Designing What-if Analysis: Towards a Methodology

Matteo Golfarelli, Stefano Rizzi, Andrea Proli
DEIS – University of Bologna

Agenda:
1. Introduction
2. What-if enabled tools
 3. Some lessons learnt
 4. Methodological sketch
 5. The case study
 6. Conclusions and open issues
What-if analysis

• Decision makers need to evaluate beforehand the impact of a strategic or tactical move
 – “How would my profits change if I ran a 3×2 promotion for one week on some product on sale?”
 • Modeling the behavior of the customers
 • Modeling the side effects on similar product sales in the same week
 • Modeling the side effects on the product sales in the next weeks

What-if analysis can be described as a data-intensive simulation whose goal is to inspect the behavior of a complex system under some given hypotheses (called *scenarios*).

• N.B. *What-if analysis ≠ Forecasting*
What-if enabled tools

- A tool for what-if analysis should at least have the following features:
 - Allow interactive update of data.
 - Allow decision makers to hierarchically aggregate and disaggregate predictions and see the impact of modifications at every level.
 - Natively support a core set of techniques for expressing and building simulation models, plus a language for further extending the modeling capabilities.
 - Support decision makers in formulating hypothetical scenarios on the model.
 - Support statistical techniques for evaluating how reliable and accurate the predictions are.
What-if enabled tools

<table>
<thead>
<tr>
<th>Expression of simulation models</th>
<th>PowerSim</th>
<th>QlikView</th>
<th>SAP BPS</th>
<th>SAS Forecast S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited to disaggregation rules</td>
<td>System dynamic</td>
<td>Scripting</td>
<td>✓</td>
<td>Based on function library and language</td>
</tr>
</tbody>
</table>

| Support formulating hypothetical scenarios | ✓ | ✓ | ✓ | ✓ |

| Interactive update of data | ✓ | ✓ | ✓ | ✓ |

| Multidimensional analysis of the results | ✓ | only if integrated with a DW | ✓ | ✓ | ✓ |

| Support analysis of the accuracy of the predictions | ✓ | ✓ | ✓ | ✓ |

<table>
<thead>
<tr>
<th>Data model</th>
<th>MOLAP (in-memory)</th>
<th>System dynamic</th>
<th>MOLAP (in-memory)</th>
<th>relational</th>
<th>relational</th>
</tr>
</thead>
</table>
Some lessons learnt I

- In the context of BI, the multidimensional model should be taken as the reference:
 - it is widely recognized to be the most suitable model for supporting information analysis;
 - it is inherently capable of representing historical trends;
 - it natively supports fruition of information at different abstraction levels;
 - what-if analysis is typically made on top of a DW system, where data are multidimensional.

- We will call target cube the multidimensional schema that will host the prediction.
Some lessons learnt II

• A what-if application is centered on a *simulation model*, that describes one or more alternative ways to populate the target cube with a prediction.

• Each alternative corresponds to a *class of scenarios* required by the users.
Some lessons learnt III

• Reliability of the simulation model strictly depends on the trade-off between precision and complexity.
 – Too precise model → high simulation costs
 – Rough simulation model → unreliable results

• Iterative approach to reach the correct trade-off
A methodological sketch

GOAL ANALYSIS

DATA SOURCE ANALYSIS

SIMULATION MODELING

BUSINESS MODELING

MULTIDIM. MODELING

DATA DESIGN

IMPLEMENTATION

VALIDATION

Variables & Scenarios

Source schemata

Simulation model

Business model

Target cube
A methodological sketch

GOAL ANALYSIS
- Determines which business phenomena are to be simulated
 - identifies the set of relevant business variables
 - defines the relevant classes of scenarios

DATA SOURCE ANALYSIS
- Source schemata

SIMULATION MODELING
- Simulation model

MULTIDIM. MODELING
- Business model
- Target cube

DATA DESIGN

IMPLEMENTATION

VALIDATION
A methodological sketch

GOAL ANALYSIS

- Aimed at understanding the business phenomenon

BUSINESS MODELING

A draft model of the application domain is built:
- A **static representation** of the main entities involved in the business phenomenon;
- A **functional representation** describing how the business variables are derived on each other;
- A description of the **dynamic interactions** between the entities involved

MULTIDIM. MODELING

SIMULATION MODELING

DATA DESIGN

IMPLEMENTATION

VALIDATION
A methodological sketch

- The relevant data sources are carefully analyzed,
 - What information is available?
 - How is it structured?
 - Which is the quality of each data source?

Variables & Scenarios

DATA SOURCE ANALYSIS

Source schemata

SIMULATION MODELING

Simulation model

MULTIDIM. MODELING

Business model

Target cube

DATA DESIGN

IMPLEMENTATION

VALIDATION
A methodological sketch

Variables & Scenarios

DATA SOURCE ANALYSIS

GOAL ANALYSIS

DATA DESIGN

IMPLEMENTATION

VALIDATION

BUSINESS MODELING

MULTIDIM. MODELING

The multidimensional schema of the target cube is built, taking into account:
- the static part of the business model
- the requirements defined by the goal analysis
- the requirement concerning granularity
A methodological sketch

• Builds the functional/dynamic model allowing the prediction to be constructed for each given scenario
• Achieves a good compromise between precision and complexity
A methodological sketch

GOAL ANALYSIS

DATA SOURCE ANALYSIS

DATA DESIGN

IMPLEMENTATION

VALIDATION

BUSINESS MODELING

MULTIDIM. MODELING

• Implements the multidimensional schema and the simulation model to create a prototype for testing.

Variables & Scenarios

Source schemata

Simulation model

Target cube
A methodological sketch

GOAL ANALYSIS

DATA SOURCE ANALYSIS

SIMULATION MODELING

BUSINESS MODELING

MULTIDIM. MODELING

DATA DESIGN

IMPLEMENTATION

VALIDATION

Variables & Scenarios
Source schemata
Simulation model

Business model
Target cube

• Evaluation of the reliability of the simulation model.
A case study: Orogel S.p.A.

- Orogel S.p.A. is a large Italian company in the area of deep-frozen food.
 - It sells and distributes its products in a set of branches scattered on the national territory
 - It is equipped with a DW covering most of its business area

Goal analysis

- Analyze the *profitability* of branches
- **Class of scenarios:** analyze profitability during next n months if:
 - one or more new products were taken/dropped by a branch
 - one or more new customers were taken/dropped by a branch.
Business Modelling

Functional view of the main variables related to the selling activity

Gross amount
- Costs
 + General Costs
 + Fixed Costs
 - Amminist.
 - Leasing
 + Variable Costs
 - Electricity
 + Invoice Costs
 - Commissions
 - Transportation
 + Factory Cost
 + Other Cost
 - Bonus
 - Discounts
 - Complimentary gods

Profitability
Business Modelling

Cannibalization: the process by which a new product gains sales by diverting sales from existing products

Dynamic model for cannibalization (system dynamic graphical formalism)
Multidimensional Modelling

SALE

- unit price
- quantity
- discount
- purchase cost
- distribution fee
- general costs
- commissions
- transportation cost

Customer hierarchy
- economic category
- customer
- branch

Product hierarchy
- product type
- product
- supplier

Other dimensions
- month
- semester
- year
- scenario

Other dimensions
Simulation Modelling

- Functional view of the simulation model
 - statistical techniques have been adopted for both forecasting and stirring
 - Simplifications have been adopted in computing discounts and cannibalization
 - Events related to new product/customer have been simulated by reproducing the sales of a representative product/customer
Validation

- Test carried out on 2003-2004 data and compared with 2005 ones

- Average error of 18% on the total profitability of the single branches
- Global error on profitability was about 7% due to a compensation
Conclusions and …

- The spread of what-if analysis projects is surprisingly low
- Several factors contribute to this situation:
 - **Immature technology:**
 - The new generation of analytic tools are now compensating the technological gap
 - **Complexity of design**
 - Complexity can be overcome by relying on pre-configured models (e.g., SAP-BPS is based on the business models captured by its ERP)
 - **Lack of a design methodology:**
 - Development of a well-structured design methodology
Conclusions and (some) open issues

• Extend OLAP with new operators specifically devised for what-if analysis
 – E.g. **apportion**: disaggregates a quantitative information down a hierarchy according to some given criterion (**driver**);

• Find an adequate formalism to express the simulation model, so that it can be discussed and agreed upon with the users.

• Enforce consistency of multiple previsions of the same phenomenon taken at more than one abstraction level
 – E.g. **Sales prevision for Europe for next year +10%**
 • Sales prevision for Italy + 20%
 • Sales prevision for Greece + 15%
 • Sales prevision for Germany ???
Conclusions and (some) open issues

- Extend OLAP with new operators specifically devised for what-if analysis
 - E.g. *apportion*: disaggregates a quantitative information down a hierarchy according to some given criterion (*driver*);

- Find an adequate formalism to express the simulation model, so that it can be discussed and agreed upon with the users.

- Enforce consistency of multiple previsions of the same phenomenon taken at more than one abstraction level
 - E.g. *Sales prevision for Europe for next year +10%*
 - Sales prevision for Italy + 20%
 - Sales prevision for Greece + 15%
 - Sales prevision for Germany ???

Questions?