from the light sources in the scene. Implement this function. Do not worry about shadow
rays for now, assume all light sources in the scene are visible.

The implementation of directlllumination involves the following steps. For each light
source, compute the light vector which is the vector from the hit point to the light source.
This vector needs to be normalized. The contribution from a light source is computed as the
radiance of the light multiplied by the BRDF of the material at the hit point. The output color
is the sum of all the contributions. If done correctly, the output will look like this:

Some hints

int n = mScene->getNumberOfLights(); Returns the number — of light

sources
PointLight* 1 = mScene->getLight(i); ?izgrﬂfl) Tight souree number
Point pl = I->getWorldPosition(); Position of the light source
Point p2 = is.mPosition; Position of the hit point
L.normalize(); Normalizes a vector
Color r = I->getRadiance(); Output light radiance (color)
Color w = is.mMaterial->getBRDF(is,L); Returns the BRDF for light vector

L

2. Shadows

The image in the previous exercise looks very artificial because it lacks shadows. Your next
task is to incorporate shadows into the computation of the direct illumination. In raytracing,
this is easily accomplished by tracing so called shadow rays towards the light sources. A
light source is visible only if the shadow ray does not hit anything. If the shadow ray hits
something on its way to the light source, the object is in shadow and we shall not take the
contribution from the light source into account.

Add code for tracing shadow rays to your implementation of the directlllumination
function. This should only be a small add on and does not require any major changes. The
new output is shown in the image on the right side on the previous page.

Hints

Ray r = getShadowRay(is,l); Setup a shadow ray towards light source
bool hit = mScene->intersect(r); Returns true if the ray hit something

3. Reflections

The next step to achieve more realistic images is to add reflections. Similar to how shadows

where computed in the last exercise, we do this by tracing reflection rays. There are
however a number of important differences. When the reflected ray hits something, we need
to compute the direct illumination at the hit point and possibly trace a second reflection ray,
and so on. Since it is possible for the raytracer to get stuck in an infinite series of reflections,
we need some stopping criteria. The simplest is to terrminate the raytracer at a fixed depth.

First, we need to turn on reflections for the materials in our scene. Go to the function
buildTestScene in main.cpp, and uncomment the lines that say:

xxx->setReflectivity(...);

For the materials called matteOrange, shinyGreen, matteBlackWhite,
matteRedBlue. Now, implement reflections by modifying your trace(ray,depth)
function to trace reflection rays recursively down to a certain depth cutoff. Try with a low
number first, for example stop when depth is 1 (only first reflection). A correct
implementation should look like this:

reflected ray

~
*

incoming ray

depth cutoff = 1 depth cutoff =

depth cutoff =

In the first image, first reflections appear but the secondary reflections are missing (look
under the green ball). There are only small differences when going up to depth 3 or higher.

The amount of reflection is determined by the material of the object where the ray hits. The
following function returns the reflection coefficient at the hit point:

float r = is.mMaterial->getReflectivity(is);

The reflection coefficient is a number between 0.0 and 1.0, where 0.0 means not reflective
at all and 1.0 means a perfect mirror. For reflective materials, the number is usually
somewhere in between. To get the correct result, the light from the direct illumination must
be weighted by the light received from the reflection, so that a proportion r is taken from the
reflection and (1-r) from the direct illumination. Hence, the output color should be:

out = (1-r)*direct + r*reflected;

Note that the reflection ray should only be traced if the reflection coefficient is larger than 0,
otherwise the material is not reflective and it is completely unecessary to trace reflection
rays. Also, do not forget to check that the depth is under the depth cutoff you are using.
Otherwise the raytracer might never terminate.

Hints

Ray r1 = getReflectedRay(is); Creates a reflection ray Color
reflected = trace(r1,depth+1) Calls trace recursively to get reflection

4. Refractions

Another important feature of a raytracer is the ability to handle transparency and refractions.
Many real materials are more or less transparent. Examples include glass, plastic, liquids.
When light enters a transparent material, it is usually bent or refracted. How much is
determined by index of refraction of the material. In this exercise we will simulate refractions
by tracing refraction rays:

N
A !
T, shadow rays \

refraction rays

incoming ray

We start by preparing the materials. First, turn off reflections on these materials:
matteOrange, shinyGreen, matteRedBlue, by commenting out the calls to

setReflectivity in main.cpp that we enabled in the previous exercise. Leave the
reflections on for the material on the floor, matteBlackWhite. Now, enable transparency
for the above mentioned materials by uncommenting the lines that read:

xxx->setTransparency(...);
xxx->setlndexOfRefraction(...);

In this exercise, you should add code for tracing refraction rays to your tracefunction. The
implementation for this will be very similar to the code for tracing reflection rays. The
computation of the refracted light should be done recursively in the same way as for the
reflected light. It is useful to use a little higher depth cutoff, for example 5, to better see the
effect. The amount of transparency for the material at the hit point is returned by:

float t = is.mMaterial->getTransparency(is);

As earlier, this is a number between 0.0 and 1.0, where 0.0 means no transparency and 1.0
means fully transparent. Only if the transparency is larger than 0.0 do we need to trace
refraction rays. We assume that a fraction t of the light should come from the refraction ray,
and (1-t) from light computed previously (direct + reflected). Therefore, we get the following
weighting of the different components:

out = (1-t) * ((1-r)*direct + r*reflection) + t * refracted;

Correctly implemented, the output will be the image on the right. The smaller ball has full
transparency (1.0), the larger ball is almost completely transparent but has a hint of green,
while the elephant is only half transparent (0.5).

Notice that the rendering is now a little slower than before since we are tracing many more
rays. At each intersection point, we shoot 3 shadow rays, possibly one reflection ray, and
one refraction ray. This is done recursively, so the number of rays can grow dramatically.

Hints

Ray r2 = getRefractedRay(is); Creates a refraction ray Color
refracted = trace(r2,depth+1l) Calls trace recursively to get refraction

5. Supersampling

All of the images produced so far appear very aliased when zoomed in. This is because we
are only tracing single ray through each pixel (remember the tracePixel (x,y) function).
To get a smoother result, it is necessary to use some kind of supersampling. In this exercise
you will implement a simple supersampling scheme to avoid aliasing. You may choose to
implement either a uniform grid sampling or a stratified random sampling. If you want, you
can do both.

(x,y) (xy) (x,y)
e oo ® o |®
o e|lo| o o |© o
e|lo|o @ o | ©
(x+1,y+1) (x+1,y+1) (x+1,y+1)
Single sample Uniform grid Stratified random

Since supersampling is much slower than using a single sample, it is a good idea to turn off
refractions and go back to one of the previous scenes while experimenting. It can also help
to lower the depth cutoff. The images shown here were done on the scene from Exercise 4,
with depth cutoff set to 2.

Implement supersampling by modifying the code in the tracePixel(x,y) function. The
default implementation computes the coordinate of the center of the pixel (as shown in the
left image above), and performs just one call to trace(ray,depth). Change it so that a
number of sample positions are computed (try with 2x2 or 3x3), and call the trace function
for each of your new samples. The output color should be the average of the color returned
by the samples, so you must not forget to divide by the number of samples.

See the next page for examples of what the output images will look like with 3x3
supersampling (9 samples) using the two methods: uniform grid and stratified random.

Notice how much smoother the image is with supersampling enabled. The drawback is of
course that the rendering time is 9 times as long as before.

6. Optional Exercises

If you want to further explore raytracing, there are a number of optional exercises you may
try. Make sure you finish all the compulsory exercises first though. Suggestions are:

e Create a more interesting scene by adding objects, materials, lights, etc. You may

download additional meshes (.obj) files from
http://www.cs.uoi.gr/~fudos/grad-exer1/objects/.

e Implement a better technique for depth cutoff in the raytracer. One idea is to
terminate when the light contribution from the ray is too small to be noticeable.

e Try other schemes for supersampling.

¢ Any other extension of your choice.

Conclusions

In this assignment you have implemented the core parts of a simple Whitted raytracer.
Starting with a dull scene without shadows, reflections and refractions, all of these effects
were added relatively easy. Finally, supersampling was implemented to reduce aliasing and
making the images smoother. However, even an advanced Whitted-style raytracer produces
images that look quite artificial.

Supersampling Images

Single sample 3x3 Uniform grid 3x3 Stratified random

http://www.cs.uoi.gr/%7Efudos/grad-exer1/objects/

