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Abstract

The accuracy of image registration plays a dominant role in image super-
resolution methods and in the related literature, landmark-based registra-
tion methods have gained increasing acceptance in this framework. In this
work, we take advantage of a maximum a posteriori (MAP) scheme for image
super-resolution in conjunction with the maximization of mutual information
to improve image registration for super-resolution imaging. Local as well as
global motion in the low-resolution images is considered. The overall scheme
consists of two steps. At first, the low-resolution images are registered by
establishing correspondences between image features. The second step is to
fine-tune the registration parameters along with the high-resolution image
estimation, using the maximization of mutual information criterion. Quanti-
tative and qualitative results are reported indicating the effectiveness of the
proposed scheme, which is evaluated with different image features and MAP
image super-resolution computation methods.

Keywords:
Maximum a posteriori (MAP) super-resolution, image registration, mutual
information, feature extraction, Harris corners, Scale Invariant Feature
Transform (SIFT), Speed Up Robust Features (SURF).

1. Introduction

Image super-resolution (SR) reconstruction has gained lots of prominence
in the last two decades. Many applications, ranging from medical imaging
to image recognition and video applications, are driving the need for better
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reconstruction techniques to enhance image resolution. The objective of im-
age super-resolution is to reconstruct a high-resolution (HR) image from a
sequence of low-resolution (LR) images. The SR methods aim to improve
the spatial resolution by fusing the set of LR images to produce an image
with more visible detail in the high spatial frequency features. The LR im-
ages experience different degradations such as motion, point spread function
blurring, subsampling and additive noise. The HR image is estimated from
a sequence of LR aliased images, which is possible if there exists sub-pixel
motion between the LR images. Thus, each frame of the LR sequence brings
complementary information on the original HR image.

Super-resolution reconstruction is achieved in three main steps: (i) regis-
tration, (ii) interpolation and (iii) restoration. Registration is the process of
estimating an image transformation model derived directly from the LR data
set. In the interpolation step, the LR images are superimposed onto the HR
image grid, while restoration removes noise and blur that is present in the LR
images. The direct inverse solution from interpolation, motion compensation
and inverse filtering is ill-posed due to the existence of additive noise, even
in cases of perfect motion registration and accurate knowledge of the point
spread function of the acquisition system. Since the seminal work of Tsai and
Huang [33], many methods have been proposed to seek a stable solution with
high visual quality to overcome the ill-posed nature of the problem. Among
them, methods based on the Fourier transform [31, 35] and projections onto
convex sets [13] have gained popularity.

Close attention has been paid to stochastic methods, which impose a
prior distribution on the image to be reconstructed. In this context, a basic
maximum a posteriori (MAP) multi-frame SR framework exists, where the
posterior distribution of the HR image is maximized [16, 18, 19, 26, 9, 11, 14,
38]. Bayesian approaches are also very popular. They seek to find a solution
where all the unknown parameters, such as registration parameters, have the
maximum probability [26, 25, 32, 20, 28, 14]. A number of studies have been
applied in reconstruction from only a single LR frame [39]. These methods
called quasi-super-resolution methods.

A key issue in the quality of the super-resolved image is the accuracy of
the employed image registration technique. Also, knowledge of the involved
motion model facilitates the task. This may include simple translational,
rigid body or affine motion as well as projective or even photometric trans-
formations. The standard approach is to estimate the registration parameters
separately from the HR image [9, 11], either by aligning the LR images once,
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at the beginning of the algorithm or iteratively before or after each update
of the HR image [16, 18, 19]. The method of Farsiu et al. [14] focuses in this
direction. The use of L1 norm and a robust regularization term achieves high
accuracy and results in images with sharp edges. Also, there exist techniques
where the registration parameters are assumed to be random variables and
they are marginalized in a Bayesian formulation [26, 25]. Apart from using
block matching or phase correlation techniques, the majority of the registra-
tion methods used in the SR literature are related to standard optical flow
methods and their variants [23, 5, 15]. In the same context, the study of
Zhou et al. [42] try to estimate the registration parameters between a ref-
erence and a sensed image using a limited number of control points. Their
application to image super resolution shows the potential of the method to
correctly estimate the registration parameters under several affine deforma-
tions. In the sense of feature extraction techniques Baboulaz and Dragotti
[4] developed a method for accurate registration of LR images.

Super-resolution lies at the heart of many aspects of image analysis the-
ory and it therefore requires the understanding of several fields. In this
framework, image fusion has efficiently been used to extract relevant infor-
mation between LR images in a MAP-based scheme [38], where the unknown
misregistrations can easily be handled.

Following the trends in computer vision, feature matching has also been
used [9]. The parameters of the geometric transformation between the LR
images are estimated by automatic detection and analysis of correspond-
ing features among the input images. Typically, some hundreds of points
of interest, such as the Harris corner features [17], are detected with sub-
pixel accuracy and correspondences are established by examining the image
neighborhoods around them.

Several image registration methods have been applied to image super-
resolution reconstruction algorithms. Methods relying on image features
such as Harris and SIFT [9] do not provide subpixel accuracy. Methods
based on block matching [16] and optical flow [8] are generally time con-
suming. Algorithms using automatically computed segmentation maps [10]
and tracking algorithms [13, 6], which have also been applied are both slow
and prone to localization errors. All these landmark-based registrations are
limited to least-squares based solutions. Mutual information (MI) [24, 36] is
a method that was originally proposed for medical image registration. It is
widely used in many domains, achieves sub-pixel registration accuracy and
has never been employed in super-resolution reconstruction. Maximization
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of MI is a very general and powerful criterion, because no assumptions are
made regarding the nature of the statistical dependence between the two
images and no limiting constraints are imposed on the image content of the
involved degradations. In the last 15 years, the maximization of the mutual
information has revolutionized image registration theory and applications as
it considers the whole gray level image information and consistently pro-
vides sub-pixel precision. If mutual information is not initialized close to
the global maximum, local extrema impede the registration process [27] and
consequently, they rule out sub-pixel accuracy. To our knowledge, mutual
information has not been applied as a registration method to the problem of
multiple image super-resolution. A work that involves mutual information
and SR was proposed by Zhang et al. [41]. However, the goal of the algo-
rithm was to enhance the quality of a single image by generating multiple
LR images from the same single image. Also, in [12], mutual information
was employed as a regularization term in Bayesian image restoration.

In this paper, we propose to register the LR images by building corre-
spondences between the LR frames followed by a gentle step of fine-tuning
in synergy with the HR image estimation, by maximization of the mutual
information criterion [24, 36] between the estimation of the HR image and
each upsampled LR image. A four page summary of this work was presented
in [37]. Herein, we present more experimental results comparing different
feature-based registration methods and combining them with the maximiza-
tion of mutual information criterion. Corresponding robust features are ob-
tained in three different manners, using Harris corners [17], SIFT [22] and
SURF descriptors [7]. Also, four MAP image super-resolution algorithms are
put to test [16, 18, 14, 38], in order to demonstrate the effectiveness of the
approach.

The main contribution of this paper is the development of a registration
approach based on mutual information for SR reconstruction. Numerical
results demonstrate that the reconstructed HR images are of higher qual-
ity with respect to standard MAP-based SR approaches not employing the
mutual information criterion in the registration step.

2. Method

Given a collection of blurred LR images, which differ by a rigid transfor-
mation (rotation and translation) and are corrupted by white Gaussian noise,
the goal is to automatically estimate a high resolution image. A flowchart
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of the proposed method is shown in Figure 1. A feature extraction algo-
rithm is firstly applied, which is followed by a least squares estimation of the
rigid transformation parameters [34] based on the correspondences between
features. This is, in general, the standard approach for any MAP-based
super-resolution algorithm which then estimates the high resolution image.

However, feature based registration is prone to detection errors and errors
in establishing correspondences between features which makes the result op-
timal only in the least squares sense. The least squares solution is relatively
stable and close to the optimal minimizer but in most cases it needs further
improvement. In order to overcome this limitation, we propose to employ the
feature correspondence as the initialization of a registration algorithm rely-
ing on the maximization of the mutual information criterion [24, 36] which is
a very powerful tool for image registration. Let us notice, that, the mutual
information alone is very sensitive to local minima and needs a good initial-
ization close to the optimal solution. This is true even if the registration
problem is set in noise free conditions. Therefore, it cannot be employed in
SR problems as the Gaussian noise may lead to large misregistrations. The
synergy of least squares feature-based registration and mutual information is
a proposed for increasing the quality of the super-resolved image.

2.1. Iterative MAP Image Super-Resolution

The image degradation process [18] is modeled by motion (rotation and
translation), a linear blur, and subsampling by pixel averaging along with
additive Gaussian noise. We assume that p LR images, each of size M =
N1×N2, are obtained from the acquisition process. The following observation
model is assumed, where all images are ordered lexicographically:

y = Wz+ n. (1)

The set of LR frames is described as y = [yT
1 ,y

T
2 , . . . ,y

T
p ]

T , where yk, for
k = 1, ...p, are the p LR images. The desired HR image z is of size N = l1N1×
l2N2, where l1 and l2 represent the up-sampling factors in the horizontal and
vertical directions, respectively. The term n represents zero-mean additive
Gaussian noise. In (1), the degradation matrix W = [WT

1 ,W
T
2 , . . . ,W

T
p ]

T

performs the operations of motion, blur and subsampling. Thus, matrix Wk,
for the k-th frame, may be written as

Wk = DBkM(sk), (2)
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Figure 1: Flowchart of the proposed method. First, we perform one step of registration
based on feature extraction and then iteratively, we register with mutual information and
update the HR estimation.

where D is the N1N2 × N subsampling matrix, Bk is the N × N blurring
matrix. The transformation model represented by matrix M(sk) is described
by:

z
′

i = Rzi +T+ di,

where zi is the i-th pixel of the high resolution image and z
′
i is the correspond-

ing transformed pixel. R and T denote the global rotation and translation
parameters and di is the local translational motion vector of the i-th pixel.
Thus, matrix M(sk) now implies global rotation, global translation and local
shift and sk = R,T, di for the k-th LR image.

Formulating the super-resolution problem in a probabilistic framework
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[16], a smooth Gaussian prior is generally considered for the HR image:

p(z) =
(α|QTQ|)N/2

(2π)N/2

N∏
i=1

exp

(
−1

2
α(Qz)T (Qz)

)
, (3)

where Qz is the Laplacian of the HR image z and parameter α controls the
precision (inverse covariance) and consequently the shape of the distribution.
The above zero-mean normal distribution assigns a high probability to images
not exhibiting rich edge information. The simplest approach is to consider
parameter α spatially constant, yielding a stationary model for the whole
image. This implies that the statistics for Qz are Gaussian, independent
and identically distributed. Small values of α indicate the presence of a large
variation. By this means, this prior may maintain edges and suppress noise
in smooth areas of the image. Given the HR image z and the registration
parameters between the LR images s = {s1, s2, ..., sk}, the likelihood of the
LR images is also a Gaussian [18]:

p(y|z) = 1

(2π)
pM
2 σpM

η

exp

(
−(y −Wz)T (y −Wz)

2σ2
η

)
, (4)

where σ2
η is the variance of the observation noise n.

Employing a MAP approach and maximizing p(z|y) ∝ p(y|z)p(z) leads
to the following MAP functional to be minimized with respect to the HR
image z and the rigid transformation parameters s:

L(z, s) =

p∑
k=1

∥yk −Wk(sk)z∥2 +
σ2
η

λ
∥Qz∥2. (5)

Notice the change in notation to explicitly underpin the dependence of matrix
Wk on the registration parameters sk.

Using a gradient descent method with a properly calculated step size it
can be shown that the update equation minimizing (5) can be written as

ẑn+1 = ẑn − εn∇zL(z, s)|z=ẑn,s=ŝn . (6)

Parameter εn is the step size at the n-th iteration which may be obtained in
closed form from the data [16]. In general, the estimation of the regularization
parameter λ, which depends on the noise standard deviation ση, and the

7



parameter α controlling the variance in the prior (3), is a difficult task.
Generally, the parameters ση and λ are empirically selected [16].

In the same spirit, He and Kondi [18] perform a refinement step in order
to avoid a blurred version of the high-resolution image. The regularization
parameter λ and the noise standard deviation parameter ση are automatically
computed from the data in an iterative scheme. The step size parameter εn

is also computed in a closed form at each iteration.
Moreover, Farsiu et al. [14] proposed an efficient MAP estimation method

to fuse a sequence of LR images. This technique can also cope with color
images and reduce any color artifacts. The proposed cost function is also
based on Eq. (5) but introduces three more penalty terms. The first penalty
term refers to the spatial luminance, as it is important that the edges in the
estimated HR image remain sharp. The second one, refers to the regulariza-
tion of the color effects and finally, the third term penalizes the edge location
and orientation across the different color bands. It is worth noticing that
this method determines the value of step size εn heuristically.

Following a more general model for the prior distribution p(z), Šroubek
and Flusser [38] employ a Markov random field with a Gibbs distribution
p(z) ∝ exp(−F (z)/C), where C is a constant and F is an energy function.
To overcome the problem of no prior knowledge on the blurring functions, a
Markov random field is also employed for the shape of the prior distribution
of the degradation matrix p(W). Employing a MAP approach maximiz-
ing p(z,W|y) ∝ p(y|z,W)p(z)p(W) leads to a minimization problem with
respect to the HR image z and the unknown blurs W. Consequently, the
updating of the HR image comprises two steps, the estimate of the HR image
itself and the estimate of the blur.

2.2. Image Registration for Super-Resolution

2.2.1. Feature Extraction

A standard approach in MAP super-resolution algorithms is to register
the LR images prior to the computation of the HR image. This is performed
once and the registration parameters are fixed during the iterative estimation
of the super-resolved image. In computer vision registration problems, it is
common to estimate geometric transformations by computing corresponding
features between LR images [9].

The Harris corner detector is a very useful technique for finding point-
to-point correspondences among the LR images [17]. The basic idea behind
the Harris corner detector is that it finds a point where two edges meet,
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which also means that this point is in an area with high gradient in two
directions. Although the extracted features are robust due to their invariance
to rotation, affine intensity change and image noise, they often require expert
supervision to prevent from registration errors as the registration parameters
are computed in the least squares sense.

Another technique for finding interest points in the input LR images is
the Scale Invariant Feature Transform (SIFT) [22]. SIFT is a descriptor of
length 128, computed in four steps: (i) scale-space extrema detection, (ii)
keypoint localization (iii) orientation assignment and (iv) keypoint descrip-
tor generation. SIFT features are generally more robust than corner features.
Features extracted from LR image are detectable even under changes in ro-
tation, scale, noise, illumination and viewpoint [22].

Finally, the Speed Up Robust Features (SURF) is a SIFT-like scale, rota-
tion and noise invariant keypoint detector and descriptor [7]. SURF features
can be computed much faster than SIFT. They are based on integral images
for fast image convolution and they use the sum of Haar wavelet responses
around the point of interest.

2.2.2. Mutual Information Registration

The maximization of mutual information, originally proposed for medical
image registration, is considered to be one of the most accurate methods for
image registration [24, 36] as it provides sub-pixel accuracy. It relies on gray
level information by considering each image pixel as a random variable.

Let yk with k = 1, 2, . . . , p and ẑn be the two images with marginal
probability density functions (computed from their histograms) pyk

(i) and
pẑn(j) respectively. Let also their joint density be pykẑn(i, j). The mutual
information between yk and ẑn measures the degree of dependence between
them and it is defined by

I(yk, ẑ
n) = H(yk) +H(ẑn)−H(yk, ẑ

n)I(yk, ẑ
n)

=
∑
i

∑
j

pykẑn(i, j) log
pykẑn(i, j)

pyk
(i) · pẑn(j)

, (7)

where H(yk) and H(ẑn) are the marginal entropies of the random variables
yk and ẑn and H(yk, ẑ

n) is their joint entropy. If the images are correctly
registered, their mutual information is maximized.

In order to provide invariance to the overlapping areas between the two
images, a more robust measure is the normalized mutual information (NMI)
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[30]:

NMI(yk, ẑ
n) =

H(yk) +H(ẑn)

H(yk, ẑn)
. (8)

A drawback of the mutual information (and NMI) is that, if it is not ini-
tialized close to the optimal solution it is trapped by local maxima [27]. To
overcome this issue, a good initialization is important.

2.3. The Overall Algorithm

In this framework, we propose to estimate the registration parameters
in two steps. In the first step, the registration procedure is initialized by a
landmark-based registration scheme. To this end, to register the LR images,
we employ features such as the ones described in the previous section. Con-
sidering a LR image as the reference, the rigid transformation parameters
(translation and rotation) are estimated through minimization of the mean
square error between the locations of the features between the reference im-
age and each LR image [34]. Thus, we obtain a good initialization for the
unknown registration parameters.

In the next step, during the iterative update of the HR image, a fine
tuning of the registration parameters is accomplished by the maximization
of the mutual information between the current estimate of the HR image
and each upscaled LR image. Upscaling is performed by deblurring (inverse
filtering) and upsampling. As the estimate of the HR image changes at each
iteration, the registration parameters are updated based on this estimate.
By these means, the registration accuracy is improved at each iteration step.
The overall algorithm is summarized in Algorithm 1.

The proposed algorithm requires as input the LR image sequence and the
up-sampling factors l1 and l2. First, we extract features from the LR images
and establish the correspondences between them. The correspondences are
obtained by searching for points that are maximally correlated with each
other within a window of 3 × 3 size surrounding each keypoint. Then, the
corresponding features are used to estimate the transformation parameters
using least squares [34]. Notice that the first estimate of the HR image
is taken by random selection of a LR image which is then upscaled to the
HR grid by bicubic interpolation. The random selection also holds for the
subsequent LR frames, which are upscaled and registered to the current LR
estimate. At each internal iteration, once a LR frame is registered to the
current HR image, the LR image is updated using (6). The procedure is

10



Algorithm 1 Feature extraction based super-resolution image reconstruc-
tion algorithm.

Input: Low-Resolution images yk, k = 1, 2, · · · , p and l1, l2 up-sampling
factors.

Output: High-Resolution image estimate ẑ.

• Extract features from the LR images and establish correspondences.

• Estimate rotations and translations using least squares [34].

• Estimate local motion by applying block matching algorithm.

• First estimate of the HR image ẑ0 using (6).

• n := 1;

• do

– do

∗ Random selection of a LR image yk.

∗ if yk is visited.

· Register by mutual information, given in (8), the upscaled
yk to ẑn.

· Estimate local motion by applying block matching algo-
rithm.

· Update ẑn using (6) only for the the visited yk.

∗ end

∗ Declare yk visited.

– until all yk are visited.

– n := n+ 1;

– Declare all yk, k = 1, ...p unvisited.

• until ∥ẑn+1 − ẑn∥/∥ẑn∥ < ϵ or a predefined number of iterations is
reached.
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repeated until a convergence criterion is satisfied or a maximum predefined
number of iterations is reached.

The method is iterative and consists of two steps. A first step is the
registration by mutual information which converges to the optimal solution
provided that the algorithm is initialized close to the global optimum [24, 36].
This is generally the case in super-resolution problems where the misalign-
ment is below one degree in rotation and one pixel in translation. Moreover,
the problems examined here contain larger misalignments which are resolved
by the registration of the images using keypoints. The second step concerns
a family of MAP super-resolution reconstruction methods which converge ac-
cording to their iterative schemes [16, 18, 14, 38]. The convergence of these
iterative algorithms is guaranteed by the contraction mapping theorem [21].
According to this theorem, the iterative model (6) converges to a unique
solution ẑ. Therefore, our algorithm, relying on the combination of of the
above schemes always converges.

3. Experimental Results

In this work, we sought to establish a methodology for efficiently regis-
tering LR images in the context of SR reconstruction problem. Since image
alignment is critical to SR reconstruction, the effect of registration error was
investigated experimentally. In order to evaluate the proposed methodology,
several set of experiments were carried out using four state-of-the-art MAP
based SR algorithms [16], [18], [14] and [38]. The majority of the images used
in these experiments are from the USC-SIPI image database [1]. Sequences
of five LR images were created by rotating, translating, blurring, downsam-
pling and degrading by noise an original image. Translation parameters were
randomly drawn from a uniform distribution in [−3, 3] (in units of HR pixels)
and rotation angles were also uniformly selected in [−5, 5] (in degrees). The
images were then downsampled by a factor of two (four pixels to one). Then,
a point spread function of a 5 × 5 Gaussian kernel with standard deviation
of 1 pixel was applied. Finally, the resulting images were degraded by white
Gaussian noise in order to obtain signal to noise ratios of (i) 25 dB, (ii) 30
dB and (iii) 35 dB. Additionally, in order to obtain a first estimate of the
HR image, a LR image was chosen and it was upscaled by bicubic interpola-
tion in all the experiments. In order to evaluate the algorithm over the local
translational model, further experiments on an artificially generated dataset
have also been conducted. The dataset consists of three shapes, one triangle
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and two stars. The stars remain still whereas the triangle moves along the
horizontal and vertical axes with respect to the stars.

A quantitative evaluation of the obtained HR images is given by the peak
signal to noise ratio (PSNR):

PSNR = 10 log10
2552

∥ẑ− z∥2
, (9)

where z and ẑ denote the ground truth and the estimated HR image, respec-
tively.

The improvement signal to noise ratio (ISNR) was also used, which is
defined as:

ISNR = 10 log10
∥ẑref − z∥2

∥ẑ− z∥2
, (10)

where ẑref denotes a reference HR image.
The structural similarity measure index (SSIM) [40] is a metric that rep-

resents a visual distortion between a reference image and the observe LR
image. The SSIM is regarded as a function between two images z and ẑ and
it is expressed as:

SSIM(z, ẑ) =
(2µzµẑ + C1)(2σzẑ + C2)

(µ2
z + µ2

ẑ + C1)(σ2
z + σ2

ẑ + C2)
, (11)

where µz and µẑ denotes the mean intensity of the ground truth and the
estimated HR image, respectively. σz and σẑ are the standard deviations of
the two images and C1 and C2 are constants added to avoid instability.

Finally, we have further used the visual information fidelity measure
(VIF) [29] in order to assess the quality of the estimated HR image. The
construction of VIF relies on successfully modeling the image distortion. It
is a measure of statistical modeling described as:

VIF =

∑
j∈subbands I(

−→
C j;

−→
ẑ j|sj)∑

j∈subbands I(
−→
C j;−→z j|sj)

, (12)

where we sum over the subbands of interest. The I(
−→
C j;

−→
ẑ j|sj) and I(

−→
C j;−→z j|sj)

are the corresponding mutual information measures for the j-th subband.
−→
C

is a collection of N realizations of a random coefficient vector field from a
subband in the reference image ẑ and s = {s1, s2 . . . , sN} denotes a real-
ization of the particular reference image. Notice that both SSIM and VIF
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range between zero and one. The highest the measure value, the better the
reconstructed HR image is.

At first, in order to evaluate the proposed registration method, we per-
formed a number of experiments in a number of registration problems. Reg-
istration errors were computed in terms of pixels and not in terms of trans-
formation parameters. Registration accuracies in terms of rotation angles
and translation vectors are not easily evaluated due to parameter coupling.
Therefore, the registration errors are defined as deviations of the corners of
the registered image with respect to the ground truth position. Let us notice
that these registration errors are less forgiving at the corners of the image
(where their values are larger) with regard to the center of the image frame.

(a) (b) (c)

Figure 2: Representative extracted features of the LR clock sequence. (a) SIFT, (b) SURF
and (c) Harris corners.

Figure 2 shows representative extracted features in an observed LR image
using SIFT (129 keypoints), SURF (50 keypoints) and Harris corners (66
keypoints), respectively.

Hence, we examined the dependence of the registration quality on the
registration methods. The experiments for all images in the data set were
realized 15 times using different transformation parameters and noise real-
izations. In the first experiment, we compared the performances of different
feature-based registration methods, namely SIFT, SURF and Harris corner
with and without the mutual information criterion. Notice that the mutual
information is initialized by the transformation estimated by the correspond-
ing feature-based registration method. Table 1 summarizes the statistics on
the registration errors. It is worth noticing that SIFT and SURF descriptors
produce the smallest registration errors when combined with the mutual in-
formation. It may also be noticed that Harris corners perform worse than
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Table 1: Statistics for the registration errors in pixels for the clock sequence.

Registration errors
Methods mean std median min max

SIFT 0.102 0.036 0.115 0.013 0.169
SIFT & MI 0.049 0.024 0.045 0.014 0.089

SURF 0.121 0.077 0.111 0.020 0.317
SURF & MI 0.064 0.039 0.057 0.014 0.089

Harris 0.142 0.063 0.134 0.035 0.252
Harris & MI 0.101 0.051 0.112 0.019 0.191

SIFT and SURF. In the general case, Harris corners are less accurate in
registering the LR images, which leads to bad initialization for the mutual
information criterion and affects the registration accuracy.

A next experiment consists in applying a feature-based registration scheme
followed by the maximization of the mutual information and estimate SR im-
ages using the methods of Hardie et al. [16], He and Kondi [18], Farsiu et al.
[14] and Šroubek and Flusser [38]. For the implementation of the last two
methods we used the code provided by the authors [2, 3]. The numerical re-
sults are summarized in Table 2 showing the PSNR, and Table 3 showing the
ISNR for 35 dB, 30 dB and 25 dB degradation noise, where the mean values,
the standard deviations and the median values of the PSNR and ISNR for
the clock sequence are presented. Tables 4 and 5 preset the SSIM and VIF
values for the clock sequence for the same experiments. These values are
obtained through 15 random realizations of the experiment using different
transformation parameters and noise realizations.

In Table 2 it may be seen that the combination of feature-based initial-
ization of the registration parameters followed by fine tuning by the max-
imization of the mutual information criterion provides consistently higher
accuracy. The PSNR values in bold indicate the best quality reconstructed
images with respect to the registration method (along columns). In terms
of PSNR, the method of He and Kondi [18] achieves better reconstruction
results in most cases. The use of mutual information consistently improves
the results in all of the methods.

The results in Table 3 show the ISNR statistics for the compared SR
methods. Registration using SURF was taken to be the reference method
(ẑref in Eq. (10)) for computing the ISNR value. The ISNR values in bold
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Table 2: PSNR statistics (in dB) for the compared super-resolution methods for the clock
sequence.

PSNR Registration
Method

Hardie et al. [16] He and Kondi [18] Farsiu et al. [14] Šroubek and Flusser [38]
mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 24.26 0.64 24.29 24.93 0.47 24.91 24.50 0.73 24.57 23.26 0.32 23.24
SIFT & MI 25.34 0.57 24.72 25.80 0.10 25.61 25.06 0.34 24.37 24.11 0.19 24.59

SURF 24.31 0.62 24.13 24.88 0.76 25.19 23.19 0.25 22.05 23.02 0.20 22.94
SURF & MI 25.40 0.64 24.19 25.84 0.11 25.54 23.58 0.51 23.85 24.07 0.38 24.27

Harris 23.33 0.28 22.83 23.57 0.18 23.43 22.47 0.66 22.57 22.91 0.84 23.19
Harris & MI 25.17 0.69 25.31 25.13 0.22 25.07 24.47 0.17 24.50 24.63 0.19 24.41

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 22.86 0.46 21.86 22.96 0.61 23.21 22.25 0.51 22.58 22.34 0.18 22.30
SIFT & MI 23.60 0.21 23.32 24.42 0.21 24.80 23.73 0.29 22.81 22.42 0.27 22.57

SURF 22.29 0.73 22.17 23.32 0.28 23.89 22.33 0.20 22.13 22.56 0.26 22.94
SURF & MI 23.47 0.71 23.98 23.07 0.84 23.75 22.56 0.71 22.15 23.13 0.41 23.28

Harris 21.66 0.32 21.29 21.11 0.26 21.09 22.42 0.70 21.66 22.23 0.31 22.26
Harris & MI 22.71 0.47 22.29 23.99 0.34 23.38 22.77 0.25 22.65 23.31 0.16 23.07

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 22.13 0.39 22.02 22.48 0.26 22.37 22.56 0.21 22.46 22.19 0.47 22.27
SIFT & MI 22.65 0.17 22.86 22.54 0.14 22.03 22.69 0.14 22.87 22.25 0.18 22.25

SURF 21.76 0.25 21.77 22.34 0.21 22.35 21.30 0.63 21.67 22.26 0.33 22.43
SURF & MI 22.49 0.43 22.59 22.76 0.04 22.79 22.71 0.79 21.89 22.66 0.44 22.80

Harris 21.45 0.74 21.51 21.34 0.64 21.21 21.42 0.82 21.56 21.09 0.80 21.27
Harris & MI 21.59 0.66 21.77 22.73 0.59 22.65 22.66 0.45 22.08 22.01 0.27 22.66

Table 3: ISNR statistics (in dB) for the compared super-resolution methods for the clock
sequence. Baseline is the SURF-based registration method

ISNR Registration
Method

Hardie et al. [16] He and Kondi [18] Farsiu et al. [14] Šroubek and Flusser [38]
mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 1.61 0.15 1.58 1.47 0.17 1.38 1.31 0.32 1.53 1.88 0.40 1.17
SIFT & MI 1.87 0.22 1.61 1.40 0.14 1.45 1.57 0.29 1.59 2.29 0.21 2.13

SURF – – – – – – – – – – – –
SURF & MI 1.42 0.23 1.68 1.39 0.37 1.47 1.80 0.17 1.87 2.02 0.15 2.06

Harris 1.47 0.16 1.15 1.97 0.28 1.77 1.80 0.55 1.81 1.39 0.17 1.21
Harris & MI 1.52 0.53 1.71 1.71 0.17 1.77 1.88 0.41 1.63 1.51 0.19 1.84

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 1.45 0.21 1.42 1.61 0.64 1.48 2.90 0.42 2.40 1.34 0.17 1.46
SIFT & MI 1.60 0.21 1.65 1.97 0.21 1.61 2.99 0.16 2.71 1.97 0.18 1.79

SURF – – – – – – – – – – – –
SURF & MI 1.43 0.13 1.39 1.92 0.33 1.55 1.73 0.45 1.69 1.77 0.27 1.92

Harris 1.44 0.18 1.45 1.75 0.11 1.73 2.29 0.35 1.79 1.45 0.50 1.19
Harris & MI 1.46 0.18 1.42 1.73 0.31 1.79 2.36 0.55 2.02 1.48 0.22 1.35

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 1.41 0.19 1.65 1.77 0.43 1.92 2.26 0.34 2.13 1.31 0.44 1.61
SIFT & MI 1.69 0.26 1.71 1.78 0.21 1.86 2.55 0.16 2.51 1.73 0.27 1.93

SURF – – – – – – – – – – – –
SURF & MI 1.37 0.18 1.31 1.75 0.18 1.78 1.78 0.25 1.47 1.68 0.13 1.43

Harris 1.42 0.53 1.13 1.69 0.24 1.70 1.88 0.44 1.53 1.49 0.21 1.34
Harris & MI 1.39 0.16 1.34 1.61 0.16 1.52 1.89 0.52 1.53 1.70 0.32 1.76

indicate the best performance with respect to the registration method (along
columns). The method of Farsiu et al. [14] is very competitive and provides
superior performance in most cases. Notice that the use of mutual informa-
tion improves the results almost in every case. It only underperforms when
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Table 4: SSIM statistics for the compared super-resolution methods for the clock sequence.
registration method

SSIM Registration
Method

Hardie et al. [16] He and Kondi [18] Farsiu et al. [14] Šroubek and Flusser [38]
mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.87 0.02 0.88 0.85 0.01 0.85 0.89 0.01 0.88 0.81 0.01 0.82
SIFT & MI 0.88 0.01 0.88 0.87 0.02 0.88 0.89 0.04 0.88 0.84 0.02 0.84

SURF 0.86 0.01 0.86 0.86 0.01 0.86 0.80 0.04 0.80 0.84 0.01 0.83
SURF & MI 0.87 0.02 0.87 0.88 0.02 0.87 0.88 0.03 0.85 0.86 0.01 0.85

Harris 0.85 0.03 0.84 0.81 0.02 0.81 0.83 0.02 0.83 0.85 0.02 0.86
Harris & MI 0.89 0.01 0.88 0.87 0.03 0.88 0.89 0.03 0.90 0.85 0.02 0.84

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.82 0.01 0.82 0.82 0.01 0.82 0.83 0.01 0.83 0.82 0.01 0.82
SIFT & MI 0.83 0.03 0.83 0.83 0.01 0.82 0.80 0.04 0.81 0.83 0.02 0.84

SURF 0.84 0.01 0.84 0.83 0.01 0.82 0.78 0.04 0.80 0.80 0.01 0.81
SURF & MI 0.85 0.02 0.84 0.82 0.02 0.82 0.80 0.03 0.80 0.82 0.01 0.83

Harris 0.83 0.02 0.83 0.82 0.01 0.83 0.83 0.02 0.83 0.81 0.01 0.81
Harris & MI 0.85 0.03 0.87 0.85 0.01 0.85 0.87 0.04 0.86 0.82 0.03 0.82

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.67 0.01 0.67 0.60 0.02 0.60 0.71 0.01 0.71 0.64 0.01 0.65
SIFT & MI 0.68 0.02 0.67 0.61 0.02 0.60 0.78 0.04 0.78 0.72 0.02 0.72

SURF 0.67 0.01 0.67 0.60 0.01 0.60 0.68 0.04 0.70 0.64 0.01 0.64
SURF & MI 0.68 0.01 0.68 0.61 0.02 0.60 0.70 0.01 0.70 0.72 0.01 0.72

Harris 0.66 0.01 0.66 0.57 0.02 0.56 0.73 0.02 0.73 0.70 0.02 0.72
Harris & MI 0.70 0.01 0.70 0.60 0.02 0.60 0.75 0.05 0.73 0.74 0.03 0.75

combined with Harris corners detectors, which is due to the sensitivity to
noise of the corner detectors. This drawback may lead to bad initialization
of the mutual information criterion and thus the registration method may
fail to register the LR images correctly.

Table 4 shows the statistics using the SSIM index. As it can be seen,
all methods are consistent in the whole set of experiments. The mutual
information criterion improves the performance of the method in all super-
resolution algorithms. The SSIM values in bold show the best performance
with respect to the registration method.

In Table 5, the numerical results of the HR estimated image using the
VIF measure are shown. As it can be observed, the method of Hardie et
al. [16] provides better results on this dataset. SIFT & MI and Harris &
MI are considered to be the best registration methods for these experiments.
The VIF values in bold denote the best performance with respect to the
registration method. In the general case, mutual information improves the
results for the majority of the methods for all experiments.

Experiments over an artificially generated dataset applying a local mo-
tion transformation model to the LR images have also been conducted. Im-
age registration is performed by first determining the corresponding features
between the estimated HR image and the LR images, which are then pro-
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Table 5: VIF statistics for the compared super-resolution methods for the clock sequence.
registration method

VIF Registration
Method

Hardie et al. [16] He and Kondi [18] Farsiu et al. [14] Šroubek and Flusser [38]
mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.80 0.07 0.81 0.78 0.06 0.81 0.47 0.06 0.51 0.59 0.04 0.58
SIFT & MI 0.77 0.04 0.80 0.79 0.02 0.87 0.57 0.09 0.56 0.67 0.06 0.68

SURF 0.79 0.07 0.81 0.78 0.06 0.78 0.52 0.09 0.49 0.66 0.02 0.65
SURF & MI 0.77 0.07 0.78 0.79 0.08 0.81 0.53 0.06 0.55 0.63 0.02 0.63

Harris 0.65 0.18 0.61 0.58 0.12 0.56 0.50 0.06 0.52 0.64 0.05 0.66
Harris & MI 0.92 0.10 0.94 0.76 0.18 0.84 0.56 0.07 0.58 0.64 0.09 0.60

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.76 0.07 0.78 0.54 0.10 0.55 0.51 0.04 0.53 0.61 0.05 0.63
SIFT & MI 0.73 0.11 0.77 0.52 0.10 0.53 0.58 0.09 0.54 0.67 0.05 0.66

SURF 0.78 0.04 0.80 0.54 0.10 0.51 0.47 0.08 0.49 0.63 0.02 0.64
SURF & MI 0.75 0.06 0.74 0.55 0.08 0.55 0.51 0.07 0.50 0.64 0.03 0.63

Harris 0.75 0.13 0.70 0.49 0.11 0.51 056 0.06 0.57 0.59 0.03 0.57
Harris & MI 0.84 0.20 0.93 0.56 0.07 0.56 0.44 0.08 0.42 0.66 0.09 0.64

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.74 0.06 0.73 0.50 0.09 0.49 0.44 0.02 0.43 0.56 0.04 0.54
SIFT & MI 0.70 0.05 0.71 0.50 0.10 0.52 0.55 0.07 0.54 0.65 0.05 0.63

SURF 0.71 0.06 0.70 0.51 0.10 0.46 0.48 0.07 0.50 0.60 0.02 0.59
SURF & MI 0.74 0.05 0.71 0.52 0.09 0.49 0.51 0.05 0.49 0.63 0.02 0.61

Harris 0.68 0.13 0.65 0.41 0.04 0.42 0.40 0.06 0.36 0.55 0.05 0.56
Harris & MI 0.84 0.08 0.84 0.50 0.07 0.52 0.57 0.09 0.59 0.64 0.07 0.66

jected onto the high resolution grid. Then, the mutual information criterion
is optimized to refine the registration parameters. Next, the local motion
vectors are estimated by applying a block matching algorithm and motion
compensation provides us the estimated transformation of the reference im-
age with respect to the current HR estimate. Tables 6, 7, 8 and 9, present
the PSNR, ISNR, SSIM and VIF numerical results for this experiment re-
spectively, comparing the local motion against the global motion estimation
for Hardie et al. [16] and He and Kondi [18] methods. The values in bold
indicate the best performance for the corresponding registration method. As
it can be observed, mutual information improves the super-resolution results
in all experiments. Some representative HR images for the Star sequence
using the local motion compensation technique are depicted in Figure 5.

An advantage of the proposed scheme is that not only is the reconstructed
HR image of better quality but also the algorithm converges faster. This is
depicted in Figure 3, where the cost function (5) is drawn with respect to
the iteration number for the methods of Hardie et al. [16] (3(a)) and the
method of He and Kondi [18] (3(b)). We may observe that in all cases the
use of mutual information improves the convergence rate compared with the
corresponding feature-based registration method.

Convergence of the super-resolution algorithm was achieved when ∥ẑn+1−
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Table 6: PSNR statistics (in dB) for the compared super-resolution methods for the star
sequence.

PSNR Registration
Method

Hardie et al. [16]
Local motion

He and Kondi
[18] Local mo-
tion

Hardie et al. [16]
Global motion

He and Kondi
[18] Global mo-
tion

mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n

n
o
is
e

SIFT 27.72 0.18 27.29 28.65 0.52 28.65 20.59 0.76 20.27 19.92 0.25 19.99
SIFT & MI 27.85 0.59 27.60 29.14 0.90 28.43 20.09 0.33 20.08 19.85 0.81 19.80

SURF 22.11 0.48 21.81 24.12 0.69 24.33 20.18 0.36 20.14 19.90 0.82 19.70
SURF & MI 22.37 0.86 21.15 24.67 0.30 25.42 20.18 0.36 20.14 20.88 0.42 20.83

Harris 27.48 0.93 27.34 28.41 0.20 28.04 20.27 0.97 20.55 19.99 0.59 19.78
Harris & MI 28.12 0.18 28.56 28.51 0.70 28.81 21.21 0.77 20.95 20.48 0.51 20.41

3
0
d
B

G
a
u
s-

si
a
n

n
o
is
e

SIFT 27.66 0.89 27.38 26.24 0.89 26.61 20.12 0.77 20.38 19.10 0.34 19.70
SIFT & MI 27.84 0.44 27.58 27.94 0.55 27.36 20.27 0.36 20.36 19.94 0.11 19.36

SURF 22.28 0.91 22.29 21.88 0.37 21.66 20.19 0.35 20.15 19.10 0.83 19.44
SURF & MI 23.12 0.42 22.22 22.36 0.42 21.51 20.19 0.35 20.15 20.87 0.41 20.82

Harris 27.11 0.24 27.79 27.94 0.40 27.56 20.55 0.49 20.95 19.98 0.59 19.88
Harris & MI 28.27 0.97 28.88 28.65 0.82 28.00 20.59 0.61 20.39 20.53 0.35 20.53

2
5
d
B

G
a
u
s-

si
a
n

n
o
is
e

SIFT 25.47 0.13 25.64 26.09 0.68 25.48 20.27 0.41 20.13 18.83 0.59 18.35
SIFT & MI 26.38 0.87 26.42 26.36 0.88 26.14 20.63 0.89 20.23 18.34 0.24 18.10

SURF 24.17 0.78 24.65 18.98 0.12 18.27 20.15 0.40 20.03 15.92 0.33 15.29
SURF & MI 24.62 0.27 25.06 21.82 0.39 20.79 20.09 0.33 20.08 20.53 0.39 20.50

Harris 25.81 0.87 26.10 25.79 0.69 25.64 19.61 0.78 20.11 19.80 0.66 19.39
Harris & MI 26.01 0.13 26.85 26.97 0.24 27.25 19.44 0.13 20.09 19.66 0.35 19.69

Table 7: ISNR statistics (in dB) for the compared super-resolution methods for the star
sequence. Baseline is the SURF-based registration method

ISNR Registration
Method

Hardie et al. [16]
Local motion

He and Kondi
[18] Local mo-
tion

Hardie et al. [16]
Global motion

He and Kondi
[18] Global mo-
tion

mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.99 0.39 1.04 1.67 0.68 1.46 0.25 0.76 0.57 0.56 0.25 0.99
SIFT & MI 1.68 0.13 1.25 1.17 0.42 0.54 0.43 0.43 0.30 0.63 0.81 0.69

SURF – – – – – – – – – – – –
SURF & MI 1.34 0.86 2.07 1.93 0.40 1.42 0.65 0.36 0.70 0.60 0.42 0.65

Harris 1.10 0.79 1.79 1.28 0.92 1.84 0.57 0.97 0.30 0.49 0.59 0.78
Harris & MI 0.96 0.02 0.96 1.39 0.70 1.19 0.62 0.77 0.89 0.35 0.52 0.43

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 1.08 0.75 1.24 1.42 0.88 2.07 0.55 0.75 0.31 0.11 0.34 0.44
SIFT & MI 2.11 0.17 2.39 2.02 0.41 2.25 0.56 0.36 0.48 1.17 0.13 1.74

SURF – – – – – – – – – – – –
SURF & MI 1.55 0.43 1.47 1.30 0.42 2.19 0.46 0.07 0.47 0.24 0.40 0.28

Harris 1.28 0.28 1.78 1.50 0.19 1.88 0.19 0.49 0.73 0.13 0.60 0.26
Harris & MI 0.95 0.02 0.97 2.01 0.73 1.31 0.11 0.60 0.27 0.15 0.34 0.17

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 1.70 0.55 1.29 1.56 0.18 1.85 0.17 0.27 0.34 0.12 0.66 0.39
SIFT & MI 1.73 0.31 1.23 1.77 0.21 1.60 0.15 0.89 0.42 1.56 0.15 1.02

SURF – – – – – – – – – – – –
SURF & MI 1.21 0.78 1.53 1.77 0.38 1.78 0.43 0.43 0.30 0.29 0.51 0.19

Harris 1.02 0.73 1.59 1.76 0.27 1.55 0.77 0.75 0.40 0.72 0.11 0.76
Harris & MI 0.97 0.01 0.98 1.80 0.65 20.2 0.15 0.15 0.50 0.82 0.35 0.87

ẑn∥/∥ẑn∥ < 10−5 or until 30 iterations were reached. This criterion was
used for Hardie et al. [16] and He and Kondi [18] algorithms. For the
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Table 8: SSIM statistics for the compared super-resolution methods for the star sequence.
registration method

SSIM Registration
Method

Hardie et al. [16]
Local motion

He and Kondi
[18] Local mo-
tion

Hardie et al. [16]
Global motion

He and Kondi
[18] Global mo-
tion

mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.93 0.01 0.92 0.94 0.03 0.93 0.49 0.11 0.46 0.82 0.02 0.83
SIFT & MI 0.93 0.02 0.93 0.94 0.02 0.94 0.57 0.15 0.53 0.92 0.02 0.92

SURF 0.95 0.02 0.98 0.94 0.03 0.93 0.46 0.06 0.48 0.30 0.13 0.22
SURF & MI 0.96 0.02 0.95 0.95 0.02 0.95 0.46 0.06 0.48 0.94 0.01 0.94

Harris 0.79 0.17 0.86 0.94 0.01 0.96 0.52 0.06 0.50 0.49 0.08 0.48
Harris & MI 0.84 0.14 0.86 0.96 0.02 0.95 0.54 0.08 0.53 0.84 0.01 0.84

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.92 0.03 0.92 0.94 0.04 0.97 0.44 0.10 0.47 0.83 0.02 0.85
SIFT & MI 0.95 0.03 0.97 0.95 0.02 0.96 0.46 0.07 0.50 0.94 0.01 0.95

SURF 0.93 0.02 0.93 0.95 0.02 0.95 0.46 0.07 0.47 0.64 0.17 0.68
SURF & MI 0.96 0.01 0.96 0.95 0.03 0.95 0.46 0.07 0.47 0.94 0.01 0.94

Harris 0.78 0.02 0.80 0.93 0.02 0.91 0.50 0.08 0.50 0.49 0.08 0.50
Harris & MI 0.85 0.13 0.78 0.94 0.03 0.94 0.52 0.06 0.50 0.85 0.03 0.86

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.95 0.03 0.97 0.90 0.02 0.93 0.44 0.01 0.45 0.83 0.02 0.83
SIFT & MI 0.96 0.03 0.98 0.96 0.10 0.93 0.48 0.14 0.41 0.94 0.03 0.95

SURF 0.94 0.01 0.96 0.95 0.02 0.97 0.43 0.07 0.43 0.49 0.19 0.37
SURF & MI 0.95 0.03 0.95 0.96 0.03 0.97 0.57 0.15 0.53 0.93 0.01 0.93

Harris 0.85 0.03 0.86 0.95 0.03 0.98 0.56 0.10 0.61 0.72 0.11 0.76
Harris & MI 0.86 0.09 0.82 0.96 0.03 0.98 0.56 0.14 0.63 0.85 0.09 0.87

Table 9: VIF statistics for the compared super-resolution methods for the star sequence.
registration method

VIF Registration
Method

Hardie et al. [16]
Local motion

He and Kondi
[18] Local mo-
tion

Hardie et al. [16]
Global motion

He and Kondi
[18] Global mo-
tion

mean std median mean std median mean std median mean std median

3
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.77 0.05 0.79 0.80 0.07 0.80 0.47 0.05 0.46 0.46 0.06 0.47
SIFT & MI 0.80 0.07 0.74 0.83 0.03 0.83 0.45 0.01 0.46 0.47 0.05 0.51

SURF 0.54 0.17 0.52 0.60 0.11 0.64 0.46 0.06 0.48 0.34 0.23 0.38
SURF & MI 0.55 0.13 0.50 0.63 0.21 0.72 0.47 0.01 0.48 0.57 0.01 0.58

Harris 0.79 0.08 0.86 0.82 0.09 0.86 0.44 0.07 0.49 0.54 0.02 0.55
Harris & MI 0.81 0.14 0.86 0.80 0.13 0.86 0.49 0.01 0.49 0.48 0.01 0.49

3
0
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.76 0.02 0.78 0.75 0.03 0.74 0.44 0.05 0.46 0.45 0.06 0.43
SIFT & MI 0.77 0.06 0.78 0.78 0.07 0.77 0.47 0.02 0.48 0.50 0.06 0.50

SURF 0.57 0.16 0.54 0.59 0.16 0.54 0.46 0.07 0.47 0.39 0.18 0.42
SURF & MI 0.59 0.17 0.54 0.55 0.20 0.51 0.47 0.01 0.48 0.55 0.01 0.56

Harris 0.78 0.12 0.85 0.78 0.12 0.85 0.49 0.08 0.50 0.49 0.06 0.51
Harris & MI 0.78 0.13 0.85 0.81 0.09 0.84 0.52 0.01 0.50 0.51 0.07 0.79

2
5
d
B

G
a
u
s-

si
a
n
n
o
is
e

SIFT 0.74 0.06 0.75 0.75 0.07 0.76 0.44 0.01 0.45 0.47 0.08 0.44
SIFT & MI 0.74 0.07 0.75 0.73 0.07 0.75 0.46 0.05 0.45 0.47 0.09 0.49

SURF 0.59 0.10 0.65 0.37 0.08 0.34 0.45 0.01 0.46 0.20 0.19 0.19
SURF & MI 0.63 0.16 0.71 0.49 0.18 0.41 0.45 0.01 0.46 0.51 0.01 0.52

Harris 0.74 0.14 0.81 0.71 0.18 0.77 0.56 0.10 0.61 0.50 0.13 0.45
Harris & MI 0.76 0.09 0.72 0.76 0.09 0.79 0.56 0.14 0.63 0.38 0.09 0.36

methods of Farsiu et al. [14] and Šroubek and Flusser [38] all the parameters
required by the methods were set to their default as proposed by the authors
(e.g. the algorithms converged in average at about 10 iterations). Figure
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(a) (b)

Figure 3: The cost function L(z, s), with respect to the iteration number compared with
(a) Hardie et al. [16] (b) He and Kondi [18] methods.

4 depicts representative results of the implementation of [16], [18], [14] and
[38] for the clock sequence with respect to the optimal registration method.
Equivalent results are also shown in Figures 6, 7, 8 and 9 for four additional
samples of reconstructed HR images and with different noise degradations.
The parameters used for Hardie et al. method [16] were manually set to
λ = 100 and σ2

η = 1 while, the parameters used for He and Kondi [18]
method were automatically computed as described in [18].

It is worth noticing that in Figure 8, for the reconstructed HR image
Artificial Lena, the best registration method is the Harris corners combined
with the mutual information. This is due to the high gradient information,
which leads to better initialization of the mutual information criterion. Also,
notice that similar numerical results are obtained for all the HR reconstructed
images. The complete set of experiments may be seen online at http://www.
cs.uoi.gr/~mvrigkas/MAP_SR.html.

4. Conclusion

In this paper, we presented a two-step registration approach for image
super-resolution, which is supported by a feature-based image registration
followed by a registration relying on the maximization of mutual information.
First, an estimate of the transformation parameters in the least squares sense
is provided. Second, the influence of misregistration is improved by the use
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35 dB additive Gaussian noise

Hardie et al. [16] He and Kondi [18]

SURF & MI SURF & MI

Farsiu et al. [14] Šroubek and Flusser [38]

SIFT & MI Harris & MI

Figure 4: Reconstructed HR images for the 256× 256 clock sequence (obtained from the
USC-SIPI database [1]). For each SR method, representative HR images are shown with
respect to the optimal registration method.

of mutual information. By these means, the main drawback of mutual infor-
mation, that is, the large number of local maxima is overcome. A solution

22



of high accuracy is obtained for the super-resolved image when compared
to images reconstructed without the registration step using the mutual in-
formation. The overall reconstruction algorithm converges faster than the
standard solution based only on landmark correspondence and registration
[9]. These issues were examined using several MAP SR algorithms.

Finally, let us notice that we have also tried to register the LR images by
the mutual information method only, without initialization by the feature-
based registration. In all cases the resulting estimation of the registration
parameters was erroneous leading to a HR image of very low quality. The
reason that mutual information itself may fail to register correct the LR
images is its proneness of being trapped in local maxima.
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30 dB additive Gaussian noise
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Figure 5: Reconstructed HR images with local motion compensation for the 400 × 400
Star sequence. For each SR method, representative HR images are shown with respect to
the optimal registration method.
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35 dB additive Gaussian noise
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Figure 6: Reconstructed HR images for the 256 × 256 Boat sequence (obtained from the
USC-SIPI database [1]). For each SR method, representative HR images are shown with
respect to the optimal registration method.
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Figure 7: Reconstructed HR images for the 256× 256 Eye chart sequence (obtained from
the USC-SIPI database [1]). For each SR method, representative HR images are shown
with respect to the optimal registration method.
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Figure 8: Reconstructed HR images for the 256× 256 Artificial Lena sequence (obtained
from the USC-SIPI database [1]). For each SR method, representative HR images are
shown with respect to the optimal registration method.
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Figure 9: Reconstructed HR images for the 256×190 Car sequence. For each SR method,
representative HR images are shown with respect to the optimal registration method.
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