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Abstract

We describe the clique-width of path powers by an exact formula, depending only on
the number of vertices and the clique number. As a consequence, the clique-width of path
powers can be computed in linear time. Path powers are a graph class of unbounded clique-
width. Prior to our result, square grids constituted the only known graph class of unbounded
clique-width with a similar result. We also show that clique-width and linear clique-width
coincide on path powers.

1 Introduction

Clique-width is a highly useful graph parameter [4, 5, 7], since the model-checking problem
for monadic second-order logic is tractable on graphs of bounded clique-width [6, 20]. Clique-
width is a graph parameter that is notoriously difficult to compute. Very little is known about
tractable and intractable cases of the clique-width computation problem, and about the structure
of graphs of bounded clique-width. Fellows et al. showed the intractability of the clique-width
computation problem for general graphs [8], however, no intractability result for restricted graph
classes is known. Conversely, the only known case of a graph class of unbounded clique-width
with a tractable clique-width computation is the class of square grids [10].

In this paper, we study clique-width on path powers. Path powers are the powers of induced
– or chordless – paths. Equivalently, a path power is a graph that admits a vertex ordering so
that vertices are adjacent if and only if they are at distance at most k in the vertex ordering
for some positive integer k. Path powers are very structured graphs of unbounded clique-width
[10]. We show that the clique-width of a path power on n vertices and of clique number ω can
be precisely determined as a function in n and ω only. Since pathwidth plus 2 is a general
clique-width upper bound [8], the clique-width of a path power is at most ω + 1. For a lower
bound, Golumbic and Rotics showed that the clique-width of path powers on at least ω2 vertices
is at least ω [10]. Note that the gap between the known lower and upper bounds of path powers
can be arbitrarily large. For example for a k-path power on 2k vertices the results of [10] yield
a lower bound of 2 and the results of [8] give an upper bound of k + 2. We close the remaining
gap between the known lower and upper bound and show that the clique-width of a path power
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is at least ω+1 if and only if it has at least (ω− 1)ω+2 vertices. The special case of ω = 2 has
as consequence the known result that graphs that are not cographs are of clique-width at least 3
[7]: a path power of clique number 2 on (2− 1)2+2 vertices is an induced path on four vertices,
usually denoted as P4. Since cographs are the graphs that do not have the P4 as an induced
subgraph [2], graphs that are not cographs and therefore have the P4 as an induced subgraph
are of clique-width at least 3.

Path powers are contained in many well-studied graph classes, such as proper interval graphs,
interval graphs, chordal graphs and AT-free graphs [1]. Our result therefore has direct conse-
quences for algorithmic problems, such as the design of efficient clique-width computation algo-
rithms for these graph classes. Such an algorithm has to determine the path powers dependency
function, that is the main result of this paper, implicitly, by searching a bounded solution space,
or explicitly, when built on a correctness proof. In view of our result, it is worth mentioning that
hereditary graph classes that do not contain all path powers either have bounded clique-width
or are not subclasses of the proper interval graphs [15].

The main challenge of this paper is a tight lower bound. We employ a recent characterisation
of clique-width through partition trees [3], rooted trees with a 1-to-1 correspondence between the
leaves and the vertices of the input graph and whose inner nodes are labelled with partitions of
subsets of the vertex set of the given graph. The construction of partition trees is in two phases:
first determining the rooted tree and the leaf-vertex correspondence, and second assigning the
partitions to the inner nodes. For the clique-width variant of linear clique-width, the first phase
reduces to choosing a vertex ordering for the input graph, and the second phase is the evaluation
of an easy-computable function [3, 11, 13, 16]. For clique-width, every rooted tree is eligible,
and the second phase is generally intractable [19]. The major part of this paper, Section 4,
contributes insights into the first phase and proves a strong result about the structure of good
partition trees. In Section 5, we apply this structure result to prove a lower clique-width bound
for path powers, and we prove the main result. The matching upper bound is given by an
algorithm for computing a linear clique-width expression in Section 3.

2 Preliminaries

Our considered graphs are simple, finite, undirected. For a graph G = (V,E), V = V (G) is
the vertex set of G and E = E(G) is the edge set of G. Edges are denoted as uv, where the
vertices u and v are adjacent in G, or u is a neighbour of v in G. If uv is not an edge of G then
u and v are non-adjacent in G. For a vertex u of G, the neighbourhood of u, NG(u), is the set of
neighbours of u in G. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For
a set X ⊆ V (G), the subgraph of G induced by X, G[X], is the subgraph H of G with vertex
set X where for every vertex pair u, v of H, uv 6∈ E(H) implies uv 6∈ E(G). For X,Y ⊆ V (G),
where X ∩ Y = ∅, X × Y denotes the set {xy : x ∈ X and y ∈ Y }.

A clique of G is a set of pairwise adjacent vertices of G, and a maximal clique of G is a
clique of G that is not properly contained in any clique of G. An independent set of G is a set
of pairwise non-adjacent vertices of G.

Clique-width is an algebraically defined graph parameter. We quickly present the necessary
terminology. For a deeper and more comprehensive treatment, we refer to the known sources,
such as [3, 4, 5, 7].
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Let k ≥ 1. A k-labelled graph is an ordered pair (G, ℓ) where G is a graph and ℓ assigns
a label from {1, . . . , k} to each vertex of G. A k-labelled graph has a k-expression if it can
be built inductively using the following operations: o(u) for creating a k-labelled single-vertex
graph with vertex u whose label is o, ηs,o, where s 6= o, for adding the missing edges between the
vertices with label s and with label o, ρs→o, where s 6= o, for replacing the label of the vertices
with label s by label o, and ⊕ for the disjoint union of two k-labelled graphs. A k-expression
is linear if the disjoint union is always applied to at most one k-labelled graph on at least two
vertices. For a k-expression α, val◦(α) is the graph inductively built by α and without the vertex
labels.

Let G be a graph. The clique-width of G, cwd(G), is the smallest integer k with k ≥ 1 such
that there is a label assignment ℓ so that (G, ℓ) is a k-labelled graph with a k-expression. And the
linear clique-width of G, lcwd(G), is the smallest integer k with k ≥ 1 such that there is an ℓ such
that (G, ℓ) is a k-labelled graph with a linear k-expression. Observe that cwd(G) ≤ lcwd(G).

We use (linear) k-expressions for proving upper bounds on the (linear) clique-width of graphs.
We use a characterisation of clique-width for proving lower bounds on the clique-width of graphs.

A binary rooted tree is a tree with a root and each of whose inner nodes have exactly two
children. Nodes of trees are denoted as a. A partial partition of a set S is a partition of a subset
of S. For partitions P and R of a set S, P refines R, P ⊑ R, if each member of P is contained
as a subset in a member of R.

Definition 2.1. Let G be a graph. A partition tree for G is an ordered pair (T, f) where T is
a binary rooted tree and f is an assignment of partial partitions of V (G) to the nodes of T that
satisfies the following three conditions, where for a node a of T , f(a) denotes the union of the
members of f(a):

1) for every u ∈ V (G), there is a leaf a of T such that f(a) =
{

{u}
}

2) for every inner node a of T with b and c its children, f(b) and f(c) are disjoint and
f(b) ∪ f(c) ⊑ f(a)

3) for every inner node a of T with b and c its children: for every member pair X,Y of f(a),
if X ∩ f(b) contains a vertex u and Y ∩ f(c) contains a vertex v such that uv ∈ E(G) then
X × Y ⊆ E(G).

The width of (T, f) is the maximum cardinality |f(a)| taken over the nodes a of T .

Recall that we consider only simple graphs. Thus, X × Y ⊆ E(G) in the third condition of
Definition 2.1 implicitly requires X ∩ Y = ∅, and since X and Y are both non-empty, X 6= Y

directly follows. The members of f(a) will be called partition classes of f(a).
An example and the main notions of partition trees are discussed in the Appendix.

Theorem 2.2 ([3]). For k ≥ 1, a graph G has clique-width at most k if and only if G has a
partition tree of width at most k.

For proving a lower bound on the clique-width of a graph, we prove a lower bound on the
width of a partition tree for the graph, and the lower-bound result translates according to
Theorem 2.2. The lower-bound proof mainly exploits the power and properties of the third
condition of Definition 2.1. This condition is called the Compatibility condition [3].
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The intuition behind Theorem 2.2 and the Compatibility condition can be seen as follows.
Let (T, f) be a partition tree for a graph G, and let a be an inner node of T with b and c its
children. Consider the subgraph defined by the subtree of T rooted at a. The two subtrees rooted
at b and c partition the given vertex set. In connection to clique-width, every vertex in such
a partition receives a label from {1, . . . , k}. According to Definition 2.1, two partition classes
of f(b) and f(c) are either merged into one partition class of f(a), or belong to two different
partition classes of f(a). In the former case we cannot have an edge between the vertices of the
different partition classes because that would require a new label to the corresponding vertices.
For the later case, if we have an edge between the vertices of the different partition classes then
each vertex of the one partition class is adjacent to every vertex of the other partition class.
Both situations are described formally in the Compatibility condition as shown in [3]. Let X be
a partition class of f(a). Then the Compatibility condition implies:

• the vertices in X ∩ f(b) and X \ f(b) are non-adjacent in G

• the vertices in X ∩ f(b) have the same neighbours in V (G) \ f(b), and
the vertices in X have the same neighbours in V (G) \ f(a).

We often apply the latter two implications to show a violation of the Compatibility condition, in
order to refute some assumptions. A violation is shown by providing a vertex that is not in f(b)
or in f(a) and that is adjacent to some vertex and non-adjacent to another vertex in X ∩ f(b)
or X, respectively. A particular and interesting case is when f(b) itself is a partition class of
f(a). Then, f(b) is a module of G, also called a homogeneous set.

3 Path powers and a clique-width upper bound

We define the graph class of path powers, and we show two upper bounds on the linear clique-
width of path powers.

Let G be a graph on n vertices, and let k be a positive integer, i.e., k ≥ 1. We say that G
is a k-path power if G admits a vertex ordering 〈u1, . . . , un〉 such that for every 1 ≤ i < j ≤ n,
uiuj ∈ E(G) if and only if j − i ≤ k. A vertex ordering satisfying this adjacency condition is
called a k-path layout. It follows that a graph is a k-path power if and only if it has a k-path
layout. A graph is a path power if it is a k-path power for some positive integer k. As an
observation: a k-path power on at most k + 1 vertices is a complete graph.

Information on path powers and their relationship to other graph classes, such as the su-
perclass of proper interval graphs, their properties and important results can be found in the
monographs by Brandstädt, Le, Spinrad [1] and Golumbic [9], and in the work of Roberts [21].

Our upper-bound result below is shown by two algorithmic strategies, that exploit the linear
and the 2-dimensional structure of path powers.

Lemma 3.1. Let k, r, n be positive integers where k + 2 ≤ n ≤ r(k + 1) + 1. Let P be a k-path
power on n vertices. Then, lcwd(P ) ≤ min{k + 2, r + 1}.

Proof. We prove the two inequalities separately. Let 〈u1, . . . , un〉 be a k-path layout for P , that
exists. We prove the first inequality, lcwd(P ) ≤ k+2, by the following linear (k+2)-expressions,
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Figure 1: The 2-dimensional structure of a k-path power on n = r(k + 1) + δ vertices. Each
column Kj is a maximal clique, and Mj ⊆ Kj . The edges between consecutive columns are
shown in Figure 3(a).

for k + 2 ≤ i ≤ n:

αk+1 =def η{2,...,k+2},{2,...,k+2}

(

2(u1)⊕ 3(u2)⊕ · · · ⊕ (k + 2)(uk+1)
)

αi =def η{2,...,k+1},{k+2}

(

ρ(k+2)→(k+1)→···→2→1(αi−1)⊕ (k + 2)(ui)
)

.

We use η{2,...,k+2},{2,...,k+2}, and similar, as a short notation of a sequence of ηs,o-operations for
all s, o ∈ {2, . . . , k+2} where s 6= o, and ρ(k+2)→(k+1)→···→2→1 is short for ρ(k+2)→···→3→2(ρ2→1),
expanded recursively. It is a straightforward verification to show that val◦(αk+1) is the complete
graph P [{u1, . . . , uk+1}] and val◦(αi) is equal to P [{u1, . . . , ui}]. Since αn is a linear (k + 2)-
expression, lcwd(P ) ≤ k + 2 is proved.

We prove the second inequality, lcwd(P ) ≤ r + 1. Since the clique-width of an induced
subgraph is not larger than the clique-width of the graph itself, we can assume n = r(k+1)+1.
We partition the vertex set of P into r “columns” of size k+1 each, leaving out the last vertex:
K0 =def ∅ for convenience, and for 1 ≤ j ≤ r, let Kj =def {u(j−1)(k+1)+1, . . . , uj(k+1)}. Figure 1
shows the columns Kj of the considered graph. We also define a process order π on the vertex
set of P : for 1 ≤ i ≤ n, let

π(i) =def























(i− 1)(k + 1) + 1 , if i ≤ r + 1

2 , if i = r + 2

π(i− 1) + (k + 1) , if i ≥ r + 3 and π(i− 1) + k + 1 ≤ n

π(i− 1)− (r − 1)(k + 1) + 1 , if i ≥ r + 3 and π(i− 1) + k + 1 > n .

The definitions of K1, . . . ,Kr and π are illustrated in Figures 1 and 2. What is important
to note about the process order π is: for each 1 ≤ i ≤ n, if vertex uπ(i) is in column Kj
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Figure 2: We consider a vertex layout of a 6-path power on 43 vertices, and the figures illustrate
the partitions defined in the second part of the proof of Lemma 3.1, where r = 6. The attributed
numbers are vertex names, or positions in the 6-path layout. The left-side figure illustrates the
partition of the vertex set into the six “columns”, that are represented by the filled regions.
The red curve aligns the vertices according to the given 6-path layout. The right-side figure
illustrates the definition of process order π, by following the red curve.

then the vertices in {uπ(i+1), . . . , uπ(n)} that are from columns Kj−1 and Kj are exactly the
neighbours of uπ(i) among the vertices in {uπ(i+1), . . . , uπ(n)} (see also Figure 3 (a)). In other
words: NP (uπ(i)) ∩ {uπ(i+1), . . . , uπ(n)} = {uπ(i+1), . . . , uπ(n)} ∩ (Kj−1 ∪Kj).

We define the following linear (r + 1)-expressions, for 1 ≤ i < n where i 6= r and i 6= r + 1
and uπ(i) ∈ Kj for some 1 ≤ j ≤ r, following the order αn, . . . , αr+2, αr+1, αr, αr−1, . . . , α1:

αn =def r(un−1)

αi =def ρ(r+1)→j(η{j−1,j},{r+1}(αi+1 ⊕ (r + 1)(uπ(i))))

αr+1 =def η{r−1,r},{r+1}(αr+2 ⊕ (r + 1)(un−k−1))

αr =def ρ(r+1)→r(ηr,(r+1)(αr+1 ⊕ (r + 1)(un))) .

Recall from the definition of π: π(r) = n− k− 1 and π(r+1) = n. For ease of presentation, the
definition of αi may involve a “non-label” 0, that occurs in case of j = 1: then, η{j−1,j},{r+1} is
implicitly replaced by ηj,(r+1).

The final linear (r+1)-expression for P is α1. The correctness is verified by applying above’s
observation about the neighbours of uπ(i) and the fact that the already processed vertices of
column j have label j, ignoring un and its label r.

Remarkable about Lemma 3.1 is the two fully different constructions in the proof. Given a
k-path power P on at most r(k+1)+1 vertices, the good upper bound on the linear clique-width
of P is determined by the relationship between k and r: if r is larger than k then k+2 is a good
upper bound, and otherwise, r + 1 is a good upper bound. Naturally, the proof of Lemma 3.1
cannot certify the necessity or even optimality of the second construction. The results of the
next sections, however, can be seen as such a proof.
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Figure 3: (a) The edges between the vertices of columns Kj−1 and Kj . (b) The structure
of the k + 2 maximal cliques Qh+1, . . . , Qh+k+2 containing vertices from Kj−1 and Kj, where
h = (j − 2)(k + 1).

4 Structure of good partition trees

We aim for a lower bound on the clique-width of path powers. We prove this lower bound in
two steps and for partition trees. In this section, we consider a first step, that provides a result
about the structure of partition trees of small width. We lay out this section as a blueprint for
similar such results and consider a more general setting.

We fix the following stipulations for this section. Let G be a graph, and let P be an induced
subgraph of G on n vertices. Let k ≥ 2, and we assume that P is a k-path power. Throughout
this section, we assume n ≥ 3k+1. Let 〈u1, . . . , un〉 be a k-path layout for P . Since 〈un, . . . , u1〉
is also a k-path layout for P , it is easy to verify that ϕ : V (P ) → V (P ), ui 7→ un−i+1 is an
automorphism for P .

The maximal cliques of P play a central role here. For 1 ≤ h ≤ n − k, let Qh =def

{uh, . . . , uh+k}. Since the maximal cliques of P are exactly the sets of k + 1 vertices appearing
consecutively in 〈u1, . . . , un〉, Q

1, . . . , Qn−k are exactly the maximal cliques of P . In Figure 3 (b)
we list all maximal cliques between 2(k + 1) consecutive vertices of a k-path layout.

Let X ⊆ V (G). We say that a maximal clique Q of P is full in X if Q ⊆ X, and we say that
X has a full maximal clique of P if there is a maximal clique of P that is full in X. Analogously,
we say that a maximal clique Q of P is empty in X if Q ∩X = ∅, and we say that X has an
empty maximal clique of P if there is a maximal clique of P that is empty in X.

Let (T, f) be a partition tree for G, and let a be an inner node of T with b and c its children.
We call a a maximal P -clique split node of (T, f) if f(a) has a full maximal clique of P and
neither f(b) nor f(c) has a full maximal clique of P . We can say that T “splits” each maximal
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Figure 4: Graph P on the left hand side depicts a 2-path power on eight vertices. The names
of the vertices of P correspond to a 2-path layout for P . The right-hand-side figure depicts
a partition tree for P with an assignment of the vertices of P to the leaves of the tree. The
highlighted nodes, that are a, c, a′, a′′, represent nodes with full maximal cliques of P . The
partition tree has two maximal P -clique split nodes, namely a and c.

clique of P that is full in f(a) at a. For an example and an illustruation of maximal P -clique
split nodes, consider the graph and the partition tree depicted in Figure 4. The partition tree
has two maximal P -clique split nodes.

We state the main result of this section. The proof of the result and a local-structure
consequence are given at the end of this section. The claim establishes a lower bound on the
width of a partition tree by considering a combinatorial property.

Proposition 4.1. Let (T, f) be a partition tree for G. Assume that (T, f) has a maximal P -
clique split node a with its children b and c such that both f(b) and f(c) have an empty maximal
clique of P . Then, (T, f) is of width at least k + 2.

As an application of Proposition 4.1, consider the example given in Figure 4. Node a of
the partition tree is a maximal P -clique split node. The two children of a have both an empty
maximal clique: {6, 7, 8}. Hence the width of the partition tree is at least k + 2 = 4 and, thus,
the clique-width of the given graph is at least 4.

4.1 Partition-class structure on maximal P -clique split nodes

Let (T, f) be a partition tree for G. Let a be a maximal P -clique split node of (T, f). Since each
maximal clique of P is full in f(r), for r the root of T , a does exist. Let b and c be the children
of a, and let B =def f(b) and C =def f(c). Observe f(a) = B ∪ C. We fix these stipulations for
this subsection.

Lemma 4.2. Let X be a partition class of f(a). Then, X ∩ V (P ) is a clique of G[B] or of
G[C].

Proof. For the proof, it suffices to assume that B and C have no full maximal clique of P , and
B ∪ C may not have a full maximal clique of P .
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We assume that there are ut, ut′ ∈ X where 1 ≤ t < t′ ≤ n. If ut and ut′ are adjacent
in P then {ut, ut′} ⊆ B or {ut, ut′} ⊆ C due to the first part of the Compatibility condition,
and ut and ut′ are adjacent in G[B] or G[C]. Otherwise, ut and ut′ are non-adjacent in P , i.e.,
t < t+ k < t′.

Assume ut ∈ B. If t ≥ k + 1 then Qt−k \ B 6= ∅ and each vertex from Qt−k \ B is adjacent
to ut and non-adjacent to ut′ in P , and we conclude a contradiction to the second part of the
Compatibility condition. Symmetrically, we conclude a contradiction for the case of t′ ≤ n − k

by considering the maximal clique Qt′+k. Since Q1 \ B is non-empty, each vertex from Q1 \ B
implies a contradiction to the second part of the Compatibility condition, if t < k + 1 and
t′ > n− k. Recall here (k + 1) + k < 2k + 2 ≤ (3k + 1)− k + 1 ≤ n− k + 1 ≤ t′.

If ut ∈ C, the proof is analogous.

For 1 ≤ g ≤ k+1, let Rg =def {up : k+1|(p−g)}. Following the illustrations of Figures 1 and
2, we can call R1, . . . , Rk+1 the “rows” of P , in analogy to the “columns” of P in the proof of
Lemma 3.1. We employ special vertices in rows and columns to determine lower-bound criteria.
It is important to observe that R1, . . . , Rk+1 are independent sets of G.

Let X ⊆ V (G), and consider ut ∈ Rg. If Rg ∩X ∩ {u1, . . . , ut−1} is non-empty, we say that
ut has a left vertex in X, and the close left vertex of ut in X is uh ∈ Rg ∩X ∩ {u1, . . . , ut−1} of
largest possible index h. In other words, the close left vertex refers to the rightmost vertex from
X that is on the left of ut and is in the same row with ut. It is clear that u1 cannot have a left
vertex, and the same is true for each of u2, . . . , uk+1. Analogously, the close right vertex of ut in
X is uh′ ∈ Rg ∩X ∩ {ut+1, . . . , un} of smallest possible index h′, if it exists. Similarly, the close
right vertex refers to the leftmost vertex from X that is on the right of ut and is in the same
row with ut. For 1 ≤ h ≤ n − k, we denote by Φh(X) and Ψh(X) the sets of the respectively
close left and close right vertices in X of the vertices from Qh \X.

Lemma 4.3. Let 1 ≤ h ≤ n− k. Each partition class of f(a) contains at most one vertex from
Φh(B) ∪Ψh(B).

Proof. In the first part of the proof, we consider the vertices in Φh(B) and show that they
are contained in different partition classes. It suffices to assume n ≥ k + 1, and no restriction
on a is required. We assume that there are us, ut ∈ Rg and us′ , ut′ ∈ Rg′ for g 6= g′ and that
us, us′ ∈ Φh(B) and ut, ut′ ∈ Qh \B and h ≤ t < t′ ≤ h+ k. Recall that us and us′ are the close
left vertices of respectively ut and ut′ , and s, s′ < h. Observe







Qs ∩Rg′ , if s′ < s

Qs′−k ∩Rg , if s+ k < s′

Qs′ ∩Rg , if s < s′ ≤ s+ k







∩B = ∅ .

Thus, in each of the three cases, there is a vertex of P that is not in B and that is adjacent to
exactly one of us and us′ . Thus, us and us′ do not have the same neighbours in V (G) \B, and
us and us′ cannot appear in the same partition class of f(a) due to the Compatibility condition.

Applying the same arguments to the automorphically symmetric case of Ψh(B), we conclude
that the vertices also from Ψh(B) appear in pairwise different partition classes of f(a).

In the second part of the proof, we consider vertices from Φh(B) and Ψh(B). We apply
Lemma 4.2 and therefore must assume n ≥ 3k+1 and that B and C have no full maximal clique
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of P . Since Φh(B) ⊆ {u1, . . . , uh−1} and Ψh(B) ⊆ {uh+k+1, . . . , un}, no clique of G contains
vertices from Φh(B) and from Ψh(B), and no partition class of f(a) contains two vertices from
Φh(B) ∪Ψh(B).

Let X ⊆ V (G), and assume that Qh is not empty in X. The top vertex of Qh in X is
uj ∈ Qh ∩X of smallest possible index j, and the bottom vertex of Qh in X is uj′ ∈ Qh ∩X of
largest possible index j′.

Lemma 4.4. Choose h and h′ with 1 ≤ h < h + k < h′ ≤ n − k. The top vertices of Qh and
Qh′

in B appear in different partition classes of f(a), and the bottom vertices of Qh and Qh′
in

B appear in different partition classes of f(a).

Proof. It suffices to assume n ≥ 2k + 2 and that B has no full maximal clique of P .
Assume that Qh and Qh′

are non-empty in B; let u and v be the top vertices of respectively
Qh and Qh′

in B. If u 6= uh then uh 6∈ B and uh is adjacent to u and non-adjacent to v. If
u = uh then each vertex in Qh′

\ B is adjacent to v and non-adjacent to u; recall that Qh′
\ B

is non-empty, since B has no full maximal clique of P . So, in each of the two cases, there is a
vertex that is not in B and that is adjacent to exactly one of u and v, and thus, u and v appear
in different partition classes due to the Compatibility condition.

The automorphically equivalent case of bottom vertices follows analogously.

It is clear that the claims of Lemmas 4.3 and 4.4 analogously hold for c and C in place of b
and B, respectively.

We prove a first case for Proposition 4.1.

Lemma 4.5. Assume that B and C have an empty maximal clique of P . Assume |f(a)∩V (P )| ≥
k + 2, and assume f(a) ∩Q1 6= ∅ and f(a) ∩Qn−k 6= ∅. Then, |f(a)| ≥ k + 2.

Proof. By a symmetry argument, we may assume B ∩ Q1 6= ∅. Choose h, t, t′ such that Qt is
empty in B and Qt′ is empty in C and Qh is full in B ∪C, that exist. Clearly: h 6= t and h 6= t′,
and |Qh| = |B∩Qh|+ |C∩Qh| = k+1. Due to Lemma 4.3, each partition class of f(a) contains
at most one vertex from Φt(B) ∪Ψt(B) and at most one vertex from Φt′(C) ∪Ψt′(C), and due
to Lemma 4.2, for each partition class X of f(a), the set X ∩ V (P ) is a subset of B or of C.
The combination of these observations yields |f(a)| ≥ |Φt(B) ∪Ψt(B)| + |Φt′(C) ∪Ψt′(C)|. By
the choice of h, t, t′, |Φt(B) ∪ Ψt(B)| ≥ |B ∩ Qh| and |Φt′(C) ∪ Ψt′(C)| ≥ |C ∩ Qh|, and thus,
|f(a)| ≥ |B ∩Qh|+ |C ∩Qh| = k + 1.

For a contradiction, we suppose |f(a)| ≤ k + 1. Note that this means |f(a)| = |Φt(B) ∪
Ψt(B)|+|Φt′(C)∪Ψt′(C)| = |B∩Qh|+|C∩Qh|. And this particularly means |Φt(B)|+|Ψt(B)| =
|B ∩Qh| and |Φt′(C)|+ |Ψt′(C)| = |C ∩Qh|.

Recall our assumption of B∩Q1 6= ∅. This implies that Φt(B) 6= ∅, which means |Φt(B)| ≥ 1.
For a contradiction, suppose that t < h. Then, B ∩ Qh ⊆ {ut+k+1, . . . , un}, and this implies
|Ψt(B)| ≥ |B ∩ Qh|. So, |Φt(B)| + |Ψt(B)| > |B ∩ Qh| follows, which contradicts the derived
equality of the preceding paragraph. Thus, h < t is the case. This also implies Ψt(B) = ∅,
which yields B ∩ Qn−k = ∅ and |Φt(B)| = |B ∩ Qh| in particular. By the assumptions of the
lemma, C ∩ Qn−k 6= ∅ therefore follows. Analogous to h < t, we derive t′ < h and |Ψt′(C)| =
|C ∩Qh| and Φt′(C) = ∅. As a particular conclusion, we conclude Φt(B) ⊆ {uh, . . . , ut−1} and
Ψt′(C) ⊆ {ut′+k+1, . . . , uh+k}.
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We consider h, we claim h ≤ k + 1, and we suppose for a contradiction the contrary, that
h ≥ k+2. Since h < t, which we concluded in the preceding paragraph, Φt(B) ⊆ {uk+2, . . . , ut−1}
follows. Let X be the partition class of f(a) containing the top vertex of Q1 in B. Recall that
each partition class of f(a) contains a vertex from Φt(B)∪Ψt′(C). So, Φt(B)∩X 6= ∅. Since X
contains the top vertex of Q1 in B and since X ∩ V (P ) is a clique of G[B] due to Lemma 4.2,
u1 6∈ B follows. Hence, X contains a vertex that is adjacent to u1 and a vertex that is non-
adjacent to u1. This is a contradiction to the Compatibility condition. Analogously, h+k ≥ n−k

follows.
We conclude h ≤ k + 1 and h+ k ≥ n− k, which implies h = k + 1 and n = 3k + 1.
Recall B ∩ Q2k+1 = ∅ and Φt(B) ⊆ {uh, . . . , ut−1}, which implies Φt(B) ⊆ {uk+1, . . . , u2k}.

Also recall for each partition class X of f(a) containing a vertex from B that X ∩ V (P ) ⊆ B

due to Lemma 4.2 and X ∩ Φt(B) 6= ∅. Since u2k+1 6∈ B, which is an obvious consequence of
B∩Q2k+1 = ∅, each partition class of f(a) containing a vertex from B contains only neighbours of
u2k+1 due to the Compatibility condition. Since NP (u2k+1) = {uk+1, . . . , u2k, u2k+2. . . . , u3k+1},
we can conclude B ∩ V (P ) ⊆ {uk+1, . . . , u2k}. Analogously, we can conclude C ∩ V (P ) ⊆
{uk+2, . . . , u2k+1}, by applying the derived facts C ∩ Q1 = ∅ and Ψt′(C) ⊆ {uk+2, . . . , u2k+1}.
So, |f(a) ∩ V (P )| = |(B ∪ C) ∩ V (P )| ≤ k + 1 follows, which is the desired contradiction.

4.2 Maximal P -clique split node ancestors and the main results

We want to prove Proposition 4.1, that determines a lower bound on the width of partition
trees for G purely by considering the assignment of the vertices of G to the leaves of T through
f . Lemma 4.5 solves one case. In this subsection, we solve two remaining cases, that are not
covered by Lemma 4.5, and we prove Proposition 4.1. At the end, we finish with concluding the
local-structure consequence.

For the first two lemmas of this subsection, let (T, f) be a partition tree for G and let a be a
maximal P -clique split node of (T, f). We begin with an easy remaining case that is not covered
by Lemma 4.5.

Lemma 4.6. Assume n = 3k + 1. Also assume f(a) ∩ V (P ) = Qk+1. The width of (T, f) is at
least k + 2.

Proof. Let a′ be the parent of a in T , and let c be the child of a′ that is different from a. We claim
that no partition class of f(a′) contains vertices from f(a)∩V (P ) and f(c)∩V (P ). Let ut be a ver-
tex from f(c)∩V (P ), and letX be the partition class of f(a′) containing ut. We showX∩Qk+1 =
∅ by applying the Compatibility condition. Assume 1 ≤ t ≤ k. Then, X ∩ {uk+1, . . . , ut+k} = ∅
because of {uk+1, . . . , ut+k} ⊆ NP (ut) ∩ f(a), and X ∩ {ut+k+1, . . . , u2k+1} = ∅ because of
u2k+2 6∈ f(a) and {ut+k+1, . . . , u2k+1} ⊆ NP (u2k+2) \ NP (ut). Similarly the same arguments
hold for 2k + 2 ≤ t ≤ 3k + 1.

So, no partition class of f(a′) contains vertices from f(a) ∩ V (P ) and f(c) ∩ V (P ). Above
arguments also show that the vertices from Qk+1 appear in pairwise different partition classes
of f(a′). Thus, |f(a′)| ≥ k + 2 directly follows.

An ancestor of a is a node on the path from a to the root of T , and the least ancestor is
closest to a. The next lemma is mainly the complementary case of Lemma 4.5.
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Lemma 4.7. Assume f(a) ∩Q1 = ∅ or f(a) ∩Qn−k = ∅. The width of (T, f) is at least k + 2.

Proof. Since the situations of f(a) ∩ Q1 = ∅ and f(a) ∩ Qn−k = ∅ are automorphically
equivalent, we may assume f(a) ∩ Qn−k = ∅. Let a′ be the least ancestor of a in T such that
f(a′)∩Qn−k 6⊆ {un}. Let b

′ and c′ be the children of a′, let B′ =def f(b
′) and C ′ =def f(c

′), and
we assume f(a) ⊆ B′. We distinguish between two cases.

As the first case, assume un ∈ B′. This means B′ ∩ Qn−k = {un} by the choice of a′. By
the first part of the proof of Lemma 4.3, we conclude that the vertices in Φn−k(B′) appear in
pairwise different partition classes of f(a′). And since un−1 6∈ B′ and Φn−k(B′)∩NG(un−1) = ∅,
no partition class of f(a′) contains un and a vertex from Φn−k(B′).

Choose z ∈ C ′ ∩Qn−k, and let Z be the partition class of f(a′) containing z. Since un and z

are adjacent in P , un 6∈ Z and Z ∩ V (P ) ⊆ NP (un) ⊆ Qn−k. Thus, Z ∩ (Φn−k(B′) ∪ {un}) = ∅,
and |f(a′)| ≥ k + 2 follows.

As the second case, assume un 6∈ B′. This means B′ ∩ Qn−k = ∅ by the choice of a′. By
the first part of the proof of Lemma 4.3, the vertices in Φn−k(B′) appear in pairwise different
partition classes of f(a′).

For a contradiction, suppose |f(a′)| = k + 1. This means that each partition class of f(a′)
contains a vertex from Φn−k(B′). Let Qh be full in f(a), and thus in B′. Let t be smallest with
ut ∈ C ′∩{uh+k+1, . . . , un−1}, that exists, let X be the partition class of f(a′) containing ut, and
choose x ∈ X ∩Φn−k(B′). Observe that Qt−k−1 is empty in C ′ and x and ut are non-adjacent in
P . Thus, x ∈ {u1, . . . , ut−k−1} ∪ {ut+k+1, . . . , un} and X ∩ V (P ) ⊆ NP (ut−k) ∩ · · · ∩NP (ut−1),
which means x = ut−k−1.

Observe that {ut−k−1, ut} ⊆ X implies ut+1 ∈ C ′. So, there is a partition class Y of
f(a′) containing ut+1. Since ut+1 6∈ NP (ut−k), X 6= Y follows. And since ut−k+1, ut−1 6∈ C ′,
ut−k ∈ Y ∩Φn−k(B′), so that {ut−k, ut+1} ⊆ Y .

We conclude: ut−k ∈ B′ and ut ∈ C ′ and ut−kut ∈ E(P ). Condition 3 of Definition 2.1
implies X × Y ⊆ E(G), which yields a contradiction to ut−k−1ut+1 6∈ E(G).

We are ready to prove the main result of this section.

Proof of Proposition 4.1. If f(a) ∩ Q1 = ∅ or f(a) ∩ Qn−k = ∅, we apply Lemma 4.7. If
f(a) ∩ Q1 6= ∅ and f(a) ∩ Qn−k 6= ∅ and |f(a) ∩ V (P )| ≥ k + 2, we apply Lemma 4.5. And
if f(a) ∩ Q1 6= ∅ and f(a) ∩ Qn−k 6= ∅ and |f(a) ∩ V (P )| = k + 1 then n = 3k + 1 and
f(a) ∩ V (P ) = Qk+1, and we apply Lemma 4.6.

A corollary of Proposition 4.1 is a local-structure consequence about partition trees of width
at most k + 1 for k-path powers.

Proposition 4.8. Let (T, f) be a partition tree for P that is of width at most k+1. Let a be a
maximal P -clique split node of (T, f) with its children b and c. Then, one of f(b) and f(c) has
no empty maximal clique of P and n < (k + 1)(k + 1), and if n ≥ k(k + 1) then one of b and c

is a leaf of T .

Proof. As a consequence of Proposition 4.1 and by a symmetry argument, we may assume that
f(b) has no empty maximal clique of P .

Let r =def ⌊ n
k+1⌋. Let Θ be the set of the top vertices of Qi(k+1)+1 in f(b) for each i ∈

{0, . . . , r − 1}. Since f(b) has no empty maximal clique of P , |Θ| = r. Due to Lemma 4.4, the
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vertices in Θ appear in pairwise different partition classes of f(a). And due to Lemma 4.2, each
partition class of f(a) is a subset of f(b) or of f(c). So, |f(a)| ≥ |Θ|+1 = r+1. If r ≥ k+1 then
(T, f) is of width at least k+2, a contradiction, so that r ≤ k is the case, i.e., n < (k+1)(k+1).

Assume r = k. Then, f(a) contains at least k partition classes with vertices from f(b),
which means that f(c) itself is a partition class of f(a). Thus, f(c) is a homogeneous set, so
that |f(c)| = 1, and c is a leaf of T .

As a final remark, we want to mention that the result of Proposition 4.8 can be extended to
our considered situation about arbitrary graphs G with P as an induced subgraph, when assum-
ing structural restrictions on G, that let us conclude |f(c)| = 1 from f(c) being a homogeneous
set.

5 Clique-width of path powers

We consider k-path powers and determine their minimal graphs of largest clique-width, where
minimality is considered with respect to the induced subgraph relation. We apply this result
to derive a formula for the clique-width of path powers that depends on the number of vertices
and the clique number only.

Similar to the preceding section, we fix some terminology, for the first three results of this
section, that aim at determining the minimal k-path powers of largest clique-width. Let k ≥ 2,
let P be a k-path power on n vertices, and assume n ≥ 3k + 1. Choose r and δ with 0 ≤ δ ≤ k

such that n = r(k + 1) + δ. Let 〈u1, . . . , un〉 be a k-path layout for P , and let Q1, . . . , Qn−k be
the maximal cliques of P , where Qh = {uh, . . . , uh+k}.

Let (T, f) be a partition tree for P , and let a be a maximal P -clique split node of T with
b a child of a. Let B =def f(b). We assume that B has no empty maximal clique of P . In the
next two lemmas, we determine the structure of B.

Lemma 5.1. Choose h1, . . . , hr satisfying 1 ≤ h1 < · · · < hr ≤ n−k and hi+1 > hi+k for every
1 ≤ i < r. Assume B ⊆ Qh1 ∪ · · · ∪ Qhr . Let Θ be the set of the top vertices of Qh1 , . . . , Qhr

in B. Assume that every partition class of f(a) with a vertex from B contains a vertex from Θ.
Then, B ∩Qh1 , . . . , B ∩Qhr are the partition classes of f(a) containing a vertex from B.

Proof. Let X1, . . . ,Xs be the partition classes of f(a) with vertices from B. Observe B ⊆
X1 ∪ · · · ∪Xs, and s ≤ |Θ| ≤ r according to the assumptions of the lemma. Due to Lemma 4.2,
X1, . . . ,Xs are cliques of P [B]. Furthermore, |Θ| ≥ r, since B has no empty maximal clique of
P . So, there is a 1-to-1 correspondence between {X1, . . . ,Xs} and Θ due to Lemma 4.4, and
r = s = |Θ| in particular.

If {(B ∩ Qh1), . . . , (B ∩ Qhr)} refines {X1, . . . ,Xs} then the two partitions of B are equal,
and the claim of the lemma directly follows. Otherwise, there are 1 ≤ p ≤ r and X,X ′ ∈
{X1, . . . ,Xs}, where X 6= X ′, such that X ∩ Qhp 6= ∅ and X ′ ∩ Qhp 6= ∅. We choose p largest
possible and X to contain the top vertex of Qhp in B. Let X ′ contain the top vertex of Qhq in
B. Observe: p 6= q and X ′ contains vertices from Qhq and Qhp .

For a contradiction, suppose q < p. Then, X ′ ⊆ {uhq+1, . . . , uhp+k−1} follows, and uhq
6∈ X ′

in particular. Since X ′ contains the top vertex of Qhq in B, uhq
cannot be the top vertex of

Qhq in B, and thus, uhq
6∈ B. Since the vertices in Qhp are non-adjacent to uhq

, X ′ therefore
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contradicts the Compatibility condition. So, p < q ≤ r, and B ∩ Qhq ⊆ X ′ by the choice of
p, and X ′ ⊆ {uhp+1, . . . , uhq+k−1}, which means uhq+k 6∈ B. Since X ′ contains vertices that
are adjacent to uhq+k and that are non-adjacent to uhq+k, we conclude a contradiction to the
Compatibility condition.

For every 1 ≤ i ≤ r, let Mi =def {u(i−1)(k+1)+δ+1, . . . , ui(k+1)}. Note Mi ⊆ Ki, where
K1, . . . ,Kr are as defined in the proof of Lemma 3.1. We refer to Figure 1 for an illustrative
example of the sets Mi.

Lemma 5.2. Assume that f(a) contains at most r partition classes containing a vertex from
B. Also assume r ≤ k and δ ≥ 1. Then, B ⊆ M1 ∪ · · · ∪Mr.

Proof. For 1 ≤ i ≤ r, let hi =def (i− 1)(k +1) + 1 and h′i =def hi + δ. Observe Mi = Qhi ∩Qh′
i

for every 1 ≤ i ≤ r. Let Θ be the set of the top vertices of Qh1 , . . . , Qhr in B, and Θ′ be the
set of the bottom vertices of Qh′

1 , . . . , Qh′
r in B. Since B has no empty maximal clique of P ,

|Θ| = |Θ′| = r follows, and each partition class of f(a) containing a vertex from B contains
exactly one vertex from Θ and exactly one vertex from Θ′ due to Lemma 4.4.

For a contradiction, suppose {un−δ+1, . . . , un}∩B 6= ∅, and let X be a partition class of f(a)
containing a vertex from {un−δ+1, . . . , un} ∩ B. Since X ⊆ {uhr+1, . . . , un} due to Lemma 4.2,
X contains the top vertex of Qhr in B, and uhr

6∈ B, and X ⊆ {uhr+1, . . . , uhr+k} ⊆ Qhr , a
contradiction. So, B ⊆ Qh1 ∪ · · · ∪Qhr , and (B ∩Qh1), . . . , (B ∩Qhr) are the partition classes
of f(a) containing a vertex from B due to Lemma 5.1.

Similarly, if {u1, . . . , uδ} ∩ B 6= ∅, the partition class Y of f(a) containing the bottom
vertex of Qh′

1 in B contains a vertex from {u1, . . . , uδ}, which yields a contradiction. Thus,
B ⊆ Qh′

1 ∪ · · · ∪Qh′
r , and (B ∩Qh′

1), . . . , (B ∩Qh′
r) are the partition classes of f(a) containing

a vertex from B due to Lemma 5.1.
Since (B ∩ Qh1) ⊆ (B ∩ Qh′

1), an easy induction shows (B ∩ Qhi) = (B ∩ Qh′
i) for every

1 ≤ i ≤ r. Thus, (B ∩ Qh1 ∩ Qh′
1), . . . , (B ∩ Qhr ∩ Qh′

r) are the partition classes of f(a)
containing a vertex from B.

As the first main result, we show an upper bound on the number of vertices of minimal k-
path powers of clique-width above a certain bound. The upper clique-width bound of Lemma 3.1
completes this upper-number-of-vertices bound into the desired threshold result.

Proposition 5.3. Let (T, f) be a partition tree for P , and we assume n ≥ k(k + 1) + 2. The
width of (T, f) is at least k + 2.

Proof. Let a be a maximal P -clique split node of (T, f), and let b and c be the children of a.
For a contradiction, suppose that (T, f) is of width at most k + 1. We apply Proposition 4.8,
that is applicable because of n ≥ 3k+1: n < (k+1)(k+1), and we can assume that c is a leaf of
T and f(b) has no empty maximal clique of P . Due to Lemma 4.2, f(a) has at most k partition
classes containing a vertex from f(b). Due to Lemma 5.2, choosing r = k and δ = n− k(k + 1),
f(b) ⊆ M1 ∪ · · · ∪ Mk. Thus, each maximal clique of P that is full in f(a) has at most k − 1
vertices from f(b) and at least two vertices from f(c), contradicting |f(c)| = 1.

We are ready to give the complete characterisation of the clique-width of path powers.
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Theorem 5.4. Let k ≥ 1, and let P be a k-path power on n vertices. Then,

cwd(P ) = lcwd(P ) =























1 , if n = 1

2 , if 2 ≤ n ≤ k + 1
⌈

n−1
k+1

⌉

+ 1 , if k + 2 ≤ n ≤ k(k + 1) + 1

k + 2 , if n ≥ k(k + 1) + 2 .

Proof. If k = 1 or if n ≤ k + 2 then the claim follows from the results in [7]. If k ≥ 2 and
n ≥ k(k+1)+2 then cwd(P ) ≤ lcwd(P ) ≤ k+2 due to Lemma 3.1 and lcwd(P ) ≥ cwd(P ) ≥ k+2
due to Proposition 5.3 and Theorem 2.2.

Assume k ≥ 2 and k+3 ≤ n ≤ k(k+1)+1. Choose r such that r(k+1)+2 ≤ n ≤ (r+1)(k+
1)+1. Observe r+1 = ⌈n−1

k+1⌉. For the claimed upper bound, cwd(P ) ≤ lcwd(P ) ≤ r+2 due to
Lemma 3.1. For the claimed lower bound, observe that P has an r-path power on r(r + 1) + 2
vertices as an induced subgraph. If r = 1 then the above shows lcwd(P ) ≥ cwd(P ) ≥ r+2 = 3,
and if r ≥ 2 then lcwd(P ) ≥ cwd(P ) ≥ r + 2 due to Proposition 5.3 and Theorem 2.2.

Recall that k+1 is equal to the clique-number of a k-path power on at least k+1 vertices. So,
the formula of Theorem 5.4 admits an expression dependent on the number of vertices and the
clique number of a path power only. As special cases about the clique-width of a k-path power P
due to Theorem 5.4, we point out: if n ≤ 1(k+1)+1 then cwd(P ) ≤ 2, if n = 1(k+1)+2 then
cwd(P ) = 3, and if n = k(k + 1) + 1 then cwd(P ) = k + 1.

The result of Theorem 5.4 implies three noteworthy consequences. Firstly, clique-width and
linear clique-width coincide on path powers. A partial and preliminary explanation can be
seen in the structural result of Proposition 4.8. Secondly, the clique-width, and thus the linear
clique-width, of path powers can be computed in linear time. Path powers can be recognised
in linear time in a straightforward fashion, and the clique number k is also linear-time com-
putable. Thirdly, the path powers of bounded clique-width admit a forbidden induced subgraph
characterisation, as it is shown in the second part of the proof of Theorem 5.4.

Corollary 5.5. Let P be a path power, and let t ≥ 1. Then, cwd(P ) ≤ t + 1 if and only if P
does not have a t-path power on t(t+ 1) + 2 vertices as an induced subgraph.

6 Final remarks

Path powers have no chordless cycles of length at least 4, and square grids have no cycles of
length 3. These are the only known graph classes of unbounded clique-width with a precise
knowledge of their clique-width. Graphs without chordless cycles of small length are interesting
to study, since they may simplify the clique-width computation problem [17].

Lemma 3.1 proved two linear clique-width upper bounds. The one upper bound treated
path power as a linear chain of vertices, and the other upper bound treated path powers as 2-
dimensional or grid-like graphs. Our main result of Theorem 5.4 distinguishes between these two
sides of the structural double nature of path powers: the underlying path structure is of strong
influence in k-path powers on at least (k + 1)2 + 2 vertices, and the 2-dimensional structure is
of strong influence in k-path powers on at most k(k+1)+1 vertices; the range between the two
thresholds combines both natures. An algorithm for computing the clique-width of path powers
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that does not know these thresholds explicitly must determine these thresholds implicitly. This
is the case particularly for algorithms for graph classes such as proper interval graphs, interval
graphs, chordal graphs, cocomparability graphs, AT-free graphs, all of which contain the path
powers as a subclass.

Path powers are a small graph class of highly regular structure. How good is our lower-bound
result? Is it possible to improve the result by considering more general graphs? It turns out
that this is not the case. In fact, the k-path powers on k(k+1)+2 vertices are not only minimal
k-path powers of clique-width at least k + 2, but they are minimal graphs of clique-width at
least k + 2 [18].
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Appendix

We give an example of a partition tree, and explain the main terms of Definition 2.1.
Consider the below partition tree (T, f) of width at most 3 for the depicted graph G:

3:

1:

5:

2:

4:

6:

G:

a

c d

b

e h

g

a

b

c

d

e

h

g

b,e,ha,g c,d

ge,h

he

c d

ca d

ba c,d

The labels at the leaves of T establish a 1-to-1 correspondence with the vertex set of G. The
inner nodes of T , that are 1, 2, 3, 4, 5, 6, are labelled with partitions of subsets of {a, b, c, d, e, h, g},
such as f(2) =

{

{a}, {b}, {c, d}
}

. Observe that each node of T is labelled with a set containing
at most three partition classes.

By f(u), we denote the union of the partition classes of f(u), that is, for node 3 of T ,
f(3) = {e, h, g}.

For an example of the consequences of the Compatibility condition, consider node 1 and

f(1) =
{

{a, g}, {b, e, h}, {c, d}
}

. Since c ∈ f(2) and e ∈ f(3) and ce ∈ E(G), the Compatibility

condition of Definition 2.1 requires {b, e, h} × {c, d} ⊆ E(G), which is the case indeed. Also
observe ac ∈ E(G) and {a, g} × {c, d} 6⊆ E(G), however, a, c ∈ f(2). Finally, consider the
partition class {e, h} of f(3), that is a homogeneous set of G.
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