
Graphs of linear clique-width at most 3∗

Pinar Heggernes† Daniel Meister† Charis Papadopoulos†

Abstract

A graph has linear clique-width at most k if it has a clique-width expression using at
most k labels such that every disjoint union operation has an operand which is a single
vertex graph. We give the first characterisation of graphs of linear clique-width at most 3,
and we give the first polynomial-time recognition algorithm for graphs of linear clique-width
at most 3. In addition, we present new characterisations of graphs of linear clique-width at
most 2. We also give a layout characterisation of graphs of bounded linear clique-width; a
similar characterisation was independently shown by Gurski and by Lozin and Rautenbach.

1 Introduction

Many generally hard problems can be solved efficiently on restricted graph classes. One graph
parameter to measure the computational complexity of problems on restricted input graphs is
clique-width. As an example, problems that can be expressed in a certain monadic second-order
logic can be solved in linear time on graphs whose clique-width is bounded by a constant, as-
suming that an appropriate clique-width expression is given [5]. The clique-width of a graph
is defined as the smallest number of labels that are needed for constructing the graph using
the graph operations ‘vertex creation’, ‘union’, ‘join’ and ‘relabel’. The graph parameter linear
clique-width is closely related to clique-width and defined by a restriction of the allowed clique-
width operations to only ‘vertex creation’, ‘join’ and ‘relabel’. The corresponding clique-width
minimization problem and linear clique-width minimization problem are NP-hard even on com-
plements of bipartite graphs [8]. A graph class can have bounded clique-width but unbounded
linear clique-width, for example cographs and trees [11].

The relationship between clique-width and linear clique-width is similar to the relationship
between treewidth and pathwidth, and the two pairs of parameters are related [8, 11, 13].
Clique-width can be viewed as a more general concept than treewidth since there are graphs of
bounded clique-width but unbounded treewidth (for instance complete graphs), whereas graphs
of bounded treewidth have bounded clique-width [6]. While treewidth is widely studied and well-
understood the knowledge about clique-width is still limited. The study of the more restricted
parameter linear clique-width is a step towards a better understanding also of clique-width. For
example, NP-hardness of the clique-width minimization problem is obtained by showing that
the linear clique-width minimization problem is NP-hard [8].

∗This work is supported by the Research Council of Norway through grant 166429/V30. An earlier version of
this work was presented at TAMC 2008.

†Department of Informatics, University of Bergen, Norway. Emails: pinar.heggernes@ii.uib.no,

daniel.meister@ii.uib.no, charis.papadopoulos@ii.uib.no

1

With this paper, we contribute to the study of linear clique-width with several results. The
main result that we report is the first characterisation of graphs that have linear clique-width at
most 3. We give a graph decomposition scheme that exactly characterises the graphs of linear
clique-width at most 3 as the graphs that can be decomposed completely. We show that a
decomposition, if possible, can be computed in O(n2m) time, which gives the first polynomial-
time algorithm to decide whether a graph has linear clique-width at most 3. Furthermore, we
show that graphs of linear clique-width at most 3 are both cocomparability graphs and weakly-
chordal graphs. Prior to this work, polynomial-time recognition algorithms for graphs of linear
clique-width at most k were known only for k ≤ 2 [9]. For bounded clique-width, polynomial-
time recognition algorithms for graphs of clique-width at most k are known only for k ≤ 3 [2, 6].
Only little is known about other characterisations of graphs of bounded clique-width. Graphs
of clique-width at most 2 are characterised as the class of cographs [6], but no characterisation
other than the recognition algorithm is known for graphs of clique-width at most 3.

A graph decomposition scheme is a procedure that recursively decomposes a graph into
smaller graphs by partitioning the vertex set. Decompositions are often used in the design of ef-
ficient algorithms; well-known examples are linear-time recognition algorithms for comparability
graphs and cocomparability graphs [17]. As a preliminary step for obtaining our decomposition
scheme for graphs of linear clique-width at most 3, we consider the smaller class of graphs of
linear clique-width at most 2. We give new characterisations of this graph class, in particular a
characterisation by a decomposition scheme. This decomposition scheme is a special case of our
decomposition scheme for graphs of linear clique-width at most 3.

Before focusing on graphs of small bounded linear clique-width, we give more general results
for linear clique-width. First we present and demonstrate the use of a new layout characterisation
of graphs of bounded linear clique-width. Treewidth and pathwidth have algorithmically useful
characterisations through vertex layouts and embeddings into particular graph classes. No such
result is known for clique-width. Recently, Gurski as well as Lozin and Rautenbach gave a
layout characterisation of graphs of bounded linear clique-width [10, 15]. Our result is similar
but independent and has a simpler statement and proof. Second, we give a characterisation of
linear clique-width through a decomposition scheme that preserves the linear clique-width of each
decomposable subgraph. Note that even the trivial decomposition into connected components
does not have this property, as the linear clique-width of a disconnected graph can be larger
than the linear clique-width of each of its connected components. A simple example is the 2K2,
which has linear clique-width 3 but its two connected components have linear clique-width 2.
For clique-width, several graph operations have been studied that preserve the clique-width
of a graph [6, 13]. One of the most important such results shows that the clique-width of a
graph is equal to the maximum clique-width of its prime induced subgraphs, making modular
decomposition such a preserving operation [6]. We give such a preserving operation also for
linear clique-width and show that sets of false twins can be ignored.

This paper is organised as follows. In the next section we give the necessary background and
notation, in particular the definitions of clique-width and linear clique-width. Section 3 presents
our layout characterisation of linear clique-width, and Section 4 presents the decomposition
scheme that preserves linear clique-width. In Section 5, we consider characterisations of graphs
of linear clique-width at most 2. Sections 6 and 7 are devoted to graphs of linear clique-width
at most 3. In Section 6, we give the decomposition scheme characterisation and prove structural
properties of graphs of linear clique-width at most 3, and in Section 7, we give the polynomial-
time recognition algorithm. Final remarks and open problems are discussed in Section 8.

2

2 Graph preliminaries and linear clique-width

We consider simple finite undirected graphs. For a graph G = (V,E), we denote its vertex set
as V (G) = V and its edge set as E(G) = E. An empty graph has empty vertex and edge set,
and an edgeless graph has empty edge set. Edges of G are denoted as uv, and we say that u
and v are adjacent. If uv 6∈ E for u 6= v, we say that u and v are non-adjacent. The subgraph
of G induced by S ⊆ V is denoted as G[S]. For a set S ⊆ V , we denote the graph G[V \ S] by
G \ S, and for a vertex x of G, we denote the graph G[V \ {x}] by G−x. Let u be a vertex
of G. The neighbourhood of u is NG(u) = {v : uv ∈ E}. The closed neighbourhood of u is
NG[u] = NG(u) ∪ {u}. For a set S ⊆ V , NG(S) =

⋃

x∈S NG(x) \ S. Two vertices x, y are called
true twins if NG[x] = NG[y] and they are called false twins if NG(x) = NG(y). The degree of u
is the number of its neighbours and denoted as dG(u). We call u isolated in G if dG(u) = 0, we
call u almost universal if dG(u) = |V (G)| − 2, and we call u universal if dG(u) = |V (G)| − 1. A
clique of G is a set of pairwise adjacent vertices, and an independent set of G is a set of vertices
that are pairwise non-adjacent.

In a graph G = (V,E), a path is a sequence (x0, . . . , xr) of distinct vertices such that xixi+1 ∈
E for 0 ≤ i < r. If r ≥ 2 and additionally x0 and xr are adjacent then (x0, . . . , xr) is a cycle.
A graph is connected if there is a path between every pair of vertices; otherwise the graph is
disconnected. The maximal connected subgraphs of a graph are called connected components.
The complement of G, denoted as G, has vertex set V and two vertices are adjacent if and
only if they are not adjacent in G. If G is connected then we say that G is co-connected. The
co-connected components of a graph are the connected components of its complement.

Let G and H be two vertex-disjoint graphs. The disjoint union of G and H, denoted as
G ⊕ H, is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join of G
and H, denoted as G⊗H, is the graph obtained from G⊕H by adding all edges between the
vertices of G and the vertices of H.

2.1 Special graphs and graph classes

For a set H of graphs, a graph is called H-free if it does not contain a graph from H as induced
subgraph. A chord in a path or cycle is an edge between non-consecutive vertices of the path or
cycle. The chordless path on k vertices is denoted as Pk and the chordless cycle on k vertices
is denoted as Ck. The complement of C4 is denoted as 2K2, which is the graph on four vertices
and two edges that do not share an endpoint. The complement of the disjoint union of two
(vertex-disjoint) copies of P3 is denoted as co-(2P3).

Cographs are defined inductively as follows: a single vertex is a cograph, the disjoint union of
two cographs is a cograph, and the complement of a cograph is a cograph. It is well-known that
cographs are exactly the P4-free graphs [3]. A subclass of cographs are threshold graphs. A graph
is a threshold graph if and only if its vertices can be partitioned into a clique and an independent
set such that the independent-set vertices can be ordered by neighbourhood inclusion [16].

A cocomparability graph is the complement of a transitively-orientable graph. A characteri-
sation of cocomparability graphs is by vertex orderings. A graph G is a cocomparability graph
if and only if there is an ordering 〈x1, . . . , xn〉 of its vertices such that for every triple i < j < k,
xixk ∈ E implies that xixj ∈ E or xjxk ∈ E [14]. Such vertex orderings are called cocompara-
bility orderings.

A weakly-chordal graph is a graph that does not contain a Ck for k ≥ 5 or its complement as

3

induced subgraph. Cographs are weakly-chordal graphs. For further properties of the mentioned
graph classes we refer to [1].

2.2 Clique-width and linear clique-width

Clique-width was introduced by Courcelle, Engelfriet, Rozenberg [4]. For a natural number k ≥
1, a k-labelled graph is a graph whose vertices are assigned labels from {1, . . . , k}. The following
operations are for k-labelled graphs:

1) create a k-labelled graph on a single vertex x with label i, for i ∈ {1, . . . , k};
denoted as i(x)

2) relabel every vertex with label i by label j, for i, j ∈ {1, . . . , k};
denoted as ρi→j

3) join all vertices with label i with all vertices with label j by adding edges, for i, j ∈
{1, . . . , k} and i 6= j;
denoted as ηi,j

4) compute the disjoint union of two k-labelled graphs;
denoted as ⊕.

The clique-width of a graph G, denoted as cwd(G), is the smallest number k such that G is
equivalent to a k-labelled graph that is constructed using the above operations. Clique-width
expressions are built using the defined operations. Examples are given in Figure 1. Note
that operands for the create, relabel and join operations are given in round brackets after the
operation whereas the two operands of the disjoint union operation are to the left and right hand
side of the ‘⊕’ symbol. If a clique-width expression uses only k labels we call it a k-expression.
We say that a k-expression t defines a graph G if G is equivalent to the k-labelled graph obtained
from t.

The linear clique-width of a graph was introduced by Gurski and Wanke [11]. It is defined
by restricting the disjoint union operation of clique-width. For a graph G, the linear clique-
width of G, denoted as lcwd(G), is the smallest number k such that there is a k-expression that
defines G and that is of the following form: every occurrence of a disjoint union operation has
at least one operand that is a graph on a single vertex. The definition of linear clique-width
is equivalent to the following: a graph has linear clique-width at most k if it is equivalent to a
k-labelled graph that is constructed from an empty graph by applying the following operations:
add a new vertex, relabel, join. In other words, the disjoint union operation is joined with the
vertex creation operation to an operation that adds an isolated vertex with specified label to the
already constructed graph. All three operations take only one operand, so that they define a
linear expression. As an example, expression t2 in Figure 1 can be made into such an expression
by simply deleting the ‘⊕’ symbols. When we give explicit linear clique-width expressions, we
use a different notation. We avoid the usage of round brackets and we write the operations in
reversed order, ending with the operation that is applied last. As an example, the equivalent of
expression t2 in Figure 1 is the following expression:

2(b) 1(a) η1,2 ρ2→1 2(c) η1,2 3(d) η2,3 ρ3→2 3(e) η2,3 .

Every clique-width expression defines a binary parse tree. Tree nodes with two children
correspond to disjoint union operations in the expression. Parse trees for our simplified definition

4

a

b e

d
c t1 = η1,2

(

ρ2→1

(

η1,2

(

1(a)⊕ 2(b)
)

⊕ η1,2

(

1(d)⊕ 2(e)
)

)

⊕ 2(c)

)

t2 = η2,3

(

3(e)⊕ ρ3→2

(

η2,3

(

3(d)⊕ η1,2
(

2(c)⊕ ρ2→1(η1,2(1(a)⊕ 2(b)))
)

)

)

)

Figure 1: A 2-expression, t1, and a 3-expression, t2, that define the left hand side graph.

of linear clique-width do not contain nodes with two children, thus are paths. In this sense,
the relationship between clique-width and linear clique-width can be viewed analogous to the
relationship between treewidth and pathwidth. The linear clique-width of a graph is at least
its clique-width. The difference between clique-width and linear clique-width of a graph can be
arbitrarily large. As an example, cographs and trees have clique-width at most 3 [6] but they
have unbounded linear clique-width [11]. It is easy to see that edgeless graphs are exactly the
graphs of clique-width 1 and linear clique-width 1, since the creation of an edge requires at least
two different labels.

3 A layout characterisation of linear clique-width

We show that linear clique-width is equivalent to a layout width parameter. This width param-
eter mainly measures the number of different neighbourhoods in a set of vertices with respect to
the outside. Such a characterisation was already given by Gurski [10] and Lozin and Rautenbach
[15], however, the width parameter that we use has a significantly simpler formulation. We use
our layout characterisation to show results for linear clique-width. In particular, we apply this
characterisation in this section to show that connected components of a disconnected graph can
be constructed independently by a linear clique-width expression with smallest number of labels.

A layout for a graph G is a linear ordering of its vertices, usually defined as a bijective
mapping between the number set {1, . . . , |V (G)|} and V (G). Let G = (V,E) be a graph. For
A ⊆ V , a group in A is a maximal set of vertices with the same neighbourhood in V \ A. Note
that two groups in A are either equal or disjoint, implying that the group relation defines a
partition of A. By νG(A), we denote the number of groups in A. Let β be a layout for G. Let
x be a vertex of G and let p be the position of x in β, i.e., p = β−1(x). The set of vertices
to the left of x with respect to β is {β(1), . . . , β(p − 1)} and denoted as Lβ(x), and the set of
vertices to the right of x with respect to β is {β(p + 1), . . . , β(|V (G)|)} and denoted as Rβ(x).
We write Lβ [x] and Rβ [x] if x is included. The function adβ is a {0, 1}-valued function on the
set of vertices of G with respect to β. It is defined as follows: adβ(x) = 1 if one of the following
conditions is satisfied:

– {x} is a group in Lβ[x]

– {x} is not a group in Lβ [x] and all (other) vertices in the group containing x are neighbours
of x

– {x} is not a group in Lβ [x] and there are a non-neighbour y of x in the group of Lβ [x]
containing x and a neighbour z of x in Lβ(x) such that y and z are non-adjacent;

adβ(x) = 0 if none of the conditions is satisfied. Note that the first condition is a special case

5

a b c d e

ad(d) = 1

Figure 2: A specific layout for the graph in Figure 1. The set of vertices to the left of d has two
groups, and ad(d) = 1 for this layout.

of the second condition. We distinguish the two conditions for convenience reason and to keep
the definition clear.

Definition 1. The groupwidth of a graph G with respect to a layout β for G is the smallest
number k such that νG(Lβ(x))+adβ(x) ≤ k for all x ∈ V (G). The groupwidth of G with respect
to β is denoted as gw(G, β).

The groupwidth of a graph G is the smallest number k such that there is a layout β for G
satisfying gw(G, β) ≤ k. The groupwidth of G is denoted as gw(G).

For an example, consider Figure 2. Given is a layout β for the graph G depicted in Figure 1.
We pick vertex d and see that Lβ(d) has two groups, {a, b} and {c}. Furthermore, Lβ [d] has
also two groups, {a, b} and {c, d}, and d is adjacent to all other vertices in its group. Hence,
adβ(d) = 1, and thus gw(G, β) ≥ 3. It is not hard to see that gw(G, β) = 3.

Theorem 1. For every graph G, lcwd(G) = gw(G).

Proof Let G = (V,E) be a graph on n vertices. First we show lcwd(G) ≥ gw(G). Let a =
a1 · · · ar be a linear clique-width expression for G that uses k labels. We show that gw(G) ≤ k.
Let i1 < · · · < in such that ai1 , . . . , ain are the vertex creation operations in a. Let G1, . . . , Gn

be the following labelled graphs: Gj is defined by expression a1 · · · aij−1. Note that G1 is an
empty graph. Observe that νG(V (Gj)) ≤ k, since vertices in different groups in V (Gj) (with
respect to G) must have different labels. We define a layout β for G as follows: the vertices
of G appear in β as in ai1 · · · ain . Let x be the vertex added to Gj by operation aij . Note
that Lβ(x) = V (Gj). We show that νG(V (Gj)) + adβ(x) ≤ k. If νG(V (Gj)) < k then clearly
νG(V (Gj)) + adβ(x) ≤ k. So, let νG(V (Gj)) = k. This means that all k labels are assigned to
vertices in Gj . Hence, aij creates x and assigns a label that is assigned to a vertex in Gj . We
show that in this case adβ(x) = 0. Let A denote the set of vertices of Gj having the same label
as x. By assumption, A is not empty. Then, x is not adjacent to any of the vertices from A in
G, and A∪{x} is part of the same group in Lβ [x] (thus the first two conditions of the definition
of ad are not satisfied). Let A′ denote the group in Lβ[x] containing x; hence A ∪ {x} ⊆ A′.
Suppose there is a non-neighbour y of x in A′ \ (A∪{x}). Then, all vertices with the same label
in Gj as y belong to the same group in V (Gj) as A. This, however, means that νG(V (Gj)) < k,
which is a contradiction to the assumption. Hence, all vertices in A′ \ (A ∪ {x}) are neighbours
of x, and the third condition of the definition of ad cannot be satisfied, in particular, since every
neighbour of x in G is a neighbour of every vertex in A. Hence, adβ(x) = 0. By choosing a as
using the smallest number of labels, we conclude this part of the proof.

6

Next we show lcwd(G) ≤ gw(G). Let β = 〈x1, . . . , xn〉 be a layout for G. We show that
lcwd(G) ≤ gw(G, β). We define linear clique-width expressions a1, . . . , an that define labelled
graphs G1, . . . , Gn such that Gj is equivalent to G[{x1, . . . , xj}] and is labelled with exactly
νG(Lβ [xj]) labels. Let k =def gw(G, β). Clearly, a1 =def 1(x1) defines G1 properly. Now, let
j ∈ {1, . . . , n − 1} and assume that aj has already been defined. Then, Gj is equivalent to
G[{x1, . . . , xj}] and is labelled with exactly νG(Lβ [xj]) = νG(Lβ(xj+1)) labels. Without loss of
generality, we can assume that the labels in Gj are from {1, . . . , k}. We distinguish two cases.
First, let adβ(xj+1) = 1. Then, νG(Lβ(xj+1)) < k and there is a label in {1, . . . , k} that is
not used in Gj ; let c be the smallest unassigned label. We define aj+1 by iteratively appending
operations to aj . We begin with aj+1 =def aj c(xj+1). If xj+1 is not adjacent to any of the
vertices in Lβ(xj+1), we are done. Otherwise, let c′ be the label of a group in Lβ(xj+1) that
contains neighbours of xj+1. Append operation ηc,c′ . By definition of a group, all vertices with
label c′ are adjacent to x. Repeat this step until xj+1 is adjacent to all its neighbours that are in
Lβ(xj+1). Then, the labelled graph defined by current aj+1 is equivalent to G[{x1, . . . , xj+1}].
Note that we have used exactly νG(Lβ(xj+1)) + adβ(xj+1) labels so far. It can be that vertices
from the same group in Lβ [xj] have different labels. We add relabel operations to aj+1. This
can be done since every group in Lβ(xj+1) is entirely contained in a group in Lβ [xj+1]. This
completes the definition of aj+1. With the given arguments, it is clear that Gj+1, that is defined
by aj+1, is equivalent to G[{x1, . . . , xj+1}] and contains exactly νG(Lβ [xj+1]) labels. As the
second case, let adβ(xj+1) = 0. We define aj+1 similar to the previous case with exception for
the choice of c. In this case, aj+1 creates xj+1 using a label that is already assigned to a vertex
in Gj . Let A be the group in Lβ[xj+1] that contains xj+1. According to the definition of ad, A
contains at least two vertices. Furthermore, A can contain at most two groups of Lβ(xj+1). If
all vertices in A \ {xj+1} are adjacent to xj+1 then adβ(xj+1) = 1, which is a contradiction to
the assumption. Hence, A contains a group A′ of Lβ(xj+1) of vertices that are non-adjacent to
xj+1. We choose their label as c. It remains to show that this choice does not add wrong edges.
But again, the definition of ad ensures that every neighbour of xj+1 that is in Gj is a neighbour
of every vertex in A′. Hence, an is a linear clique-width k-expression that defines Gn, and Gn is
equivalent to G. By choosing β of groupwidth gw(G), we conclude this part of the proof.

The proof shows an even stronger result: there is a 1-to-1 correspondence between linear
clique-width expressions using the smallest number of labels and layouts of smallest groupwidth.
The proof also shows that the groupwidth of a layout is a (tight) lower bound on the number of
labels every linear clique-width expression with this vertex ordering uses. Finally, the construc-
tion in the second part of the proof gives a simple algorithm for determining a linear clique-width
expression using the smallest number of labels with the fixed vertex ordering. The corresponding
notion is also known as relative (linear) clique-width and was introduced and studied by Lozin
and Rautenbach [15]. Our proof provides a simple and efficient algorithm for computing the
relative linear clique-width.

For the second result of this section, we consider linear clique-width expressions for discon-
nected graphs. It is obvious that a clique-width expression can construct the connected com-
ponents of a disconnected graph separately and combine them in a last step using the disjoint
union operation. For linear clique-width, this is not possible. However, it is intuitive to assume
that also linear clique-width expressions construct the connected components of a disconnected
graph separately. We show in the following that this is indeed the case by constructing a layout
of smallest groupwidth with this property, thereby applying the characterisation of Theorem 1.
Though the result is expected the proof is surprisingly non-trivial.

7

Lemma 2. Let G be a graph with connected components G1, . . . , Gl. Let β be a layout for
G. Then, there is a layout β′ for G in which the vertices of each connected component appear
consecutively and in the same order as in β and such that gw(G, β) ≥ gw(G, β′).

Proof Let k =def gw(G, β). We prove the statement by induction over the number of con-
nected components. If G has only one connected component then G is connected and the
statement is true using β as β′. Let G have at least two connected components. If G is edgeless,
every connected component contains exactly one vertex and we conclude the statement again by
using β as β′. So, let G not be edgeless. Then, gw(G, β) ≥ 2. Let β1, . . . , βl be layouts obtained
from β by restricting to the vertices of G1, . . . , Gl, respectively. Suppose there is i ∈ {1, . . . , l}
such that gw(Gi, βi) ≤ k − 1. Let layout δ be obtained from β by deleting the vertices of Gi.
Then, δ is a layout for G \V (Gi), and gw(G \V (Gi), δ) ≤ k. We apply the induction hypothesis
to G \ V (Gi) and δ and obtain layout δ′. Let β′ be obtained from δ′ and βi by appending βi
at the end of δ′. Note that the vertices of each connected component of G appear consecutively
in β′ and the vertices of Gi are at the end. According to assumption and by construction,
gw(G, β′) ≤ k. As the last case, let gw(G1, β1) = · · · = gw(Gl, βl) = k. For every i ∈ {1, . . . , l},
determine the leftmost vertex ui of Gi with respect to βi such that νGi

(Lβi
(ui)) + adβi

(ui) = k.
Let Gj be the connected component with uj rightmost in β among u1, . . . , ul. Similar to the
previous case, we obtain layout δ′ for G \ V (Gj). Let β

′ be obtained from δ′ and βj by append-
ing βj at the end of δ′. We show that gw(G, β′) ≤ k. Suppose there is a vertex x such that
νG(Lβ′(x)) + adβ′(x) > k. By definition of uj and the construction of β′, x is not to the left of
uj in β′. Choose x leftmost possible in β′. Then, νG(Lβ′(x)) = k and adβ′(x) = 1. Otherwise,
if νG(Lβ′(x)) > k, there is a vertex to the left of x that starts a new group and thus x was not
chosen as leftmost. We consider the groups in Lβ′(x):

– exactly one group contains the vertices of G \ V (Gj)

– k − 1 groups contain only vertices of Gj .

Note that the one group with vertices of G \ V (Gj) can also contain vertices of Gj , namely
the vertices that do not have further neighbours. The vertices in the k − 1 groups all have a
neighbour in Rβj

[x]. Then, the k − 1 groups of Lβ′(x) are also groups of Lβ(x) according to
the construction of β′. Hence, all vertices in Lβ(x) of connected components different from Gj

are in the same group, say A. By the choice of uj , every connected component has a vertex in
Lβ(uj), and by assumption k ≥ 2, every connected component of G has at least two vertices,
thus every vertex has a neighbour in G. Suppose a vertex in A has a neighbour in Rβ(x). Then,
no vertex of Gj that is in Lβ(x) can be in A, which means that only k − 1 groups in Lβ(x)
contain vertices of Gj . This, however, contradicts the choice of uj . Thus, no vertex in A has
a neighbour in Rβ [x]. Hence, Lβ(x) = Lβ′(x). But then adβ(x) = adβ′(x), which contradicts
gw(G, β) = k. We conclude that gw(G, β′) ≤ k.

4 A graph reduction that preserves linear clique-width

It is known that modular decomposition is a reduction operation that preserves clique-width in
the following sense: the clique-width of a graph is equal to the maximum clique-width among
its prime induced subgraphs [6]. Thus, clique-width is robust with respect to modules. In
this section, we consider the analogue problem for linear clique-width. A simple observation

8

shows that linear clique-width is not robust with respect to arbitrary modules: cographs have
unbounded linear clique-width. We restrict the notion of a module and show that linear clique-
width is robust with respect to such restricted modules. The results of this section are useful both
for computing the linear clique-width of a graph and for proving structural results. Examples
of such applications are given in Sections 5 and 7.

For a graph G, a module M is a set of vertices of G that all have the same neighbours outside
of M in G.

Definition 2. Let G = (V,E) be a graph and let M be a set of vertices of G. We call M a
maximal independent-set module of G if M is both an independent set and a module of G and
no proper superset of M has this property.

As examples, an edgeless graph has exactly one maximal independent-set module, and a
complete graph on n vertices has n maximal independent-set modules. Let G be a graph. Two
vertices u and v of G are in relation ∼ft, denoted as u ∼ft v, if and only if they are false
twins, i.e., they have the same open neighbourhood. The symmetric relation for true twins was
considered by Roberts in connection with his study of indifference graphs [18]. Note that ∼ft

is an equivalence relation, and the corresponding equivalence classes are exactly the maximal
independent-set modules of G. In particular, different maximal independent-set modules have
empty intersections. The quotient graph of G with respect to ∼ft, denoted as G/∼ft, is obtained
as follows: there is a vertex for every maximal independent-set module of G, and two vertices
are adjacent if and only if the corresponding maximal independent-set modules contain vertices
that are adjacent. It is clear that G/∼ft is isomorphic to an induced subgraph of G. A maximal
independent-set module is called trivial if it contains only one vertex.

Lemma 3. For every graph G, the maximal independent-set modules of G/∼ft are trivial.

Proof Suppose G/∼ft has a non-trivial maximal independent-set module M . Let a and b be
vertices in M , and let Ma and Mb be the maximal independent-set modules of G corresponding
to a and b, respectively. Let u and v be vertices in Ma and Mb, respectively. We show that
NG(u) = NG(v). Since a and b are non-adjacent in G/∼ft, u and v are non-adjacent in G. Let
w be a vertex of G and different from u and v. If w is adjacent to u then w is not contained
in Ma and therefore contained in a maximal independent-set module Mc. We denote the vertex
of G/∼ft corresponding to Mc by c. According to definition, c is adjacent to a in G/∼ft and
by assumption c is adjacent to b. Thus, w is adjacent to v in G. With a symmetry argument,
it also follows that every neighbour of v is a neighbour of u in G. Hence, u ∼ft v, and u and v
belong to the same maximal independent-set module. This contradicts the assumption, and the
lemma follows.

As a direct corollary of Lemma 3, we obtain that graphs G/∼ft and (G/∼ft)/∼ft are iso-
morphic. An algorithm for computing the maximal independent-set modules of a graph is given
in Figure 3. The algorithm uses a partition refinement approach and has a linear-time imple-
mentation (see, for instance, [12]).

The main result of this section is given in the next lemma.

Lemma 4. For every graph G, lcwd(G) = lcwd(G/∼ft).

Proof Since G/∼ft is isomorphic to an induced subgraph of G, the inequality lcwd(G/∼ft) ≤
lcwd(G) clearly holds. For showing the converse, let Mx for x ∈ V (G/∼ft) denote the maximal

9

Algorithm Maximal independent-set modules

begin

let M := {V (G)};
for every vertex x of G do

obtain N from M by partitioning every set in M into a set of neighbours and
a set of non-neighbours of x;
set M := N \ {∅}

end for

end.

Figure 3: An algorithm for computing the maximal independent-set modules of a graph.

independent-set module of G corresponding to x. Let a be a linear clique-width expression for
G/∼ft and let ℓx be the label of x when adding x in the expression a. We define a linear clique-
width expression a′ for G in the following way. The creation operation for x in a is replaced by a
sequence of creation operations for all vertices in Mx; all vertices in Mx are created with label ℓx.
In other words, we replace the appearance of ℓx(x) in a with ℓx(v1) · · · ℓx(v|Mx|) for v1, . . . , v|Mx|

the vertices in Mx. Note that a′ does not use more labels than a. For showing that the graph
defined by a′ is indeed equivalent to G, it suffices to consider a single module Mx. All vertices
in Mx receive the same label, so are pairwise non-adjacent and have the same neighbours. The
result follows with an easy induction. Choosing a as using the smallest number of labels, we
conclude lcwd(G) ≤ lcwd(G/∼ft), which completes the proof.

5 Graphs of linear clique-width at most 2

The smallest non-trivial class of graphs of bounded linear clique-width is the class of graphs of
linear clique-width at most 2. Gurski showed that graphs of linear clique-width at most 2 are
exactly the {2K2, P4, co-(2P3)}-free graphs [9]. In this section, we add several new characterisa-
tions, among others a decomposition scheme and a vertex reduction scheme. Using this we give
a linear-time recognition algorithm for graphs of linear clique-width at most 2.

Definition 3. The class of simple cographs is inductively defined as follows:

(1) an empty graph is a simple cograph

(2) if A is a simple cograph and B is an edgeless graph, then A ⊗ B and A ⊕ B are simple
cographs.

Theorem 5. For a graph G, the following statements are equivalent:

(1) G is a simple cograph

(2) G/∼ft is a threshold graph

(3) G can be reduced to an empty graph by repeatedly deleting an isolated vertex, a universal
vertex or a false twin vertex.

Proof We show three implications. Let G = (V,E) be a graph.

(1) ⇒ (2) Let G be a simple cograph. If G is edgeless then G/∼ft is a graph on a single ver-
tex and therefore a threshold graph. If G contains an edge, there are edgeless graphs A1, . . . , Ar

10

and operations ⊙i ∈ {⊕,⊗} for 2 ≤ i ≤ r such that G = (· · · (A1 ⊙2 A2) · · ·) ⊙r Ar. We
assume that r is smallest possible. This means that ⊙2 = ⊗ and that there is no 3 ≤ i ≤ r
such that ⊙i−1 = ⊙i = ⊕. Then, the maximal independent-set modules of G are exactly
the sets V (A1), . . . , V (Ar). Let a1, . . . , ar be vertices from A1, . . . , Ar, respectively. It holds
that G[{a1, . . . , ar}] is isomorphic to G/∼ft. Note that G[{a1, . . . , ar}] = (· · · (G[{a1}] ⊙2

G[{a2}]) · · ·) ⊙r G[{ar}]. This shows that G/∼ft is a threshold graph: {ai : ⊙i = ⊕} is an
independent set in G[{a1, . . . , ar}], the other vertices form a clique and the independent-set
vertices can be ordered by neighbourhood inclusion.

(2) ⇒ (3) Let G/∼ft be a threshold graph. Let (C,D) be a partition of the vertex set of
G/∼ft such that C is an independent set and D is a clique of G/∼ft and such that the vertices
in C can be ordered by neighbourhood inclusion. Denote by Mx the maximal independent-set
module of G corresponding to vertex x of G/∼ft. Note that the vertices in Mi are pairwise
false twins. Mark a vertex from every module Mx. A reduction of the desired form is obtained
by repeated deleting first all unmarked vertices (which are always false twin vertices) and then
isolated and universal vertices. Note that the second part is successful since a graph is a threshold
graph if and only if it can be reduced by repeatedly deleting isolated or universal vertices.

(3) ⇒ (1) Let σ = 〈x1, . . . , xn〉 be a vertex ordering for G such that xi is isolated, universal
or false twin in Gi =def G[{xi, . . . , xn}]. Let σ be chosen such that false twin vertices appear
leftmost possible, which means that, if possible, a false twin vertex is picked instead of a universal
or isolated vertex. Suppose there is 1 ≤ i < n such that xi+1 is a false twin vertex and xi is
not. Independent of whether xi is universal or isolated in Gi, xi+1 is a false twin vertex also
in Gi and xi is universal or isolated in Gi−xi+1. Hence, xi+1 can be deleted before xi. We
conclude that there is 1 ≤ j ≤ n such that x1, . . . , xj−1 are deleted as false twin vertex and
none of xj , . . . , xn is deleted as false twin vertex. Let c1, . . . , cs′ be the vertices among xj , . . . , xn
(and in the corresponding order) that are deleted as isolated vertices, and let d1, . . . , ds′′ be
the vertices among xj , . . . , xn that are deleted as universal vertices. Then, every vertex di is
adjacent to all vertices in a set {ci, . . . , cs′} for an appropriate choice of i. Hence, there is an
ordering 〈a1, . . . , ar〉 of the vertices in C∪D such that G[{xj , . . . , xn}] = (· · · (A1⊙2A2) . . .)⊙rAr

for Ai the subgraph of G induced by {ai} and appropriate choices of ⊙i ∈ {⊕,⊗}. Denote by Mi

the maximal set of vertices that are false twin with ai in G. Note that every such set Mi contains
exactly one vertices from {xj , . . . , xn}, and every vertex from {x1, . . . , xj−1} is contained in such
a set. Then, G = (· · · (G[M1]⊙2 G[M2]) · · ·)⊙r G[Mr], and G is a simple cograph.

Note that the third part of the proof also gives a normalisation result about reduction
sequences, that false twin vertices can be deleted first and then only isolated or universal vertices
are deleted.

Corollary 6. Simple cographs can be recognised in linear time.

Proof This follows from Theorem 5 and the facts that G/∼ft can be computed in linear time
and threshold graphs can be recognised in linear time [16].

Theorem 7. A graph has linear clique-width at most 2 if and only if it is a simple cograph.

Proof Our proof distinguishes two cases; we apply the groupwidth characterisation of linear
clique-width (Theorem 1). Let G = (V,E) not be a simple cograph. Let β = 〈x1, . . . , xn〉 be
a layout for G. We show that gw(G, β) ≥ 3. If there is 1 ≤ j ≤ n such that νG(Lβ(xj)) +
adβ(xj) ≥ 3, we are done. So assume the contrary. Since G is not a simple cograph, there

11

is 1 < i < n such that G[{x1, . . . , xi}] is a simple cograph and G[{x1, . . . , xi+1}] is not. This
particularly means that xi+1 has a neighbour and a non-neighbour in {x1, . . . , xi}. Therefore,
νG(Lβ(xi+1)) = 2 and adβ(xi+1) = 0. Let A and A′ be the two groups in Lβ(xi+1). One of
the two groups, say A, contains only neighbours and the other group only non-neighbours of
xi+1. From adβ(xi+1) = 0, it follows that the group in Lβ[xi+1] that contains xi+1 contains
the vertices in A′, and this implies that every vertex in A is adjacent to every vertex in A′.
Thus, G

[

Lβ [xi+1]
]

= G[A] ⊗ (G[A′] ⊕ G[{xi+1}]). Let j be smallest such that {x1, . . . , xj}
contains a vertex from both A and A′. Since {x1, . . . , xj−1} and {xj} belong to different groups,
νG(Lβ(xj)) = 1 and adβ(xj) = 1. Since νG(Lβ(xi′)) = 2 for every j + 1 ≤ i′ ≤ i, it holds that
adβ(xi′) = 0 for every j+1 ≤ i′ ≤ i. It follows that A or A′ is an independent set, depending on
which group vertex xj belongs to. If A is an independent set then (G[A′] ⊕ G[{xi+1}]) ⊗ G[A]
is a simple cograph, if A′ is an independent set then G[A]⊗G[A′ ∪ {xi+1}] is a simple cograph.
This, however, contradicts the assumption about G[{x1, . . . , xi+1}] not being a simple cograph.
Hence, gw(G, β) ≥ 3.

For the converse, let G be a simple cograph. According to the definition, there are edgeless
graphs A1, . . . , Ar and operations ⊙i ∈ {⊗,⊕} such that G = (· · · (A1 ⊙2 A2) . . .) ⊙r Ar. Let
xi1, . . . , x

i
si

be the vertices of Ai. We show that β = 〈x11, . . . , x
1
s1
, x21, . . . , x

r
sr
〉 is a layout for G

of groupwidth at most 2: Lβ(x
i
1) has exactly one group, and since Ai is edgeless, Lβ(x

i
j) for

2 ≤ j ≤ si has at most two groups. So, adβ(x
i
j) = 0 for all 1 ≤ i ≤ r and 2 ≤ j ≤ ri, and we

conclude gw(G) ≤ 2.

Theorem 7 together with Gurski’s result shows that {2K2, P4, co-(2P3)}-free graphs are ex-
actly the simple cographs. We have thus shown that this graph class can be recognised in linear
time. Such a result was not known before. In fact, Theorem 5 (3) results in a linear-time
certifying algorithm for recognising graphs of linear clique-width at most 2, outputting either a
decomposition of G according to Definition 3, if yes, or an induced subgraph of G that is a 2K2,
a P4 or a co-(2P3), if no.

6 Graphs of linear clique-width at most 3

Graphs of linear clique-width at most 2 were shown to have a simple structure. The situation
changes already for graphs of linear clique-width at most 3. In this section, we characterise
the graphs of linear clique-width at most 3 by a decomposition scheme. This characterisation
will lead to an efficient recognition algorithm (Section 7). The decomposition scheme can be
considered as a generalisation of the decomposition scheme for simple cographs (Definition 3). At
the end of this section, we apply our characterisation and show that graphs of linear clique-width
at most 3 are cocomparability graphs and weakly-chordal graphs.

We can say that the decomposition scheme in Definition 3 defines simple cographs in a “1-
dimensional manner”. For graphs of linear clique-width at most 3, we have to add another
dimension. We define a class of formal expressions, that are interpreted as graph descriptions.
These expressions can be considered as 2-dimensional expressions. An lc3-expression is induc-
tively defined as follows, where d ∈ {l, r} and all sets A,A1, A2, A3, A4 may also be empty:

(d1) (A) is an lc3-expression, where A is a set of vertices.

(d2) Let T be an lc3-expression and let A be a set of vertices not containing a vertex appearing
in T ; then (d[T], A) is an lc3-expression.

12

(d3) Let T be an lc3-expression and let A1, A2, A3, A4 be pairwise disjoint sets of vertices not
containing a vertex appearing in T ; then (A1|A2, d[T], A3|A4) is an lc3-expression.

(d4) Let T be an lc3-expression and let A1, A2, A3, A4 be pairwise disjoint sets of vertices not
containing a vertex appearing in T , and let p be one of the following number sequences:
123, 132, 312, 321, 12, 32 (not allowed are 213, 231, 21, 23, 13, 31); then T ⊙ (A1|A2, •),
T ⊙ (•, A1|A2) and T ◦ (A1, A2|A3, A4, d[p]) are lc3-expressions where ⊙ ∈ {⊕,⊗}.

This completes the definition of lc3-expressions. The graph defined by an lc3-expression is
obtained according to the following inductive definition. An lc3-expression also associates a
vertex partition with the defined graph. Let T be an lc3-expression. Then, G(T) is the following
graph, where T ′ always means an lc3-expression and A,A1, A2, A3, A4 are sets of vertices and
d ∈ {l, r}:

(i1) Let T = (A); then G(T) is the edgeless graph on vertex set A; the vertex partition
associated with G(T) is (A, ∅).

(i2) Let T = T ′ ⊙ (A1|A2, •) for ⊙ ∈ {⊕,⊗}, and let G(T ′) with vertex partition (B,C) be
given; then G(T) is obtained from G(T ′) by adding the vertices of A1 and A2 and executing
two operations: (1) a union (if ⊙ = ⊕) or a join (if ⊙ = ⊗) between B and A1 ∪ A2 and
(2) a join between A2 and C; that is, B ⊙ (A1 ∪ A2) and A2 ⊗ C; the vertex partition
associated with G(T) is ((B ∪A1 ∪A2), C).

(i3) The case T = T ′ ⊙ (•, A1|A2) is similar to the previous case, where the operations are
C ⊙ (A1 ∪A2) and A2 ⊗B and the vertex partition is (B, (C ∪A1 ∪A2)).

(i4) Let T = T ′◦(A1, A2|A3, A4, d[p]), and let G(T ′) with vertex partition (B,C) be given; then
G(T) is obtained from G(T ′) by adding the vertices in A1 ∪ A2 ∪ A3 ∪ A4 and edges; the
added edges are the result of a sequence of join operations, and the sequence is specified by
p. We have three start sets, A2, B, C, and three extension sets, A3, A1, A4, that correspond
to respectively A2, B, C; the extension sets will be added to their corresponding start sets
after performing join operations, so that we obtain the final three sets A2 ∪ A3, B ∪ A1

and C ∪ A4; join operations are performed between the three sets, where each of which
may be the start set or the already extended set.

We perform two or three join operations, depending on the sequence p and with the
following meanings: 1 means a join operation between A2- and B-vertices, 2 means a
join operation between B- and C-vertices, 3 means a join operation between A2- and C-
vertices. It is important to notice that, for example, A2-vertices are the vertices from A2

or A2 ∪ A3, depending on whether A2 has been extended or not when the join operation
is performed.

The operation application scheme is as follows: perform a join operation between the two
start sets specified through the first number in p, and then add the extension sets to the two
start sets involved in the first join operation; perform the join operation that is specified
through the second number in p (note that one of the two sets is already extended and
the other set is a start set), and then add the remaining extension set to its corresponding
start set; if p contains three numbers, perform the join operation that is specified through
the third number in p.

G(T) is associated with one of the two vertex partitions:
if d = l then ((B ∪A1 ∪A2 ∪A3), (C ∪A4)), and
if d = r then ((B ∪A1), (C ∪A4 ∪A2 ∪A3)).

13

(i5) Let T = (d[T ′], A), and let G(T ′) with vertex partition (B,C) be given; then G(T) is the
graph defined by T ′ ⊗ (•, A|∅) or T ′ ⊗ (A|∅, •) for d = l or d = r, respectively; the vertex
partition associated with G(T) is (B ∪ C,A).

(i6) Let T = (A1|A2, d[T
′], A3|A4), and let G(T ′) with vertex partition (B,C) be given; then

G(T) is the graph defined by T ′ ◦ (A1, A3|A4, A2, d[p
′]) where p′ =def 132 or p′ =def 312 for

d = l or d = r, respectively; the vertex partition associated with G(T) is ((A1 ∪A2 ∪B ∪
C), (A3 ∪A4)).

This completes the definition of the graph defined by an lc3-expression. As a remark, we
understand definitions (i5) and (i6) as “2-dimensional”, since the given vertex partition is not
increased in a monotone way but changed completely. Later in this section, we will see that
definition (i4) is captured by what we will call an lc3-composition.

Definition 4. A graph G is an lc3-graph if there is an lc3-expression T such that G = G(T).

We show that lc3-graphs are exactly the graphs of linear clique-width at most 3. We partition
the proof into several smaller results. Remember that every lc3-expression defines a vertex
partition, that is associated with the lc3-expression and the defined graph.

Lemma 8. Let G = (V,E) be an lc3-graph with lc3-expression T and vertex partition (B,C).
Let S ⊆ V . Then, G[S] is an lc3-graph, and there is an lc3-expression TS for G[S] with vertex
partition (B ∩ S,C ∩ S).

Proof By definition of lc3-expressions, every vertex of G appears in exactly one lc3-expression
operation of T and, thus in exactly one set of the vertex partition. It is clear that deleting a
vertex x of G from the set of its appearance in T yields T ′ that is an lc3-expression which exactly
defines G−x with vertex partition (B\{x}, C\{x}). Iterated application of this operation proves
the statement.

For an lc3-expression T , denote by GC(T) the subgraph of G(T) that is induced by the
second component of the vertex partition for T . In other words, if G(T) is associated with
vertex partition (B,C) then GC(T) = G(T)[C].

Lemma 9. Let T be an lc3-expression.

(1) GC(T) is a simple cograph.

(2) Let (B,C) be the vertex partition for G(T). There are no four vertices u, v, x, z in G(T)
such that u, v ∈ B and x, z ∈ C and ux, vz ∈ E(G(T)) and uz, vx 6∈ E(G(T)).

Proof We prove the two statements separately.

(1) We prove the statement by induction over the definition of lc3-expressions. If T =
(A) then GC(T) is an empty graph. Empty graphs are simple cographs. Let T ′ be an lc3-
expression, for which the claim holds, and let A,A1, A2, A3, A4 be sets of vertices. If T =
(d[T ′], A) or T = (A1|A2, d[T

′], A3|A4) for d ∈ {l, r} then GC(T) is an edgeless graph on vertex
set A or A3 ∪ A4, respectively; then GC(T) is a simple cograph. If T = T ′ ⊙ (A1|A2, •) then
GC(T) = GC(T ′). If T = T ′ ◦ (A1, A2|A3, A4, l[p]) for arbitrary value of p then GC(T) =
GC(T ′)⊕G(T)[A4]. According to induction hypothesis, GC(T ′) is a simple cograph, and since
G(T)[A4] is an edgeless graph, GC(T) is a simple cograph. Similarly, if T = T ′⊙ (•, A1|A2) then
GC(T) = GC(T

′)⊙G(T)[A1 ∪A2] is a simple cograph, since G(T)[A1 ∪A2] is edgeless. Finally,
let T = T ′ ◦ (A1, A2|A3, A4, r[p]). Depending on p, GC(T) is one of the following graphs:

14

G2G3

H2H3

H1G1

Figure 4: The result of an lc3-composition of the graphs G1, G2, G3, H1, H2, H3. The thick lines
from graphs G1 and H1 represent joins. The bow tie between G2⊕H2 and G3⊕H3 means either
a join or no edge at all.

– (GC(T ′)⊗G(T)[A2 ∪A3])⊕G(T)[A4]

– (GC(T ′)⊗G(T)[A2])⊕G(T)[A3 ∪A4]

– (GC(T ′)⊕G(T)[A4])⊗G(T)[A2 ∪A3] .

All these graphs are simple cographs, and we conclude the first proof.

(2) Assume that G contains vertices u, v, x, z such that u, v ∈ B, x, z ∈ C and ux, vz ∈
E(G(T)) and uz, vx 6∈ E(G(T)). Let T ′ be the minimal subexpression of T that contains x and
z. Hence, at least one of x and z is contained in the last operation of T ′. Suppose G(T ′) does
not contain u or v; without loss of generality, let u not be contained in G(T ′). By checking all
possibilities, this can only mean that u is adjacent to x and z in G(T) or u is non-adjacent to
x and z in G(T), which contradicts the assumption. So, G(T ′) already contains u, v, x, z. It
is clear that the last operation of T ′ cannot be of the forms (A) or (d[·], A) or ⊙(A1|A2, •). If
the last operation of T ′ is of the form ⊙(•, A1|A2) then x or z is contained in A2 and must be
adjacent to both u and v. If the last operation of T ′ is of the form (A1|A2, d[·], A3|A4) then
x, z ∈ A3 ∪ A4 and the neighbourhood of one vertex is contained in the neighbourhood of the
other. Finally, let the last operation of T ′ be of the form ◦(A1, A2|A3, A4, d[p]). If d = l then
x, z ∈ C ∪ A4 and the neighbourhood of every vertex in A4 is contained in the neighbourhood
of every vertex in C. Thus d = r must hold. But then u, v ∈ B ∪A1, and we conclude a similar
inclusion property for u and v. Hence, vertices u, v, x, z cannot have the described property, and
we conclude the proof.

Property (2) of Lemma 9 can be considered a weak form of 2K2-freeness of lc3-graphs.
A third property of lc3-graphs is a closure property for a special composition operation. Let
G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-graph (in arbitrary assignment)
and let H1, H2, H3 be edgeless graphs. Graphs may also be empty. The result of the disjoint
union of these six graphs and additional edges is called lc3-composition. The additional edges
are given in Figure 4. The bow tie means either join between G2 ⊕H2 and G3 ⊕H3 or no edges
at all. The result of the join case is called complete lc3-composition and the result without edges
for the bow tie is called incomplete lc3-composition.

Lemma 10. Let G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-graph and let
H1, H2, H3 be edgeless graphs. Then, both the complete and the incomplete lc3-composition
of these graphs yields an lc3-graph. Furthermore, there is an lc3-expression T for every i ∈
{1, 2, 3} and every lc3-composition such that one of the two partition sets for G(T) is equal to
V (Gi) ∪ V (Hi).

15

Proof We consider complete and incomplete lc3-composition separately and distinguish differ-
ent assignments. Let G′ and G′′ be an lc3-graph and a simple cograph, respectively. Then, there
are lc3-expressions T ′ and T ′′ for G′ ⊕G′′ and G′ ⊗G′′, respectively, such that (V (G′), V (G′′))
is the vertex partition for G(T ′) and G(T ′′). Such lc3-expressions can be obtained from an
lc3-expression T for G′, starting from (l[T], ∅) and adding operations of the forms ⊕(•, A|∅)
and ⊗(•, A|∅) for G′ ⊕ G′′ and ⊕(•, ∅|A) and ⊗(•, ∅|A) for G′ ⊗ G′′. The proof of Lemma 9
describes such a construction in reverse. We distinguish the cases with respect to the edgeless
graph among G1, G2, G3. We first consider incomplete lc3-compositions and consider H2 and
H3 to be empty. Let G1 be edgeless, and let T be an lc3-expression for G2⊕G3 where the vertex
partition for G(T) groups into V (G2) and V (G3). Then, the following lc3-expressions

(d[T], V (H1))⊕ (•, ∅|V (G1)), T ⊗ (∅|V (G1), •)⊕ (∅|V (H1), •), T ⊗ (•, V (H1)|V (G1))

and the complementary versions, where the • symbols change sides, are lc3-expressions for the
incomplete lc3-composition of G1, . . . , H3 where H2 and H3 are empty. If these graphs are
non-empty, they are edgeless graphs and the contained vertices are isolated in the composition
graphs. Appropriate lc3-expression operations can be added, which concludes this part. Now,
let G2 be edgeless. Let T be an lc3-expression for G1 ⊗G3 that groups the vertices into V (G1)
and V (G3). For the following lc3-expressions, we assume that V (G1) is the right partition set.
The other case is similar. Let T ′ =def T ⊕ (•, V (H1)|∅). Then, the following expressions show
the claim where the remaining cases are obtained analogously as described above:

T ′ ⊕ (∅|V (G2), •), (l[T ′], V (G2)), T ′ ⊗ (•, V (G2)|∅) .

Finally, let G3 be edgeless. Let T be an lc3-expression for G1 ⊗ G2 grouping the vertices into
V (G1) and V (G2). We assume that V (G1) is the left partition set. Then, we conclude with the
following lc3-expressions:

T ◦ (V (H1), V (G3)|∅, ∅, d[12]), (r[T ⊗ (•, V (H1)|∅)], V (G3)) .

For the case of complete lc3-expressions, we similarly list lc3-expressions. We begin with the
case of G1 being edgeless. Let T be an lc3-expression for G2 ⊗G3 that groups into V (G2) and
V (G3) with V (G3) the left partition set. Then,

(V (H3)|V (H2), l[T], V (G1)|V (H1)), (V (H3), V (G1)|V (H1), V (H2), d[132])

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . , H3. Now, let G2 be
edgeless, and let T be an lc3-expression for G1 ⊗G3 that groups into V (G1) and V (G3) where
V (G3) is the left partition set. Let T ′ =def T ⊕ (V (H3)|∅, •)⊕ (•, V (H1)|∅). Then,

T ′ ⊗ (V (H2)|V (G2), •), (r[T ′], V (H2))⊕ (•, ∅|V (G2)), T ′ ⊗ (•, ∅|V (G2))⊕ (•, ∅|V (H2))

are lc3-expressions for the complete lc3-composition of G1, . . . , H3. Finally, let G3 be edgeless,
and let T be an lc3-expression for G1 ⊗G2 that groups into V (G1) and V (G2) where V (G1) is
the left partition set. Then,

T ◦ (V (H1), V (G3)|V (H3), V (H2), d[123]), (V (H1)|∅, l[T], V (G3)|V (H3))⊕ (∅|V (H2), •)

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . , H3. The remaining
cases are symmetric. This then completes the proof of the lemma.

16

A linear clique-width expression that uses at most three labels is called linear 3-expression.
For label c and vertices x1, . . . , xr, a clique-width expression c(x1) · · · c(xr) is shortly written as
c({x1, . . . , xr}). Note that the ordering of the vertices is not important. We show that every
lc3-graph has linear clique-width at most 3.

Lemma 11. For every lc3-graph there exists a linear 3-expression.

Proof Let G be an lc3-graph with lc3-expression T . We inductively define a linear 3-
expression for G. After every construction step, the linear 3-expression will have at most two
assigned labels and the two label classes exactly correspond to the two vertex partition classes
of the lc3-expression. For the construction, we distinguish different cases. In the following, let
T ′ be an lc3-expression with vertex partition (B,C), let a′ be a linear 3-expression that defines
G(T ′) such that the constructed graph has at most two assigned labels and the two label classes
exactly correspond to (B,C). Let c1 and c2 be the labels that correspond to the vertices in B
and C, respectively. If C is empty, c2 is one of the two non-assigned labels. Let c3 be the third
label. Finally, let A,A1, A2, A3, A4 be sets of vertices, d ∈ {l, r} and p an appropriate sequence
of numbers. We first consider the lc3-expression operations defined in (d1) and (d4).

– T = (A): G(T) is an edgeless graph on vertex set A. Then, a =def 1(A) is a linear
3-expression that defines G and respects the vertex partition defined by T .

– T = T ′ ⊙ (A1|A2, •): If ⊙ = ⊗, let a =def a
′ c3(A2) ηc2,c3 c3(A1) ηc1,c3 ρc3→c1 .

If ⊙ = ⊕, we define a similar expression, that does not contain operation ηc1,c3 . It is clear
in both cases that a defines G(T), that label c3 is not assigned to any vertex in the graph
defined by a and that c1 and c2 determine exactly the vertex partition ((B ∪A1 ∪A2), C).

– The case T = T ′ ⊙ (•, A1|A2) is purely symmetric to the previous case.

– T = T ′ ◦ (A1, A2|A3, A4, d[p]): We give a sample expression for d = l and p = 123:

a =def a
′ c3(A2) ηc1,c3 c1(A1) c3(A3) ηc1,c2 c2(A4) ηc2,c3 ρc3→c1 .

The other cases are obtained analogously. In case of d = r, the relabel operation would
be ρc3→c2 .

For the remaining operations, we can reduce to the cases above. Only the relabel operation is
replaced by ρc2→c1 . Thus, we have shown that there is a linear 3-expression for G.

Similar to linear 3-expressions, a linear k-expression for k ≥ 1 is a linear clique-width ex-
pression that uses at most k labels. Before showing the counterpart of Lemma 11, which gives
the main result of this section, we prove a normalisation result for linear clique-width expres-
sions. This gives an intuitive notion of “useless operation” in linear k-expressions. For a linear
clique-width expression t = t1 · · · tr, we denote the graph that is constructed from t1 · · · ti as
G[t1 · · · ti]. We say that vertices “belong to the same label class in G[t1 · · · ti]” if they have the
same label in G[t1 · · · ti].

Lemma 12. Let k ≥ 1 and let G be a graph that has a linear k-expression. Then, G has a
linear k-expression a = a1 · · · ar such that the following holds for all join and relabel (η and ρ)
operations ai in a:

17

(1) G[a1 · · · ai] does not contain an isolated vertex

(2) G[a1 · · · ai−1] contains vertices of the two label classes involved in ai .

Proof We show the two properties separately. Let b = b1 · · · bs be a linear k-expression for
G. Let bi be a join or relabel operation and suppose that G[b1 · · · bi] contains an isolated vertex,
say x. Let c be the label of x in G[b1 · · · bi]. If bi is a join operation then c is not one of the two
join labels. We obtain b′ = b′1 · · · b

′
s from b by deleting the vertex creation operation for x in b

and adding the operation c(x) right after operation bi. Then, G[b′1 · · · b
′
i] = G[b1 · · · bi]. Iterated

application of this operation shows existence of a linear clique-width k-expression having the
first property.

For the second property, let d = d1 · · · dt be a linear k-expression that has the first property.
Let di = ηc,c′ be a join operation. If G[d1 · · · di] contains no vertex with label c or c′ then di
adds no edge to G[d1 · · · di−1], which means G[d1 · · · di−1] = G[d1 · · · di]. We obtain d′ from d
by deleting operation di. Now, let di = ρc→c′ be a relabel operation, and suppose that one of
the two label classes is empty in G[d1 · · · di−1]. If the label class of c is empty then we obtain d′

from d by just deleting operation di. If the class of c is non-empty but the class of c′ is empty
then we obtain d′ from d by first exchanging c and c′ in all operations di+1, . . . , dt and then
deleting di. It is not difficult to show that G[d1 · · · dj] and G[d′1 · · · d

′
j−1] correspond to each

other for every i+1 ≤ j ≤ t with the exception that the label classes of c and c′ are exchanged.
Repeated application of the modification completes the proof. Note that the expressions after
the execution of the second modification still have the first property.

Theorem 13. A graph has linear clique-width at most 3 if and only if it is an lc3-graph.

Proof One implication follows from Lemma 11. For the converse, let G be a non-empty graph
of linear clique-width at most 3. We show that G is an lc3-graph by giving an lc3-expression
for G. Let a = a1 · · · ar be a linear 3-expression for G that has the properties of Lemma 12.
In particular, a1 is a vertex creation operation. We prove the claim by induction over the
number of relabel operations. The following observations are crucial for the proof. Given a
labelled graph G′, execute only vertex creation and join operations on G′. Then, only the last
join operation between two labels has to be considered, and no vertex that is added to G′ is
adjacent to another vertex assigned the same label. Let Gi =def G[a1 · · · ai] for 1 ≤ i ≤ r. If G
is an edgeless graph, which means that a contains no join operation, let the lc3-expression T be
defined as (V). Since G = G(T), we conclude the statement. So, let a have a join operation.
Without loss of generality, we can assume that a contains a relabel operation right after the last
join operation that involves one of the labels of the relabel operation.

Let ai be the first relabel operation in a. Consider Gi−1. Since ai is the first relabel operation
in a, every label class induces an edgeless graph in Gi−1. Let A1, A2, A3 be the sets of vertices
corresponding to the three different label classes. For defining the lc3-expression, we consider
different cases. If A3 is empty then all vertices in A1 are adjacent to all vertices in A2 and Gi

has only one label class; we let T1 =def (A1) ⊗ (A2|∅, •). So, let A3 be non-empty. Let D1 be
the set of vertices in A1 having at least one neighbour in both A2 and A3. Similarly, let D2

be the set of vertices in A2 having at least one neighbour in both A1 and A3, and let D3 be
the set of vertices in A3 having at least one neighbour in both A1 and A2. Note that one of
the sets D1, D2, D3 must be non-empty. If exactly one of these sets is non-empty, Gi is the
incomplete lc3-composition of at most four edgeless graphs (involving the graphs G1, G2, G3, H1

18

of Figure 4). If at least two of the sets D1, D2, D3 are non-empty then all three sets are non-
empty. Then, Gi is the complete lc3-composition of six edgeless graphs. Let A3 be the set of
vertices that corresponds to the label that is not involved in the relabel operation ai. According
to Lemma 10, there is an lc3-expression for Gi that groups the vertices of Gi into A1 ∪ A2 and
A3. This completes the proof of the base case.

Now, let aj′ be the tth relabel operation in a for t ≥ 2 and let aj be the relabel operation
in a preceding aj′ . By induction hypothesis, there is an lc3-expression Tt−1 that defines Gj in
such a way that vertex partition (B,C) for G(Tt−1) corresponds to the two label classes in Gj .
This particularly means that if two labels are not assigned in Gj then C can be assumed empty.
We show that an lc3-expression for Gj′ exists, with vertex partition that corresponds to the
label classes in Gj′ . The proof is done by distinguishing several cases. Let A1, A2, A3 be the
sets of vertices of Gj′−1 corresponding to the three labels, and let B ⊆ A1 and C ⊆ A2. Let
A′

i =def Ai \ (B ∪C) for i ∈ {1, 2, 3}. The vertices in A′
1 ∪A′

2 ∪A′
3 are added after operation aj

in a, and A3 = A′
3. Note that A′

1, A
′
2, A

′
3 are independent sets in Gj′−1. We consider two basic

cases distinguishing whether there is a join operation involving the labels of A1 and A2 between
aj and aj′ or not. First, let there be such a join operation. If this is the only type of join
operations between aj and aj′ then A3 is empty (otherwise the vertices in A3 would be isolated)
and Gj′ is a join of the subgraphs induced by A1 and A2 (since there are no isolated vertices).
According to Lemma 8, Gj′ [B] is an lc3-graph, and according to Lemma 9, Gj′ [C] is a simple
cograph, and by construction, A′

1 and A′
2 induce edgeless graphs. Hence, Gj′ is the complete

lc3-composition of the subgraphs of Gj′ induced by B,C,A′
1, A

′
2, which is an lc3-graph due to

Lemma 10. Furthermore, there exists an lc3-expression for Gj′ that groups the vertices into
the sets A1 and A2. This completes the proof of this case. Now, let there be another type of
join operations between aj and aj′ involving vertices of A3. If there is exactly one type of join
operations involving vertices of A3 then Gj′ is an incomplete lc3-composition. If there are two
types of join operations then Gj′ is a complete lc3-composition. Similar to the first case, we
conclude that Gj′ is an lc3-graph by applying Lemmata 8, 9 and 10.

Now, we consider the second basic case, where there is no join operation involving the vertices
in A1 and A2 between aj and aj′ . Let aj′ involve the label assigned to the vertices of A3. Without
loss of generality assume that aj′ changes the label of A1 to the label of A3 (or aj′ changes the
label of A3 to the label of A1); the other case follows similarly. All vertices of A′

1 and A′
2 have

a neighbour in A3, and there is a join between the vertices of A3 and the vertices of A1 or A2

(otherwise a vertex in A3 would be isolated). Let D3 be the set of vertices of A3 with at least
one neighbour in the both A1 and A2. Then, one of the two lc3-expressions defines Gj′ , with
vertex partition (A1 ∪A3, A2):

– Tt =def Tt−1 ⊕ (A′
1|∅, •)⊕ (•, A′

2|∅)⊗ ((A3 \D3)|D3, •)

Tt =def Tt−1 ⊕ (A′
1|∅, •)⊕ (•, A′

2|∅)⊗ (∅|D3, •)⊕ (∅|(A3 \D3), •) .

Now, let aj′ involve only the labels of A1 and A2. Then, depending on the case, the following
lc3-expression defines Gj′ in the desired way:

– Tt =def (d[Tt−1], (A3 \D3))⊕ (•, ∅|D3)

where d ∈ {l, r}. For completing the proof we have to consider vertices that are added after
the last relabel operation. Only vertex creation operations can appear. We then obtain an
lc3-expression for G by adding these last vertices, that are isolated in G, attaching an ⊕(A|∅, •)
operation. This completes the proof.

19

As two last results in this section, we show that graphs of linear clique-width at most 3
belong to well-known graph classes.

Proposition 14. Lc3-graphs are cocomparability graphs.

Proof We show the statement by induction over the definition of lc3-expressions. Let
G = (V,E) be an lc3-graph with lc3-expression T . We show that there is a cocomparabil-
ity ordering for G that respects the vertex partition for G(T). If T = (A) then G(T) is an
edgeless graph, and every vertex ordering for G is a cocomparability ordering and respects the
vertex partition (A, ∅). Now, let T be more complex. For the rest of the proof, let T ′ be an
lc3-expression with vertex partition (B,C), let σ′ be a cocomparability ordering for G(T ′) that
respects partition (B,C), which means that the vertices in B appear consecutively and the
vertices in C appear consecutively in σ′. Without loss of generality, we can assume that the
vertices in B appear to the left of the vertices in C in σ′. Let A,A1, A2, A3, A4 be sets of vertices,
d ∈ {l, r} and p an appropriate sequence of numbers. We distinguish different cases.

– T = T ′ ⊙ (A1|A2, •) for ⊙ ∈ {⊕,⊗}. We obtain σ from σ′ by adding the vertices in A1

to the left of the vertices in B and the vertices in A2 between the vertices in B and in
C. Then, σ is a cocomparability ordering for G and the vertices in B ∪ A1 ∪ A2 appear
consecutively.

– The case T = T ′⊙ (•, A1|A2) is similar to the previous case where A1 is added to the right
of the vertices in C.

– T = (l[T ′], A). The vertices in A are adjacent to only the vertices in C. We obtain σ from
σ′ by adding the vertices in A to the right of the vertices in C. Then, σ is a cocomparability
ordering for G that respects the partition (B ∪ C,A).

– The case T = (r[T ′], A) is similar to the previous case; we put A to the left of B.

– T = T ′ ◦ (A1, A2|A3, A4, l[12]). The vertices in B and A2 are adjacent and the vertices in
B ∪ A1 and C are adjacent. We obtain σ by placing the vertices in the following order:
A3, A2, B,A1, C,A4, and the vertices in B and C appear in order determined by σ′. Then,
σ is a cocomparability ordering for G and respects the vertex partition ((B ∪ A1 ∪ A2 ∪
A3), (C ∪A4)).

– T = T ′ ◦ (A1, A2|A3, A4, r[12]). We place the vertices in order A4, A3, A2, C,B,A1.

– The cases T = T ′ ◦ (A1, A2|A3, A4, d[32]) are symmetric to the previous ones, where the
roles of B and C are exchanged.

The remaining cases are T = T ′ ◦ (A1, A2|A3, A4, d[p]) where p ∈ {123, 132, 312, 321} and
(A1|A2, d[T

′], A3|A4). Then, G(T) is a complete lc3-composition. Let G1, G2, G3, H1, H2, H3

be graphs with their meaning as in Figure 4. Suppose cocomparability orderings are given. We
define two vertex orderings. The vertices of the partition graphs appear consecutively and in
order defined by the given cocomparability orderings. The order of the partition graphs is as
follows:

H3, G3, H2, G2, G1, H1 and H2, G2, H3, G3, G1, H1 .

It is easy to check that all three vertex orderings actually define cocomparability orderings for
the complete lc3-composition. Furthermore, for every i ∈ {1, 2, 3}, there is a cocomparability

20

ordering such that the vertices of Gi ⊕ Hi appear consecutively at an end of the ordering.
Depending on p, the pairs (B,A1), (C,A4), (A2, A3) are matched to (G1, H1), (G2, H2), (G3, H3),
and depending on d and the particular case, one of the vertex orderings is chosen to achieve the
correct vertex partition. This completes the proof.

A chordless cycle of length at least 5 is called hole and the complement of a hole is called
anti-hole. We show that graphs of linear clique-width at most 3 do not contain holes or anti-holes
as induced subgraph.

Proposition 15. Lc3-graphs are weakly-chordal graphs.

Proof With the fact that cocomparability graphs are hole-free and Proposition 14, we already
know that lc3-graphs are hole-free. It remains to show that lc3-graphs contain no anti-holes as
induced subgraphs. We show that anti-holes have groupwidth at least 4. Let k ≥ 5 and consider
Ck. Since C5 and C5 are isomorphic, we can assume k ≥ 6. Let β = 〈y1, . . . , yk〉 be a layout
for Ck. We distinguish two basic cases. First, let yk−1 and yk be non-adjacent in Ck, i.e., yk−1

and yk are adjacent in Ck. Then, Lβ(yk−1) induces a path in Ck and has three groups: vertices
that are adjacent to both yk−1 and yk, a vertex that is non-adjacent to yk−1 and adjacent to
yk, a vertex that is non-adjacent to yk and adjacent to yk−1. Thus, νCk

(Lβ(yk−1)) = 3. For the
value of adβ(yk−1), observe that yk−1 is in a group of two vertices in Lβ [yk−1] and that the other
vertex is a neighbour of yk−1. Hence, adβ(yk−1) = 1, and gw(Ck, β) ≥ 4.

Now, let yk−1 and yk be adjacent in Ck. Then, both yk−1 and yk have exactly two non-
neighbours in Lβ(yk−1), and at most one vertex can be a common non-neighbour. We distinguish
different cases. Let yk−1 and yk have a common non-neighbour. Then, Lβ(yk−1) has the following
groups (note that this requires k ≥ 6): vertices adjacent to yk−1 and yk, vertices non-adjacent
to yk−1 and yk, vertices adjacent to yk−1 but not to yk, vertices adjacent to yk but not to yk−1.
Hence, νCk

(Lβ(yk−1)) = 4. Let yk−1 and yk not have a common non-neighbour in Lβ(yk−1). Let
k ≥ 7. Then, Lβ(yk−1) has three groups. Furthermore, yk−1 is not single vertex in its group in
Lβ[yk−1] and (at least) one of the two non-neighbours of yk−1 is non-adjacent to a neighbour of
yk−1 in Lβ(yk−1). Thus, adβ(yk−1) = 1, and gw(Ck, β) ≥ 4. Finally, let k = 6. Then, Lβ(yk−1)
induces a C4 in Ck (since yk−1 and yk have no common non-neighbour). Similar to the previous
cases, Lβ(yk−2) has three groups and adβ(yk−2) = 1 so that gw(Ck, β) ≥ 4. Hence, gw(Ck) ≥ 4
for k ≥ 6. Applying Theorems 1 and 13 and the fact that the linear clique-width of a graph is not
smaller than the linear clique-width of any of its induced subgraphs, it follows that lc3-graphs
have no anti-holes as induced subgraphs, so they are weakly-chordal.

Note that holes and anti-holes have linear 4-expressions. Together with the result of Propo-
sition 15, it follows that the linear clique-width of holes and anti-holes is exactly 4. It is an
interesting observation that no cycle has linear clique-width 3. C3 and C4 have linear clique-
width 2, but their complements have linear clique-width 1 and 3, respectively.

7 Recognition of graphs of linear clique-width at most 3

This section is partitioned into two parts. We first give the recognition algorithm for lc3-graphs
and then give a linear-time implementation of the algorithm. For a brief outline, the algorithm
recursively constructs an lc3-expression for the input graph, if possible. Here, we distinguish the
cases when additionally a vertex partition is associated with the graph or no further requirement
is added. The main algorithm is given in Figure 8, that calls a slight modification of the algorithm

21

given in Figure 6 as subroutine. This subroutine simplifies input graphs by identifying “difficult”
induced subgraphs. Properties of this algorithm are stated in Lemma 18. Before, however, we
consider an algorithm for deciding a special question for lc3-compositions.

Lemma 16. There is a linear-time algorithm that, on input a graph G and a vertex parti-
tion (B,C) for G, where B and C are non-empty, checks whether G is the complete or incomplete
lc3-composition of graphs G1, G2, G3, H1, H2, H3 where at least two of the graphs are non-empty,
H1, H2, H3 are edgeless graphs and G1, G2, G3 are an edgeless graph, a simple cograph and an
arbitrary graph and there is i ∈ {1, 2, 3} such that B = V (Gi) ∪ V (Hi) or C = V (Gi) ∪ V (Hi).
In the positive case, the algorithm outputs an appropriate decomposition of G.

Proof The main task is to find a partition of G into at most six induced subgraphs that can
be mapped to the graphs in Figure 4. The algorithm is not difficult but has to check a number
of cases. First, determine the groups in B and in C. If G is an lc3-composition of the requested
kind, B or C can have at most two groups (one being V (Gi) and the other being V (Hi)). So,
if B and C have at least three groups, the algorithm rejects, which is correct. Checking the
three cases in Figure 4, we conclude: if B has exactly two groups then the neighbourhood of the
one group (with respect to C) is properly contained in the neighbourhood of the other group;
analogously for C. If this is not possible, the algorithm rejects, which is correct. Note that, if
B and C have exactly two groups, the inclusion property holds either for none or for both sets.

Now, assume that the algorithm has not yet rejected. As a first case, let one set have exactly
one group and the other two groups. Without loss of generality, let C have two groups, C1

and C2, and let the neighbours of B be in C1. If G is an lc3-composition where C corresponds
to some V (Gi) ∪ V (Hi) then C1 and C2 correspond to respectively V (Gi) and V (Hi), and C2

is an independent set in G and G[C] = G[C1] ⊕ G[C2]. Checking all situations, this means
that G[B] or G[C1] is a simple cograph. So, accept if G[B] or G[C1] is a simple cograph, and
output G[B], G[C1], G[C2] as the decomposition. Now, we assume that B corresponds to some
V (Gi) ∪ V (Hi). If both Gi and Hi are non-empty, they have the same neighbourhood in C,
so that we can restrict to the case that Gi is non-empty and Hi is empty. Remember that if
Gi is a simple cograph then Gi ⊕Hi is a simple cograph, too. To decide whether G is an lc3-
composition, we have to check several cases, that are obtained from the complete and incomplete
lc3-composition in Figure 4 by deleting an H-vertex. The obtained situations are depicted in
Figure 5. The full (black) circles represent an edgeless graph, a simple cograph and an arbitrary
graph, and the empty (white) circles represent edgeless graphs. The upper circle represents Gi

(which is supposed to be G[B]), the second level represents G[C1] and the third level represents
G[C2]. Note that a sixth case is missing; this case (deleting H2 for a complete lc3-composition)
cannot happen since it allows only one group in C. Given the sets C1 and C2, each case can
be checked in linear time. Note that the third level of the first case is a complete bipartite
graph, for which the two colour classes are uniquely defined. The algorithm accepts if one of
the five situations is suitable for G, and outputs the corresponding decomposition. If G[B] is
edgeless then G[B] can also correspond to V (Hi). We obtain the different situations by deleting
full-circle vertices in Figure 4: two cases are not possible, since C1 then must be empty, three
cases turn out to be subcases of situations in Figure 5 and have already been checked (namely
situations 4 and 5), and the last situation, that is not covered by the previous cases, requires
G = (G[B] ⊗ G[C1]) ⊕ G[C2] where G[C1] and G[C2] are a simple cograph and an arbitrary
graph. This case is the only case that has to be considered and can be checked in linear time.

As a second case, let B and C have exactly one group. Then, G = G[B] ⊗ G[C] or G =
G[B]⊕G[C]. If G[B] or G[C] is a simple cograph, the algorithm accepts; then, G is a complete

22

Figure 5: Different situations in a special case in the proof of Lemma 16. The first level
corresponds to set B, the second and third level correspond to sets C1 and C2, respectively.

or incomplete lc3-composition with four empty graphs where the two non-empty graphs go into
G2 and G3 of Figure 4. Now, let both G[B] and G[C] not be simple cographs. Similar to
the argumentation in the previous case, we can restrict to the case that one of the two graphs
corresponds to V (Gi) with V (Hi) empty. The situation becomes similar to the previous case
where C1 or C2 is empty. Listing all possible situations (for instance by deleting the second or
third level in Figure 5), we see that G cannot be an lc3-composition of an edgeless graph, a
simple cograph, an arbitrary graph and three edgeless graphs in this case. This follows from the
closure of simple cographs under join and union with edgeless graphs. Hence, if G[B] and G[C]
are not simple cographs, the algorithm rejects.

As the third case, let B and C have exactly two groups. Let B1 and B2 be the groups in
B and let the neighbours of B2 in C be neighbours also of B1. Assume that B corresponds to
some V (Gi)∪V (Hi); as discussed before this means B1 = V (Gi) and B2 = V (Hi), in particular
B2 is an independent set and there is no edge between vertices in B1 and in B2. Similar to the
first case, the algorithm checks whether C admits a partition. If this is successful the algorithm
accepts, otherwise it retries with the roles of B and C exchanged. If the tests for both sets are
not successful the algorithm rejects. This completes the proof.

Given a graph G and a vertex partition (B,C) for G, we want to decide whether there is an
lc3-expression for G with vertex partition (B,C) or (C,B). Consider Algorithm Simplify in
Figure 6. This algorithm does not decide the question in all cases; however, in the cases when it
cannot find a proper answer it returns an induced subgraph G′ of G that is an lc3-graph if and
only if G is an lc3-graph. In particular, the question about the existence of an lc3-expression
for G′ is not restricted by a particular vertex partition. The question of conditional number 6
of Simplify is exactly the question that is answered by Lemma 16. Besides computing an
answer, Simplify also outputs lc3-expression operations. For simplicity, we do not explicitly
state which operation is output in which case but combine similar cases. A new command is
the “turn” command. We use it to indicate that the vertices in a partition have to change side;
this becomes more clear in the proof of Lemma 18. For a graph G and a set A of vertices of G,
we say that A is false-twin-free if A contains no pair of vertices that are false twins in G.

Lemma 17. Let G = (V,E) be a graph and let (B,C) be a vertex partition for G. Let B and
C be false-twin-free. Then, at the beginning of every execution of the while loop of Simplify,
the two current partition sets are false-twin-free. Furthermore, a return graph has no false twin
vertices.

Proof The statement is clearly true for the first execution. We consider the definitions in
conditionals number (3–5). In conditional number 3, the chosen vertex u is adjacent to all (other)
vertices in a partition set or to none. So, the new partition sets for G−u are false-twin-free.
Similarly for conditionals number 4 and 5. Now, if a graph is the return result (conditionals
number 2 and 6), it is induced by vertices from only one partition set and it is a module in

23

Algorithm Simplify

Input a graph G and a vertex partition (B,C) for G
Result an answer accept or reject or a graph G′

begin

while no return do

1 if G is edgeless then output “(B,C)”; return accept

2 else-if B = ∅ or C = ∅ then output “turn+(l[·], ∅)” or “(l[·], ∅)”; return G

3 else-if G has a vertex u such that
NG(u) = ∅ or NG(u) = B or NG(u) = C or

NG[u] = V (G) or NG[u] = B or NG[u] = C then

output “⊕(∅|{u}, •)” or “⊕(•, ∅|{u})” or “⊕({u}|∅, •)” or “⊕(•, {u}|∅)”
“⊗(∅|{u}, •)” or “⊗(•, ∅|{u})” or “⊗({u}|∅, •)” or “⊗(•, {u}|∅)”;

set G := G−u and (B,C) := (B \ {u}, C \ {u})

4 else-if there is a pair u, v of non-adjacent vertices where v is almost-universal such that
u, v ∈ B and NG(u) = B \ {u, v} or

u, v ∈ C and NG(u) = C \ {u, v} then

output “⊗({u}|{v}, •)” or “⊗(•, {u}|{v})”;
set G := G \ {u, v} and (B,C) := (B \ {u, v}, C \ {u, v})

5 else-if B = {u} or C = {u} and

|V (G) \NG[u]| 6= 2 or V (G) \NG[u] = {x, z} and the sets
NG(x) \ {z} and NG(z) \ {x} can be ordered by inclusion then

output “(l[·], {u})” or “turn+(l[·], {u})”;
set G := G−u and (B,C) := (V (G) \NG[u], NG(u))

6 else-if G is the result of an lc3-composition of at least two non-empty graphs
that respects the given vertex partition then

output an lc3-composition scheme and, if necessary, “turn”;
if all partition graphs are simple cographs then return accept

else return the partition graph that is not a simple cograph end if

7 else return reject end if

end while

end.

Figure 6: The simplification procedure.

the bigger graph. Hence, the return graph has no false twin vertices. The lemma follows by
induction.

Note that it is not true in general that a graph during the execution of Simplify has no
false twins. Particularly conditional number 5 can create a pair of false twins, but they are in
different partition sets.

Lemma 18. Let G = (V,E) be a graph and let (B,C) be a vertex partition for G. Let B and
C be false-twin-free.

(1) If Simplify applied to G and (B,C) returns accept then G is an lc3-graph and there is
an lc3-expression for G with vertex partition (B,C) or (C,B).

(2) If Simplify applied to G and (B,C) returns reject then G is not an lc3-graph or there
is no lc3-expression for G with vertex partition (B,C) or (C,B).

(3) If Simplify applied to G and (B,C) returns a graph G′ then there is an lc3-expression for
G with vertex partition (B,C) or (C,B) if and only if G′ is an lc3-graph. Furthermore,
G′ is a module of G and a subgraph of G that is induced by a subset of B or C.

24

Proof We prove the lemma by induction over the number of while loop executions. We show
the three statements simultaneously by considering the two situations: (1) the algorithm returns
accept or a graph and (2) the input graph is an lc3-graph with lc3-expression T with vertex
partition (B,C) or (C,B). Since we start with false-twin-free partition sets, we can assume
Lemma 17 throughout the proof.

Let Simplify return accept or a graph. We show the existence of an lc3-expression (if
possible). We also show that the “turn” command can be used to know whether the constructed
lc3-expression corresponds to the given vertex partition or to its reverse. The “turn” command
can be ‘active’ or ‘inactive’. If G is edgeless then (B)⊕ (•, C|∅) is an lc3-expression with vertex
partition (B,C). The “turn” command is set ‘inactive’. If B or C is empty and G is an lc3-graph
then (l[T], ∅) for T an (arbitrary) lc3-expression for G is an lc3-expression for G with vertex
partition (V (G), ∅). If G is not an lc3-graph then there is no lc3-expression for G. Thus, if B
or C is empty, G is an lc3-graph with vertex partition (B,C) or (C,B) if and only if G is an
lc3-graph. Similar for conditional number 6: if a graph is returned, G is an lc3-graph with vertex
partition (B,C) or (C,B) if and only if the returned graph is an lc3-graph due to Lemmata 10
and 8. For the cases of conditionals number 3 and 4, remember that every induced subgraph of
G is an lc3-graph and can be associated with a restriction of (B,C) or (C,B) due to Lemma 8.
Applying the induction hypothesis, we conclude these two cases. For an lc3-expression, one of
the output operations can be appended. The “turn” command remains unchanged in its state.
For conditional number 5, let Simplify accept G−u with vertex partition (V (G)\NG[u], NG(u))
or return an lc3-graph G′. By induction hypothesis, there is an lc3-expression T ′ for G−u with
vertex partition (V (G) \NG[u], NG(u)) or its reverse. Then, (l[T], {u}) or (r[T], {u}) is an lc3-
expression for G with vertex partition (B,C) or (C,B). The choice of l or r depends on whether
the “turn” command is ‘active’ or ‘inactive’. If the vertex partition is (B,C) then the “turn”
command becomes ‘inactive’, otherwise ‘active’. If G′ is not an lc3-graph, then G is not an
lc3-graph either. This completes the first part of the proof.

For the converse, let G be an lc3-graph and let T be an lc3-expression for G with vertex
partition (B,C) or (C,B). We show that the algorithm returns accept or a graph G′. Since
G′ is an induced subgraph of G, G′ is an lc3-graph if G is an lc3-graph due to Lemma 8. If
G is edgeless then Simplify returns accept (conditional number 1). If B or C is empty then
Simplify returns a graph (conditional number 2). So, assume that B and C are non-empty. If
the condition of conditional number 3 or 4 is positive, then Lemma 8 shows that the obtained
lc3-graph can be associated with the obtained vertex partition or its reverse, and Simplify

then returns accept or a graph due to induction hypothesis. Conditionals number 5 and 6
need more arguments. We assume that the execution reaches conditional number 5. Consider
the last operation of T . Since the procedure execution passed the first four conditionals, the
last operation cannot be of the forms (A) or ⊙(A1|A2, •) or ⊙(•, A1|A2), where ⊙ ∈ {⊕,⊗}.
It is important to note that an operation ⊕(A1|A2, •) can be partitioned into two operations,
⊕(A1|∅, •) ⊕ (∅|A2, •). Let the last operation be of the form (d[T ′], A) for T ′ an lc3-expression
and d ∈ {l, r}. Since the partition sets are false-twin-free, A contains at most one vertex, that
is, according to assumption about B and C, A contains exactly one vertex, say u. Let (B′, C ′)
be the vertex partition for G(T ′). Then, NG(u) = B′ or NG(u) = C ′, which means that G−u
is an lc3-graph and has an lc3-expression with vertex partition (NG(u), V (G) \ NG[u]) or its
reverse. By induction hypothesis, Simplify returns accept or a graph when applied to G−u
and partition (NG(u), V (G) \ NG[u]). Suppose that G fails to satisfy the condition about the
vertices in V (G) \ NG[u]. Then, V (G) \ NG[u] and NG(u) contain four vertices satisfying the
property of the second statement of Lemma 9. This is a contradiction, and we complete this

25

Figure 7: Subcases of the general lc3-composition, considered in the proof of Lemma 18.

case.

As a second case, let the last operation of T be of the form ◦(A1, A2|A3, A4, d[p]) or (A1|A2,
d[T ′], A3|A4), which means that G is the result of an lc3-composition. If B and C contain at
least two vertices then the execution continues with conditional number 6 and returns accept
or a graph due to Lemma 10. So, assume that either B or C contains exactly one vertex; let this
vertex be u. The algorithm execution would try conditional number 5. We know that G−u is
the result of an lc3-composition, but we have to show that the new vertex partition works. This
means that we have to show that there is an lc3-expression with partition (NG(u), V (G)\NG[u])
or its reverse for G−u. Let G1, G2, G3, H1, H2, H3 be the composition graphs in the sense of
Figure 4, whose lc3-composition yields G. Without loss of generality, we can assume that there
is i ∈ {1, 2, 3} such that {u} = V (Gi)∪ V (Hi), which means that there is i ∈ {1, 2, 3} such that
{u} = V (Gi) or {u} = V (Hi) and the other graph is empty. We consider the different cases of
lc3-composition without Gi or Hi with respect to the vertex partition (NG(u), V (G)\NG[u]). In
Figure 7, we find all twelve situations depending on whether u is in Gi or in Hi and whether the
lc3-composition is complete or incomplete. The full (black) circles represent a simple cograph
and an arbitrary graph, and the empty (white) circles represent edgeless graphs. The upper
level composition graphs constitute G[NG(u)] and the lower level composition graphs constitute
G\NG[u]. By checking every situation, we finally see that every case except one can be obtained
from an appropriate lc3-composition respecting the new vertex partition. The most interesting
situation probably is the first case in the second row. This situation becomes a special case of
the last case in the first row, since an edgeless graph and the full circle graph in the lower level
can be merged into a single graph. This can be done, since their neighbourhoods with respect to
the two other composition graphs are equal and simple cographs are closed under disjoint union
with edgeless graphs. The situations with only one level cannot happen since u then would be
a universal or an isolated vertex. In the ‘good’ cases we apply Lemma 10 to show that G−u is
an lc3-graph which can be associated with the computed vertex partition. The only ‘bad’ case
is the first case of the first row. If all four graphs are non-empty, the algorithm would reject in
the next step. However, then V (G) \NG[u] contains exactly two vertices (remember that there
are no false twin vertices), and the neighbourhoods of these two vertices partition NG(u) in
exactly two sets. Then, V (G)\NG[u] fails to satisfy the neighbourhood condition of conditional
number 5, and the execution continues with conditional number 6. With previous arguments,
Simplify returns accept or a graph. This completes the proof of the lemma.

The recognition algorithm for lc3-graphs can be summarised and described as a sequence of
iterated reductions by lc3-decomposition (the inverse of lc3-composition) and application of Sim-
plify. To apply Simplify, a vertex partition has to be determined. Fortunately, the structure
of lc3-graphs allows to restrict to only a few such vertex partitions. The complete algorithm is

26

Algorithm Lc3-graphRecognition

Input a graph G = (V,E)
Result an answer accept and a pseudo lc3-expression for G, if G is an lc3-graph, or

an answer reject, if G is not an lc3-graph.

begin

set G := G/∼ft;

while no return do

1 if G is edgeless then output (V (G)); return accept

2 else-if G is the result of an lc3-composition of at least two non-empty graphs then

output an lc3-composition scheme;
if all partition graphs are simple cographs then return accept

else set G to the partition graph that is not a simple cograph end if;

3 else-if there is a vertex u such that
SimplifyMod on G−u with partition (NG(u), V (G) \NG[u]) returns a graph G′ then

output “⊗({u}|∅, •)”; set G := G′

4 else-if there is a pair u, v of non-adjacent vertices where v is almost universal such that
SimplifyMod on G \ {u, v} with partition (NG(u), V (G) \ (NG(u) ∪ {u, v}))
returns a graph G′ then

output “⊗({u}|{v}, •)”; set G := G′

5 else return reject end if

end while

end.

Figure 8: The recognition algorithm for lc3-graphs.

given in Figure 8. The applied procedure SimplifyMod is a variant of Simplify, with the only
difference that it returns a graph on a single vertex instead of an answer accept. This modifi-
cation helps to present Lc3-graphRecognition as short as possible (otherwise the algorithm
had to distinguish more cases). Note that also Lc3-graphRecognition provides additional
output for constructing an lc3-expression for the input graph. We show in the following that
Lc3-graphRecognition is correct, i.e., that it accepts exactly the lc3-graphs and therefore
the graphs of linear clique-width at most 3.

Theorem 19. Algorithm Lc3-graphRecognition is an lc3-graph recognition algorithm.

Proof We show that Algorithm Lc3-graphRecognition accepts an input graph if and
only if it is an lc3-graph. Due to Lemma 4 and Theorem 13, a graph G is an lc3-graph if
and only if G/∼ft is an lc3-graph. Hence, we can restrict to consider only graphs without
non-trivial maximal independent-set modules and show that the while-loop finally ends with
answer accept if and only if the input graph is an lc3-graph. We prove the statement by
induction over the number of vertices of the input graph. A graph without false twins is edgeless
if and only if it has exactly one vertex. Edgeless graphs are lc3-graphs, and the algorithm accepts.
Now, let the input graph have at least two vertices, which means in particular that it contains
an edge. Let G be the result of an lc3-composition of an edgeless graph, a simple cograph, an
arbitrary graph G′ and three edgeless graphs. Since G′ is a module of G, G′ does not contain false
twin vertices. Applying the induction hypothesis, G′ is accepted by Lc3-graphRecognition

if and only if G′ is an lc3-graph. If G is an lc3-graph then G′ is an lc3-graph according to
Lemma 8, if G is not an lc3-graph then G′ cannot be an lc3-graph due to Lemma 10. Hence,
Lc3-graphRecognition accepts if and only if G is an lc3-graph. For the rest of the proof, let
G not be the result of an lc3-composition.

27

First, let G be accepted by Lc3-graphRecognition. This means that conditional num-
ber 3 or 4 is positive for G. Let there be a vertex u such that SimplifyMod on G−u and
vertex partition (NG(u), V (G) \NG[u]) returns a graph G′. Since u is neither isolated nor uni-
versal, NG(u) and V (G) \ NG[u] are non-empty. Thus, G′ is a proper induced subgraph of G
without false twin vertices due to assumption and by Lemma 18. By induction hypothesis,
G−u is an lc3-graph, and due to Lemma 18, there is an lc3-expression T for G−u with vertex
partition (NG(u), V (G) \ NG[u]) or its reverse. Then, T ⊗ ({u}|∅, •) or T ⊗ (•, {u}|∅) is an
lc3-expression for G. The proof for conditional number 4 is similar. Thus, we can conclude that
every accepted graph is an lc3-graph.

For the converse, we can particularly assume that G contains no isolated or universal vertex;
otherwise G is the result of an lc3-composition. Let T be an lc3-expression for G. We distinguish
different cases with respect to the last operation in T . By assumption and since G is not edgeless,
the last operation cannot be of the forms (d1) and (d3) and the complex operation of (d4). Let
the last operation in T be of the form (d2). Then, there is a vertex u such that G−u is an
lc3-graph with lc3-expression T ′ with vertex partition (NG(u), V (G)\NG[u]) or its reverse. Due
to Lemma 18, SimplifyMod returns a proper subgraph of G, and by induction hypothesis, this
subgraph is accepted. Now, let the last operation of T be of the form ⊙(A1|A2, •) or ⊙(•, A1|A2).
If ⊙ = ⊕ then A1 is empty, since G contains no isolated vertex. The vertex in A2, say u, defines
vertex partition (V (G) \ NG[u], NG(u)) or (NG(u), V (G) \ NG[u]) for G−u, and this partition
corresponds to the vertex partition for G(T)−u. We conclude as in the previous case that G is
accepted. Let ⊙ = ⊗. If A2 is empty, the case is similar to the previous case. If A1 is empty, the
vertex in A2 is universal. Thus, A1 and A2 are non-empty. The vertex in A2 is adjacent to all
vertices but the vertex in A1, and the vertex in A1 defines a vertex partition for G. Similar to
the previous cases, the algorithm accepts. So, we can conclude that Lc3-graphRecognition

exactly accepts the lc3-graphs.

It remains to consider the running time of the presented algorithms. We show that Algo-
rithm Lc3-graphRecognition has an O(n2m)-time implementation. This result is partitioned
into three subresults. The first subresult has already been given in Lemma 16. In the follow-
ing, we consider Simplify and the problem of deciding whether a graph is the result of an
lc3-composition and computing appropriate partition graphs.

Lemma 20. Algorithm Simplify has a linear-time implementation.

Proof We define a data structure that allows checking for satisfaction of the conditions of
the first four conditionals in constant time. For every vertex, we store the number of neighbours
in its own partition set and in the other partition set. For every number between 0 and |V (G)|,
there are five types of buckets containing vertices: two bucket types for each partition set and
a bucket type for the total vertex degree. Vertices appear in these buckets according to their
degrees:

– every vertex appears in the bucket of the fifth type that corresponds to its total degree

– a vertex of the left partition set appears in a bucket of the first type, if it has neighbours
only in the left partition set; if it has neighbours only in the right partition set, it appears
in a bucket of the second type

– analogous to the previous case, vertices of the right partition set appear in buckets of the
third and fourth type, if they have neighbours in exactly one of the two partition sets.

28

Finally, there are two variables for the cardinalities of the two partition sets and a variable for
the number of edges in the graph.

Conditionals number 1 and 2 can be decided in constant time. For conditional number 3,
at most six buckets have to be checked: buckets of the fifth type answer whether a vertex is
isolated or universal. Buckets of the first and second type answer whether there is a vertex u in
the left partition set such that NG[u] = B or NG(u) = C. So, using these buckets, satisfaction
of the condition of conditional number 3 can be checked in constant time. For the condition
of conditional number 4, an almost-universal vertex can be found using the buckets of the fifth
type. However, it is not easy to find the required second vertex. We additionally assign to every
vertex of degree |V (G)| − 2 the unique non-neighbour, and vice versa, if the two vertices are in
the same partition set. If the condition is satisfied, there are two non-adjacent vertices u, v in
the left partition set such that v is almost-universal and u is adjacent to only vertices in the
left partition set, or similarly with vertices in the right partition set. To decide the condition
in constant time, we check the buckets of the first and third type for a vertex of degree |B| − 2
or |C| − 2, respectively, and with an assigned non-neighbour. For a fast implementation, we
partition the buckets of the first and third type into two subbuckets, one for vertices with
assigned non-neighbour and one for vertices without. Now, if conditional number 3 or 4 is
positive, we have to update the data. The update affects only neighbours, whose degrees are
decreased. Then, they have to be moved into other buckets, which takes constant time for
each vertex. Note that vertices now may have to be added to a bucket of the first four types.
Finally, a non-neighbour may have become almost-universal. Here it is to observe that a vertex
becomes almost-universal at most once. So, when a vertex becomes almost-universal, its unique
non-neighbour can be found in time proportional to its degree, and the link can be established.

For the condition of conditional number 5, it takes constant time to determine whether a
partition set contains only one vertex, say u, and whether u has exactly two non-neighbours. In
time proportional to the degree of u, the two non-neighbours can be determined. Comparing
the adjacency lists of the two non-neighbour vertices shows whether the neighbourhoods can
be ordered. If the test fails, the procedure stops with conditional number 6 or the return

command. Conditional number 6 requires linear time due to Lemma 16 and Corollary 6. If the
test does not fail, Simplify continues with a completely new partition, for which the vertex
degrees have to be re-computed. Visiting every neighbour of u once, the array representing the
current vertex partition can be modified to represent the new vertex partition. For the vertex
degrees, we show that the modification can be done by considering only edges that are incident
to vertices in one of the two partition sets. Let A be the left or right partition set. The numbers
of neighbours in the two partition sets can be computed straightforward for every vertex in A
by reading the adjacency lists. Whenever a vertex from the other partition set appears, its
degree pair is modified (decrease the number of neighbours in the same partition set, increase
the number of neighbours in the other partition set). When a vertex has a neighbour in the
other partition set, it is removed from the bucket of one of the first four types. When this update
is done the next time, one of the two partition sets will be empty, so that, when we choose the
correct set A, we obtain overall linear running time. The algorithm does not know the correct
partition set. However, it can compute the degree sum for the two partition sets and choose the
partition set of smaller degree sum as A. Then, vertices may be considered several times, but
the effort is always balanced with the deleted vertices. To finish the analysis, it is important
to observe that there is at most one vertex of degree 0 in A, and this will be deleted before
execution reaches conditional number 5 the next time. And for computing the degree sums,
only the degree sum of the smaller partition set is computed and the degree sum of the other

29

partition set is determined by subtraction.

If the input graph is an lc3-graph, an appropriate lc3-expression can be obtained from the
output operations as shown in the proof of Theorem 19. Care has to be taken of only the “turn”
command. This completes the proof.

Lemma 21. There is a linear-time algorithm that checks whether a given graph is the complete
or incomplete lc3-composition of at least two non-empty graphs G1, G2, G3, H1, H2, H3 where
H1, H2, H3 are edgeless graphs and G1, G2, G3 are an edgeless graph, a simple cograph and an
arbitrary graph. In the positive case, the algorithm outputs an appropriate decomposition.

Proof The algorithm considers several cases. First, let G be disconnected. If one of the
connected components is a simple cograph then accept; otherwise reject. In the positive case, G
is an incomplete lc3-composition where G1, H1, H2, H3 of Figure 4 are empty, a simple cograph
connected component goes into G2 and all other connected components go into G3. For the
negative case, observe the following. None of the connected components is edgeless as they are
not simple cographs, so they all have to go into the graphs G1, G2, G3 of Figure 4. If G1 is not
empty, the resulting lc3-composition is not disconnected, so that G1 has to be empty. But with
only G2 and G3 non-empty, G cannot be obtained as an lc3-composition with none of the two
composition graphs being a simple cograph.

Second, let G be connected and let the complement of G be disconnected. If one of the
co-connected components is a simple cograph then accept; otherwise reject. Similar to the first
case, G can be obtained as the complete lc3-composition of a simple cograph (in G2) and another
graph (in G3). The negative case is more complex. We distinguish between two cases depending
on whether G is an incomplete or complete lc3-composition.

– Let G be an incomplete lc3-composition. By assumption, H2 and H3 of Figure 4 are empty.
Suppose that H1 is non-empty. If G3 is empty then G = (G1 ⊕H1) ⊗ G2, and every co-
connected component of G is completely contained in either G1 ⊕ H1 or G2. Hence, G
contains a co-connected component that is a simple cograph. If G3 is non-empty then G1

and G2 are also non-empty. But then, the complement of G is not disconnected, so that
this case cannot happen. Now, let H1 be empty. Then, G = G1 ⊗ (G2 ⊕G3), and similar
to the case about, G1 or G2 ⊕ G3 is a simple cograph, and G contains a co-connected
component that is a simple cograph.

– Now, let G be a complete lc3-composition. If H1 is non-empty then G2 is non-empty.
Now consider H2. If H2 is non-empty then the complement of G is connected. Thus H2 is
empty. Then G results from an incomplete lc3-composition since G1 and G2 can be merged
into G1 and H1 and H2 can be merged into H1. Thus by the previous case we conclude
that H1 is empty. Let G1 be non-empty. By a connectivity argument, Gi is non-empty
and Hi is empty for i = 2 or i = 3, and by symmetry, we can assume that H3 is empty and
G3 is non-empty. Note then that every co-connected component of G is entirely contained
either in G3 or in (G1 ⊗ G2) ⊕ H2. According to assumption, G3 is a simple cograph or
(G1 ⊗G2)⊕H2 is a simple cograph. Hence, G contains a co-connected component that is
a simple cograph. Finally, if G1 is non-empty then G = (G2⊕H2)⊗ (G3 ⊕H3), and every
co-connected component of G is entirely contained in either G2 ⊕H2 or G3 ⊕H3. Hence,
G contains a co-connected component that is a simple cograph.

Third, let G be connected and co-connected. We first describe the different situations. If G
is an incomplete lc3-composition then H2 and H3 of Figure 4 are empty and G1, G2, G3, H1 are

30

non-empty (otherwise, G or its complement would be disconnected) and maximal modules of G
in a P4-structure. Remember that the P4 is a chordless path on four vertices. The complement
graph of a P5 is called house, and a bull is obtained from a P4 and an additional vertex that
is adjacent to the two middle vertices of the P4. If G is a complete lc3-composition then we
distinguish the following cases:

– If G1 is empty then H2, (G3 ⊕H3), G2, H1 are non-empty and maximal modules of G in a
P4-structure.

– If G2 is empty then H1 is empty. By assumption, G1, G3, H2, H3 are non-empty and
maximal modules of G in a P4-structure.

– If G3 is empty then (G1 ⊕H1), G2, H3, H2 are non-empty and maximal modules of G in a
P4-structure.

– If H2 is empty then G2 is empty, since G is co-connected. With a similar argument for
the rest of the composition graphs we conclude that H2 must be non-empty since G is
connected and co-connected.

– If H3 is empty then we have the following two cases. If G1 is empty then H1, G2, G3, H2

are maximal modules of G in a P4-structure. If G1 is non-empty then G1, G2, G3, H1, H2

are maximal modules of G in a bull-structure. In any other case, G would be neither
connected nor co-connected.

– If H1 is empty then G1, H2, H3 and at least one of G2 and G3 must be non-empty. If G2

is empty then G1, G3, H2, H3 are maximal modules of G in a P4-structure. Similarly, if G3

is empty then G1, G2, H3, H2 are maximal modules of G in a P4-structure. If both G2 and
G3 are non-empty then G1, G2, G3, H2, H3 are maximal modules of G in a house-structure.

– If G1, G2, G3, H1, H2, H3 are non-empty then all these graphs are maximal modules of G
in a situation exactly described by Figure 4.

Hence for the decision algorithm, compute the maximal modules of G and the corresponding
prime graph. Check for the prime graph whether it is one of the above-mentioned (P4, house,
bull, the graph shown in Figure 4), check for edgeless graphs and simple cographs and test
whether the graphs that are not edgeless are in the correct positions. If all conditions are
satisfied then accept; otherwise reject. Correctness immediately follows from the study above.

For the running time, we observe the following: (1) edgeless graphs and simple cographs can
be recognised in linear time due to Corollary 6, (2) connected components and co-connected
components can be computed in linear time, (3) maximal modules and corresponding prime
graphs can be computed in linear time [7]. Then, only a finite number of configurations have to
be checked (in the third case), so that all this sums up to total linear running time. The output
is obtained as described, and we conclude the proof.

Theorem 22. There is an algorithm that decides in O(n2m) time whether a given graph has
linear clique-width at most 3. If so, a linear 3-expression is output.

Proof By Theorems 13 and 19, it suffices to analyse the running time of Algorithm Lc3-

graphRecognition. For a given graph G, G/∼ft can be computed in linear time. Every while

loop execution is done with a smaller graph, so that there are at most n while loop executions.

31

A single while loop execution takes time O(nm): linear time for checking for an lc3-composition
(Lemma 21) and at most 2n applications of Simplify (SimplifyMod, more precisely, which
also has a linear-time implementation) that require linear time each due to Lemma 20. This
shows the total O(n2m) running time. The linear 3-expression is obtained by first constructing
an lc3-expression and then converting it into a linear clique-width expression according to the
rules established in the proof of Theorem 13. Note that the length of both expressions is linear
in the number of vertices.

8 Conclusions

We have given characterisations for graphs of linear clique-width at most 2 and at most 3 of
different types. One type of characterisation is via graph decomposition schemes. For graphs
of linear clique-width at most 3, we have presented an efficient recognition algorithm using the
decomposition approach. We have also seen that our decomposition for graphs of linear clique-
width at most 3 generalises the decomposition for graphs of linear clique-width at most 2. Can
this approach be extended to graphs of linear clique-width at most 4, or in general to graphs of
arbitrarily bounded linear clique-width?

For graphs of linear clique-width at most 2, there exists a characterisation by a small set of
forbidden induced subgraphs. Does there exist an easily describable set of forbidden induced
subgraphs that characterises graphs of linear clique-width at most 3?

References

[1] A. Brandstädt, V. B. Le, J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete
Mathematics and Applications, 1999.

[2] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, U. Rotics. Polynomial time recognition of
clique-width ≤ 3 graphs. LATIN 2000, Springer LNCS, 1776:126–134, 2000.

[3] D. G. Corneil, Y. Perl, L. K. Stewart. A linear recognition algorithm for cographs. SIAM Journal on
Computing, 14:926–934, 1985.

[4] B. Courcelle, J. Engelfriet, G. Rozenberg. Handle-rewriting hypergraph grammars. Journal of Com-
puter and System Sciences, 46:218–270, 1993.

[5] B. Courcelle, J. A. Makowsky, U. Rotics. Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Computing Systems, 33:125–150, 2000.

[6] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics,
101:77–114, 2000.

[7] E. Dahlhaus, J. Gustedt, R. M. McConnell. Efficient and practical algorithms for sequential modular
decomposition. Journal of Algorithms, 41:360–387, 2001.

[8] M. R. Fellows, F. A. Rosamond, U. Rotics, S. Szeider. Clique-Width is NP-Complete. SIAM Journal
on Discrete Mathematics, 23:909–939, 2009.

[9] F. Gurski. Characterizations for co-graphs defined by restricted NLC-width or clique-width opera-
tions. Discrete Mathematics, 306:271–277, 2006.

[10] F. Gurski. Linear layouts measuring neighbourhoods in graphs. Discrete Mathematics, 306:1637–
1650, 2006.

32

[11] F. Gurski and E. Wanke. On the relationship between NLC-width and linear NLC-width. Theoretical
Computer Science, 347:76–89, 2005.

[12] M. Habib, R. M. McConnell, C. Paul, L. Viennot. Lex-BFS and partition refinement, with appli-
cations to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical
Computer Science, 234:59–84, 2000.

[13] P. Hliněný, S. Oum, D. Seese, G. Gottlob. Width parameters beyond tree-width and their applica-
tions. The Computer Journal, 51:326–362, 2008.

[14] D. Kratsch and L. Stewart. Domination on cocomparability graphs. SIAM Journal on Discrete
Mathematics, 6:400–417, 1993.

[15] V. Lozin and D. Rautenbach. The relative clique-width of a graph. Journal of Combinatorial Theory,
Series B, 97:846–858, 2007.

[16] N. Mahadev and U. Peled. Threshold graphs and related topics. Annals of Discrete Mathematics 56,
North Holland, 1995.

[17] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation. Discrete
Mathematics, 201:189–241, 1999.

[18] F. S. Roberts. Indifference graphs. in: F. Harary (Ed.), Proof techniques in graph theory, pp.
139–146, Academic Press, New York, 1969.

33

