
IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 1

Depth-fighting Aware Methods for
Multi-fragment Rendering

Andreas A. Vasilakis, Ioannis Fudos, Member, IEEE

Abstract—Many applications require operations on multiple fragments that result from ray casting at the same pixel location.
To this end, several approaches have been introduced that process for each pixel one or more fragments per rendering pass,
so as to produce a multi-fragment effect. However, multi-fragment rasterization is susceptible to flickering artifacts when two or
more visible fragments of the scene have identical depth values. This phenomenon is called coplanarity or Z-fighting and incurs
various unpleasant and unintuitive results when rendering complex multi-layer scenes. In this work, we develop depth-fighting
aware algorithms for reducing, eliminating and/or detecting related flaws in scenes suffering from duplicate geometry. We adapt
previously presented single and multi-pass rendering methods, providing alternatives for both commodity and modern graphics
hardware. We report on the efficiency and robustness of all these alternatives and provide comprehensive comparison results.
Finally, visual results are offered illustrating the effectiveness of our variants for a number of applications where depth accuracy
and order are of critical importance.

Index Terms—depth peeling, Z-fighting, visibility ordering, multi-fragment rendering, A-buffer

✦

1 INTRODUCTION

Current graphics hardware facilitate real time ren-
dering for applications that require accurate multi
fragment processing such as 3D scene inspection for
games and animation, solid model browsing for com-
puter aided design, constructive solid geometry, visu-
alization of self crossing surfaces, and wireframe ren-
dering in conjunction with transparency and translu-
cency. This is accomplished by processing multiple
fragments per pixel during rasterization. Z-fighting is
a phenomenon in 3D rendering that occurs when two
or more primitives have the same or similar values in
the Z-buffer (see Figure 1). Z-fighting may manifest
itself through: (i) intersecting surfaces that result in
intersecting primitives, (ii) overlapping surfaces, i.e.
surfaces containing one or more primitives that are
coplanar and overlap, (iii) non-convergent surfaces
due to the fixed-point round-off errors of perspective
projection.

Traditional hardware supported rendering tech-
niques do not treat Z-fighting and render only one of
the fragments that possess the same depth value. This
results in dotted or dashed lines or heavily speckled
surface areas. In this context, Z-fighting cannot be
totally avoided and may be reduced by using a higher
depth buffer resolution and inverse mapping of depth
values in the depth buffer [1] or using depth bias [2].

Multi-fragment capturing techniques are even more
susceptible to Z-fighting, since they need to examine
all fragments (even those that are not visible) in a

• A. A. Vasilakis and I. Fudos are with the Department of Computer
Science, University of Ioannina, Greece.
E-mail: abasilak@cs.uoi.gr - fudos@cs.uoi.gr

Fig. 1: Illustrating unpleasant effects when rendering
(a) intersecting or (b) overlapping surfaces on pop-
ular modeling programs such as (a) Blender 2.5 and
(b) Google SketchUp 8.

certain order (ascending, descending or both) before
deciding what to render. Thus, they may encounter
multiple Z-fighting triggered liabilities per pixel.

Correct depth peeling techniques are important for
a number of coplanarity-sensitive applications (see
Figure 2), from non-photorealistic rendering (e.g. or-
der independent transparency [3], styled/wireframe
rendering [4]) to shadow volumes, boolean opera-
tions, self-trimmed surfaces [5] and visualization of
intersecting surfaces [6].

In this work, we do not treat the numerical robust-
ness/instability that arises due to the finite precision
of the Z-buffer and the numerical errors incurred
from the transformations applied prior to render-
ing. However, we introduce image-based coplanarity-
aware algorithms for reducing (may miss fragments
but are usually faster), eliminating (guaranteed to
extract all fragments) and/or detecting-highlighting
related flaws in scenes suffering from coplanar ge-
ometry. We provide alternatives for both commodity

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 2

and modern graphics hardware. We further present
quantitative and qualitative results with respect to
performance, space requirements and robustness. A
short discussion is offered on how to select a variant
from the given repertoire based on the application,
the scene complexity and the hardware limitations.
Finally, visual output is provided illustrating the effec-
tiveness of our variants over the conventional meth-
ods for a number of Z-fighting sensitive applications.

The structure of this paper is as follows: Section
2 offers a brief overview of prior art. Section 3 in-
troduces robust and approximate algorithm variants
along with several optimization techniques. Section 4
provides extensive comparative results for all multi-
fragment rendering alternatives. Finally, Section 5
offers conclusions and identifies promising research
directions.

0+10/+1/+2-1/0/+1

light source

eye point

(a)

coplanarity

(b)

co
p

lan
arity

0

+1

+2

+1

0/+1/+2

-1/0/+1

Fig. 2: Illustrating the values of the popular winding
number when ray casting for in/out classifications of
(a) shadow volume components and (b) constructive
solid geometry. Red-painted values highlight erro-
neous computations (in cases where only one of the
two coplanar fragments is successfully captured).

2 RELATED WORK

Fragment level techniques work by sorting surfaces
viewed through each sample position, avoiding the
sorting drawbacks that occur in object/primitive sort-
ing techniques [7], [8] (e.g. geometry interpenetra-
tion, primitive splitting) or hybrid methods that or-
der the generated fragments by exploiting spatial
coherency [9], [10], [11]. These algorithms can be clas-
sified in two broad categories, those using depth peel-
ing and those employing hardware implemented buffers,
according to the approach taken to resolve visibility
ordering [3].

Given the limited memory resources of graphics
hardware, multi-pass rendering is often required to
carry out complex effects, often substantially limiting
performance. Probably the most well-known multi-
pass peeling technique is front-to-back (F2B) depth

peeling [12], which works by rendering the geometry
multiple times, peeling off a single fragment layer per
pass. Dual depth peeling (DUAL) [13] speeds up multi-
fragment rendering by capturing both the nearest and
the furthest fragments in each pass. Finally, [14] ex-
tends dual depth peeling by extracting two fragments
per uniform clustered bucket (BUN). To reduce collisions
at scenes with highly non-uniform distributions of
fragments, they further propose to adaptively subdivide
depth range (BAD) according to fragment occupa-
tion [15] at the expense of extra rendering passes and
larger memory overhead.

However, all currently proposed depth peeling
techniques cannot deal with fragments of equal depth,
thus detecting only one of them and missing the
others. A number of solutions have been introduced
to alleviate coplanarity issues in depth peeling. [4]
proposes id peeling, which addresses artifacts where
lines obscure other lines by allowing a line fragment
to pass only if its index is lower than the highest
index at the corresponding pixel in the previous it-
eration. Despite its accurate behavior, it peels only
one fragment per peeling iteration and cannot support
rendering of occluded edges. [16] extends this work
to a multi-pass scheme achieving robust rendering
behavior with the trade-off of low frame rates. Re-
cently, [6] introduced coplanarity peeling extending F2B
with in/out classification masking. However, it can
only distinguish coplanar fragments between different
objects that do not self-intersect.

On the other hand, buffer-based methods use GPU-
accelerated structures to hold multi-fragments (even
coplanar) per pixel. The major limitations of this
class are firstly, the potentially large and possible
wasted memory requirements due to their strategy
to allocate the same memory for each pixel (see Fig-
ure 3(a)) and secondly, the necessity of an additional
fullscreen post-processing pass to sort the captured
fragments. K-buffer (KB) [17] and stencil routed A-
buffer (SRAB) [18] increase performance by capturing
up to k fragments in a single rendering pass. Read-
modify-write hazards (RMWH) during KB updates
can be fixed using a multi-pass variation of this
algorithm (MultiKB) [19]. Conversely, SRAB avoids
RMWH but is incompatible with hardware supported
multi-sample antialiasing and stencil operations. Re-
cently, [20] develops a sorting-free and memory-aware
GPU-based k-buffer technique for their hair rendering
framework.

[21] introduces a complete CUDA-based rasteri-
zation pipeline (FreePipe) maintaining multiple un-
bounded fragments per pixel in real-time. To super-
sede pixel level parallelism, [22] extends the domain
of parallelization to individual fragments. However,
both methods limit user to switch from the traditional
graphics pipeline to a software rasterizer. FreePipe has
been realized using modern OpenGL APIs (FAB) [23].

To alleviate the memory consumption of fixed-

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 3

Head Pointers

null

Fragment Data

Next Pointers

null null

Shared

 Counter

Head Pointers

Fragment Data

null

Fragment Data

Head Pointers

Fig. 3: A-Buffer realizations using per-pixel (a) fixed-size arrays, (b) linked-lists and (c) variable sequential regions.
(a) and (c) structures pack pixel fragments physically close in the memory avoiding random memory accesses
of (b) when accessing the entire fragment list. However, (a) allocates the same number of entries per pixel
resulting at significant waste of storage and possible fragment overflows.

length structures, [24] proposed dynamic creation of
per-pixel linked lists (LL) on the GPU. However, its per-
formance degrades rapidly due to the heavy fragment
contention and the random memory accesses when
assembling the entire fragment list (see Figure 3(b)).

To avoid limitations of constant-size array and
linked-lists structures, S-buffer (SB) [25] organizes lin-
early memory into variable contiguous regions for
each pixel as shown in Figure 3(c). The memory offset
lookup table is computed in a parallel fashion exploit-
ing sparsity in the pixel space. However, the need of
an additional rendering step results in performance
downgrade when compared to FAB.

3 CORRECTING RASTER-BASED PIPELINES

We have investigated two approaches to treat frag-
ment coplanarity in image space that can be applied to
several depth peeling methods. Both approaches can
be successfully integrated into the standard graphics
pipeline and can take advantage of features such as
multi-sample antialising (MSAA), GPU tessellation
and geometry instancing. Firstly, we introduce an
additional term to the depth comparison operator.
Secondly, we present an efficient pipeline which can
capture multiple coplanar fragments per depth layer
by exploiting the advantages of buffer-based tech-
niques. The core methodology for these extensions
is explained in detail by applying it to the front-to-
back depth peeling method (shader-like pseudo-code
is also provided). Then, a brief discussion is provided
for applying it to the other depth peeling techniques.

We classify our algorithms based on the fragment
hit ratio Rh, also called robustness ratio (i.e the total
number of extracted fragments over the total number
of fragments). Robust algorithms succeed to capture
all fragment information of a scene regardless of the
coplanarity complexity (i.e. Rh = 1). On the other
hand, approximate algorithms are not guaranteed to ex-
tract all fragments (i.e. Rh ≤ 1). The main advantage

of the latter is the superiority of the performance over
the robust methods at the expense of higher memory
space requirements.

We describe features and trade-offs for each tech-
nique, pointing out GPU optimizations, portability
and limitations that can be used to guide the decision
of which method to use in a given setting.

3.1 Robust Algorithms

We introduce two robust solutions for peeling the
entire scene through a multi-pass rendering pipeline.
The first one extracts a maximum of two coplanar
fragments per iteration, implemented with a constant
video-memory budget. Each iteration carries out one
or more rendering passes depending on the algorithm.
The second technique is able to capture at once all
fragments that lie at the current depth layer before
moving to the next one using dynamic creation of per-
pixel linked lists.

3.1.1 Extending F2B

Overview. The classic F2B method [12] proposed a
solution for sorting fragments by iteratively peeling
off layers in depth order. Specifically, the algorithm
starts by rendering the scene normally with a depth
test, which returns the closest per-pixel fragment to
the observer. In a second pass, previously extracted
fragments are eliminated based on the depth value
extracted during the last iteration (pass) returning the
next nearest layer underneath. The iteration loop halts
either if it reaches the maximum number of iterations
set by the user or if no more fragments are produced.
Figure 4 (top row, red colored boxes) illustrates the
consecutive color layers when depth peeling a duck
model in a front-to-back direction.

Unfortunately, fragments with depth identical to
the depth layer detected in the previous iteration are
discarded and thus not considered in the underlying
application. We introduce a robust coplanarity aware

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 4

2nd Iteration 3rd Iteration 4th Iteration

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 5th Iteration 6th Iteration

Front-to-back Peeling

Dual Peeling

1st Bucket 2nd Bucket 3rd Bucket 4th Bucket 5th Bucket 6th Bucket 7th Bucket 8th Bucket

Uniform Bucket Peeling

1st Iteration

Fig. 4: The color-buffer result of each extracted layer
when depth peeling is performed using F2B, DUAL
(top row) and BUN (bottom row).

variation of F2B (F2B-2P) by adapting the F2B algo-
rithm so as to peel all fragments located at the current
depth before moving to the next depth layer. The basic
idea of this technique is to use an extra rendering
pass to count per pixel the (non-peeled) coplanar frag-
ments at a specific depth layer. To extract all coplanar
fragments, we use the GPU auto-generated primitive
identifier (gl PrimitiveID [29]) that is unique per prim-
itive geometric element and is inherited downwards
to fragments produced by this primitive. To decide,
at iteration i, which fragments among the remaining
coplanar ones to extract, we store the minimum and
maximum identifiers (denoted as idimin and idimax,
respectively) of these fragments:

idimin = min{idf}, id
i
max = max{idf}, ∀ idf ∈ (idi−1

min, id
i−1

max)

We define as non-peeled a fragment f that has a
primitive identifier (denoted as idf) in the range of the
identifiers determined during the previous step i− 1.
This strategy guarantees that all coplanar fragments
will survive since:

id1min < id2min < · · · < id2max < id1max

Finally, a subsequent rendering pass extracts the frag-
ment information of the corresponding identifier and
decides whether the next depth layer underneath
should be processed by accessing the counter infor-
mation. If the counter is larger than two, we have to
keep peeling at the current layer since there is at least
one more fragment to be peeled.
GPU Implementation. We use one extra color tex-
ture (with internal pixel format RGBA 32F) to store
the min/max identifiers at the RG channels and the
counter at the A channel. Querying and counting for
the identifier range and the counter may be performed
in one rendering pass using 32bit floating point blend-
ing operations. When computing the output color,
two blending operations are used: MAX for the RGB
portion of the output color, and ADD for the alpha
value. To query the minimum identifier using maxi-
mum blending, we store the negative identifier of the
primitive.

A second rendering pass is employed to simulta-
neously extract the fragment attributes and the next
depth layer exploiting multi-render targets (MRT).
Depth testing is again disabled while the blending
operation is set to MAX for all components of the
MRT. The custom (under-blending) min depth test is
implemented adapting the idea of the min/max depth
buffer of DUAL [13] with the use of a color texture
(R 32F). If the counter is less or equal than two,
then we have extracted all information in this layer.
We move on to the next one by keeping (blending)
the fragments with depth greater than the previously
peeled layer. Otherwise, we discard all fragments that
do not match the processing depth. The min and max
color textures (RGBA 8) are initialized to zero and
updated only by the fragments that correspond to the
captured identifiers. The algorithm guarantees that
no fragment is extracted twice. Initially, we render
the scene so as to efficiently capture only the closest
depth layer before proceeding with the counter and
identifier computation pass.

The details of this method are shown in Algo-
rithm 1, where OUT.xxx denote the output MRT fields,
IN.xxx the input texture fields (initialized to zero) and
FR.xxx the attributes of each fragment.

Algorithm 1 F2B-2P Depth Peeling

/* 1st Rendering Pass using MAX Blending */

1: if FR.depth < −IN.depth then
2: discard ;
3: end if
4: OUT.colormin ← (−IN.idmin == FR.id) ? FR.color : 0.0 ;
5: OUT.colormax ← (IN.idmax == FR.id) ? FR.color : 0.0 ;
6: OUT.depth ← (IN.counter > 2 or −IN.depth 6= FR.depth) ? −

FR.depth : −1.0 ;

/* 2nd Rendering Pass using MAX and ADD Blending */

1: if (IN.counter ≤ 2 or FR.id ∈ (−IN.idmin, IN.idmax)) and

(−IN.depth == FR.depth) then
2: OUT.idmin ← −FR.id ;
3: OUT.idmax ←FR.id ;
4: OUT.counter ← 1.0 ;
5: else
6: discard ;
7: end if

Discussion. The drawback of this technique is the
increase of the rasterization work as compared to the
original F2B algorithm by a factor of two. Moreover,
the requirement for per-pixel processing via blending
may result to a rasterization bottleneck after multiple
iterations.

Pre-Z pass [26] is a general rendering technique for
enhancing performance despite the additional render-
ing of the scene. Specifically, a double-speed rendering
pass is firstly employed to fill the depth buffer with
the scene depth values by depth testing and turning
off color writing. Shading the scene with depth write
disabled, results on enabling early-Z culling; a com-
ponent which automatically rejects fragments that do
not pass the depth test. Therefore, no extra shading
computations are required.

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 5

We introduce the F2B-3P technique, an F2B-2P vari-
ant which follows the above pipeline. The idea is
to carry out the first rendering pass of F2B-2P in
two passes. A double-speed depth rendering pass
is performed to compute the (next) closest depth
layer. Then, by exploiting early-Z culling, we perform
counting and identifier queries by enabling blending,
turning off depth writing and changing depth com-
parison direction to EQUAL. The difference from the
second pass of Algorithm 1 is that depth comparisons
inside the shader are not needed, thus minimizing
the number of texture accesses. Shading is performed
in a subsequent pass by matching the fragments of
the extracted identifier set without modifying pixel-
processing modes (blending or Z-test) of the previous
pass. This modified GPU-accelerated version uses the
same video memory resources and performs slightly
better than its predecessor in some cases despite the
cost of the extra rendering pass.

3.1.2 Extending DUAL
Overview. DUAL depth peeling [13] increases perfor-
mance by applying the F2B method for the front-to-
back and the back-to-front directions simultaneously.
Due to the unavailable support of multiple depth
buffers on the GPU, a custom min-max depth buffer is
introduced. In every iteration, the algorithm extracts
the fragment information which match the min-max
depth values of the previous iteration and performs
depth peeling on the fragments inside this depth set.
An additional rendering pass is needed to initialize
depth buffer to the closest and the further layers.
Figure 4 (top row, blue colored boxes) shows that the
number of rendering iterations needed is reduced to
half when simultaneous bi-directional depth peeling
is used.

To handle coplanarity issues raised at both di-
rections, we have developed a variation of DUAL
(DUAL-2P), which adapts the F2B-2P algorithm for
working concurrently in both directions.
Discussion. Developing manually a min-max depth
buffer requires turning off the hardware depth buffer.
Thus, we cannot benefit from advanced extensions of
the graphics hardware in the DUAL workflow (such
as the ones used for F2B-3P). DUAL-2P depth peeling
as compared to the F2B-2P and F2B-3P variations,
reduces the rendering cost to half by extracting up
to four fragments simultaneously. The burden for
providing this feature is that it requires twice as much
memory space.

3.1.3 Combining F2B and DUAL with LL
Overview. [24] introduced a method to efficiently
construct highly concurrent per-pixel linked lists via
atomic memory operations on modern GPUs. The
basic idea behind this algorithm is to use one buffer
to store all linked-list node data and another buffer
to store head offsets that point the start of the linked

lists in the first buffer. A single shared counter (next)
is atomically incremented to compute the mapping
of an incoming fragment, followed by an update of
the head pointer buffer to reference the last rasterized
fragment (see Figure 3(b)).

Although fast enough for most real-time render-
ing applications, the creation of these lists may in-
cur a significant burden on video memory require-
ments when the number of fragments to be stored
increases significantly. We propose two efficient multi-
pass coplanarity-aware depth peeling methods (F2B-
LL and DUAL-LL) by combining F2B and DUAL with
LL. The idea is to store all fragments located at the
extracted depth layer(s) using linked-list structures.
Coplanarity issues can be easily handled using this
technique without wasting any memory.
GPU Implementation. The rendering workflow of
F2B-LL consists of two passes: Firstly, a double speed
depth pass is carried out enabling Z-buffering. Sec-
ondly, we construct linked lists of the fragments lo-
cated at the captured depth by changing depth com-
parison direction to EQUAL and turning off depth
writing (which results at early-culling optimizations).

The details of this method are shown in Algo-
rithm 2, where LL.xxx denote the linked list fields,
IN.xxx the input texture fields (initialized to zero) and
FR.xxx the attributes of each fragment.

Algorithm 2 F2B-LL Depth Peeling

/* 1st Rendering Pass using LESS/EQUAL Z-test comparison */

1: if FR.depth <= IN.depth then
2: discard ;
3: end if

/* 2nd Rendering Pass using EQUAL Z-test comparison */

1: LL.next և LL.next+1 ;
2: LL.head[LL.next] ← IN.head ;
3: LL.node[LL.next] ← FR.color ;
4: IN.head ← LL.next ;

// where և denotes an atomic memory operation

Construction of a min/max depth buffer for DUAL-
LL disables depth testing, which results in an increase
of the number of texture accesses and per pixel shader
computations. In the context of storage, one extra
screen image is allocated for the head evaluation of
the back layer. To avoid a slight increase of contention
due to the extensive attempts of accessing the shared
memory area from both front and back fragments, an
additional address counter variable for back layers
is used (nextback). Conflicts between front and back
fragments are avoided by employing an inverse mem-
ory mapping strategy for the fragments extracted in
the back-to-front direction. Specifically, we route them
starting from the end of the node buffer towards the
beginning.
Discussion. The key advantage of these techniques
over the rest of the robust methods introduced in this
paper is that they can handle fragment coplanarity of
arbitrary length per pixel in one iteration. This results

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 6

in a significant decrease of the rendering workload.
Practically, contention from all threads trying to re-
trieve the next memory address for accessing the cor-
responding data has been reduced since coplanarity
occurs only for a small number of cases as compared
to the original LL algorithm.

Despite the fact that order of thread execution is
not guaranteed, list sorting is not necessary since all
captured fragments are coplanar. Moreover, F2B-LL
rendering pipeline is boosted by hardware optimiza-
tion components. All these lead to efficiently usage of
GPU memory and performance increase. Conversely,
random memory accesses and atomic updating of
next counter(s) from all fragment threads may lead
to a critical rasterization stall. Finally, the necessity of
atomic operations for GPU memory - available only
in the state of the art graphics hardware and APIs
- makes it non-portable to other platforms such as
mobile, game consoles etc.

3.1.4 Combining BUN with LL

Overview. [14] presents a multi-layer depth peeling
technique achieving partially correct depth ordering
via bucket sort on the fragment level. To approximate
the depth range of each pixel location, a quick ren-
dering pass of the scene’s bounding box is initially
employed. Figure 4 (bottom row, green colored boxes)
illustrates the peeling output for each bucket for a
scene divided into eight uniform intervals.

Despite the accurate depth-fighting feature of the
above proposed extensions, their performance is
rather limited when the depth complexity is high
due to their strategy to perform multiple iterations.
Furthermore, as mentioned above, LL may exhibit
some serious performance bottlenecks when (i) the
total number of generated fragments (storing process)
or (ii) the number of per-pixel fragments (sorting pro-
cess) increases significantly. To alleviate the above lim-
itations, we propose a single-pass coplanarity-aware
depth peeling architecture combining the features of
BUN and LL. In this variation, we uniformly split the
depth range of each scene and assign each subdivision
to one bucket. Then, we concurrently (in parallel)
store all fragment information in each bucket using
linked lists.

GPU Implementation. Due to the current shader
restrictions, we can divide the depth range into five

uniformly consecutive subintervals. A node buffer
(RGBA 8) is used to store all linked-list fragment
data from all buckets. We explore a non-adaptive
scheme where all buckets can handle the same num-
ber of rasterized fragments. The location of the
next available space in the node buffer is managed
through five global unsigned int address counters
([nextb0 , · · · , nextb4]). Each pixel contains five head
pointers (R 32UI), one for each bucket, containing
the last node ([headb0 , · · · , headb4]) it processed. Each

incoming fragment is mapped to the bucket corre-
sponding to its depth value. The address counter of
the corresponding bucket is incremented to find the
next available offset at the node buffer. The head
pointer of the bucket is lastly updated to point to
the previously stored fragment. After the complete
storage of all fragments, a post-sorting mechanism is
carried out in each bucket sorting fragments by their
depth.
Discussion. The core advantage of BUN-LL is the
superiority in terms of performance over the rest of
the proposed methods due to its single-pass nature.
BUN-LL is faster than LL and exhibits time com-
plexity comparable to S-buffer and FAB. However,
unused allocated memory from empty buckets as well
as fragment overflow from overloaded ones may arise
for scenes with non-uniform depth distribution.

3.2 Approximate Algorithms

To alleviate the performance downgrade of multipass
techniques, we have explored per-pixel fixed-sized
vectors [17], [23] for capturing a bounded number of
coplanar fragments. The core advantage of this class
of methods is the superiority of performance in the
expense of excessive memory allocation and fragment
overflow.

3.2.1 Combining F2B and DUAL with FAB/KB

Overview. Bounded buffer-based methods store frag-
ment data in a global memory array using a fixed-
sized array per pixel (see Figure 3(a)). A per-pixel
offset counter indicates the next available address
position for the incoming fragment. After a complete
insertion in the storage buffer, the counter is atomi-
cally incremented.

We introduce a solution for combining FAB/KB
with F2B and DUAL (F2B-B, DUAL-B) to partially
treat fragment coplanarity. The idea is to adapt the
previously described core methodology of linked lists
by exploiting bounded buffer architectures for stor-
age.
GPU Implementation. Similar to FAB, constant length
vectors are allocated to capture the fragment data for
each pixel. In the case of DUAL-FAB, we have to
allocate two buffer arrays for front and back peeling
at the same time. Without loss of generality, we use
the same length for both buffers. To support efficiently
this approach in commodity hardware, we may em-
ploy a KB framework in place of FAB. While KB is
restricted by MRT to peel a maximum of 8 fragments,
data packing may be used to increase the output
(and reduce memory cost) by a factor of 4. Note
that, there is no need for pre-sorting and post-sorting,
since we peel fragments placed at same memory space
(RMWH-free).

The details of combing F2B with KB and FAB are
shown in Algorithm 3, where A.xxx is used to define

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 7

the fixed-size data array, IN.xxx the input textures
(initialized to zero), FR.xxx the attributes of each
fragment, and TMP.xxx the temporary variables.

Algorithm 3 F2B-B Depth Peeling

/* using KB: F2B-KB */

1: for i = 0 to A.length do
2: if A[i] == 0 then
3: A[i] ← FR.color; break ;
4: end if
5: end for

/* using FAB: F2B-FAB */

1: TMP.counter ← IN.counter+1 ;
2: IN.counter և (TMP.counter == A.length) ? 0 : TMP.counter ;
3: A[TMP.counter−1].color ← FR.color ;

// where և denotes an atomic memory operation

Discussion. The major advantage of this idea is that
by updating atomically only per-pixel counters no
access of shared memory is attempted, which results
in significant performance upgrade. Performance is
degraded when KB is used due to concurrent updates,
but this is a useful option when advanced APIs are
not available. SRAB is a promising option but in
this context it is ruled out since it cannot support
MSAA, stencil and data packing operations. Note that
attribute packing except from extra memory require-
ments, requires additional shader computations and
imposes output precision limitations on fragment data
(32bit).

A simplified example that illustrates the peeling be-
havior of the base-methods and our proposed exten-
sions is shown in Figure 5. The scene consists of three
objects of different color with the following rendering
order: green, coral and blue resulting in the green
having the smallest and blue the largest primitive
identifiers. A ray starting from an arbitrary pixel hits
the scene at three depth layers, where three and two
fragments overlap at the first and the third layer,
respectively.

3.3 GPU Optimizations for Multi-pass Rendering

The previous sections introduced extensions of the
multi-pass depth peeling algorithms to cope with
coplanar fragments. In this section, we propose an
optimization making use of various features of mod-
ern GPUs so as to improve the performance when
multi-pass rendering is performed on multiple ob-
jects. Inspired by the occlusion culling mechanism [27]
(where geometry is not rendered when it is hidden
by objects closer to the camera), we propose to avoid
rendering objects that are completely peeled from
previous iterations. By skipping the entire rendering
process for a completely peeled object, we reduce the
rendering load of the following rendering passes.

Similarly to occlusion culling, we substitute a geo-
metrically complex object with its bounding box. If the
bounding box of the object ends up entirely behind

F2B-3P/

F2B-2P

F2B-LL

F2B-B

F2B

LL/SB

KB/SRAB/

FAB

1 32

BUN

MultiKB

DUAL

DUAL-2P

DUAL-LL

DUAL-B

Iterations

4

Z2 2Z2

Z0 Z0 Z0

Z2 Z2Z0 Z0 Z0

Z1

Z1

Z2 Z2

Z0 Z0 Z0
… Z1

…

Z1
…

Z0 Z0 Z0
…

Z2 Z2
…

Z0 Z0 Z0 Z1 Z2 Z2

Z0 Z0 Z0
…Z1 Z2 Z2

Z0 3Z0 Z2 2Z2

Z0 3Z0

Z0 Z2

Z0

Z0 1 Z1 1

Z0 1

Z1

Z1

Z1 1

Z2

Z2 Z2
…

…Z0 Z2Z1

…Z0 Z2Z1

B0 B1 B2 B6 B7…

BUN-LL Z0 Z0 Z0 Z1 Z2 Z2

B0 B2 B7

view direction

Z0 Z1 Z2

B0 B1 B2 B3 B4 B5 B6 B7

Fig. 5: Overview of peeling results for our proposed
methods and their predecessors. Z0, Z1 and Z2 indi-
cate the depth layers captured by ray casting (black
dashed line) and B0, B1, · · · , B7 the uniformly dis-
tributed buckets. Each column shows the produced
output of each method for the corresponding itera-
tion: extracted fragment(s) painted with the color of
an object and coplanarity counters. Squares painted
with more than one color demonstrate z-fighting ar-
tifacts (is undefined which fragment might win the
z-test). To distinguish between fragments of the same
object, we have included their depth value to their
associated square.

the last captured contents of depth buffer, we may
cull this object at the geometry level (see Figure 6).
This is easily realized by hardware occlusion queries.
Due to the observation that objects that are culled
during a specific iteration, will be always culled in the
successive ones, we reuse the results of the occlusion
queries from previous iterations [28]. This leads to a
reduction of the number of issued queries eliminating
CPU stalls and GPU starvation.

Finally, we avoid the synchronization cost between
the CPU and GPU required to obtain the occlusion
query result, be using conditional rendering [29]. Note
that conditional rendering can also be used to auto-
matically halt the iterative procedure of multi-pass
rendering methods.

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 8

view direction

m
in

m
a
x

C
o
lo
r
B
u
ff
e
r

Fig. 6: A sphere is efficiently culled and thus not
needed to be rendered for the remaining iterations
since its bounding box lies entirely behind the current
depth buffer (thick gray line strips).

4 RESULTS

We present an experiment analysis of our extensions
focusing on performance, robustness and memory
requirements under different testing scenarios. For the
purposes of comparison, we have developed F2B2;
a two-pass variation of F2B that uses double speed
Z-pass and early Z-culling optimizations. Our meth-
ods successfully integrate into the standard graph-
ics pipeline and take advantage of features such as
multi-sample rendering, GPU-based tessellation and
instancing. Methods that do not exploit the FAB or
the LL structures can be used in older hardware. All
methods are implemented using OpenGL 4.2 API and
performed on an NVIDIA GTX 480 (1.5 GB memory).
The shader source code has been also provided as
supplementary material.

We have applied our coplanarity-aware peel-
ing variants on several depth-sensitive applications
(transparency effects, wireframe rendering, CSG oper-
ations, self-collision detection, coplanarity detection)
demonstrating the importance of accurately handling
scenes with z-fighting (see Figures 12 and 13). We
further provide a video demonstrating the rendering
quality of one of our robust variants (F2B-FAB) for
various coplanarity critical applications. The rest of
our robust variants yield similar visual results.

Table 1 presents a comparative overview of all
multi-fragment raster-based methods with respect to
memory requirements, compatibility with commodity
and state of the art hardware, rendering complexity,
coplanarity accuracy and other features.

4.1 Performance Analysis

We have performed an experimental performance
evaluation of all our methods against competing tech-
niques using a collection of scenes under four differ-
ent configurations. Except from the first scene which
is evaluated under different image resolutions, the rest

of the tests are rendered using a 1280×720 (HD Ready)
viewport.

4.1.1 Impact of Screen Resolution
Figure 7 shows how the performance scales by in-
creasing the screen dimensions when rendering a
crank model (10K primitives) whose layers varies
from 2 to 17 and no coplanarity exist. In general,
we observe that our variants perform slightly slower
than their predecessors due to the extra rendering
passes (around 30% in average). Our dual variants
perform faster at low-resolutions as compared to the
corresponding front-to-back ones since they need half
the rendering passes. Similar performance behavior
moving from low to high screen dimensions is ob-
served between F2B-2P and F2B-3P. GPU optimiza-
tions becomes meritorious when image size is increas-
ing rapidly.

FAB and SB are highly efficient in this scenario due
to the low rate of used pixels that require heavy post-
sorting of their captured fragments. DUAL-FAB has
the best performance from all proposed multi-pass
variants, which is slightly worst than DUAL (from 6%
(low resolution) to 18% (high resolution)). However,
it achieves speed regression by a factor of 2 to 4 as
compared to the SB and FAB methods, respectively.
This is reasonable since we iteratively render the
scene up to 18 times to extract all layers. We further
observe that DUAL-2P and DUAL-KB perform quite
well in low screen resolution but exhibit significant
performance downgrade in the higher ones. Finally,
rendering bottlenecks appear in all LL-based meth-
ods when the resolution is increased due to higher
fragment serialization.

8

16

32

F
ra

m
e

s
p

e
r

se
co

n
d

 (
lo

g
2

 s
ca

le
)

15

30

60

120

240

480

640x480 - (0.346M) 1280x720 - (0.778M) 1600x1200 - (2.16M)

F
P

S
 (

lo
g

2
 s

ca
le

)

Screen Resolution- (generated fragments)

F2B(17) F2B2(34) F2B-2P(33) F2B-3P(51) F2B-LL(34)
F2B-KB(34) F2B-FAB(34) DUAL(10) DUAL-2P(19) DUAL-LL(18)
DUAL-KB(18) DUAL-FAB(18) BUN(5) BUN-LL(1) FAB(1)
LL(1) SB(2)

Fig. 7: Performance evaluation in FPS (log2 scale) on
a scene where no fragment coplanarity is present at
different rendering dimensions. Our FAB-based exten-
sions exhibit slightly worse performance than their
base-methods (10% in average). Rendering passes car-
ried out for each method are shown in brackets.

4.1.2 Impact of Coplanarity
Figure 8 illustrates performance for rendering over-
lapping instanced fandisk objects (1.4K primitives).
We observe that F2B-3P outperforms F2B-2P and

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 9

Max

layers
 MSAA

Acronym Description Total
Conditional

rendering

Double

speed

z- pass

Early

z-culling
Old API Modern API

Handles

coplanarity

Robustness

ratio

on

primitives

on

fragments

F2B Front-to-back depth peeling [12] 1 D x x x

F2B2 Two-pass F2B depth peeling 2D √ √

F2B-2P Two-pass Z-fighting free F2B C(Zall) x x

F2B-3P Three-pass Z-fighting free F2B 3 3C(Zall)/2

F2B-LL Z-fighting free F2B using Linked Lists C(Z) x 2C+4

F2B-B Z-fighting free F2B using fixed-size Buffers K ; 4K K+3 ; 4K+3 K+4 ; 4K+4
∑{K/C(Zi)} ;
4∑{K/C(Zi)}

DUAL Dual Depth Peeling [13] 2 1 D/2+1 x x D/C(Zall)

DUAL-2P Two-pass Z-fighting free DUAL 4 C(Zall)/2+1 24 20

DUAL-LL Z-fighting free DUAL using Linked Lists C(Zf,Zb) x 2C(Zf,Zb)+6

DUAL-B Z-fighting free DUAL using fixed-size Buffers K ; 4K K+4 ; 4K+4 K+6 ; 4K+6
∑{K/C(Zi)} ;
4∑{K/C(Zi)}

KB K-Buffer [17] 1 1 to D/K

MultiKB Multipass K-Buffer [19] 1...K ; 2K 1 to K ; 1 to 2K x x

SRAB Stencil Routed A-Buffer [18] K 1 1 to D/K √ K/C(Zall) to 1 x

BUN Uniform Bucket Peeling [14] 2K ; 4K 1 D/(2K) to D/2 ; 1 x D/C(Zall) x

BUN-LL Z-fighting free BUN using Linked Lists all 1 1 x
3C(Zall)+8 to

15C(Zall)+8
overflow to 1 √

BAD Adaptive Bucket Peeling [14] 4K 4 4 x 4K/C(Zall) x

FreePipe/FAB A-Buffer using fixed-size Arrays [21,23] 2D+2

LL Linked-list based A-Buffer [24] 3C(Zall)+3

SB S-Buffer: Sparsity-aware A-Buffer [25] 2 2 2C(Zall)+3

Algorithm

√

x

1

K ; 2K

D/C(Zall)

3K+2

√

Rendering passes

Per iteration

√

√

√

√

1

2K+2 ; 4K+2

 In A ; B, A denotes the layers/memory/ratio/sorting for the basic method and B for the variation using attribute packing.

1 3 x

2

2

2

√

1

2

1

2D

D

K/C(Zall) to 1 ;

2K/C(Zall) to 1

4K+2

x

D = max{depth}, C(Z) = [# of coplanar fragments at depth Z] , C(Zall) = ∑{C(Zi)}, C = max{C(Zi)}, where C(Z) ≥ 1 and C(Zall) ≥ D. overflow = 1 - (max_memory/needed_memory).

K = buffer size (max=8 for all except from FreePipe/FAB), {color, depth} attribute of fragment = {32bit, 32bit}. Video-memory is measured in mb(=4 bytes).

Sorting neededPeeling accuracyVideo-memory per pixel

12 10

6

√

√ √

all

x x

GPU optimizations

x

√

√

x √ overflow to 1

6K+3 x

TABLE 1: Comprehensive comparison of multilayer rendering methods and our coplanarity-aware variants.

DUAL-2P, enhanced by the full potential of GPU
optimizations. Similar behavior is observed for F2B-
FAB as compared to its corresponding dual variation.
Conversely, DUAL-LL performs better than F2B-LL
alleviating the increased fragment contention at high
instancing.

FAB extensions exhibit improved performance as
compared to constant-pass ones despite of they have
to carry out multiple rendering iterations. This is rea-
sonable since these buffers have to sort the captured
fragments resulting in a rendering stall. Finally, BUN-
LL is slightly superior than LL and SB, but again
is not suitable for scenes with high concentration of
fragments in small depth intervals.

5

10

20

40

80

160

320

5 10 15

F
P

S
 (

lo
g

2
 s

ca
le

)

Number of coplanar instances

F2B(2,2,2) F2B2(2,2,2) F2B-2P(13,21,33) F2B-3P(18,30,42)
F2B-LL(4,4,4) F2B-KB(4,4,4) F2B-FAB(4,4,4) DUAL(2,2,2)
DUAL-2P(3,11,17) DUAL-LL(2,2,2) DUAL-KB(2,2,2) DUAL-FAB(2,2,2)
BUN(1,1,1) BUN-LL(1,1,1) FAB(1,1,1) LL(1,1,1)
SB(2,2,2)

Fig. 8: Performance evaluation in FPS (log2 scale) on
a scene with varying coplanarity of fragments. FAB
extensions outperform other proposed alternatives
and are slightly affected by the number of overlap-
ping fragments. Rendering passes performed for each
method are shown in brackets.

4.1.3 Impact of High Depth Complexity

Figure 9 illustrates performance comparison of the
constant-pass accurate peeling solutions when ren-
dering three uniformly distributed scenes that consist
of high depth complexity: sponza (279K primitives),
engine (203.3K primitives), hairball (2.85M primitives).
We observe the superiority of our BUN-LL over the
LL and SB methods regardless of the number of
generated fragments due to the reduced demands
for per-pixel post-sorting of the captured fragments.
On the other hand, thread contention in the BUN-LL
storing process results at a performance downgrade
as compared with FAB when the rasterized fragments
are rapidly increased.

4

8

16

32

64

128

F
P
S
	(
lo
g
2
	s
ca

le
)

BUN-LL FAB LL SB

Sponza Engine Hairball

Fig. 9: Performance evaluation in FPS (log2 scale) on
three uniformly distributed scenes with varying num-
ber of fragments and high depth complexity (shown
in brackets, respectively). Our BUN-LL outperforms
the other buffer-based methods when the fragment
capacity remains at low levels.

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 10

4.1.4 Impact of Geometry Culling

Figure 10 illustrates how the performance scales when
our geometry-culling is exploited at three represen-
tative front-to-back peeling methods under a set of
increasing peeling iterations (similar behavior is ob-
served for the rest variations). The scene consists of
three non-overlapping, aligned at Z-axis, dragon mod-
els (870K primitives, 10 depth complexity). The scene
is rendered from a viewport that the third instance is
occluded by the second one, which is similarly hidden
by the first. We observe that all front-to-back testing
methods are exponentially enhanced by the use of our
early-z geometry culling process when the number
of completely peeled objects is increasing. Note that
when we have not completely peeled any instance, the
additional cost of our culling process slightly affects
performance (0.01%).

0

100

200

300

400

500

10 - (0) 20 - (1) 30 - (2)

m
il
li
se
co
n
d
s

F2B F2B+Culling F2B-2P F2B-2P+Culling F2B-FAB F2B-FAB+Culling

Fig. 10: Performance evaluation in milliseconds af-
ter front-to-back layer peeling a scene without and
with enabling our geometry-culling mechanism. The
number of completely peeled models for each peeling
iteration is shown in brackets.

4.2 Memory Allocation Analysis

Figure 11 illustrates evaluation in terms of storage
consumption for a scene with varying number of
generated fragments (defined by the combination of
screen resolution, depth complexity and fragment
coplanarity). An interesting observation is the high
GPU memory requirements of FAB due to its strategy
to allocate the same memory per pixel. BUN-LL, LL
and SB require less storage resources by dynamically
allocating storage only for fragments that are actually
there. However, it will lead at a serious overflow as
the number of the generated fragments to be stored
increases rapidly.

On the other hand, our multi-pass depth peeling
extensions outperform the unbounded buffer-based
methods even at high coplanarity scenes. We also ob-
serve that robust F2B-2P and F2B-3P methods require
slightly less storage than the approximate F2B-KB.
Video-memory consumption blasts off to high levels,
when data packing is employed for correct capturing
high fragment coplanarity. Note that methods that
exploit the front-to-back strategy require less memory
resources when compared to the dual-direction ones.

The same conclusions may be obtained from the
formulations of Table 1.

4.3 Robustness Analysis

4.3.1 Impact of Coplanarity

From Table 1, we observe that robust variations are
able to accurately capture the entire scene regard-
less of the depth and coplanarity complexities. F2B
and DUAL peeling reach their peak when no copla-
narity is present. However, robustness is significantly
downgraded due to their inability to capture overlap-
ping areas. Multi-pass bucket peeling and its single-
pass packed version present similar behavior. Ap-
proximate buffer-based alternatives (maximum peeled
fragments: without packing (K = 8) - with packing
(K = 32)) are suitable to correctly handle up to 8 or
32 coplanar fragments. Peeling with KB, MultiKB and
SRAB result at memory overflow (hardware restricted
to 8 or 16 if attribute packing is used) failing to cap-
ture more fragment information. If the scene is pre-
sorted by depth, multiple rendering with these buffers
will improve robustness. Finally, BUN-LL, FAB, LL
and SB perform robustly when fragment storage does
not result in memory overflow.

4.3.2 Impact of Memory Overflow

Figure 11 shows the needed storage allocated by the
memory-unbounded buffer solutions under a scene
with varying number of generated fragments. Without
loss of generality, we assume that the percentage of
pixels covered on the screen is 50% and all pixels have
the same depth complexity. Robustness ratio is closely
related to memory allocation for these methods (see
also Table 1). To avoid memory overflow (illustrated
by black markers), we have to allocate less stor-
age than we actually need leading at a significant
fragment information loss. BUN-LL, FAB, LL and
SB robustness is significantly downgraded when the
number of generated fragments exceeds a certain
point. Conversely, we observe that our buffer-based
extensions perform precisely, allocating less than the
maximum storage of the testing graphics card under
all rendering scenarios.

4.4 Discussion

FAB has the best performance in conjunction with ro-
bust peeling but comes with the burden of extremely
large memory requirements. SB alleviates most of the
wasteful storage resources running at high speeds,
but cannot avoid the unbounded space requirement
drawback. Both methods necessitate per-pixel depth
sorting resulting at comparable frame rates with BUN-
LL when the the number of stored fragments per pixel
is high and uniformly distributed.

Multi-pass peeling with primitive identifiers is the
best option when accuracy and memory are of utmost

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 11

3

6

12

24

48

96

192

384

768

1536

3072

6144

12288

24576

49152

98304

M
B

y
te

s

F2B,F2B2 F2B-3P/2P F2B-LL F2B-KB F2B-KB+packing, BUN F2B-FAB DUAL DUAL-2P DUAL-LL DUAL-KB DUAL-KB+packing DUAL-FAB BUN-LL, LL FAB SB

1536

640x480 1280x720 1600x1200

0.87
0.65

0.87
0.65

0.087
0.065

0.13

0.29
0.218

0.435
0.29
0.218

0.435

0.029
0.022

0.045

0.14
0.104

0.21

0.013

0.01

0.019

0.14
0.104

0.21

Fig. 11: Robustness comparison based on memory allocation/overflow (log2 scale) of a scene with varying
resolution and [depth, coplanarity] complexity. Our variants does not consume more than the maximum
storage of Nvidia GTX 480 graphics card (dashed line). Note the low robustness ratio of the buffer-based
solutions due to the memory overflow.

importance. FAB extensions are shown to offer a sig-
nificant speed up over LL variations with satisfactory
approximate (or precise when coplanarity is main-
tained at low levels) results. However, memory limi-
tations should be carefully considered. When modern
hardware is not available, KB variations might be
used to approximate scenes with high coplanarity in
the entire depth range.

It is preferred to use front-to-back extensions for
handling scenes with low detail under high resolu-
tions. On the other hand, dual extensions performs
better when rendering highly tessellated scenes at low
screen dimensions.

5 CONCLUSIONS AND FUTURE WORK

Fragment coplanarity is a phenomenon that occurs
frequently, unexpectedly and causes various unpleas-
ant and unintuitive results in many applications (from
visualization to content creation tools) that are sen-
sitive to robustness. Several (approximate or exact)
extensions to conventional single and multi-pass ren-
dering methods have been introduced accounting for
coincident fragments. We have also included exten-
sive comparative results with respect to algorithm
complexity, memory usage, performance, robustness
and portability. A large spectrum of multi-fragment
effects have been considered and used for illustrating
the detected differences. We expect that the suite of
features and limitations offered for each technique
will provide a useful guide for effectively addressing
coplanarity artifacts.

Further directions may be explored for tackling the
problem of coplanarity in rasterization architectures.
To reduce bandwidth demand of the rendering oper-
ations and increase locality of memory accesses tiled
rendering [30] may be exploited. Determining the set

of elements that are not visible from a particular
viewpoint, due to being occluded by elements in front
of them may affect the performance of the multi-
pass peeling methods [27], [28]. Finally, a hybrid
technique [11] is an interesting option that should
be investigated further. To this end, one may seek a
modified form of peeling which efficiently captures a
sequence of layers when coplanarity is not presented
followed by on demand peeling of overlapping frag-
ments.

ACKNOWLEDGMENT

Sponza, dragon, hairball, cube, power plant
and rungholt models are downloaded from
Morgan McGuire’s Computer Graphics Archive
(http://graphics.cs.williams.edu/data). The models
of duck, frog, fandisk and crank are courtesy of
the AIM@SHAPE Shape Repository. This research
has been co-financed by the European Union
(European Social Fund ESF) and Greek national
funds through the Operational Program Education
and Lifelong Learning of the National Strategic
Reference Framework (NSRF) - Research Funding
Program: Heracleitus II. Investing in knowledge
society through the European Social Fund.

REFERENCES

[1] C. NVIDIA, “OpenGL SDK 10: Simple depth float,” 2008.
[2] R. Herrell, J. Baldwin, and C. Wilcox, “High-quality polygon

edging,” Computer Graphics and Applications, IEEE, vol. 15,
no. 4, pp. 68–74, Jul 1995.

[3] M. Maule, J. L. Comba, R. P. Torchelsen, and R. Bastos, “A
survey of raster-based transparency techniques,” Computers &
Graphics, vol. 35, no. 6, pp. 1023–1034, 2011.

[4] F. Cole and A. Finkelstein, “Partial visibility for stylized
lines,” in Proceedings of the 6th international symposium on
Non-photorealistic animation and rendering, (NPAR ’08), pp.
9–13, 2008.

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 12

A

B

AUB

A∩B

A-B

Fig. 12: Illustrating the image superiority of our extensions over the base-methods in several depth-sensitive
applications. (a) (top) Order independent transparency on three partially overlapping cubes with and without
Z-fighting, (bottom) Wireframe rendering of a translucent frog model with and without Z-fighting. (b) CSG
operations rendering without and with coplanarity corrections. (c) Self-collided coplanar areas are visualized
with red color.

Fig. 13: Image-based coplanarity detector. (left) Power plant (Rh = 0.98, Cp = 0.285), (middle) rungholt (Rh =
0.9, Cp = 0.48) and (right) castle (Rh = 0.88, Cp = 0.81) scenes are visualized based on the total per-pixel
fragment coplanarity: gray=none, red=2, blue=3, green=4, cyan =5, aquamarine=6, fuchsia=7, yellow=8, brown=9.
Cp is the average probability for a pixel p to suffer from fragment coplanarity when rendering with the F2B.

[5] J. Rossignac, I. Fudos, and A. A. Vasilakis, “Direct rendering of
boolean combinations of self-trimmed surfaces,” in Proceedings
of Solid and physical modeling 2012, (SPM ’12), 2012.

[6] S. Busking, C. P. Botha, L. Ferrarini, J. Milles, and F. H. Post,
“Image-based rendering of intersecting surfaces for dynamic
comparative visualization,” Vis. Comput., vol. 27, pp. 347–363,
May 2011.

[7] P. V. Sander, D. Nehab, and J. Barczak, “Fast triangle
reordering for vertex locality and reduced overdraw,”ACM
Trans. Graph, vol. 26, no. 3, 2007.

[8] E. Sintorn and U. Assarsson, “Real-time approximate sorting
for self shadowing and transparency in hair rendering,” in
Proceedings of the 2008 symposium on Interactive 3D graphics
and games, (I3D ’08), pp. 157–162, 2008.

[9] D. Wexler, L. Gritz, E. Enderton, and J. Rice, “GPU-accelerated
high-quality hidden surface removal,” Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
(HWWS ’05), pp. 7–14, 2005.

[10] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha,
“Interactive visibility ordering and transparency computations
among geometric primitives in complex environments,” in
Proceedings of the 2005 symposium on Interactive 3D graphics
and games, (I3D ’05), 49–56, 2005.

[11] N. Carr and G. Miller, “Coherent layer peeling for transparent
high-depth-complexity scenes,” in Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
(GH ’08), pp. 33–40, 2008.

[12] C. Everitt, “Interactive order-independent transparency,”
Nvidia Corporation, Tech. Rep., 2001.

[13] L. Bavoil and K. Myers, “Order independent transparency
with dual depth peeling,” Nvidia Corporation, Tech. Rep.,
2008.

[14] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Efficient
depth peeling via bucket sort,” in Proceedings of the 1st ACM

conference on High Performance Graphics, (HPG ’09), pp. 51–57,
2009.

[15] E. Sintorn and U. Assarsson, “Hair self shadowing and
transparency depth ordering using occupancy maps,” in
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, (I3D ’09), pp. 67–74, 2009.

[16] A. A. Vasilakis and I. Fudos, “Z-fighting aware depth
peeling,” in ACM SIGGRAPH 2011 Posters, 2011.

[17] L. Bavoil, S. P. Callahan, A. Lefohn, J. a. L. D. Comba, and
C. T. Silva, “Multi-fragment effects on the GPU using the
k-buffer,” in Proceedings of the 2007 symposium on Interactive
3D graphics and games, (I3D ’07), pp. 97–104, 2007.

[18] K. Myers and L. Bavoil, “Stencil routed A-buffer,” in ACM
SIGGRAPH 2007 Sketches, 2007.

[19] B. Liu, L.-Y. Wei, Y.-Q. Xu, and E. Wu, “Multi-layer depth
peeling via fragment sort,” in 11th IEEE International Conference
on Computer-Aided Design and Computer Graphics, pp. 452–456,
2009.

[20] X. Yu, J. C. Yang, J. Hensley, T. Harada, and J. Yu, “A
framework for rendering complex scattering effects on hair,”
in Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, (I3D ’12), pp. 111–118, 2012.

[21] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “FreePipe:
a programmable parallel rendering architecture for efficient
multi-fragment effects,” in Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games,
(I3D ’10), pp. 75–82, 2010.

[22] A. Patney, S. Tzeng, and J. D. Owens, “Fragment-parallel
composite and filter,” Computer Graphics Forum, vol. 29, no. 4,
pp. 1251–1258, 2010.

[23] C. Crassin, “Icare3D blog: Fast and accurate single-pass
A-buffer,” 2010.

[24] J. C. Yang, J. Hensley, H. Grn, and N. Thibieroz, “Real-time

IEEE TVCG JOURNAL, VOL. 6, NO. 1, JANUARY 2012 13

concurrent linked list construction on the GPU,” Computer
Graphics Forum, vol. 29, no. 4, pp. 1297–1304, 2010.

[25] A. A. Vasilakis and I. Fudos, “S-buffer: Sparsity-aware
multi-fragment rendering,” in Proceedings of Eurographics 2012
Short Papers, pp. 101–104, 2012.

[26] E. Persson, “Depth in-depth,” ATI Technologies Inc., Tech.
Rep., 2007.

[27] D. Sekulic, “Efficient occlusion culling,” in In Gpu Gems, pp.
487–203, 2004.

[28] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer,
“Coherent hierarchical culling: Hardware occlusion queries
made useful,” Computer Graphics Forum, vol. 23, no. 3, pp.
615–624, 2004.

[29] M. Segal and K. Akeley, “The OpenGL graphics system: A
specification of version 3.3 core profile,” 2010.

[30] S. Tzeng, A. Patney, and J. D. Owens, “Efficient adaptive tiling
for programmable rendering,” in Symposium on Interactive 3D
Graphics and Games, (I3D ’11), pp. 201–201, 2011.

PLACE
PHOTO
HERE

Andreas-Alexandros Vasilakis was born
on 12 October 1983 in Corfu. He received
his BSc and MSc degrees in 2006 and 2008,
respectively from the Department of Com-
puter Science of the University of Ioannina,
Greece. He is currently a PhD candidate at
the same department. His research interests
include character animation, GPU program-
ming and multi-fragment rendering.

PLACE
PHOTO
HERE

Ioannis Fudos is an Associate Professor
at the Department of Computer Science of
the University of Ioannina. He received a
diploma in computer engineering and infor-
matics from University of Patras, Greece in
1990 and an MSc and PhD in Computer
Science both from Purdue University, USA
in 1993 and 1995, respectively. His research
interests include animation, rendering, mor-
phing, CAD systems, reverse engineering,
geometry compilers, solid modelling, and im-

age retrieval. He has published in well-established journals and
conferences and has served as reviewer in various conferences and
journals. He has received funding from EC, the General Secretariat
of Research and Technology, Greece, and the Greek Ministry of
National Education and Religious Affairs.

