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We present a new approach for curve clustering designed for analysis of spatiotemporal
data. Such data contains both spatial and temporal patterns that we desire to cap-
ture. The proposed methodology is based on regression and Gaussian mixture modeling.
The novelty of the herein work is the incorporation of spatial smoothness constraints in
the form of a prior for the data labels. This allows to take into account the property
of spatiotemporal data according to which spatially adjacent data points have higher
probability to belong to the same cluster. The proposed model can be formulated as
a Maximum a Posteriori (MAP) problem, where the Expectation Maximization (EM)
algorithm is used to estimate the model parameters. Several numerical experiments with
both simulated data and real cardiac perfusion MRI data are used for evaluating the
methodology. The results are promising and demonstrate the value of the proposed ap-
proach.
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Markov random field; smoothness prior.

1. Introduction

Clustering is a very interesting and challenging research problem and a wide spec-
trum of methodologies has been used to address it. Probabilistic mixture modeling
is a well established model-based approach for clustering that offers many advan-
tages. One such advantage is that it provides a natural platform to evaluate the
quality of the clustering solution 1, 2. Curve clustering is a special case of clustering
in which the available data have one or both of the following two features: first they
are of very large dimension and thus conventional clustering methods are computa-
tionally prohibitive, and second they are not of equal length and thus conventional
clustering methods cannot straightforwardly be applied. In such cases it is natural
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initially to fit the available data with a parametric model and then to cluster based
on that model. Different types of functional models have been used to for such data.
Among them polynomial and spline regression are the most commonly used models
3 and have been successfully applied to a number of diverse applications, ranging
from gene clustering in bioinformatics to clustering of cyclone trajectories, see for
example 4 5 and 6.

Another important application of curve clustering is in the analysis of spatiotem-
poral data where it is desired to capture both the spatial and temporal patterns of
the data. For example, in medical imaging modalities, such as dynamic PET and
functional MRI, an important problem is how to group image pixels into spatial
regions in which the pixels exhibit similar temporal behavior. This is very useful,
for example, in kinetic-modeling and functional imaging applications, see for exam-
ple 7, 8, and the references therein. In such studies it is important to measure both
the temporal characteristics of the grouped pixels and simultaneously to accurately
classify the pixels into groups of similar temporal behavior.

Thus, to determine class membership in this type of data, apart from the distance
between the coefficients of the model, it is also beneficial to use spatial information.
These constraints capture the prior knowledge that adjacent pixels most likely be-
long to the same class. The idea of combining Gaussian mixture models with spatial
smoothness prior has been used previously with success for segmentation of natural
images 9 and 10.

In this paper we extend this idea to the problem of time-sequence analysis via
regression based curve clustering. In other words, we fit the curve data with a regres-
sion mixture model and set a Markov random field (MRF) smoothness prior over
the class labels of the data in order to achieve data belong to the same neighborhood
to have the same labels. Then, a maximum a posteriori expectation maximization
algorithm (MAP-EM) 11, 2 is applied to learn this model and cluster the data.
We also estimate the number of components of the mixture model, and therefore
the number of clusters, using the Bayesian information criterion (BIC) 12. Finally,
the performance of the proposed methodology is evaluated using a series of experi-
ments with simulated data generated with different polynomial or splines functional
in noisy environments. Since the ground truth is known in such data, we compared
the simple regression mixture model without the smoothness prior with the one
that uses it. As performance metrics we used the percentage of misclassified data
and the error in the fit of the original curves. We also applied this method to in vivo
dynamic cardiac MRI data with promising results as evaluated by human experts.

More specifically, in section 2 we present the simple regression model, the pro-
posed method based on the smoothness prior and the EM methodology used for
estimating model’s parameters. To assess the performance of the proposed method-
ology we present in section 3 numerical experiments with both artificial data where
the ground truth is known and real cardiac perfusion MRI data. Finally, in section
4 we give our conclusions and suggestions for future research.
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2. Model and prior specification

2.1. Regression mixture models

Suppose the spatiotemporal data Y = {yil}l=1,...,T
i=1,...,N , where i denotes the spatial

index and l the temporal index that corresponds to time locations tl. This kind of
data consists of T images each with N pixels. Thus, at each pixel location i we have
the temporal sequence yi of length T . It must be noted that although during the
present description of the regression model it is assumed that all yi sequences are
of equal length, this can be easily changed. In such case, each yi for i = 1, . . . , N

is of variable length Ti. This corresponds to the general case of the model that will
be demonstrated later in our numerical experiments section.

To model curves yi we use p-order polynomial regression on the time range
t = (t1, . . . , tT ) with an additive noise term given by

yi = Xβ + ei , (1)

where X is the Vandermonde matrix, i.e.

X =




1 t1 . . . tp1
...

... . . .
...

1 tT . . . tpT




and β is the p + 1-vector of regression coefficients. Finally, the error term ei is a
T -dimensional vector that is assumed to be Gaussian and independent over time,
i.e. ei ∼ N (0,Σ) with a diagonal covariance matrix Σ = diag(σ2

1 , . . . , σ2
T ). Thus, by

assuming Xβ deterministic, we can model the joint probability density of the curve
y with the normal distribution N (Xβ, Σ).

In this study we consider the problem of curve clustering, i.e. the division of the
set of curves yi with i = 1, . . . N into K clusters, where each cluster will contain
curves of the same generation mechanism (polynomial regression model). To this
direction, the regression mixture model is a useful generative model that can be used
to capture heterogeneous sources of curves. This can be described by the following
probability density function:

f(yi|Θ) =
K∑

j=1

πjp(yi|θj) , (2)

which has a generic and powerful meaning in model-based clustering. Following this
scheme, each curve is generated by first selecting a source j (cluster) according
to probabilities πj and then by performing sampling based on the corresponding
regression relationship with parameters θj = {βj ,Σj} as described by the normal
density function p(yi|θj) = N (Xβj ,Σj). Moreover, the unknown mixture probabil-
ities satisfy the constraints: πj ≥ 0 and

∑K
j=1 πj = 1.

Based on the above formulation, the clustering problem becomes a maximum
likelihood (ML) estimation problem for the mixture parameters Θ = {πj , θj}K

j=1,
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where the log-likelihood function is given by

L(Y |Θ) =
N∑

i=1

log{
K∑

j=1

πjp(yi|θj)} . (3)

The Expectation-Maximization (EM) algorithm 11 is an efficient framework for
solving likelihood estimation problems for mixture models. It performs iteratively
two steps: The E-step, where the current posterior probabilities of samples to belong
to each cluster are calculated:

z
(t)
ij = P (j|yi,Θ(t)) =

π
(t)
j p(yi|θ(t)

j )
f(yi|Θ(t))

, (4)

and the M -step, where the maximization of the expected value of the complete log-
likelihood is performed. This leads to the following updated rules for the mixture
parameters 4, 3:

π
(t+1)
j =

N∑

i=1

z
(t)
ij

N
, (5)

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT Σ−1

j

(t)
X

]−1

XT Σ−1
j

(t)
N∑

i=1

z
(t)
ij yi , (6)

σ2
jl

(t+1)
=

N∑

i=1

z
(t)
ij (yil − [Xβ

(t+1)
j ]l)2

N∑

i=1

z
(t)
ij

, (7)

where [.]l indicates the l-th component of the T -dimensional vector that corresponds
to location tl. After convergence of the EM, the association of the N observable
curves yi with the K clusters is based on the maximum value of the posterior prob-
abilities. The generative polynomial regression function is also obtained per each
cluster, as expressed by the (p+1)-dimensional vectors of the regression coefficients
βj .

2.2. The spatially variant regression mixture with smoothness

prior

In order to enforce spatial smoothness to the basic scheme of the regression mixture
model we use a spatially varying approach, see for example 9. This model, unlike the
classical, assumes that the probabilities of the data labels πij are random variables,
where i defines the spatial location and j the class. To handle this information we
use a Markov random field (MRF) prior 13,14, 15 that provides a convenient way of
modeling the constraint in many computer vision and image processing problems,
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i.e. that the probability of a node in the image field depends only on its neighboring
nodes.

In particular, we assume that the mixture density function is given by the fol-
lowing equation

f(yi|Θ) =
K∑

j=1

πijp(yi|θj) , (8)

where the mixture parameters are Θ = {{πij}N
i=1, θj}K

j=1. The probabilities of the
pixel labels π = {πij} satisfy the constraints: πij ≥ 0 ,

∑
j πij = 1 and they follow

the Gibbs distribution with a density function given by

p(π) =
1
Z

exp(−

N∑

i=1

VNi(π)

ξ
) , (9)

where Z is a normalizing constant, while ξ is the regularization parameter. The
function VNi(π) denotes the clique potential function of the pixel label vectors
{πm} within the neighborhood Ni of the ith-pixel and can be computed as follows

VNi(π) =
∑

m∈Ni

K∑

j=1

(πij − πmj)2 . (10)

The neighborhood Ni is the set of adjacent pixels m around pixel i (|Ni| = 8 in the
general case).

As explained in 10, it is advantageous in the above formulation to use a Gaussian-
MRF with a different variance ξj at each cluster. Then, this prior is given by

p(π) ∝
K∏

j=1

ξ−N
j exp(−

N∑

i=1

∑

m∈Ni

(πij − πmj)2

2ξ2
j

) . (11)

The advantages from this type of prior are twofold. First, the parameter ξj that
capture spatial attributes enforce smoothness of different degree at each cluster
and better adapt to the data. Also, as will be showed later, this prior allows the
estimation of the values of the parameters ξj directly from data.

Using this prior the log likelihood of the MAP function is

LMAP (Θ|Y ) = log p(Y |Θ) + log p(Θ) =
N∑

i=1

log{
K∑

j=1

πijp(yi|θj)}+ log p(π) . (12)

Direct maximization of this function is difficult thus we resort to the EM methodol-
ogy. In particular, during the E-step the posterior probabilities values are calculated

z
(t)
ij = P (j|yi, Θ(t)) =

π
(t)
ij p(yi|θ(t)

j )
∑K

j′=1 πij′p(yi|θj)
, (13)
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while the expected value of the MAP log likelihood of the complete data

Q(Θ|Θ(t)) =
N∑

i=1

K∑

j=1

z
(t)
ij {log πij + log p(yi|θj)} − log ξj −

∑

m∈Ni

(πij − πmj)2

2ξ2
j

. (14)

is maximized next during the M -step. The update rules for the regression param-
eters βj and Σj (Eqs. 6 and 7, respectively) are exactly the same as in the case of
ML configuration. However, inference of the probabilities of the pixel labels πij is
not as straightforward. Setting the derivative of (14) with respect to parameters πij

equal to zero we take the following quadratic equation:

π2
ij − π̃ijπij −

ξ2
j

|Ni|z
(t)
ij = 0 , (15)

where π̃ij = 1
|Ni|

∑

m∈Ni

πmj is the mean value of the j-th cluster’s probability of the

spatial neighbors of the i-th pixel. The above quadratic expression has two roots,
where we select only the root with the positive sign since it yields the constraint
πij ≥ 0:

π
(t+1)
ij =

π̃ij +

√
π̃2

ij + 4
ξ2

j

|Ni|z
(t)
ij

2
. (16)

It must be noted that in the above equation the neighborhood Ni may include pix-
els with probabilities either updated (π(t+1)

mj ) or not (π(t)
mj). However, these values

of πij as computed by Eq. 16 are not the final solution since they do not satisfy
the constraints 0 ≤ πij ≤ 1 and

∑K
j=1 πij = 1. These constraint equations define a

convex hull. Thus, after calculation of π
(t+1)
ij (Eq. 16) we project them on the con-

straint convex hull. For this projection an efficient convex quadratic programming
algorithm presented in 9 is used.

Finally, by taking the derivative of Q-function (Eq. 14) with respect to the
smoothness parameters ξj we obtain the following update rule:

ξ2
j
(t+1)

=
1
N

N∑

i=1

∑

m∈Ni

(π(t+1)
ij − π

(t+1)
mj )2 . (17)

As discussed earlier, the fact that MRF variances ξ2
j can be found in closed form is

another advantage of the proposed prior inference framework.

2.3. Model Selection

The problem of selecting a statistical model with the correct complexity is funda-
mental in statistical modeling. In such cases one has to tradeoff between fitting
accurately the data and the ability of the model to generalize. For the herein used
mixture model the number of components K determines the complexity. In order
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to address this problem models of varying order along with the Bayesian informa-
tion criterion (BIC), has been used successfully in a number of applications; see for
example 16, 12 and 17. The BIC is given by

BIC = −2L(Θ̂k) + D × log(N) , (18)

where Θ̂k is the k−order estimated model. The quantity D is the total number of
model parameters. In our case, D = N(K−1)+K(p+1)+KT = K(N+p+T+1)−N ,
since there are three kinds of parameters, πij , βj , σjl, and the constraint

∑
j πij = 1,

∀i. In other words BIC includes a penalty term along with the negative log-likelihood
that depends on the number of model parameters. This term penalizes complex
models with many parameters and thus counterbalances the negative log-likelihood
term that increases monotonically with the number of parameters.

3. Experimental results

The performance of the proposed regression mixture model with smoothness con-
straints, referred to as spatial RM, is evaluated using a number of numerical experi-
ments. We have considered both simulated spatiotemporal data with known ground
truth, as well as real cardiac perfusion MRI sequences along with visual inspection
by an expert. The herein spatial RM is compared with the simple regression mixture
model without spatial smootheness, referred to as simple RM.

Both models were initialized using the same strategy. In particular, K curves
from the data set were randomly selected and a simple least-square fit was used to
obtain the K × (p + 1) regression coefficients. The mixing parameters were selected
as 1

K and the covariances were assumed spherical and equal to 1
K times the total

variance of the data set. Then, one step of the EM was used to further refine
these parameters. Based on these parameters the log-likelihood was evaluated. The
parameters used for initialization were selected as the ones that gave the best value
of the log-likelihood criterion after 200 random trials. Finally, it must be noted that
during all experiments we have used polynomials of order p = 8.

3.1. Experiments with simulated spatiotemporal data

At first the performance of our method was evaluated with simulated spatiotemporal
data with known ground truth. In particular, we used two piece-wise constant images
in Fig. 1 that contain three (K = 3) and five (K = 5) distinct regions, respectively
15. Simulated image sequences with spatial resolution 128 × 128 pixels resulting
in N = 16, 384 and T = 50 time frames were generated by varying the intensity
of each region according to a predefined time pattern. Four different sets of such
patterns were used in our study, namely C1, C2, C3 and C4, shown in Fig. 2. The
first set C1 consists of a Gaussian, a Rayleigh and a logarithmic curve, the second
set C2 contains more complex curves obtained by polynomials of degree p = 6, the
third set C3 consists of a sinusoid and two 2-component Gaussian mixtures, one
with a discontinuity adopted from 18, and finally the fourth set C4 contains the
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Fig. 1. The two test images (with K = 3 and K = 5 classes, respectively) used in the experiments.
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Fig. 2. Four different sets of the signal patterns used for generating the image sequences of the
piece-wise constant images in Fig. 1. The configurations C1, C2, C3 correspond to the case with
K = 3 segments, while the pattern C4 has used for the case with K = 5 clusters.

three curves of the set C3 along with a Gaussian and an exponential function. The
generated sequences of frames were also corrupted by additive white Gaussian noise
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with variance selected to yield signal-to-noise-ratio (SNR) between 8dB and −8dB.
Some characteristic examples of the obtained frames are shown in Fig.3.

Fig. 3. Sample frames from the simulated sequence C2 with SNR = 0dB.

To quantify the performance of the proposed method two evaluation criteria
were used: a) The percentage of correctly classified pixels that quantifies the ability
of our methodology to capture the spatial patterns of the data. b) The curve square
error CSE, that is the sum of squared errors between real curves ({rjl}) and the
estimated curves ({[Xβ̂j ]l}), i.e.

CSE =
K∑

j=1

CSEj , where CSEj =
T∑

l=1

(rjl − [Xβ̂j ]l)2,

was used to quantify the ability of the proposed methodology to capture the tem-
poral patterns of the data. For each problem we performed 50 runs of both methods
with different noise realizations and evaluated the mean value and the standard
deviation of the above two performance criteria.

Figure 4 presents the evolution of these quantities as a function of the SNR

for the four sets of sequences based on the temporal patterns of Fig. 2. As can be
observed, the proposed methodology improves significantly classification accuracy
as compared to the simple RM for the entire range of examined SNR, especially for
the lower values. For this emperiments in all four data sets the introduction of spatial
smoothness does not improve its capability to estimate the temporal patterns. The
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Fig. 4. Percentage of correct classification and curve square error as a function of the SNR for
the four sets of signal patterns. We have C1, C2 and C3 with K = 3 and C4 with K = 5.

calculated CSE was always slightly worse for the model with the spatial constraints.
This was expected, since it is well known that in such regression problems spatial

smoothness although reduces the variance at the expense of introducing bias to the
estimates of the parameters 19. Both the variance and the bias contribute to mean-
square-error like metrics as the herein used CSE. The smoothness constraint is very
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beneficial in cases where the problem is ill-posed, i.e. when the variance of the
parameters estimated based only on the data is large. On the opposite side, in cases
where the number of data points is quite large as during the above experiments (N =
16, 384), the variance of the estimates of the regression parameters becomes smaller.
Thus, the smoothness constraint, although it improves spatial segmentation, does
not help reduce CSE 19. In what follows we show experiments with missing data
where the value of the smoothness constraint becomes apparent for the estimation
of the temporal patterns also.

3.1.1. Experiments with missing data

An important application of this methodology is in situations with missing data.
In such cases for certain time instances there are missing spatial measurements.
Such a situations can be found in many applications. For example, in tracking from
video sequences, occlusions that block the view of the objects in certain image
frames result in missing data. Furthermore, isolated spiking on the radio frequency
coils can cause variable temporal and spatial missing data in functional MRI. In
such cases use of regression mixtures is very beneficial since other conventional
clustering methodologies cannot be used in a straightforward manner. For this case
each temporal pattern is of variable length, i.e. yi = {yil}Ti

l=1. Then, the polynomial
regression model of yi is given by

yi = Xiβ + ei , (19)

where the time regressor Xi is a Vandermonde matrix with a variable number rows
which is equal to existing time measurements at each spatial location. The use of the
EM algorithm for estimating the regression parameters differs only in the M -step
in Eq. (6) and is given by:

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT

i Σ−1
j

(t)
Xi

]−1 N∑

i=1

z
(t)
ij XT

i Σ−1
j

(t)
yi . (20)

Additional experiments have been conducted in an attempt to study the behavior
of our methodology in this case. Since the removed samples are chosen at randomly,
no spatial location is privileged with respect to any other and the percentage of the
missing data expresses the probability that a time sample may not be present at
any spatial location.

Experiments were conducted on the second signal pattern C2 by varying the
percentage of missing data between 0% and 80% and (again) for various SNR levels.
Figure 5 illustrates the mean values and standard deviations of the two evaluation
criteria for three such SNR values. As expected, the classification accuracy of the
spatial RM model again is superior in comparison with the simple RM model for all
levels of missing data. However, in this study a significant improvement of the CSE
criterion was also observed in noisy environments especially when the percentage
missing data was large. This is in agreement with our previous explanation suggested
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Fig. 5. Comparative results in terms of two evaluation criteria in various levels of missing data.

that the benefits of the smoothness prior are more apparent in cases where the
available data alone cannot estimate accurately the model parameters.

3.1.2. Experiments with BIC model selection

In order to test the value of the BIC-based model selection approach, we performed
additional experiments. In particular, for every set of signal patterns we created
50 different datasets by using a different noise realization. Then we measured the
number of components K found based on the BIC model selection criterion. Figure
6 presents the relative frequencies plots of the values of K found for the datasets
C3 and C4 for two different noise levels. It is clear that the number of clusters K

in high noise environments can be accurately deduced most of the times. However,
as the value of SNR decreases this becomes harder as observed by the widening of
the relative frequency plots.
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Fig. 6. Relative frequencies of the number of clusters found by applying the BIC model selection
method to the regression mixture model in two noise values for the simulated C3 (a) and C4 (b)
datasets of Fig. 2.

3.2. Cardiac perfusion MRI sequence segmentation

We also tested our method on two real sets of spatiotemporal data from in vivo dy-
namic cardiac magnetic resonance imaging (MRI) studies. Our goal was to segment
the anatomies of the heart based on their hemodynamic coherence, as well as to
measure the time behavior of each segment. The MRI data was obtained from an
instrumented pig with an intracoronary catheter inserted into the left main coro-
nary artery. Perfusion images were acquired with a heavily T1-weighted ”contrast
enhanced with saturations and multiple inversions” (CESMIR) prepared fast gra-
dient recalled echo sequence 20, with TR/TE/a = 2.2/1.2/20; FOV = 200 X 200
mm2; slice = 5 mm; matrix = 96× 96; and central phase-encoding order. Dynamic
imaging was performed by acquiring a series of 100 to 200 2D MR images aligned
along an oblique long axis views to image the left ventricle (LV) from the base to
the apex of the heart 21. After 15-20 precontrast images, 2 mL of 0.125 mM Gd-
DTPA (Omniscan; Amersham Health, Princeton, NJ, USA) were administered at
2 mL/second with a power injector followed by a normal saline flush.

Figure 7 illustrates representative MR images from this sequence, illustrating the
differential enhancement of the left circumflex (LCx) and left anterior descending
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Fig. 7. Sample frames from the cardiac perfusion MRI sequence used in the experiments.
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Fig. 8. Segmentation results of the cardiac perfusion MRI sequence together with the estimated
curves using (a) the proposed spatial RM and b) the simple RM.

(LAD) coronary arteries (that are directly supplied contrast enhanced blood from
the left main), the perfused myocardium and finally the right and left ventricles.
Figure 8 shows the results of segmentation with the two methods performed with
a predefined number of clusters K = 7. An expert in cardiac MRI inspected and
evaluated the two methods using the original MR images as reference. Comparison
of the two methods demonstrated that (a) both provide efficient segmentations of
the heart ventricles, myocardium and arteries, and (b) the spatial RM results offer
a far better spatial coherence of the cardiac segments (e.g., note in Fig. 7a the
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artifactual segments in the antero-basal area of the myocardium that are absent
in Fig. 8 b). The segmentation efficiency of the spatial RM method offers excellent
capabilities for segmenting out tissue based on its spatiotemporal features. This has
many potential applications especially in the emerging field of interventional and
functional MRI, for optimizing the assessment and quantification of myocardial
perfusion, including the generation of perfusion maps, and the generation of masks
for 3D reconstruction of multislice perfusion or vascular MRI.

The proposed methodology was used with a second set of cardiac perfusion MRI
images. Figure 9 shows representative frames of two slices (out of seven) from this
study. Slice 1 corresponds to an apical and slice 2 corresponds to a midsection
(apical-to-basal) oblique short axis view of the heart. With the CESMIR sequence,
the signal intensity (SI) in the pre-contrast images (frames 1) is substantially re-
duced for improved dynamic range of the contrast enhancement. After infusion of
the contrast agent (frames 2 to 4), the segment of the myocardium that is directly
perfused by the left main coronary artery uptakes contrast agent and demonstrate
increased signal intensity (SI). In this particular animal, we observe enhancement
of the anterior, antero-septal and antero-lateral walls.

Figure 10 shows results of the segmentation of those two slices with the proposed
method using a K = 5. In both slices the five clusters reflect anatomical areas with
differential SI responses, which are consistent with the aforediscussed differential up-
take of contrast agent, as well as differences in the pre-contrast SI. The important
finding is that the method effectively segments the perfused territories (cluster 4 in
slice 1 and cluster 2 in slice 2). This observation can also be appreciated from the
SI time curves, in Fig. 10 C) and F), which show that those two clusters correspond
to high signal enhancement. Notably, the efficiency of the algorithm is manifested
by the clear delineation of smaller anatomical structures such as the papillary mus-
cle (PM) in slice 2. In contrast, the non-perfused portion of the myocardium (i.e.
posterior and postero-septal segments) is separately clustered and demonstrates no
signal enhancement.

The presented in vivo application of the proposed approach demonstrated high
efficiency by accurately segmenting the perfused areas of the myocardium, while
it categorized other anatomical structures in clusters primarily based on their pre-
contrast SI. The achievement of such good fidelity segmentation is the most impor-
tant step toward generating three dimensional (3D) perfusion maps for use in both
diagnosis, as well as for planning and assessing the performance of therapeutic inter-
ventions. In view of such a potential clinical use of this method, we also selected this
particular animal model: with intracoronary (localized) infusion of contrast agent
only the portion of the tissue that is perfused by the left main coronary artery is
enhanced. As a result, a well defined anatomical area is artificially defined that is
appropriate for segmentation by clustering. An additional benefit of this model is
the use of highly diluted contrast agent, so that during first pass and re-circulation,
the right and left ventricles do not show any significant enhancement 21, 22, thereby
reducing the complexity of tissue spatio-temporal properties. This protocol also
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Fig. 9. Representative frames from a myocardial perfusion MRI study depicting four frames of two
slices (out of seven). Frames 1 were collected before the infusion of contrast agent (pre-contrast).
Frames 2, 3 and 4 were collected to different instances after intracoronary infusion of Gd-DTPA
into the left main artery. Note the high signal intensity of the portion of the left main during
the passage of the agent before the agent distributes into the myocardium. (CH = chest wall, LI
= liver, LV = Left Ventricle, RV = Right Ventricle, LAD = Left Anterior Descending coronary
artery, PM = Papillary Muscle)

simulates the appearance of the heart with infarction, secondary to coronary artery
stenosis.

4. Conclusions and Future Work

In this paper we presented a methodology based on regression mixture modeling for
analysis of spatiotemporal data. The main feature of this approach is the incorpora-
tion of a spatial smoothness prior for capturing spatial information. This approach
was tested using numerical experiments with both simulated and real cardiac per-
fusion MRI data spatiotemporal data. These experiments demonstrated that the
proposed spatial smoothness constraint always improves the ability of the regres-
sion mixture model to discover spatial patterns in the data. As far as the temporal
patterns are concerned, we demonstrated that spatial smoothness constraints are
gainful only in cases where the available data are not sufficient to accurately esti-
mate the model parameters. We also demonstrated that the proposed methodology
can be very beneficial for cardiac perfusion MRI applications since it has the ability
to capture the anatomical structures of the perfused areas of the myocardium.

In the future we plan to extend this stochastic model to automatically detect the
order of the regressor that is necessary to model the underlying temporal pattern
and also to study other functional models for regression such as splines. Moreover,
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Fig. 10. Segmentation results with the proposed approach for the two slices shown in Figure 6.
(A, D) original MRI frames. (B, E) Segmentation masks with K = 5. (C, F) Signal Intensity time
curves for each one of the segments.

other interesting medical image applications for this methodology include the ex-
traction of brain activation functional maps from functional MRI and monitoring
the physiologic motion of tissue for guiding image based interventions and surgeries.
Finally, we also plan to test the value of our approach in surveillance and tracking
applications from video sequences 8.
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