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ABSTRACT

Classification of cervical cells in Pap smear images is a challenging
task due to the limitations these images exhibit and the complex-
ity of the morphological changes in the structural parts of the cells.
This procedure is very important as it provides fundamental informa-
tion for the detection of cancerous or precancerous lesions. For this
reason several algorithms have been proposed in order to classify
normal and abnormal cells in such images. However, it is a com-
mon phenomenon that each research group usually creates its own
dataset of images, as well-established datasets are not publicly avail-
able. To overcome this obstacle and to assist the research progress
in this field, we present an annotated image database of Pap smear
images, in which the cells are categorized in five different classes,
depending on their cytomorphological features. The area of the cyto-
plasm and the nucleus in each image is manually defined by experts
and salient features of intensity, texture and shape are calculated for
each region of interest. Several experiments have been performed
for the classification of these images and they include feature and
image based classification schemes. In this direction, methods based
on support vector machines and deep neural networks are tested and
the performance of each classifier is presented in order to constitute a
reference point for the evaluation of future classification techniques.

Index Terms— Pap smear images, cervical cell classification,
cell image database, cell features, convolutional neural network.

1. INTRODUCTION

The automated interpretation of Pap smear images is one of the most
interesting fields in cytological image analysis. This is a crucial
problem and it combines several aspects of digital image processing,
such as image enhancement, limitation of artifacts, object segmen-
tation, delineation of overlapping cells etc. Many efforts have been
made for the automated detection of the regions of interests in these
images and they include several techniques [1, 2, 3].

Additionally, the integrated Pap smear image analysis includes
classification of the image, based on its features. The cytomorpho-
logic classification of cervical squamous cells in Pap smear images
is important for the accurate diagnosis and the detection of cancer-
ous or precancerous lesions. In general, the methods proposed for
the automated classification of these images require images of sin-
gle cells, which are cropped from cell clusters and further analyzed
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[4, 5]. To the best of our knowledge, the only available dataset con-
taining images of single cells is the Harlev dataset [6], which consists
of a limited number of images (917). Thus, several researchers cre-
ate their own annotated image dataset to evaluate the performance
of their method. However, a major drawback of the existence of
non-public specific datasets is that it is difficult to compare the effi-
ciency of different classification techniques, as they are evaluated in
individual datasets.

In this paper, we introduce the novel publicly available image
dataset SIPaKMeD, which consists of 4049 annotated cells images.
The cells are classified by expert cytopathologists into five different
classes, depending on their cellural appearance and morphology.
More specifically, normal cells are divided into two categories
(superficial-intermediate, parabasal), abnormal but not malignant
cells are divided into two categories (koilocytes and dyskeratotic)
and there is also one category of benign (metaplastic) cells. In each
image of our database, the area of the cytoplasm and the nucleus of
the cells, is manually defined. In every region of interest, 26 features
are computed, characterizing the intensity, the texture and the shape
of the region of interest. Finally, we provide evaluation results using
feature and image based classification schemes and some remarks
on the discriminative ability of each classifier are presented.

2. SIPAKMED DATABASE

SIPaKMeD Database consists of 4049 images of isolated cells (Fig.
1) that have been manually cropped from 966 cluster cell images
of Pap smear slides, which are also included. These images were
acquired through a CCD camera (Infinity 1 Lumenera) adapted to
an optical microscope (OLYMPUS BX53F). The distribution of the
cells in classes is depicted in Table 1. In the following paragraphs, a
brief description of each class is provided.

Table 1. SIPaKMeD Database
Category Num of Images Num of Cells
Superficial/Intermediate 126 813
Parabasal 108 787
Koilocytotic 238 825
Metaplastic 271 793
Dyskeratotic 223 813
Total 966 4049
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Fig. 1. Cell images of five categories: (a) Superficial-Intermediate, (b) Parabasal, (c) Koilocytotic, (d) Dyskeratotic, (e) Metaplastic.

2.1. Normal cells

These are squamous epithelial cells and their type is defined accord-
ing to their position at epithelium layers and their degree of matura-
tion.

2.1.1. Superficial-Intermediate cells

They constitute the majority of the cells found in a Pap test. Usually
they are flat with round, oval or polygonal shape (Fig. 1(a)). The
cytoplasm stains mostly eosinophilic or cyanophilic. They contain
a central pycnotic nucleus. They have well defined, large polygonal
cytoplasm and easily recognized nuclear limits (small pycnotic in
the superficial and vesicular nuclei in intermediate cells). These type
of cells show the characteristics morphological changes (koilocytic
atypia) due to more severe lessions.

2.1.2. Parabasal cells

Parabasal cells are immature squamous cells and they are the small-
est epithelial cells seen on a typical vaginal smear (Fig. 1(b)). The
cytoplasm is generally cyanophilic and they usually contain a large
vesicular nucleus. It must be noted that parabasal cells have similar
morphological characteristic with the cells identified as metaplastic
cells and it is difficult to be distinguished from them.

2.2. Abnormal cells

Abnormal cells are characterized by morphological changes in their
structural parts and they indicate the existence of pathological situa-
tions . Human papillomavirus (HPV) is the cause of almost all cases
of cervical cancers, manifests itself by characteristic changes of the
squamous cells, two of which are pathognomonic: koilocytosis and
dyskeratosis.

2.2.1. Koilocytotic cells

Koilocytotic cells correspond most commonly in mature squamous
cells (intermediate and superficial) and some times in metaplastic
type koilocytic cells (Fig. 1(c)). They appear most often cyanophilic,
very lightly stained and they are characterized by a large perinuclear
cavity. The periphery of the cytoplasm is very dense stained. The
nuclei of koilocytes are usually enlarged, eccentrically located, hy-
perchromatic and exhibit irregularity of the nuclear membrane con-
tour. In many cases there are binucleated and/or multinucleated cells.
Koilocytic cells are pathognomonic cells for HPV infection and the
nucleus of koilocytes usually displays various degrees of degener-
ation, depending at the different stage of infection and also of the
different virus type infection.

2.2.2. Dyskeratotic cells

Dyskeratotic cells are squamous cells which undergone premature
abnormal keratinization within individual cells or more often in
three-dimensional clusters (Fig. 1(d)). They exhibit a brilliant or-
angeophilic cytoplasm. They are characterized by the presence of
vesicular nuclei, identical to the nuclei of koilcytotic cells. They con-
stitute a prominent characteristic of HPV infection, and sometimes
even in the total absence of koilocytes, can be a pathognomonic evi-
dence. They are usually in thick, three-dimensional clusters and it is
difficult to distinguish either the nucleus or the cytoplasm margins.

2.3. Benign cells

These cells represent the transformation zone, the area in which al-
most all cervical precancerous and cancerous conditions develop.

2.3.1. Metaplastic cells

Metaplastic cells are in essence small or large parabasal-type cells
with prominent cellular borders, often exhibiting eccentric nuclei
and sometimes containing a large intracellular vacuole (Fig. 1(e)).
The staining in the center portion is usually light brown and it often
differs from that in the marginal portion. Also, there is essentially
a darker-stained cytoplasm and they exhibit great uniformity of size
and shape compared to the parabasal cells, as their characteristic is
the well defined, almost round shape of cytoplasm. Their presence in
the Pap test is associated with higher detection rates of pre-cancerous
lesions (HSIL).

Fig. 2. The boundaries of the cytoplasm and the nucleus of each cell
in images of cell clusters.
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3. EVALUATION ON SIPAKMED

We have tested several classification schemes on the SIPaKMeD
Database in order to evaluate their performance on the discrimina-
tion of the various cell types. Furthermore, we have used three differ-
ent feature sets, namely cell features, image pixel features and deep
features. We have followed a 5-fold cross validation scheme and the
same training and test sets were used in all the experiments for the
consistency of the results. In the following paragraphs a detailed
description of each classification scheme is provided.

3.1. Cell Features

In each image of our database, the boundaries of the regions of in-
terest, i.e. the area of the cytoplasm and the nucleus of the cells, are
manually defined by expert observers. The coordinates of the con-
tours of each area are provided for both the isolated cell images and
the images of cell clusters (fig. 2). In every region of interest, we cal-
culate 26 features concerning the intensity (average intensity, aver-
age contrast) and the texture (smoothness, uniformity, third moment,
entropy) in all three color channels. Also, some shape features for
each area were calculated (area, major and minor axis length, eccen-
tricity, orientation, equivalent diameter, solidity and extent). These
features were calculated for both the region of the nucleus and the
cytoplasm of each cell and they are stored in 5 tables (one for each
class) of 28 columns (the two added fields denote the number of the
image and the cell correspondingly). These features were used for
the classification of the cells using Support Vector Machines (SVM)
and standard Multi-layer Perceptrons (MLP), as described in the fol-
lowing paragraphs.

3.1.1. Support Vector Machine (SVM)

In our experiments, the SVM classifier with Radial Basis Function
(RBF) kernel was used. We have tested several values for the pa-
rameters C (0.05, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 40) and γ (1, 2, 4, 8,
10, 15, 20, 30, 40, 50) and we used a 5-fold cross validation scheme
for the selection of the optimal parameters. Furthermore, we per-
formed two experiments using as input the features extracted from
the nucleus and the features extracted from the cytoplasm. Since
the SVM originally separates two categories, we have followed the
one-versus-one approach and we have decomposed the 5-class prob-
lem into 10 pairwise problems. Applying each classifier to a test
pattern would give one vote to the winning class. A test pattern is
then labeled to the class with the most votes.

3.1.2. Multi-layer perceptron (MLP)

A multi-layer perceptron was employed using the same training and
test set configuration as described above. MLPs are the simplest
class of neural networks in terms of layer variability, comprising
fully-connected hidden layers exclusively. We have test several
different network architectures, and picked the best one by cross-
validating on the architecture parameters. In particular, we have
tested different numbers of hidden layers (1-10) and several number
of hidden neurons (10, 20, 30, 40, 50). We have set all hidden layers
to the same number of neurons in all cases. The hyperbolic tangent
sigmoid function was selected as the activation function for all lay-
ers, save for the last one which uses a 5-class softmax function. The
last, softmax-activated layer is of size 5 in order to suit the current
problem requirements for 5 possible cell pathologies/types. The
(softmax) output is a probability vector, denoting the probability
that the input cell is of a given cell type. Regarding our architecture

cross-validation setup, we have used 10% of the training set for the
construction of the validation set. The scaled conjugate gradient
method was used to train the model, with a cross-entropy classi-
fication loss. Training is terminated after 30 epochs of increasing
validation error.

3.2. Image Features

3.2.1. Convolutional Neural Network (CNN)

We have run classification tests using a convolutional neural network
(CNN). The input to the network is cropped cell images, resized to
a fixed size (in our case, 80 × 80 pixels each). Hence, no feature
extraction step is required – the CNN is to learn a suitable internal
representation automatically, given raw input RGB values. We have
adapted the “very deep” architecture (VGG-19) of Krizhevsky et al.
[7] for the current problem. In the employed architecture, the input
is transformed by a series of stacks of convolutional layers topped by
max-pooling layers. All convolutional filters are of size 3 × 3, and
all max-pooling layers are of size 2× 2. There are in total 5 convo-
lutional stacks. The 2 first convolutional stacks are comprised of 2
convolution layers each, and other 3 stacks are comprised of 4 con-
volutional layers each. The depth (i.e., number of filters) of the con-
volutional layers in each stack is 64, 128, 256, 512, 512 respectively.
The convolutional stacks are followed by a series of fully-connected
layers, 3 in total. The size of the fully-connected layers are 4096,
4096, 5 respectively. In order to improve network generalization,
dropout is employed on the first two fully-connected layers, with a
keep probability of 50%. All layers, save for the last one, use ReLU
activations. The last layer uses a 5-class softmax activation, as in the
case of the standard MLP architecture (sec. 3.1.2). Also following
standard practice, we train the model using a cross-entropy loss.

As the training set size is relatively small, especially for the
needs of a deep neural network, we employ the technique of data
augmentation to artificially create a larger training set. Hence, we
augment our training set by creating 3 additional cell images for each
existing training cell image. We do this by flipping the input image
either horizontally, vertically, or in both directions. In this manner,
we effectively quadruple the size of our training set.

A stochastic gradient descent (SGD) optimizer was used to train
the model (batch size 50, learning rate 10−4). Each training batch is
selected from the training set at random. Training is terminated after
200, 000 iterations.

3.3. Deep features

We also use our convolutional network in an alternative way to its
standard use as a softmax classifier. Following the trend of a num-
ber of recent works, we employ the network as a feature extractor
[8, 9, 10, 11, 12, 13]. A neural network can be used as a feature ex-
tractor by feeding it an input image and using the intermediate layer
activations or pre-activations to construct a feature vector. Features
produced in this manner are usually referred to as deep features. The
rationale behind this technique is that the neural network can be seen
a machine that automatically learns the most suitable data represen-
tation [14]. Furthermore, deep features are known to have a more
abstract character, lending to more transferable features. This es-
pecially holds for deep features based on layers closer to the input
[13]. Deep features have been produced either given standard, fully-
connected layers [8] or convolutional layers [10, 13]. In the case of
fully-connected layers, the feature is an M -sized vector, where M
is the number of neurons in the specified layer. Concerning convo-
lutional layers, feature construction is a two-step process [10, 11],
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Table 2. Comparison of classification accuracies (%) using the presented methodologies.
Features MLP SVM CNN
Nuclei 78.81± 1.83 83.45± 1.53 −
Cytoplasm 88.54± 5.60 91.68± 0.98 −
Colour (RGB) − − 95.35± 0.42
Deep (convolutional) − 93.35± 0.62 −
Deep (fully-connected) − 94.44± 1.21 −

as layer activation is in general a H × W × D tensor, where H ,
W , D are the height, width and depth of the current convolutiona
layer. In general, H and W are different from the original image
height and width, as max-pooling or strided convolutional layers (or
layers equivalent to this effect) may lie between the input and the
current layer, producing subsampled, filtered versions of the original
input. The H ×W ×D layer output can be seen as a set of H ×W
vectors of size D. These vectors can then be aggregated to form a
single vector. Aggregation by simple sum-pooling has been shown
to produce very useful features [10].

In the current context, we use the trained models to produce deep
features by using the pre-activations of the last convolutional layer
(layer conv5), as suggested in [10]. These are then aggregated by
sum-pooling to form a feature vector of size 512 to describe each
cell image. We also use the pre-activation of the first fully-connected
layer (layer fc6), following [8]. These features are of size equal to
the number of neurons in the corresponding layer, i.e. 4096. In
both cases, we compress the extracted deep features to size 256 us-
ing PCA. Features are then fed into SVMs and class estimates are
computed using the previously described voting scheme (sec. 3.1.1).

4. EXPERIMENTAL RESULTS

We have tested the presented classification methodologies on our
database and the classfication results are included in Table 2.
Mean/standard deviation accuracy values over 5 training-test folds
are presented. Also, in figures 3, 4, 5 we present confusion matrices
for all the employed classifiers. As we can see, in all cases the
koilocytotic cells are the most challenging cells to be distinguished
correctly. With respect to methods that employ the hand-crafted cy-
toplasm and nuclei features, it can be observed that the SVM classi-
fier is in general more effective than the MLP classifier. We can also
observe that cytoplasm features exhibit higher discriminative ability
than the nuclei features. Methods based on hand-crafted features
are however outperformed by convolutional neural network-based
methods. The standard CNN setup gives the best average perfor-
mance, with performance computed using deep features following
closely behind.

5. CONCLUSION

In this paper, the publicly available SIPaKMeD cell image database
is introduced. It contains both images of isolated cells and images
of cell clusters, which were acquired from Pap smear slides. The
images are divided into five categories of superficial-intermediate,
parabasal, koilocytotic, dyskeratotic and metaplastic cells. The area
of the cytoplasm and the nucleus of each annotated cell is manually
identified by expert observers and the coordinates of their bound-
aries are also included. Three different types of features are pro-
vided for each pattern of our database. These are the hand-crafted

(a) (b)

Fig. 3. Confusion matrices for classification using SVM (upper) and
MLP (bottom) with (a) nuclei and (b) cytoplasm features.

Fig. 4. Confusion matrix for classification using CNN.

(a) (b)

Fig. 5. Confusion matrices for classification using deep features
based on (a) convolutional layer activations (b) fully-connected layer
activations.

cell features, the image features and the deep features. The results
of the classification schemes that were used in our experiments pro-
vide a reference point for the evaluation of future techniques for cell
image classification. The database can be used not only for classi-
fication purposes but also for the evaluation of image segmentation
techniques for isolated cells (cropped images) or overlapping cells
(cell cluster images), since the ground truth for the regions of inter-
est in each image is defined. Thus, the SIPaKMeD database provides
new challenges and it constitutes a solid basis for competitive evalu-
ations for the cell image analysis community.
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