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OLAP & KDD

User Navigation
OLAP users are now decision makers.
Users navigate in the aggregated datacube in
order to discover knowledge.

ROLL UP, DRILL DOWN, ...

Our Goal:
Providing automatically knowledge thanks to data
mining approaches
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Sequential Patterns

Well adapted for temporal data
Discovering correlations between events
through time.
Several applications: marketing, decision
making, protein sequence, network security,
music, . . .
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Sequential Patterns

Well adapted for temporal data
Discovering correlations between events
through time.
Several applications: marketing, decision
making, protein sequence, network security,
music, . . .

time
A, B
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Sequential Patterns

Well adapted for temporal data
Discovering correlations between events
through time.
Several applications: marketing, decision
making, protein sequence, network security,
music, . . .

time
A, B A
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Sequential Patterns

Well adapted for temporal data
Discovering correlations between events
through time.
Several applications: marketing, decision
making, protein sequence, network security,
music, . . .

time
A, B A B,C

〈(A, B), (A), (B, C)〉
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Sequential Patterns

Well adapted for temporal data
Discovering correlations between events
through time.
Several applications: marketing, decision
making, protein sequence, network security,
music, . . .

time
A, B A B,C

〈(A, B), (A), (B, C)〉

§: Sequential patterns are quite poor (only one
mined dimension)
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Data Cube

Knowledge are mined among one dimension:
product dimension.
What about the other ones ?

Product

Customer
Group

City
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Combining Several Analysis Dimensions

Items are not defined on one dimension, they
are defined on several dimensions

Classical item: c
Multidimensional item:
(France, c, 100), (Germany , c, ∗)
Multidimensional sequence:
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Combining Several Analysis Dimensions

Items are not defined on one dimension, they
are defined on several dimensions
Classical item: c
Multidimensional item:
(France, c, 100), (Germany , c, ∗)

Multidimensional sequence:
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Combining Several Analysis Dimensions

Items are not defined on one dimension, they
are defined on several dimensions
Classical item: c
Multidimensional item:
(France, c, 100), (Germany , c, ∗)
Multidimensional sequence:

〈{(France, c, 100), (Germany , d , 54)}{(∗, b, 2)}〉

instead of

〈(c, d), b〉
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Taking Hierarchies into account

dilemma Support/#patterns
Minimal support too high: too few frequent
knowledge to be used and to enhance the
decision making process.
Minimal support too low: too much frequent
knowledge, unusable for the decision maker.

It is very difficult to choose the right support
value for mining relevant knowledge
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Taking Hierarchies into account

dilemma Support/#patterns
Minimal support too high: too few frequent
knowledge to be used and to enhance the
decision making process.
Minimal support too low: too much frequent
knowledge, unusable for the decision maker.

It is very difficult to choose the right support
value for mining relevant knowledge

Taking hierarchies into account to solve this
dilemma

Mining rules on several levels of hierarchy.
subsumption power.
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State-of-the-art

(1) (2) (3)
Multidimensionality No No Yes
Simulation of multi. No ?? __
Sequential patterns Yes No Yes

Hierarchy in patterns Several Single No

(1) Agrawal & Srikant (1995): the pioneer
approach.
(2) Han & Fu (2001): an original approach.
(3) Yu & Chen (2005): Using hierarchies for a
smart time representation.

No approach for mining multidimensional
sequences among several levels of hierarchy
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Database & Blocks

BLOCK :
A database can be partioned into different
blocks according to some dimensions

Market Cust-Grp Date Place Product
Carrefour Educ. 1 Germany beer
Carrefour Educ. 1 Germany pretzel
Carrefour Educ. 2 Germany M2
Carrefour Educ. 3 Germany chocolate
Carrefour Educ. 4 Germany M1
Carrefour Employ. 1 France soda
Carrefour Employ. 2 France wine
Carrefour Employ. 2 France chocolate
Carrefour Employ. 3 France M2
wellmart retir. 1 UK whisky
wellmart retir. 1 UK pretzel
wellmart retir. 2 UK M2
wellmart Educ. 1 LA chocolate
wellmart Educ. 2 LA M1
wellmart Educ. 3 NY whisky
wellmart Educ. 4 NY soda
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Dimension Set Partition

D = DR ⊕DA ⊕Dt

Dt : temporal dimensions
DA: analysis dimensions
DR: reference dimensions

tuple c = (d1, · · · , dn) = (r , a, t) where :

r : is the restriction of c on DR

a: is the restriction of c on DA

t : is the restriction of c on Dt
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Hierarchies

Hierarchical relations on each analysis
dimensions.
These relations are materialized in the form of
trees (Is-a relation).
Only the leaves can be in the database.

Hierarchies over PLACE and PRODUCT
dimensions:

Products

Foods

Drinks ... Medecines
Chocolate Pretzel

Alcoholic drinks Soda

Whisky Wine Beer

M1 M2

Place

USA EU

N.Y ChicagoL.A France  UK   Germany

......
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Relation Between Elements

ancestor: x̂ is an ancestor of x according to the
hierarchy.

descendant: denoted x̌ .
E .U = F̂rance

Place = ̂Germany

Place

USA EU

N.Y ChicagoL.A France  UK   Germany

......
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H-generalized(H.G.) Item, Itemset and Sequence

H.G. Multidimensional Item:
A tuple e = (d1, . . . , dm) defined over the set of the
analysis dimensions DA such that di ∈ {label(Ti)}.
Examples : (France, Chocolate),

(Germany , Drinks)
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H-generalized(H.G.) Item, Itemset and Sequence

H.G. Multidimensional Item:
A tuple e = (d1, . . . , dm) defined over the set of the
analysis dimensions DA such that di ∈ {label(Ti)}.
Examples : (France, Chocolate),

(Germany , Drinks)

Hierarchical Inclusion
Let e = (d1, . . . , dm) and e′ = (d ′

1, . . . , d ′
m), then:

e is more general than e′ (e >h e′) if
∀di , di = d̂ ′

i or di = d ′
i

e is more specific than e′ (e <h e′) if
∀di , di = ď ′

i or di = d ′
i

e and e′ are incomparable if there is no
relation between them (e ≯h e′ et e′ ≯h e)
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Hierarchical Relations

Example: Relation between items
(USA, Drinks) >h (USA, soda).
(France, wine) <h (EU, Alcoholic drinks).
(France, wine) and (USA, soda) are
incomparable.

Place

USA EU

N.Y ChicagoL.A France  UK   Germany

......

Products

Foods

Drinks ... Medecines
Chocolate Pretzel

Alcoholic drinks Soda

Whisky Wine Beer

M1 M2
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H-generalized Itemset and Sequence

H.G. Multidimensional Itemset:
i = {e1, . . . , ek} where all items are all
incomparable.

{(France, wine), (USA, soda)} YES
{(France, wine), (EU, Alcohol .D.)} NO:
(France, wine) <h (EU, Alcohol .D.)

H.G. Multidimensional Sequence
s = 〈i1, . . . , ij〉 is an ordered list of h-generalized
itemsets.

〈{(France, wine), (USA, soda)}{(Germany , beer)}〉

06/10/11 M. Plantevit HYPE: Hierarchical Sequential Pattern Mining 17



HYPE

Introduction
OLAP & KDD
Sequential Patterns

Multidimensional Framework

Hierarchies

Contributions
Data Model

Definitions
Algorithms

Experiments
Conclusions and Future
Work

Support

Item Supported by a tuple
A tuple b supports an item e if ΠDA(b) <h e.

Tuple (Carrefour , Educ, 1, France, wine) supports
the item (EU, Alcohol .D.).

Sequence Supported by a Block
A block supports a sequence 〈i1, . . . , il〉 if
∀j = 1 . . . l , ∃dj ∈ Dom(Dj), for each item e from ij ,
∃t = (r , e, dj) or t = (r , ě, dj) ∈ T w.r.t
d1 < d2 < . . . < dl .
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Support of a Sequence

Let :
DR: the reference dimensions
DB: the database partioned into a set of block
BT ,DR

A sequence S

Support of S

support(S) =
|{B∈BDB,DR

s.t . B supports S}|
|BDB,DR

|

06/10/11 M. Plantevit HYPE: Hierarchical Sequential Pattern Mining 19
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Example

DR = {Market , Cust −Grp}, DA = {Place, Product}
et DT = {Date}, minsupp = 2
Let us search the support of the sequence
S = 〈{(UE , pretzel), (UE , Alcoholic Drinks)}
{(UE , M2)}〉

Market Cust-grp Date Place Product
Carrefour Educ. 1 Germany beer
Carrefour Educ. 1 Germany pretzel
Carrefour Educ. 2 Germany M2
Carrefour Educ. 3 Germany chocolate
Carrefour Educ. 4 Germany M1
Carrefour Employ. 1 France soda
Carrefour Employ. 2 France wine
Carrefour Employ. 2 France chocolate
Carrefour Employ. 3 France M2
wellmart retir. 1 UK whisky
wellmart retir. 1 UK pretzel
wellmart retir. 2 UK M2
wellmart Educ. 1 LA chocolate
wellmart Educ. 2 LA M1
wellmart Educ. 3 NY whisky
wellmart Educ. 4 NY soda
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〈{(UE , pretzel), (UE , Alcohol .D.)}{(UE , M2)}〉

Block 1
Carrefour Educ. 1 Germany pretzel
Carrefour Educ. 1 Germany beer
Carrefour Educ. 2 Germany M2
Carrefour Educ. 3 Germany chocolate
Carrefour Educ. 4 Germany M1

Block 1 supports S: support(S) + +

Block 2
Carrefour Employ. 1 France soda
Carrefour Employ. 2 France pretzel
Carrefour Employ. 2 France wine
Carrefour Employ. 3 France M2

Block 2 supports S: support(S) + +
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〈{(UE , pretzel), (UE , Alcohol .D.)}{(UE , M2)}〉

Block 3
wellmart retir. 1 UK pretzel
wellmart retir. 1 UK whisky
wellmart retir. 2 UK M2

Block 3 supports S: support(S) + +

Block 4
wellmart Educ. 1 LA chocolate
wellmart Educ. 2 LA M1
wellmart Educ. 3 NY whisky
wellmart Educ. 4 NY soda

Block 4 does not support S

support(S) = 3 ≥ minsupp
s is frequent

06/10/11 M. Plantevit HYPE: Hierarchical Sequential Pattern Mining 22
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〈{(UE , pretzel), (UE , Alcohol .D.)}{(UE , M2)}〉

Block 3
wellmart retir. 1 UK pretzel
wellmart retir. 1 UK whisky
wellmart retir. 2 UK M2

Block 3 supports S: support(S) + +

Block 4
wellmart Educ. 1 LA chocolate
wellmart Educ. 2 LA M1
wellmart Educ. 3 NY whisky
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Overview

Frequent Item Generation
to mine all the maximaly specified items.
levelwise generation

Frequent Sequence Generation
anti-monotonicity property of the support
Apriori-like method (generate and prune)
use of prefix tree to store the sequences (PSP)
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Support Count:

required: data pre-processing
(group by date, D1, · · · , Dn)
Support Sequence Count:
SupportCount(s, DB,DR)

For each block : SupportBlock(s, B)

anchoring operation (σcondition(B) 7−→ C′ with
B′ ⊆ B)

complexity
nB: # tuples in B
m = |DA|: # analysis dimensions
Pmax : maximal depth of the hierarchies
SupportBlock:O(Pmax × nB ×m × log nB)

SupportCount:O(l × Pmax × nmax ×m × log nmax)
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Why Hype provides a better way to manage star values

(M2SP): a "binary" management of wild-card
value.
HYPE : A better management thanks to the
taking hierarchies into account.
More Accurate knowledge.

  *

1

2

3 ...

...

...

M²SP

root

1

2

3 ...

...

...

HYPE
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Experimental Protocol

Synthetic database
10, 000 tuples
|DA| = 5
Studying # frequent sequences according to:

Hierarchy depth (specialization degree)
user-defined minimal threshold

Comparison with M2SP(-α):
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# frequent sequences over Hierarchy depth:
minsup=0.3, average degree = 3
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# frequent sequences over minimal support:
Dense Database (lower degree)
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# frequent sequences over minimal support:
Sparse Database (higher degree)
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Managing hierarchies in multidimensional
sequential pattern mining

H.G. multidimensional sequential patterns.
More accurate knowledge.
An approach more efficient according to "min.
support/mined knowledge dilemma" thanks to
subsumption ability.

Agrawal Jiawei Han Yu HYPE
Multidimensionality No No Yes Yes
Simulation of multi. No ?? __ Yes
Sequential patterns Yes No Yes Yes

Hierarchy in patterns Several Single No Yes
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Future Work

Future Work
Use of condensed representation (closed, free
patterns).
Another definition of support to better fit the
OLAP framework.
Modular hierarchy management in order to
enhance customized and focused knowledge
discovery.

Agrawal Jiawei Han Yu HYPE
Multidimensionality No No Yes Yes
Simulation of multi. No ?? __ Yes
Sequential patterns Yes No Yes Yes

Hierarchy in patterns Several Single No Yes
Condensed Representation No No No No

Counting sup. with aggregates No No No No
User interaction No No No Not enough
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