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Abstract

In this paper, we develop data driven registration algorithms, relying on pixel similarity metrics, that enable an
accurate (subpixel) rigid registration of dissimilar single or multimodal 2D/3D images. Gross dissimilarities are handled
by considering similarity measures related to robust M-estimators. In particular, a novel (robust) similarity metric is
proposed for comparing multimodal images. The proposed robust similarity metrics are compared to the most popular
standard similarity metrics, on synthetic as well as on real-world image pairs showing gross dissimilarities. Three case
studies are considered: the registration of single modal and multimodal 3D medical images, the matching of multispectral
remotely sensed images, and the registration of intensity and range images. The proposed robust similarity measures
compare favourably with the standard (non-robust) techniques. ( 1999 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The goal of image registration is to geometrically align
two or more images so that pixels (or voxels) representing
the same underlying structure may be superimposed.
Image registration is an important preliminary step in
many application "elds involving, for instance, the detec-
tion of changes in temporal image sequences or the fusion
of multimodal images [1]. Medical imaging, with its wide
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variety of sensors (thermal, ultrasonic, X-ray, MRI and
nuclear) is probably one of the "rst application "eld, as
are remote sensing, military imaging (visible, IR or
radar), multisensor robot vision and multisource imaging
used in the preservation of artistic patrimony. Applica-
tions include the following of the evolution of lesions in
medical image sequences [2], the detection of changes in
urban development from aerial photographs [3] and the
recovery of underpaintings from visible/X-ray pairs of
images in "ne arts painting analysis [4].

Most change detection or data fusion algorithms
assume that the images to be compared are perfectly
registered. Even slight misregistrations may become
an important source of interpretation errors when
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interimage changes have to be detected. Accurate (i.e.
subpixel or subvoxel) registration of single-modal images
remains an intricate problem when gross dissimilarities
are observed.

Gross dissimilarities may be large lesion evolution for
multiple sclerosis patients (Fig. 7), functional information
in SPECT images not presented in MRI for patients with
partial epilepsy (Fig. 9), large areas covered with clouds
in remotely sensed images (Fig. 11), images that do not
completely overlap (pre- post-operative brain images,
skull and scalp structures in MRI not present in
functional imaging (Fig. 10). The problem is even more
di$cult for multimodal images, showing both localized
changes that have to be detected [4] and an &&overall''
di!erence (due to di!erences in the characteristics of the
scene observed by multiple sensors).

Although a large variety of image registration methods
have been proposed in the literature, only a few tech-
niques have attempted to address the registration of
images showing gross dissimilarities. If the case of single-
modal dissimilar images has been considered [2], to our
knowledge, no speci"c model has been proposed to
handle multimodal images exhibiting large dissimilarities.

In the present paper, we develop several data driven
registration methods, relying on pixel (or voxel) sim-
ilarity metrics, that enable an accurate (subpixel) rigid
registration of dissimilar single or multimodal 2D/3D
images. Gross dissimilarities are handled by considering
similarity measures related to robust M-estimators. In
particular, a novel pixel similarity metric is proposed for
the multimodal case. This metric has shown very e$cient
for the registration of highly dissimilar images, on which
conventional techniques fail. An example of such a
multimodal image pair is given in Fig. 11, showing two
satellite images of France, taken at di!erent optical
wavelengths and at di!erent dates. Gross dissimilarities,
due to the presence of large overcast areas may be ob-
served. Subpixel registrations have been obtained in this
case (see Section 4).

The remainder of this paper is organized as following.
Background and related approaches are presented in
Section 2. In Section 3, we introduce two robust sim-
ilarity metrics for the registration of single and multi-
modal images. The data-driven registration algorithm,
based on these robust similarity measures, is described
in the same section. In Section 4, the robust similarity
metrics are compared to the most popular standard sim-
ilarity metrics, on synthetic as well as on real-world
image pairs showing gross dissimilarities. The registra-
tion accuracy is evaluated for three case studies: the
registration of single modal (MRI/MRI) and multimodal
(MRI/SPECT) 3D medical images, the matching of
multispectral (visible/IR) satellite images showing large
overcast areas and the registration of intensity and range
stereo images. The proposed robust similarity measures
compare favourably with all standard (non-robust)

techniques (including the quadratic similarity measure
and the multimodality registration criterion devised by
Woods et al. [5]. The multimodal robust similarity met-
rics shows also (excepted for one particular case) better
performances than the recently proposed mutual in-
formation criterion [6,7], that has been recognized as the
most e$cient method in several recent studies [8].

2. Background and standard similarity measures

2.1. Related work

A complete review of standard registration techniques
has been made by Brown [1]. Similarity measure-based
approaches rely on the minimization of cost functions
that express the pixel or voxel similarity of the images to
be aligned. They have been proposed for both single and
multimodal image registration. Standard similarity met-
rics are related to least-squares estimation [9}11] or to
the maximization of the correlation function [12]. Other
similarity measures, based on "rst- or second-order im-
age statistics such as mean, variance [13,5], entropy
measures [6,7], or texture moments [14] have also been
devised.

Similarity metrics for the registration of 2D single-
modal images, that are to a certain extent robust to
image changes have been described by Herbin et al. [2].
Herbin et al. make use of deterministic and stochastic
sign change criteria to obtain robust registrations of
medical image sequences in critical situations corre-
sponding, for instance, to lesion evolutions [2]. A robust
statistics-based approach, has been proposed recently
and independently [15] for the registration of 2D single-
modal images. The approach of Alexander et al. [15] uses
sparse features (edges) extracted from the image pair and
relies on a least median of squares robust estimator [16].
Contrary to the metrics described below, these methods
do not handle the case of multimodal images.

2.2. Standard similarity metrics

In this section we brie#y present a selection of the most
popular similarity metrics and describe their limitations.
These similarity metrics will be compared, in Section 4, to
the robust metrics we propose.

Pixel (or voxel) similarity metric-based registration
consists in estimating the parameters # of the rigid
transformation ¹# minimizing a cost function E(I
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reference image and I
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( ) ) the image to be registered.
A classical similarity measure, widely used for the

registration of single-modal images is the quadratic sim-
ilarity measure [9,11]. This similarity metric assumes
that the two registered images di!er only by an additive
Gaussian noise [10], leading to the following least-
squares cost function:
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where x designates the pixel (or voxel) coordinates.
Quadratic similarity metrics are related to Gaussian
sensor models [10], which do not take into account the
interimage dissimilarities that may occur in real-world
applications.

A popular similarity measure for the registration of
multimodal image pairs (widely used in medical imaging)
is the multimodality similarity metric devised by Woods
et al. [5]. The fundamental assumption related to Woods
criterion is that a uniform region in the reference image
corresponds, after registration, to a region that is also
uniform in the second image (inter-image uniformity hy-
pothesis).

The reference image is thus "rst partitioned into
G grey-level classes, where G denotes the number of grey
levels of this image (typically G"256). These G classes
de"ne a partition of the reference image, but do not
necessarily correspond to connected components in this
image. The resulting spatial partition is projected on the
image to be registered, yielding the same partition of this
second image. The expected values k

g
, g"1,2,G, and

the standard deviations p
g
, g"1,2,G of each seg-

mented region in the second image are then computed. If
the two images are correctly registered, Woods assumes
that the normalized variance p

g
/k

g
is minimum over the

entire image [5]. The following inter-image uniformity
cost function is thus de"ned:
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In Eq. (4), N represents the number of voxels in the
images and N

g
stands for the population of voxels having

the value g in the reference image. This criterion has been
devised for multimodal image registration. It may of
course also be used for single modal image registration,

although it is generally not as accurate as the least
squares metric (as will be seen in our experiments).

As pointed out by Woods [5], the inter-image uni-
formity hypothesis may only de"ne a crude approxima-
tion in some cases. This is particularly true when the
multimodal image pair is used for the complementary
and non-redundant information it provides. The dissimil-
arities (i.e. innovation) carried by the "rst image with
respect to the second one are not taken into account in
the inter-image uniformity cost function, leading to regis-
tration errors which, even small, may a!ect the accurate
detection of inter-image changes [4] or the fusion of
multimodal information. If the inter-image uniformity
hypothesis is well veri"ed, the histogram of the region in
the registered image I

3%'
(¹# ( ) )), corresponding to a given

grey-level class g in the reference image I
3%&

( ) ), is typically
peak-shaped, as represented in Fig. 1a. In practice, the
typical histograms computed on real-world registered
image pairs di!er often signi"cantly from this ideal
shape, as can be seen in Fig. 1b, which has been obtained
on an accurately registered MR/SPECT image pair.
Since the SPECT image carries non-redundant func-
tional information, many outliers occur and the histo-
gram diverges from the ideal peak. In such cases, the
computation of k

g
and p

g
may be severely a!ected by the

outlying data. This discrepancy with respect to the inter-
image uniformity hypothesis is also readily visible on the
joint histogram of the registered MR/SPECT image pair,
represented in Fig. 2, which shows that the joint informa-
tion is scattered over the di!erent grey levels, with many
outliers. Robust similarity metrics enable to cope e$-
ciently with this problem, as explained in Section 3.

For comparison purposes, we will also consider a cri-
terion based on the maximization of the mutual informa-
tion proposed recently and independently [7,6]. This
criterion is based on the same partitioning as in Eq. (4).
The assumption is that the the mutual information I is
maximum when the two images are correctly registered,
yielding the following mutual information cost function
[7,6]:
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where G and K stand for the number of grey levels of
I
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and I
3%'

. The joint probabilities p(g, k) are the ele-
ments of the cooccurrence matrix of I
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( ) ) and I
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and p(g) and p(k) are the marginal probabilities of I
3%&

( ) )
and I

3%'
(¹# ( ) )) respectively, both computed from the

normalized histograms of the two images.
This criterion has been recognized, in several recent

studies [8], as yielding the best results in multimodal
medical image registration. It will be compared to our
robust multimodal registration criterion in Section 4.
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Fig. 1. (a) The theoretical histogram of the voxels in the registered image whose counterpart in the reference image have the same grey
level g. The basic assumption of the inter image uniformity criterion is that, after registration, all the voxels in the reference image with
the same grey level g are represented by a constant grey level in the registered image (the peak here). (b) A typical example of an
experimental histogram computed on a registered MRI/SPECT pair (the images are shown in Fig 9). Notice the amount of outliers and
the discrepancy with respect to the inter-image uniformity hypothesis.

3. Robust similarity metrics-based registration

3.1. Robust similarity measures

Standard similarity-based approaches do not model
the information di!erences between images in a single or
multimodal pair and, as a consequence, are not robust
with respect to them. It is well known that least squares
are sensitive to gross di!erences between images due
to non-Gaussian &&events'' [4] or &&outliers''. Outliers
contribute too much to the least-squares solution since
outlying points are assigned a high weight by the quad-
ratic estimator (3). This remark also holds for the inter-
image uniformity cost function (4), which is based on
standard image statistics (i.e., mean values and variances)
and assumes a strict agreement between uniform
regions in the multimodal pair. When a signi"cant
amount of outliers is present in the images to be regis-
tered, inaccurate registrations or even misregistrations
may be obtained. To increase robustness, the cost
function must thus be forgiving about outlying measure-
ments.

Robust estimators have become popular in computer
vision applications because they have proven e!ective in
tolerating gross outliers in the data [17,18]. A review on
robust estimators in computer vision has been presented
by Meer [17]. A collection of non linear robust
estimators, including least median of squares, least-trim-
med squares, M-estimators, Hough transforms, RAN-
SAC and MINPRAN algorithms are presented by Black
[19]. The robustness of these estimators to situations in
which mixture of data from multiple (coherent) structures
plus gross outliers are to be handled is studied in depth

Fig. 2. The joint histogram of the registered MRI/SPECT pair
shown in Fig. 9. The MRI grey levels are represented along the
horizontal axis while the SPECT image grey levels are represent-
ed vertically.

by Stewart [18] where it is shown that the estimated
parameters may be heavily skewed in such situations.

A standard performance measure for a robust es-
timator is its breakdown point. The breakdown point is
the largest fraction of data that can be arbitrarily bad and
will not cause the solution to be arbitrarily bad. The least
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median of squares regression [16], (used by Alexander
et al. [15] for feature-based single-modal image registra-
tion), relies on the minimization of the median of the
squared residuals. The resulting estimator can resist to
the e!ect of nearly 50% of contamination in the data. In
the special case of simple regression, it corresponds to
"nding the narrowest strip covering half of the observa-
tions. The MINPRAN algorithm [18] has also a break-
down point of 50% and relies on random data sampling.
These estimators have high breakdown points but also
yield a high computational load, since they are based on
random data sampling and sorting. Another class of
estimators, the M-estimators [20], that have attractive
properties (i.e., satisfactory breakdown points and mod-
erate computational cost), have been extensively used in
computer vision [19,17]. This class of robust estimators
reduces the optimization problem to a simple, low cost,
weighted least-squares problem [19,17]. They have a
theoretical breakdown point of 1/(p#1), where p is the
number of parameters to "t [17]. In practice, it has been
observed, in a similar low-dimensional estimation prob-
lem [22], that this family of robust estimators can toler-
ate roughly up to 35}45% of the data as outliers. Thus,
M-estimators provide a good compromise between com-
putational complexity and outlier rejection capacity.

A robust M-estimator of parameters # is obtained by
introducing a robust error norm (&&loss'' function) o in the
similarity metrics (3) and (4) [17]:

For the single modality case, we de"ne the robust
least-squares cost function:
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where C is a scale (noise) parameter and o is a non-
quadratic error norm (penalty function) associated with
the M-estimator. Variants of this robust cost function
have been used with success in image processing and
computer vision problems such as surface reconstruction
[19], image segmentation, computed imaging [23], op-
tical #ow measurement [24,21] etc.

For multimodal images, we de"ne a novel robust inter-
image uniformity cost function:
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Let us notice that the non-robust cost functions (3)
and (4) correspond to the special case o(x,C)"x2 (for
de"ning Eq. (9) we consider a non-normalized version of
Eq. (4), which has shown more e$cient than the original
Woods' criterion). In the single-modal case (8), the cost
function is simply de"ned as a robust error norm of the
residual di!erences between the two registered images. In
the multimodal case (9), a &&robust variance'' pJ

g
is com-

puted for each region of the image to be registered,
according to Eq. (10). This robust variance does not take
into account outliers in the registered image, owing to the
robust error norm o. A robust estimation of the expected
value kJ

g
(11) of the region is simultaneously computed by

the same M-estimator. Let us emphasize that both the
expected value and the variance of each region have to be
computed using a robust estimator to get satisfactory
results.

For the experiments presented in this paper we have
tested two &&hard redescending'' M-estimators [18]
(namely the truncated quadratic o-function [19] and the
Tukey &&biweight'' o-function), as well as a &&soft redes-
cending'' estimator (the Geman}McClure o-function
[19]). Hard redescending estimators have "nite rejection
points. Their in#uence function, ((x)"do (x)/dx, which
characterizes the in#uence of the residuals, veri"es
((x)"0 for DxD'c. Soft redescending estimators do not
have a "nite rejection point but force ((x)P0 as
DxDPR. We privileged the Geman}McClure estimator
because it required less calculations for almost the same
accuracy as the Tukey &&biweight'' estimator. It showed
less sensitive to initialization than the truncated quad-
ratic.

The Geman}McClure o-function (Fig. 3) [19] is de-
"ned by

o(x, C)"
x2

C2#x2
.

As can be seen in Fig. 3, as the magnitude of the residuals
increases and grows beyond a point, its in#uence on the
solution begins to decrease and the value of o (x) ap-
proaches a constant. The scaling parameter C a!ects the
point at which the in#uence of outliers begins to decrease.
For the error norm used in our experiments, points x for
which

DI
3%&

(¹#(x))!I
3%'

(x) D*
C

J3

can be viewed as outliers, as the outliers rejection begins
where L2o/Lx2"0.

The calculation of the registration parameters # in-
volves the minimization of the non-linear cost functions
(8) or (9) which depend on the scale parameter C. A good
strategy [18] consists in starting the optimization pro-
cedure with a high value for C. The value of C decreases
during the minimization process following the formula
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Fig. 3. The Geman-McClure robust estimator o(x) (a) and its in#uence function (b).

C"a.C with 0.8(a(1 until C reaches a prede"ned
value. The e!ect of this procedure is that initially no data
are rejected as outliers and a "rst, crude solution is
obtained. During the following optimization steps the
in#uence of the outliers is gradually reduced by decreas-
ing C, leading to a reliable estimation of the rigid trans-
formation parameters, which is robust to gross image
di!erences. In other experiments we have also estimated
C, as the noise variance computed on homogeneous
regions of the original images (other statistical methods
for estimating C from the data may be found in the work
of Stewart [18]). These di!erent strategies provided us
with almost the same qualitative results.

3.2. The multiresolution stochastic registration algorithm

The non-robust estimators considered previously are
highly non-linear, involving non-convex cost functions
having multiple local minima [25]. In most image regis-
tration methods based on the minimization of a cost
function, deterministic optimization algorithms are ap-
plied. They are known to be very sensitive to local minima,
unless they are initialized close to the optimal solution.

In order to increase robustness to local minima of the
similarity function and to obtain data driven registra-
tions, the parameter space has been discretized and a
fast stochastic optimization algorithm has been applied.
Stochastic optimization, based on random sampling, is
far less sensitive to local minima, yielding better, often
close to the optimal solutions [18]. The optimization
technique used in our implementation is based on the
Gibbs sampler [26]. A high value is adopted for the
initial temperature in a simulated annealing procedure
and a fast exponentially decreasing temperature schedule
is considered instead of the optimal logarithmic descent

[26]. The solution obtained after a given number of steps
is further re"ned by a deterministic extension of the
above algorithm, known as iterated conditional modes
(ICM) [27]. ICM is a deterministic Gauss}Seidel like
algorithm, that only accepts con"gurations decreasing
the cost function. It has fast convergence properties and
local minima are not a problem, since the "rst stochastic
optimization step provides a good initialization.

The optimization algorithm is applied on a sequence
of multiresolution grids, using a standard top-down
approach starting from the coarsest resolution level
[21,28]. The solution obtained at a given resolution level
is interpolated and forwarded to the next, "ner resolu-
tion. The algorithm "rst carries out the calculations for
every 81st (16th) voxel (pixel) in the 3D (2D) images. After
the algorithm has converged, the resulting registration
parameters represent the initial estimate for the next
level, where every 27th (8th) voxel is processed, then
every 9th (4th), every 3rd (2nd) and "nally every voxel
(pixel) in the image. The search space and the visited
con"gurations are reduced while the resolution increases
in order to gradually "ne tune the solutions obtained on
the coarser resolution levels. The "rst grids generally
provide a good approximation of the "nal solution.
Multigrid matching is usually motivated by the signi"-
cant computational gain obtained in the registration. As
noticed by several authors [25], multigrid algorithms are
also far less sensitive to local minima in the cost function
than single-resolution optimization schemes. It has in-
deed been conjectured that multigrid analysis may, to
a certain extent, smooth the &&landscape'' of the objective
function to minimize. This yields fast convergence to-
wards good solutions [25].

Let us "nally notice that a large number of interpola-
tions are involved in the registration process. The accu-
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racy of the rotation and translation parameter estimates
is directly related to the accuracy of the underlying inter-
polation model. Simple approaches such as the nearest-
neighbour interpolation are commonly used because
they are fast and simple to implement, though they pro-
duce images with noticeable artifacts. More satisfactory
results can be obtained by small-kernel cubic convolu-
tion techniques, trilinear (bilinear) interpolation, bicubic
spline interpolation or convolution-based interpolation.
According to the sampling theory, optimal results are
obtained using sinus cardinal interpolation, but at the
expense of a high computational cost. As a compromise,
we have used a fast nearest-neighbour interpolation tech-
nique in the "rst optimization steps. At the end of the
algorithm (i.e. on the "nest resolution grid), the registra-
tion parameters are re"ned using a trilinear (or bilinear)
interpolation that preserves the quality of the image to be
registered. This technique has shown fast and accurate.

The di!erent steps of the multigrid registration algo-
rithm are thus the following:

f Reduction of the grey levels of the reference image
(usually to 256).

f For every resolution level:

L Registration of the volumes of interest by fast
stochastic optimization of the robust similarity
measure (Fig. 4).

L Fine tuning of the solution using a deterministic
optimization algorithm (Fig. 5).

L Interpolation of the 3D translation and rotation
parameters to be forwarded to the next ("ner) resolu-
tion level.

For the registration of two N]N]N images, the above
described algorithm is O(¸MN3), where M is the number
of discrete elements of the parameter space and ¸ stands
for the number of reductions of the search space.

4. Experimental results

Registration experiments were performed with both
2D and 3D images. The following similarity measures
have been implemented and compared:

f the standard least-squares (LS) similarity measure
Eq. (3));

f the inter-image uniformity (IU) criterion devised by
Woods et al. [5] (Eq. (4));

f the mutual information (MI) criterion proposed in
[6,7] (Eq. (7));

f the robust least-squares (RLS) similarity metrics
(Eq. (8));

f the robust inter-image uniformity (RIU) criterion
(Eq. (9)).

Fig. 4. The version of simulated annealing implemented in our
registration experiments.

Fig. 5. The iterated conditional modes (ICM) algorithm imple-
mented in our registration experiments.

LS and RLS may only be applied to single-modal
image registration, whereas the other methods (IU, RIU,
MI) have been tested both in single and multimodal
registration problems. Three representative case studies
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Fig. 6. Robust registration of MR images. (a) reference image; (b) image in (a) rotated by 203, translated by 10 pixels along the x-axis, 10
pixels along the y-axis and corrupted at 25% with salt and pepper noise with large magnitude; (c) di!erence between the (noise free)
registered image and the image in (a) (LS similarity metric); (d) di!erence between the (noise free) registered image and the image in (a)
(robust RLS similarity metric).

have been considered: the registration of single modal
(MRI/MRI) and multimodal (MRI/SPECT) 3D medical
images showing gross outliers or lesion evolution, the
matching of multispectral (visible/IR) remotely sensed
images showing large overcast areas and the registration
of intensity images to their range data counterpart.

Computation and display were performed on a Hew-
lett-Packard HP 9000/C200 workstation by using a
2D}3D image analysis software (MEDIMAX) developed
at IPB. This software, running under Unix, is developed
in C language and uses the standard graphics interface
X11/R5 and the Motif windows manager. All registra-
tions techniques presented in this paper were imple-
mented under this software environment and are easily

available to users. The software is available on the IPB
web server (http://alsace.u-strasbg.fr).

The results presented in the following tables are re-
ported in terms of translation (voxels) and rotation
angles (deg). It is commonly accepted that evaluation of
translations and rotations is not straightforward as these
two measures interact. Another choice would be to de"ne
landmarks in the images and evaluate the registration
error on them. However, as manual de"nition of land-
marks could have introduced additional errors we pre-
fered to express our results in terms of voxels and angles.
In the remainder of the paper, the term &&subvoxel error''
stands for errors that are less than 1 voxel in translation
and 13 in rotation.
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4.1. Single-modal image registration

4.1.1. Medical images
A "rst class of experiments consisted in applying a

known rigid transformation (3D translation and rota-
tion) to a set of MRI volumes to create a second image
set. Twenty-"ve percent of the transformed images was
then corrupted by salt and pepper noise, to simulate
gross outliers (see Fig. 6a and b). For each method, the
estimated registration parameters were compared to the
true ones to determine the accuracy of the registration.
Statistics on the registration errors were computed on
a set of 20 di!erent registrations problems, involving
translation parameters between !20 and #20 voxels
and rotations between !30 and #303. Let us notice
that large rotations are generally di$cult to handle with
standard, deterministic approaches (in which initializa-
tions close to the desired solution are necessary). This is
not the case of the stochastic sampling algorithm used
here.

As we can see in Table 1, the robust algorithms
achieved subvoxel registration errors while the non-
robust (LS and IU) techniques failed. The MI method,
the best-method referenced at the present time [8], also
achieved subvoxel registration but its performances are
slightly inferior to the results obtained by the RLS tech-
nique.

Fig. 6c shows an example where the standard method
(LS) failed to correctly register the MR slices shown in
Fig. 6a and b, but where the RLS achieved accurate
matching by discarding outliers. The di!erence in accu-
racy is readily visible on the magni"ed registration errors
shown in Fig. 6c and d, corresponding to the residual
squared image di!erence after registration.

We also show in Fig. 7 an example of the application
of the RLS algorithm to the detection of changes in a set
of MRI slices of a multiple sclerosis patient, acquired at
di!erent dates. Fig. 7 illustrates a case on which small
di!erences due to lesion evolution, which were not well
distinguished previously due to misalignment by the
standard LS similarity metric (Fig. 7c), are now clearly
identi"ed by simple image subtraction (Fig. 7d). This
result has been validated by an expert physician from
IPB.

4.1.2. Remotely sensed images
Two images of France, in the infra-red band of NOAA

(Fig. 8a and b), acquired at di!erent dates and showing
large overcast areas, have been manually registered to
establish ground truth. One of the images has been trans-
formed using di!erent 2D rotation and translation
parameters and the registration algorithms were applied.
This case, contrary to the example considered previously
(Section 4.1.1), does not correspond to a corruption
of the data by gross outliers, but to the presence of
multiple coherent structures (i.e. ground and clouds) in

the data. Mixture of data from multiple (coherent) struc-
tures introduces a signi"cant bias in all robust es-
timators, as shown in a recent study by Stewart [18]. The
performances of the robust methods are a!ected by this
bias, as can be seen in Table 2 in which the di!erent
approaches are compared. The registrations are not as
accurate as in the previous case, although a subpixel
accuracy is reached, and the di!erence between methods
is less pronounced. The robust methods produce never-
theless the best results and compare favourably to the MI
approach.

Fig. 8 illustrates the contribution of the RLS metric
with respect to a non-robust LS metric, in the registra-
tion of the original infra-red image pair. The original
images show a misregistration of about three pixels.
Clouds in the second image lead the LS technique to a
slight misalignment (Fig. 8c) while the RLS measure pro-
vides a more accurate registration (Fig. 8d). The di!er-
ence is readily visible along the southwest coast of
France. The registration errors presented in Fig. 8c and
d are obtained by subtraction of the registered image
from the reference image in Fig. 8a, followed by contrast
modi"cations for visualization purpose.

4.2. Multimodal registration

4.2.1. Medical images
To evaluate the ability of the robust similarity metrics

to handle multimodal image pairs, a 3D SPECT image
volume has been manually registered to its correspond-
ing MRI volume with the aid of an expert physician from
IPB. The manually registered SPECT volume was then
transformed using the same 3D translation and rotation
parameters as in the previously described experiments
(Section 4.1.1). To simulate outliers, 25% of the SPECT
image was corrupted by salt and pepper noise. The ro-
bust inter-image uniformity technique RIU has been
compared to the inter-image uniformity similarity func-
tion IU [5] and to the mutual information MI criterion
[6,7]. Table 3 shows the robustness of the di!erent sim-
ilarity measures to gross outliers. The error for the RIU
method is about 1 voxel for the translation parameters
and 13 for the Euler rotation angles. This is signi"cantly
more accurate than the IU approach. The proposed
robust similarity metric also compares favourably to the
MI criterion which yields registrations that are better
than the IU criterion but are generally below RIU.

Figs. 9 and 10 show a real example of a patient brain
SPECT volume registered with respect to its MRI
counterpart by the di!erent algorithms. Robustness to
the presence of non-brain structures has been examined
in this case. The similarity metrics (IU, MI, RIU) are
applied to MRI/SPECT registration without prior re-
moval of skull and scalp from the MR volumes. This pre-
processing is customary when registering brain image vol-
umes [5], but often requires manual human interaction.
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Fig. 7. Change detection in a MRI image sequence. (a) multiple sclerosis patient MR image; (b) image of the same patient acquired
several months later and showing lesion evolution; (c) di!erence between the registered image and the image in (a) (LS similarity metric);
(d) di!erence between the registered image and the image in (a) (robust RLS similarity metric).

Our results con"rm that the IU criterion is trapped by
local minima [15], since it considers outliers (nonbrain
structures) as a part of the data (Fig. 9b). On the other
hand, mutual information (Fig. 10a) and M-estimators
(Fig. 10b) provide approximately similar results with
a relatively good accuracy. The accuracy of the robust
registration has been evaluated by visual inspection and
has been considered satisfactory by an expert.

4.2.2. Remotely sensed images
We consider again the case of multispectral remotely

sensed images, presenting coherent data corruption due
to large overcast areas. Two images, one in the visible
and one in the infrared band of NOAA, acquired at
di!erent dates (Fig. 11a and b) were manually registered

to establish ground truth. One of the images has been
transformed using di!erent rotation and translation
parameters and the multimodality registration algo-
rithms were applied. The performances of the di!erent
methods are summarized in Table 4. As expected the
robust RIU criterion provides registrations that are
signi"cantly more accurate than the non-robust IU tech-
nique. The di!erence between the tested similarity met-
rics is, however, not as pronounced as for the medical
images registration problem (in which gross outliers were
considered). This may again be explained by the bias
introduced by the mixture of data from multiple coherent
structures on the robust estimation [18]. In this particu-
lar case, the mutual information MI criterion yields, in
the average, the best results. Let us, however, notice that
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Table 1
Single-modal registration of 3D MRI images. An MR volume was arti"cially transformed using 20 di!erent rigid transformations and
the images were corrupted at 25% by salt and pepper noise. The average and the standard deviation of the registration errors
computed from the 20 registrations are presented for the di!erent approaches. Translation errors are given in voxels and rotation errors
in degrees

3D MRI/MRI Registration

Approach *t
x

*t
y

*t
z

*hK
x

*hK
y

*hK
z

LS 2.30$1.75 2.53$1.56 2.77$1.83 4.71$2.89 5.33$3.40 5.05$3.51
IU 1.49$1.40 1.56$1.41 1.93$1.63 3.75$2.03 3.65$2.54 2.99$3.06
MI 0.05$0.06 0.22$0.15 0.09$0.14 0.35$0.35 0.27$0.32 0.44$0.69
RLS 0.04$0.07 0.16$0.11 0.06$0.10 0.41$0.21 0.16$0.22 0.33$0.24
RIU 0.09$0.05 0.18$0.14 0.10$0.05 0.22$0.34 0.24$0.17 0.40$0.59

Fig. 8. Single-modal registration of remotely sensed images. (a) image of France in the infra-red band of NOAA (02/10/97); (b) image of
France in the infra-red band of NOAA (02/05/97); (c) registration error (LS similarity metric); (d) registration error (robust RLS
similarity metric).
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Fig. 9. MRI/SPECT volume registration of the brain (non-brain structures have not been removed). The SPECT and MRI volumes
with the SPECT contours superimposed on the MRI are shown (by multiplanar visualization). (a) MRI/SPECT volumes before
registration; (b) MRI/SPECT volumes after registration (IU similarity metric).

the variance of the MI estimate is signi"cantly higher
than the variance of the robust RIU criterion (see
Table 4), which tends to temper the conclusion in this
case.

Fig. 11 presents the registration of the original multi-
modal pair. The images from the NOAA visible band
(Fig. 11a) and from the NOAA infra-red band (Fig. 11b),
acquired at di!erent dates have been registered using
the IU, RIU and MI approaches. In this particular
case, the non robust IU metric and the MI criterion
provided the same "nal registrations. As may be seen in
Fig. 11c, the IU metric, yields a misregistration, that is
visible on the error image, along the south west coast of

France. This is not the case of the robust RIU similarity
measure (Fig. 11d) which provides an accurate registra-
tion of this dissimilar multimodal image pair. Let us
notice that the multimodal registration error shown in
Fig. 11c and d is de"ned as the di!erence between the
registered IR image and the IR image acquired at the
same instant as the visible band reference image.

4.2.3. Intensity/range images
Finally, the proposed multimodal robust voxel sim-

ilarity metric has been applied to the registration of a
range image to its intensity counterpart. The synthetic
stereo image in Fig. 12a is partially composed of natural
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Fig. 10. MRI/SPECT volume registration of the brain (non-brain structures have not been removed). The SPECT and MRI volumes
with the SPECT contours superimposed on the MRI are shown (by multiplanar visualization). (a) MRI/SPECT volumes after
registration (MI similarity metric), (b) MRI/SPECT volumes after registration (RIU similarity metric).

objects. The range image is presented in Fig. 12b. The
intensity image was corrupted at 25% by &&salt and pep-
per noise'' (Fig. 12c) and the range image was rotated by
153 (Fig. 12d). We have registered the rotated range
image to the noisy intensity image by the inter-image
uniformity measure, the maximization of the mutual
information criterion and the robust version of the inter-
image uniformity metric, proposed here. After registra-
tion, the registered range image was subtracted from the
ground truth (Fig. 12b) and the error images are present-
ed in Fig. 13a}c. The grey level of these error images are
normalized for visualization reasons. As it can be seen,

the the standard metric (Fig. 13a) is not able to provide
a satisfactory registration, whereas the robust metric
(Fig. 13c) provides fewer registration artefacts. The MI
criterion provides better registration than the IU
measure but its performances are slightly inferior to the
robust metric-based method.

5. Discussion and conclusion

The robust similarity metrics-based registration
methods described in this paper were motivated by the
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Fig. 11. Multimodal registration of visible/IR remotely sensed images. (a) image of France in the visible band of NOAA (02/10/97)
(reference image); (b) image of France in the infrared band of NOAA (02/05/97); (c) Registration error (IU similarity metric); (d)
registration error (robust RIU similarity metric). The registration error is de"ned as the di!erence between the registered IR image and
the IR image acquired at the same instant as the visible band reference image (a).

lack, in existing approaches, of speci"c models for gross
dissimilarities or outlying data that are often present in
single and multimodal image pairs. The proposed
stochastic multigrid registration algorithms have two
major advantages over standard methods:

f No manual initialization near the optimal solution is
required to obtain an accurate registration. Local min-
ima, a major problem in standard image registration
techniques, are avoided by the use of fast multigrid
random sampling algorithms. This results in a data-
driven method that requires no human interaction.

f Gross image di!erences are taken into account e$-
ciently by robust M-estimators. To our knowledge, the

registration of multimodal images showing gross dis-
similarities or mixture of data from multiple coherent
structures has never been evoked until now.

We have compared our robust metrics to the com-
monly used quadratic similarity measure, to the inter-
image uniformity algorithm IU [5] and to the mutual
information criterion MI [7,6].

The estimates obtained with the IU metric are signi"-
cantly skewed when the images exhibit gross di!erences,
since its cost function, based on standard image statistics,
does not account for outliers. Although not stemming
from robust estimation theory, the MI criterion presents
an excellent robustness to outliers but its performances
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Fig. 12. Multimodal registration of intensity and range images. (a) intensity image; (b) range representation of the image in (a) (by
courtesy of the Computer Vision and Pattern Recognition Group, University of Bonn, Germany); (c) image in (a) corrupted at 25% by
&&salt and pepper noise''. (d) Image in (b) rotated by 153.

are generally below the robust similarity metrics, when
gross outliers have to be handled. The performances of
MI are better on mixture of data from multiple coherent
structures, while the robust estimators tend to be skewed
in this case, as pointed out by Stewart [5].

Table 5 summarizes the execution times for the
di!erent registration techniques considered in our experi-
ments. The LS and RLS techniques require approxim-
ately the same average computation times: 8 min cpu
time for 3D 128]128]128 images on a standard work-
station. For the same data size, the IU method takes 14
min, the MI technique 16 min and the RIU method needs
24 min cpu time. In the case of 2D images (256]256), the
RIU metric requires 1 min cpu time while each of the
other techniques takes approximately 30}40 s. As can be

seen, the additional computational complexity introduc-
ed by the robust estimation is acceptable and these
methods may thus be used with pro"t to improve the
accuracy in many critical single or multimodal image
registration problems.

The performances of the robust voxel similarity met-
rics proposed here may be limited if the amount of
outliers present in the images is greater than the break-
down point of the estimator. Besides, images not respect-
ing at all the image uniformity criterion (IU) cannot be
processed by the proposed approach. Let us also notice
that the similarity metrics examined here are not sym-
metric, that is if the reference image and the image to be
registered are swapped the algorithm will not provide the
same transformation parameters.
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Fig. 13. Multimodal registration of the intensity and range images presented in Fig. 12c and Fig. 12d. (a) registration error for the IU
metric (see text); (b) registration error for the MI metric (see text); (c) registration error for the RIU metric (see text).

Table 2
Single-modal registration of 2D remotely sensed infra-red im-
ages. Two images of the infra-red electromagnetic band of
NOAA satellite acquired at di!erent dates have been manually
registered to create ground truth (the original images arep-
resented in Fig. 8). One of the images has undergone 20 di!erent
rigid transformations using di!erent translation and rotation
values. The average and the standard deviation of the registra-
tion errors are presented for the di!erent approaches. Transla-
tion errors are given in pixels and rotation errors in degrees

2D IR/IR registration

Approach *t
x

*t
y

*hK

LS 0.42$0.18 0.31$0.41 0.32$0.18
IU 0.52$0.21 0.77$0.40 0.30$0.25
MI 0.49$0.54 0.63$0.25 0.75$0.89
RLS 0.36$0.10 0.27$0.37 0.30$0.25
RIU 0.34$0.17 0.70$0.28 0.18$0.13

To overcome the above-mentioned limitations, robust
R-estimators may be used with a breakdown point of
approximately 50% with the shortcoming of important
execution times. Furthermore, an immediate perspective
of our study is to de"ne criteria deciding which image of
the pair should be the reference image. Also, an improve-
ment to the proposed multimodal registration algorithm
would be to eliminate regions containing a small number
of points in the joint histogram and to privilege regions of
the reference image that form connected components. By
these means, the algorithm would not only consider
grey-level information but also spatial relations.

Finally, let us emphasize that the approach proposed
in this paper is comprehensive and not limited to
medical or remotely sensed images. Other potential ap-
plication "elds [1] such as military imaging, multisensor
robot vision or the multisource analysis of artistic
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Table 3
Multimodal registration of 3D MRI/SPECT images. A 3D SPECT image volume manually pre-registered by an expert to its MRI
counterpart was arti"cially transformed using 20 di!erent translation and rotation parameters and corrupted at 25% by salt and pepper
noise. The average and the standard deviation of the registration errors are presented for the di!erent approaches. Translation errors are
given in voxels androtation errors in degrees

3D MRI/SPECT registration

Approach *t
x

*t
y

*t
z

*hK
x

*hK
y

*hK
z

IU 3.85$5.59 3.02$4.78 4.16$4.38 8.33$4.51 6.23$3.52 6.80$4.15
MI 1.41$0.74 1.38$1.23 2.06$1.29 0.94$1.58 1.04$1.15 1.36$0.77
RIU 0.82$0.53 0.61$0.50 0.83$0.60 0.21$0.48 1.14$0.26 0.71$0.94

Table 4
Multimodal registration of 2D visible/infra-red images. Two
images, one of the visible and one of the infra-red electromag-
netic band of NOAA satellite acquired at di!erent dates have
been manuallyregistered to create ground truth. One of the
images has undergone 20 di!erent rigid transformations using
di!erent translation and rotation values. The average and the
standard deviation of the registration errors are presented for
the di!erent approaches. Translation error are given in pixels
and rotation errors in degrees

2D Visible/IR Registration

Approach *t
x

*t
y

*hK

IU 1.34$0.87 1.04$0.34 0.34$0.27
MI 0.40$0.68 0.31$0.74 0.24$0.37
RIU 0.51$0.34 0.76$0.37 0.26$0.20

Table 5
The execution times for the di!erent registration techniques on
a Hewlett-Packard 9000/C200 workstation for 2D (256]256)
and 3D (128]128]128) image data

LS RLS MI IU RIU

2D 30 s 30 s 40 s 40 s 1 min
3D 8 min 8 min 16 min 14 min 24 min

patrimony [4] may bene"t from the robustness of these
methods.
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