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Abstract. The SUBSET FEEDBACK VERTEX SET problem takes as in-
put a weighted graph G and a vertex subset S of GG, and the task is
to find a set of vertices of total minimum weight to be removed from
G such that in the remaining graph no cycle contains a vertex of S.
This problem is a generalization of two classical NP-complete problems:
FEEDBACK VERTEX SET and MULTIWAY CUT. We show that it can be
solved in time O(1.8638"™) for input graphs on n vertices. To the best
of our knowledge, no exact algorithm breaking the trivial 2"n°®-time
barrier has been known for SUBSET FEEDBACK VERTEX SET, even in the
case of unweighted graphs. The mentioned running time is a consequence
of the more general main result of this paper: we show that all minimal
subset feedback vertex sets of a graph can be enumerated in O(1.8638™)
time.

1 Introduction

Given a graph G = (V| E) and aset S C V, a subset feedback vertex set of (G, .S)
is a set X C V such that no cycle in G[V \ X] contains a vertex of S. A subset
feedback vertex set is minimal if no proper subset of it is a subset feedback
vertex set. Given a weighted graph G with positive real weights on its vertices
and S as input, the SUBSET FEEDBACK VERTEX SET problem is the problem
of finding a subset feedback vertex set X of (G, .S) such that the sum of weights
of the vertices in X is minimized.

SUBSET FEEDBACK VERTEX is a generalization of several well-known prob-
lems. When S = V| it is equivalent to the classical NP-hard FEEDBACK VERTEX
SET problem [10]. When |S| = 1, it generalizes the MULTIWAY CUT problem.
Given a set T C V, called terminals, a multiway cut of (G,T) is a set of ver-
tices whose removal from G disconnects every pair of terminals. Given a graph
G = (V, E), with weights on its vertices, and T'C V, the MuLTIWAY CUT prob-
lem is the problem of computing a multiway cut of total minimum weight. It
follows that this is a special case of SUBSET FEEDBACK VERTEX SET by adding
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a singleton vertex with a large weight to the set S and making it adjacent to
all terminals in 7. The unweighted versions of the three mentioned problems
are obtained when the weight of every vertex of the input graph is 1. For fur-
ther results on variants of multiway cut problems see [2,11] and for connections
between variants of the subset feedback vertex set problem and the multiway
cut problems see also [4]. SUBSET FEEDBACK VERTEX SET was first studied
by Even et. al. who obtained a constant factor approximation algorithm [5]. In
this paper we are interested in an exact solution of SUBSET FEEDBACK VER-
TEX SET. This does not seem to have been studied before, whereas there are a
series of exact results on FEEDBACK VERTEX SET. Razgon [13] gave the first
non-trivial exact algorithm for unweighted FEEDBACK VERTEX SET. This result
has been improved by Fomin et. al. [6,9]. A minimum feedback vertex set in an
unweighted graph can be computed in O(1.7548™) time [6]. Furthermore, all min-
imal feedback vertex sets can be enumerated in O(1.8638™) time [6]. The latter
result implies that a minimum weight feedback vertex set can be computed in
0O(1.8638™) time. So far, this is the best known algorithm for FEEDBACK VER-
TEX SET. Fixed parameter tractability of SUBSET FEEDBACK VERTEX SET was
raised as an open question in [1], and only recently it was proved to be fixed
parameter tractable [4], whereas FEEDBACK VERTEX SET has long been known
to be fixed parameter tractable [3,12,14].

In this paper, we show that SUBSET FEEDBACK VERTEX SET can be solved in
time O(1.8638™). Prior to our result, no algorithm breaking the trivial 27n?)-
time barrier has been known, even for the unweighted version of the problem.
As our main result, we give an algorithm that enumerates all minimal subset
feedback vertex sets of (G, S) and runs in O(1.8638") time. Thus our running
time matches the best-known algorithm for enumerating all minimal feedback
vertex sets [6]. While the general branching approach for enumerating the subset
feedback vertex sets is similar to the one enumerating the feedback vertex sets
[6], we introduce and use here several non-trivial ideas and new techniques for
the subset variant of the problem. As mentioned above, our enumeration algo-
rithm can be trivially adapted to an algorithm computing a minimum weight
subset feedback vertex set in time O(1.8638"). Furthermore, by making use of
the reduction above, our algorithm can be used to enumerate all minimal mul-
tiway cuts within the same running time. As a consequence, we are also able to
solve MuLTIwAY CUT in time O(1.8638™). To our knowledge, this is the first
non-trivial exact algorithm for the solution of this latter problem, even for its
unweighted version.

2 Preliminaries

All graphs in this paper are undirected and with weights on their vertices. All
graphs are simple unless explicitly mentioned; in particular input graphs are
always simple, but during the course of our algorithm, multiple edges are in-
troduced due to contraction of edges. A graph is denoted by G = (V, E) with
vertex set V' and edge set E. We use the convention that n = |V| and m = |E]|.



FEach vertex v € V is assigned a weight that is a positive real number. For a
vertex set X C V the weight of X is the sum of the weights of all vertices in X,
and the subgraph of G induced by X is denoted by G[X]. The neighborhood of a
vertex v of G is N(v) = {z vz € E}. For X CV, N(X) = U,ex N(z) \ X. In
this paper, we distinguish between paths (cycles) and induced paths (induced
cycles). A path (cycle) of G is induced if there are no edges in G between non-
consecutive vertices of the path (cycle). An edge of G is called a bridge if its
removal increases the number of connected components. A forest is a graph that
contains no cycles and a tree is a forest that is connected. The contraction of
edge {u,v} removes u and v from the graph, and replaces them with a new
vertex that is incident with every edge that was incident with u or v. If we say
that edge {u, v} is contracted to u, then u takes the role of the new vertex after
the contraction. Clearly, multiple edges might result from this operation.

Note that a minimum weight (or simply minimum) subset feedback vertex set
is dependent on the weights of the vertices, whereas a minimal subset feedback
vertex set is only dependent on the vertices and not their weights. Clearly, both
in the weighted and the unweighted versions, a minimum subset feedback vertex
set must be minimal.

3 Enumeration of all minimal subset feedback vertex sets

Let G = (V, E) be a graph and let S C V. In this section we give an algorithm
that enumerates all minimal subset feedback vertex sets of (G, S).

We define an S-forest of G to be a vertex set Y C V such that G[Y] contains
no cycle with a vertex from S. An S-forest Y is maximal if no proper superset of
Y is an S-forest. Observe that X is a minimal subset feedback vertex set if and
only if Y = V'\ X is a maximal S-forest. Thus, the problem of enumerating all
minimal subset feedback vertex sets is equivalent to the problem of enumerating
all maximal S-forests. Thus we present an algorithm enumerating all maximal
S-forests of the input graph G which is equivalent to enumerating all subset
feedback vertex sets of (G, S).

Our algorithm is a branching algorithm consisting of a sequence of reduction
and branching rules. The running time of the algorithm is up to a polynomial
factor proportional to the number of generated subproblems, or to the number
of nodes of the branching tree. For more information on branching algorithms
and Measure & Conquer analysis of such algorithms we refer to [8].

In our algorithm each subproblem corresponding to a leaf of the branching
tree will define an S-forest, and each maximal S-forest will be defined by one
leaf of the branching tree. Each of the reduction and branching rules will reduce
the problem instance by making progress towards some S-forest.

To incorporate all information needed in the algorithm we use so-called red-
blue S-forests. Given a set B C V of blue vertices with BN S = () and a
set R C V of red vertices with R C S, a maximal red-blue S-forest of G is a
maximal S-forest Y of G such that RU B C Y. If the set R U B of vertices
have the property that no two red vertices, or no two blue vertices, are adjacent,



then we say that the red-blue coloring of these vertices is a proper 2-coloring.
Let RBF(G, S, R, B) be the set of all maximal red-blue S-forests in G. Hence
a maximal S-forest Y is an element of RBF(G,S,R,B) if RUB C Y. Observe
that the problem of enumerating all maximal S-forests of G is equivalent to
enumerating all elements of RBF (G, S, 0, (). We refer to the vertices of V'\ (RUB)
as non-colored. Before proceeding with the description of the algorithm, we need
the following observations concerning the set RBF (G, S, R, B), the proofs of
which are given in the appendix.

Observation 1 Let Y = RU B be an S-forest of G that is an element of
RBF(G,S,R,B). Let G' be the graph obtained from G[Y] by contracting ev-
ery edge whose endpoints have the same color, giving the resulting vertex that
same color, and removing self loops and multiple edges. Then G’ is a forest.
Moreover, red and blue vertices form a proper 2-coloring of G'.

Let Y be an S-forest of G and let w € V\Y. If G[Y U {u}] contains an
induced cycle (', that contains v and some vertex of .S, then we say that C,, is
a witness cycle of u.

Observation 2 Let Y be a mazimal S-forest of G. Then every vertexu € V\Y
has a witness cycle Cy,.

We are ready to proceed with the description of the enumeration algorithm.
The description of the algorithm is given by a sequence of reduction and branch-
ing rules. We always assume that the rules are performed in the order in which
they are given (numbered), such that a rule is only applied if none of the previous
rules can be applied.

Initially all vertices of G are non-colored. Vertices that are colored red or blue
have already been decided to be in every maximal S-forest that is an element
of RBF(G, S, R, B). For a non-colored vertex v, we branch on two subproblems,
and the cardinality of RBF(G, S, R, B) is the sum of cardinalities of the sets
of maximal S-forests that contain v and those that do not. The first set is
represented by coloring vertex v red or blue, and second set is obtained by
deleting v. This partitioning defines a naive branching, where a leaf is reached
when there is at most one maximal S-forest in the set. We define the following
two procedures, which take as input vertex v and RBF(G, S, R, B).

Coloring of vertex v:
— if v € S then proceed with RBF(G, S, RU {v}, B);
— if v ¢ S then proceed with RBF(G, S, R, BU {v}).

Deletion of vertex v:
— proceed with RBF(G[V \ {v}],S\ {v}, R, B).

After the description of each of the Rules 1-12, we argue that the rule is sound,
which means that there is a one-to-one correspondence between the maximal S-
forests in the problem instance and the maximal S-forests in the instances of
the subproblem(s). We start to apply the rules on instance RBF (G, S,0,0).



Rule 1 If G has a vertex of degree at most 1 then remove this vertex from the
graph.

Rule 1 is sound because a vertex of degree zero or one does not belong to
any cycle. Furthermore, when a vertex of degree zero or one is removed, every
vertex that previously belonged to a cycle still belongs to a cycle and maintains
degree at least two.

Note that removal of vertex v means that v belongs to every element of the set
RBF(G, S, R, B). We emphasize that there is a crucial difference to Deletion
of vertex v which means that the non-colored vertex v belongs to no element
of RBF(G,S, R, B). Such a removal of a vertex belonging to every element of
RBF(G, S, R, B) is done in Rules 1, 4 and 5 and it necessitates the backtracking
part of our algorithm to be explained later.

Rule 2 If R =0, and S # (0 then select an arbitrary non-colored vertex v €
S, and branch into two subproblems. One subproblem is obtained by applying
Deletion of v and the other by Coloring of v.

Rule 2 is sound for the following reason. Only vertices of S are colored red.
Thus if R = (), all vertices of S are non-colored vertices. For every maximal S-
forest Y, we have that either v € Y (corresponding to Coloring of v), or v ¢ Y
(corresponding to Deletion of v).

After the application of Rule 2 there always exists a red vertex, unless S = ()
when we reached a leaf of the branching tree. For many of the following rules
we need to fix a particular vertex t of the S-forest RU B. We call it pivot vertex
t. If no pivot vertex exists (at some step a pivot vertex might be deleted), we
apply the following rule to select a new one.

Rule 3 If there is no pivot vertex then select a red vertexr as new pivot vertex t.

The following reduction rule is to ensure (by making use of Observation 1)
that the graph G[R U B] induces a forest and that the current red-blue coloring
is a proper 2-coloring of this forest.

Rule 4 If there are two adjacent red vertices u,v, then contract edge {u,v} to
u to obtain a new graph G'. Let Z be the set of non-colored vertices that are
adjacent to u via multiple edges in G'. If v was the pivot then use u as new pivot
t. Proceed with problem instance RBF(G'\ Z,S\ {v} U Z), R\ {v}, B).

Observe that Rule 4 corresponds to applying Deletion of w for every vertex
w of Z. Let us argue why this rule is sound. If a vertex w belongs to Z, then
because u,v € S, we have that w cannot be in any S-forest of G. Thus applying
Deletion of this vertex does not change the set of maximal S-forests. Finally,
every cycle of length more than 3 in G corresponds to a cycle of length at least
3 in the reduced instance.



Rule 5 If there are two adjacent blue vertices u,v, then contract edge {u,v} to
u to obtain a new graph G'. Let Z be the set of non-colored vertices of S that
are adjacent to u via multiple edges in G'. We replace each set of multiple edges
between u and a vertex of Z with a single edge. If t € {u,v} then use u as pivot
t. New problem instance is RBF(G'\ Z,S\ Z, R, B\ {v}).

Observe that Rule 5 corresponds to applying Deletion of w for every vertex
w of Z. No vertex of Z can be in an S-forest containing v and v. Thus applying
Deletion of the vertices of Z is sound. As with the previous rule, every cycle
of length more than 3 in G corresponds to a cycle of length at least 3 in the
reduced instance. We conclude that Rule 5 is sound.

If none of Rules 1-5 can be applied to the current instance, and in particular
Rules 4 and 5 cannot be applied, we can assume that RU B induces a forest and
that the red-blue coloring is a proper 2-coloring of this forest. We will call such
a forest (tree) a red-blue forest (tree).

Rule 6 If a non-colored vertex v has at least two distinct neighbors wi,ws in
the same connected component of GIR U B|, then apply Deletion of v.

As we already mentioned, the connected component of G[RUB] that contains
wy and wy is a properly 2-colored red-blue tree T'. Let wy,u1,uz,...,u, = wo,
p > 1, be the unique induced path in T" between w; and ws. Then either w;
or u is a red vertex, and thus no element of RBF (G, S, R, B) contains v. This
shows that Rule 6 is sound.

Let T; be the vertices of the connected component of G[R U B] containing
the pivot vertex ¢. Consider a non-colored vertex v adjacent to a vertex of the
red-blue tree G[T;]. Observe that v has exactly one neighbor w in T}, by Rule 6.
By Observation 2, every vertex u, which is not in a maximal S-forest Y, should
have a witness cycle C,, such that all vertices of C, except u are in Y. Hence
every vertex u € Y has at least two neighbors in Y. Since we cannot apply Rule 6
on vertex v, this implies that if v is not in Y, at least one of the vertices from
Nw)\T;isin Y.

For a non-colored vertex v adjacent to a vertex of T;, we define vertex set
P(v) to be the set of non-colored vertices adjacent to v or reachable from v via
induced red-blue paths in G[V \ T3]. Let w be the unique neighbor of v in T;.
We define vertex set PW (v) to be the subset of P(v) consisting of every vertex
x of P(v) for which at least one of the following conditions holds:

Pl {w,v,xz} NS # 0,

P2 2 ¢ N(w), or

P3 there exists an induced red-blue path from z to v in G[V \ T3] containing at
least one red vertex.

See Fig. 1 for an example of sets P(v) and PW (v). The intuition behind the
definition of PW (v) is the following. If vertex v does not belong to any maximal
S-forest Y of G, then there is a witness cycle C,,. This cycle C,, may pass through
some connected components of G[R U B] and some non-colored vertices. If we
traverse C,, starting from v and avoiding 73, then the first non-colored vertex we



Fig.1. Let SN {a,b,c,d,v} = set and set P(v) = {a,b,c,d}. Vertex a € PW (v) by
(P2), d € PW (v) by (P3). Vertices b and ¢ do not belong to PW (v).

meet will be a vertex of PW (v). Note that the vertex set PW(v) can easily be
computed in polynomial time. The proofs of the next two observations are given
in the appendix.

Observation 3 For every vertex x € PW (v) N N(T}), there is an induced cycle
containing x and v and at least one vertex of S.

Observation 4 Let v be a non-colored vertex adjacent to a vertex of Ty. If there
1s an induced cycle C' in G that contains v and some vertex of S, then C contains
also at least one vertex of P(v).

Lemma 5. A witness cycle C, of a vertex v contains a vertex of PW (v).

Proof. Let us assume that v is not contained in a maximal S-forest Y, and let
C, be a witness cycle for v. By Observation 4, C,, contains at least one vertex x
of P(v).

If x € PW(v), we are done with the proof. Otherwise, by Observation 4,
x € P(v)\ PW(v). As a consequence, v, w,z ¢ S, x is adjacent to w, and every
induced red-blue path from v to z in G[V \ T3] contains only blue vertices.

Let us now trace the induced cycle C,, starting from v on the path to x using
only blue vertices. By definition, no vertex on the path from v to x is contained
in S. Continue now in the same direction along C, until a vertex of S is reached.
The cycle has to return to v without passing through vertex w; otherwise the
edge {z,w} would be a chord of C,, contradicting the fact that C, is an induced
cycle. The path from x to v containing a vertex of S cannot be a red-blue path
as this contradicts the definition of x. As a consequence, C,, contains a second
vertex z' of P(v)\ PW (v). Maximal S-forest Y contains w because it is colored
blue, and C,\Y = {v} due to the maximality. Now we have a contradiction since
the path P from z to ' on C, not containing v, contains at least one vertex of
S, and because of the edges {z,w} and {2/, w}, the graph G[P U {w}] induces a
cycle containing a vertex of S. ad

The following rules depend on the cardinality of the set PW (v). Rules 7 and
8 are sound due to Lemma 5.



Rule 7 If PW(v) = 0 then apply Coloring of v.

Rule 8 If PW(v) = {z} then branch into two subproblem instances: one ob-
tained by applying Deletion of v and then Coloring of x, and the other obtained
by applying Coloring of v.

Rule 9 If |[PW(v)| > 2 and PW (v) C N(T}) then branch into two subproblem
instances: one obtained by applying Coloring of v and then Deletion of x to
all vertices x € PW (v), and the other obtained by Deletion of v.

To see that Rule 9 is sound, observe that vertex v is either colored, or deleted.
By Observation 3, for each vertex & € PW (v) the induced subgraph G[T;U{z, v}]
contains a cycle with a vertex of S and the non-colored vertices v and . Thus
either = or v has to be deleted, for every z € PW(v). When Rule 9 can not be
applied, at least one of the vertices in PW (v) is not contained in N(T3).

Rule 10 If PW(v) = {z1,22} and x1 & N(T}) then branch into three subprob-
lem instances. The first one is obtained by applying Coloring of v. The second
by Deletion of v and then Coloring of x1. The third one by applying Deletion
of v and x1 and then Coloring of xs.

Let us remark that vertex v is either colored or deleted. If v is deleted then
by Lemma 5, either x; or xs is contained in the witness cycle C,. This shows
that Rule 10 is sound.

Rule 11 If PW(v) = {z1,22,23} and x1 ¢ N(T}) then branch into four sub-
problem instances. The first instance is obtained by applying Coloring of v. The
second by Deletion of v and then Coloring of x1. The third by Deletion of
v and x1 and then Coloring of rs. The fourth by Deletion of v,x1,x2 and
Coloring of 3.

Again, the soundness of this rule follows by Lemma 5.

Rule 12 If |PW(v)| > 4 then create two problem instances: one obtained by
applying Coloring of v, and the other obtained by applying Deletion of v.

This rule is sound because v is either colored or deleted.

We call an instance non-reducible if none of Rules 1-12 can be applied to it.
Such an instance corresponds to a leaf of the branching tree of our algorithm.
The following property of non-reducible instances of the the red-blue S-forest
problem is crucial for our arguments.

Lemma 6. Let (G, S, B, R) be an instance. If none of the Rules 1-12 can be
applied then RBF (G, S, R, B) contains at most one mazimal red-blue S-forest.
Moreover, this forest can be computed in polynomial time.



Proof. If S = () then trivially the only maximal S-forest of G is V. Let us assume
that S # (). With every rule we either remove a vertex, select a pivot vertex, color
a vertex, delete a vertex or contract an edge. Rule 2 guarantees that the set of
red vertices is not empty. Rule 3 ensures that a pivot vertex ¢t is selected. Rules 1,
2 and 4-12 can be applied as long as there are non-colored neighbors of red-blue
tree T;. When the set N(T}) becomes empty then T} is completely removed by
Rule 1. Then the algorithm selects a new pivot vertex ¢ and component T} by
making use of Rule 3. Thus the conditions that none of the rules can be applied
and S # (), yield that V = RU B. But then the only possible maximal S-forest
Y of RBF(G,S,R,B)isY = RUB. a

We are finally in the position to describe the algorithm. The algorithm enu-
merates all elements of RBF(G,S,{,0) by applying Rules 1-12 in priority of
their numbering as long as possible. Let F be the set of all non-reducible in-
stances produced by the application of the rules. These are the instances corre-
sponding to the leaves of the branching tree. By Lemma 6, for each non-reducible
instance of F there is at most one red-blue S-forest which can be computed in
polynomial time. To enumerate all maximal S-forests of the input graph, we
have to add to each S-forest of an instance of F all vertices which were possibly
removed by applications of some of the rules on the unique path from the root
of the branching tree to the corresponding leaf. This can be done in polynomial
time by backtracking in the branching tree.

The correctness of the algorithm follows by Lemma 6 and the fact that each
rule is sound. Thus each maximal S-forests of the input graph can be mapped
to a private element of F. In the next section we analyze the running time.

4 Running time

With every rule we either remove a vertex, select a pivot vertex, color a vertex,
delete a vertex, or contract an edge. Thus the height of the branching tree is
O(]V| + |E|). Hence, for every non-reducible instance, the backtracking part
of the algorithm producing the corresponding maximal S-forest in G can be
performed in polynomial time. Therefore, the running time of the algorithm,
up to a polynomial multiplicative factor, is proportional to the number of non-
reducible instances produced by reduction and branching rules.

In what follows, we upper bound the number of maximal S-forestsof the input
graph enumerated by the algorithm, or equivalently, the number of leafs in the
corresponding branching tree. Rules 1, 3, 4, 5, 6, and 7 are reduction rules and
generate only one problem instance. Thus they do not increase the number of
leafs in the branching tree. Therefore we may restrict ourselves to the analyses
of the branching Rules 2, 8, 9, 10, 11, and 12 .

Our proof combines induction with Measure & Conquer [7]. Let us first define
a measure for any problem instance generated by the algorithm. All colored
vertices have weight 0, non-colored vertices contained in N(7}) have weight 1,
and non-colored vertices not contained in N(7T}) have weight 1 4+ «. A problem
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instance RBF(G, S, R, B) will be defined to have weight |N(T3)| + (1 + «) |V \
(RUBUN(T}))|. Define f(u) to be the maximum number of maximal red-blue
S-forests for any instance RBF(G, S, R, B) of weight p where p > 0 is a real
number.

The induction hypothesis is that f(u) < a# for 2 = 1.49468. Note that the
number of possible measures of problem instances is finite, and thus induction
is over a finite set.

Base case p = 0. Since no vertex has weight greater than 0, we have that
all vertices are colored, and thus V is the unique maximal S-forest, implying
f(0) = 1. By the induction hypothesis we assume that f(k) < 2 for k < p,
and we want to prove that f(u) < x#. We prove this by showing that each
rule reduces a problem instance of weight u to one or more problem instances of
weight g1, ..., g where p; < psuch that f(p) < S0 fp) < @ if fpg) <
for 1 <4 < r. Before proceeding to the detailed analysis, we mention that the
instance RBF(G, S, 0,0) has weight n(1+«), and the result will thus imply that
f(n(1+4 a)) < 1.49468"(1+*) < 1.8638" for a = 1.5491.

Rule 2. Vertex set R =0, so t = () and N(T3) is defined as the empty set. As a
consequence all non-colored vertices have weight 1 + . In both new instances
the weight of v is reduced from 1 4+ « to zero. In the case when v is colored
(Rule 3), we use v as vertex t, and due to the minimum degree two property
by Rule 1 there are at least two neighbors with weights reduced by «. The two
subproblem instances are Deletion of v: 43 < g — 1 — a and Coloring of v:
o < pp—1—3a, and we get that

fp) < flp—1—a)+ f(p—1—3a) <zl 17 gt 1730 < g,

Rule 8. In both cases the weight of vertex v is reduced from 1 to zero. If x is
contained in N(T}) then it has weight 1, otherwise  has weight 1+ «. Consider
first the case © € N(T}). Since x € PW(v), we have by Observation 3 that
G[{v} UT; U{z}| contains a cycle with a vertex of S. Hence either v, or z has
to be deleted. If v is colored, then x is deleted by Rule 6 in order to break the
cycle, and if v is deleted, then x is colored since it has to be in the witness cycle.
We have for Deletion of v and Coloring of z: p; < p — 2; for Deletion of x
and Coloring of v: pus < g — 2. Thus

fp) < flp—2)+ flp—2) <ah 24 a2r 2 <ok

If x ¢ N(T3), then the weight of x is 1 + «, and we have for Deletion of v and
Coloring of z: u; < — 2 — «; for Coloring of v: pus < p— 1 — «, resulting in

F) < fp—2—a)+ flp—1—a) <z 27> 4717 < g,

Rule 9. All vertices in PW (v) have weight 1. Thus we have for Coloring of v
and Deletion of PW (v): iy < u—1— |PW (v)]; for Deletion of v: ps < pu— 1.
Since |PW (v)| > 2, we have that

f) < fp=3)+ f(p—1) <zt at! <ak.
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Rule 10. Vertex v has weight 1, 1 has weight 14 «, and x5 has weight 1 or 1+ a.
Consider first the case where x5 has weight 1, meaning that zo € N(T}). If v is
colored, then x5 is deleted by Rule 6 and Observation 3. We have for Coloring
of v: p1 < p— 2 — «; Deletion of v and Coloring of z1: pe < pt— 2 — a5 and
Deletion of v, z; and Coloring of x5: u3 < 4t — 3 — . Thus

flp) <2f(p—2—a)+ f(u—3—a) <2aH 270 gh=3-a < gk,

If 25 ¢ N(T}), then it has weight 1 + a. We have for Coloring of v: p; <
u— 1 — 2a; Deletion of v and Coloring of x1: po < p — 2 — a; and Deletion
of v, z1 and Coloring of x5: us < p — 3 — 2. Therefore,

F) < flp—1—20) + f(i—2—a) + f(u— 3 - 20)
S l,p—l—Qa +xu—2—o¢ +$u—3—2a S M

Rule 11. Let i be the number of vertices in PW (v) \ N(T;) and assume that
xj € N(T}) for j <i. The case i = 0 is covered by Rule 9. For i = 1,2, we have
for Coloring of v: u; < p — 4 + ¢ — ic; Deletion of v and Coloring of x;:
pe < p— 2 — «a; Deletion of v, 27 and Coloring of zo: u3 < p— 3 — ia; and
Deletion of v, x1, 29 and Coloring of z3: gy <t — 4 — ic. In total

f) < flp—4+i—ia)+ f(p—2—a)+ f(p—3 —ia) + f(p— 4 —ia)
S xu—4+i—ia +xu—2—a +xlt—3—i04 +xu—4—z’a S M.

For i = 3, we have for Coloring of v: yu; < p — 1 — 3«, for Deletion of v
and Coloring of z1: us < u — 2 — «, Deletion of v,z; and Coloring of xs:
3 < p—3—2a, and Deletion of v, x1, x5 and Coloring of z3: s < u—4 — 3,
and we get that

f) < flp—1=-3a)+ f(p—2—0a)+ f(p—3—2a)+ f(p—4—3a)
< xu—l—?)a +1,p,—2—oz +xu—3—20¢ +l,u—4—3a < M.

Rule 12. Let i be the number of vertices in PW(v) \ N(T;) and assume that
x; & N(Ty) for j <i. The case where i = 0 is covered by Rule 9. For ¢ > 1, we
have for Coloring of v: u; < p— (14 |PW(v)|) + i — ia; and for Deletion of
v: p2 < p— 1. Since |PW(v)| > 4, we notice that the value is minimum when
1 =4 and we get

F) < flu—1—4da) + f(u—1) <@ 0 4ot <ot

We conclude the analysis of the running time of the algorithm with the
following theorem, which is the main result of this paper.

Theorem 1. The mazimum number of maximal S-forests of a graph G on n
vertices is at most 1.8638™. The minimal subset feedback vertex sets of an input
(G, S), where G is a graph on n vertices, can be enumerated in time O(1.8638™).

Proof. Correctness and completeness follows from the arguments above. The
number of leafs in the branching tree is at most O* (z(1+®)") and 1.49468!T0-5491 <
1.8638. O
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5 Concluding remarks

The running time of our algorithm matches the running time of the algorithm
from [6] enumerating all minimal feedback vertex sets. Let us note that while
the running times of the enumeration algorithms for both SUBSET FEEDBACK
VERTEX SET and FEEDBACK VERTEX SET are the same, the number of minimal
feedback vertex sets in a graph can be exponentially larger or smaller than the
number of minimal subset feedback vertex sets. We given examples to illustrate
this in the appendix.

We conclude with the following natural questions. Is it possible to show (see
[6]) that there are graphs with 1.5926™ minimal feedback vertex sets? Can it be
that our enumeration algorithm overestimates the maximum number of minimal
subset feedback vertex sets, and that this number is significantly smaller than
1.8638", say O(1.6™)? Our enumeration algorithm can also be used to compute
a minimum weight subset feedback vertex set in time O(1.8638™). It would
be interesting to know whether a better running time can be obtained for the
unweighted SUBSET FEEDBACK VERTEX SET problem.
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Appendix

Proof of Observation 1

Proof. Since Y is an S-forest in G and Y = R U B, we have that any cycle in
G[Y] contains only blue vertices. Thus, each cycle is contracted to a blue vertex
in G’. Since no cycles remain in G’, G’ is a forest. If there is an edge between
two vertices of the same color, then this edge would have been contracted, and
thus the red-blue coloring of G’ is a proper 2-coloring. a

Proof of Observation 2

Proof. Let be Y be a maximal S-forest, and thus G[Y U {u}] has a cycle C
containing u and some vertex v € S. Since C contains v, we have that v has
at least two neighbors,  and y that belong to C. Let P be a shortest x, y-path
in G[V(C) \ {v}]. Then G|V (P) U {v}] contains an induced cycle C’. This cycle
contains v since P is a shortest z, y-path. It also contains u since no such cycle
exists in G[Y]. Thus C’ = C,, is a witness cycle. O

Proof of Observation 3

Proof. The fact that x and v have neighbors in T3, implies that the subgraph of
G induced by the union of T; U {v, 2} and the vertex set of a red-blue path from
v to x contains an induced cycle C. This cycle C' contains v and the neighbor w
of v in T;. By Rule 6, if there is an induced cycle containing non-colored vertex
v and a vertex of S, then this cycle should contain another non-colored vertex.
In the induced subgraph the only non-colored vertex except v is x, and thus
C contains = as well. Because x € PW (v), at least one the properties P1-P3
should hold. If one of the vertices w, v,z is in S, we are done. If x ¢ N(w), then
C contains more than one vertex from T}, and thus at least one red vertex from
S. The only remaining case is w,v,z ¢ S, © € N(w), and there is a red-blue
path P from v to z in G[V \ T¢] containing a red vertex. But every red vertex is
in S. a

Proof of Observation 4

Proof. By Rule 6, C contains at least one non-colored vertex besides v. Vertex
v has two neighbors in C, let z be a neighbor of v on C not equal to w, the
neighbor of v in T;. If x € P(v), we are done. If x is a red or blue vertex then
x belongs to some red-blue tree T' of G[B U R]. Cycle C has to leave T' at some
point, and thus to enter a vertex of P(v). O

Further concluding remarks

The number of minimal feedback vertex sets in a graph can be exponentially
larger or smaller than the number of minimal subset feedback vertex sets. For
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example, the graph consisting of n/3 disjoint triangles, has 3™/3 minimal feed-
back vertex sets (every triangle contains exactly one vertex from every such a
set). On the other hand, by letting S = ), the only minimal subset feedback
vertex set is (). The example of a graph with polynomial number of minimal
feedback vertex sets and exponential number of minimal subset feedback vertex
sets is the following split graph G on n = 6k vertices. Graph G has a clique
C of size 3k and an independent set I of size 3k. The vertices of C' and I are
partitioned into k triples; clique triples (a;,b;,¢;) and independent set triples
(i, i, 2:), 1 <1 < k. For each 4, we add edges between vertices of clique and
independent set triples as follows: x; is adjacent to a, b;; y; to b;, ¢;; and z; to
a;, c;- We let S = I. Every minimal subset feedback vertex set contains exactly 2
vertices from each clique triple, so there are 3 possible options for each triple, and
the total number of such sets is 3*. On the other hand, every minimal feedback
vertex set should contain at least 3k — 2 vertices from C', and thus the number
of such sets is O(k?).



