
Strong Triadic Closure in Cographs and

Graphs of Low Maximum Degree

Athanasios L. Konstantinidis∗ Stavros D. Nikolopoulos†

Charis Papadopoulos‡

Abstract

The MaxSTC problem is an assignment of the edges with two types of labels, namely,
strong and weak, that maximizes the number of strong edges such that any two vertices
that have a common neighbor with a strong edge are adjacent. The Cluster Deletion
problem seeks for the minimum number of edge removals of a given graph such that the
remaining graph is a disjoint union of cliques. Both problems are known to be NP-hard
and an optimal solution for the Cluster Deletion problem provides a feasible solution
for the MaxSTC problem, however not necessarily an optimal one. In this work we con-
duct the first systematic study that reveals graph families for which the optimal solutions
for MaxSTC and Cluster Deletion coincide. We first show that MaxSTC coincides
with Cluster Deletion on cographs and, thus, MaxSTC is solvable in polynomial
time on cographs. As a side result, we give an interesting computational characterization
of the maximum independent set on the cartesian product of two cographs. Furthermore,
we address the influence of the low degree bounds to the complexity of the MaxSTC
problem. We show that this problem is polynomial-time solvable on graphs of maximum
degree three, whereas MaxSTC becomes NP-complete on graphs of maximum degree
four. The proof of the latter result implies that there is no subexponential-time algorithm
for MaxSTC unless the Exponential-Time Hypothesis fails.

1 Introduction

The principle of strong triadic closure is an important concept in social networks [7]. It
states that it is not possible for two individuals to have a strong relationship with a common
friend and not know each other [10]. The strong triadic closure is satisfied if the edges of
the underlying graph are characterized into weak and strong such that any two vertices that
have a strong neighbor in common are adjacent. Towards the investigation of the behavior
of a network, such a principle has been recently proposed as a maximization problem, called
MaxSTC, in which the goal is to assign each edge as strong or weak so that to maximize the
number of strong edges of the underlying graph that satisfy the strong triadic closure [22].
Closely related to the MaxSTC problem is the Cluster Deletion problem which finds
important applications in areas involving clustering [1]. In the latter problem the goal is to
remove the minimum number of edges such that the resulting graph consists of vertex-disjoint
union of cliques.

The relation between MaxSTC and Cluster Deletion arises from the fact that the
edges inside the cliques in the resulting graph for Cluster Deletion can be seen as strong

∗Department of Mathematics, University of Ioannina, Greece. E-mail: skonstan@cc.uoi.gr
†Department of Computer Science & Engineering, University of Ioannina, Greece. E-mail:

stavros@cs.uoi.gr
‡Department of Mathematics, University of Ioannina, Greece. E-mail: charis@cs.uoi.gr

1

G Cluster Deletion MaxSTC

Figure 1: Two examples of graphs with their corresponding optimal solutions for Cluster
Deletion and MaxSTC, respectively. For the MaxSTC problem the edges of G that are
not drawn in the solution correspond to the weak edges.

edges for MaxSTC which satisfy the strong triadic closure. Thus, the number of edges
in an optimal solution for Cluster Deletion consists a lower bound for the number of
strong edges in an optimal solution for MaxSTC. However there are graphs (see for e.g.,
Figure 1) showing that an optimal solution for MaxSTC contains larger number of edges
than an optimal solution for Cluster Deletion. Interestingly, there are also families of
graphs in which their optimal value for MaxSTC matches such a lower bound. For instance,
any maximum matching on graphs that do not contain triangles constitutes a solution for
both problems. Here we initiate a systematic study on other non-trivial classes of graphs for
which the optimal solutions for both problems have exactly the same value.

Our main motivation is to further explore the complexity of the MaxSTC problem when
restricted to graph classes. As MaxSTC has been recently introduced, there are few results
concerning its complexity. The problem has been shown to be NP-complete for general
graphs [22] and split graphs [17] whereas it becomes polynomial-time tractable on proper
interval graphs and trivially perfect graphs [17]. The NP-completeness on split graphs shows
an interesting algorithmic difference between the two problems, since Cluster Deletion
on such graphs can be solved in polynomial time [2]. It is known that Cluster Deletion
is NP-complete on general graphs [21] and remains NP-complete on chordal graphs and,
also, on graphs of maximum degree four [2, 15]. On the positive side Cluster Deletion
admits polynomial-time algorithms on proper interval graphs [2], graphs of maximum degree
three [15], and cographs [9]. In fact for cographs a greedy algorithm that finds iteratively
maximum cliques gives an optimal solution, although no running time was explicitly given
in [9].

Such a greedily approach is also proposed for computing a maximal independent set of
the cartesian product of general graphs. Summing the partial products between iteratively
maximum independent sets consists a lower bound for the cardinality of the maximum inde-
pendent set of the cartesian product [13, 14]. Here we prove that a maximum independent
set of the cartesian product of two cographs matches such a lower bound. We would like
to note that a polynomial-time algorithm for computing such a maximum independent set
is already claimed [11]. However neither a characterization is given, nor an explicit running

2

time of the algorithm is reported.

Our results. In this work we further explore the complexity of the MaxSTC problem.
We consider two unrelated families of graphs, namely, cographs and graphs of bounded de-
gree. Cographs are characterized by the absence of a chordless path on four vertices. For
such graphs we prove that the optimal value for MaxSTC matches the optimal value for
Cluster Deletion. For doing so, we reveal an interesting vertex partitioning with re-
spect to their maximum clique and maximum independent set. This result enables us to
give an O(n2)-time algorithm for MaxSTC on cographs. As a byproduct we character-
ize a maximum independent set of the cartesian product of two cographs which implies a
polynomial-time algorithm for computing such a maximum independent set. Moreover we
study the influence of low maximum degree for the MaxSTC problem. We show an inter-
esting complexity dichotomy result: for graphs of maximum degree four MaxSTC remains
NP-complete, whereas for graphs of maximum degree three the problem is solved in poly-
nomial time. Our reduction for the NP-completeness on graphs of maximum degree four
implies that, under the Exponential-Time Hypothesis, there is no subexponential time algo-
rithm for MaxSTC. A preliminary version of this work appeared as an extended abstract
in the proceedings of COCOON 2017 [16].

2 Preliminaries

All graphs considered here are simple and undirected. A graph is denoted by G = (V,E)
with vertex set V and edge set E. We use the convention that n = |V | and m = |E|. The
neighborhood of a vertex v of G is N(v) = {x | vx ∈ E} and the closed neighborhood of v is
N [v] = N(v) ∪ {v}. The degree of v is d(v) = |N(v)|. For S ⊆ V , N(S) =

⋃
v∈S N(v) \ S

and N [S] = N(S) ∪ S. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For X ⊆ V (G), the subgraph of G induced by X, denoted by G[X], has vertex set X, and
for each vertex pair u, v from X, {u, v} is an edge of G[X] if and only if u 6= v and {u, v} is
an edge of G. For R ⊆ E(G), G \R denotes the graph (V (G), E(G) \R), that is a subgraph
of G and for S ⊆ V (G), G− S denotes the graph G[V (G)− S], that is an induced subgraph
of G.

A clique of G is a set of pairwise adjacent vertices of G, and a maximal clique of G is a
clique of G that is not properly contained in any clique of G. An independent set of G is
a set of pairwise non-adjacent vertices of G. For k ≥ 3, the chordless path on k vertices is
denoted by Pk and the chordless cycle on k vertices is denoted by Ck. We denote by Kk a
clique on k vertices whereas the special case for k = 3 is called triangle.

Given a graph G = (V,E), a strong-weak labeling on the edges of G is a bijection λ :
E(G)→ {strong,weak}; i.e., λ assigns to each edge of E(G) a strong or weak label. An edge
that is labeled strong (resp., weak) is simple called strong (resp. weak). The strong triadic
closure of a graph G is a strong-weak labeling λ such that for any two strong edges {u, v}
and {v, w} there is a (weak or strong) edge {u,w}. We say that such a labeling satisfies
the strong triadic closure. The problem of computing the maximum strong triadic closure,
denoted by MaxSTC, is to find a strong-weak labeling on the edges of E(G) that satisfies
the strong triadic closure and has the maximum number of strong edges.

We denote by (ES , EW) the partition of E(G) into strong edges ES and weak edges EW .
The graph spanned by ES is the graph G\EW ; notice that the graph spanned by ES consists
of the whole vertex set V (G) and it may contain vertices with degree equal to zero. For a
strong edge {u, v}, we say that u (resp., v) is a strong neighbor of v (resp., u). We denote
by NS(v) ⊆ N(v) the strong neighbors of v. Given an optimal solution for MaxSTC that
consists of the strong edges ES , the graph spanned by the edges of ES is denoted by ES(G).
Whenever we write |ES(G)| we refer to its number of edges, that is |ES(G)| = |ES |.

3

In the Cluster Deletion problem the goal is to partition the vertices of a given graph
G into vertex-disjoint cliques with the minimum number of edges outside the cliques, or,
equivalently, with the maximum number of edges inside the cliques. A cluster graph is a
graph in which every connected component is a clique. Cluster graphs are characterized
as exactly the graphs that do not contain a P3 as an induced subgraph. Given an optimal
solution for Cluster Deletion, the cluster graph spanned by the edges that are inside the
cliques is denoted by EC(G). We write |EC(G)| to denote the number of edges in the cluster
graph. Notice that if we assign strong labels to all the edges of a cluster graph then such
a labeling satisfies the strong triadic closure of the given graph. Thus |EC(G)| ≤ |ES(G)|
holds for any graph G.

Figure 1 shows two graphs in which the optimal solution of Cluster Deletion contains
strictly less edges than the optimal solution for MaxSTC. In terms of EC(G) and ES(G)
notice that in such cases we have |EC(G)| < |ES(G)|, though in general |EC(G)| ≤ |ES(G)|
holds. In the first example, from top to bottom, an optimal solution of Cluster Deletion
consists of 7 edges whereas there is a solution of MaxSTC that contains 8 edges. The second
example shows an optimal solution of Cluster Deletion with 22 edges, whereas there is a
solution of MaxSTC with 23 edges. Notice that in the second example the 6 vertices drawn
in the middle induce a clique on 6 vertices.

3 Computing MaxSTC on Cographs

Let G = (V,E) and H = (W,F) be two undirected graphs with V ∩W = ∅. The disjoint
union of G and H is the graph obtained from the union of G and H, denoted by G⊕H =
(V ∪W,E ∪ F). The complete join of G and H is the graph obtained from the union of
G and H and adding edges between every pair of vertices that belong to different graphs,
denoted by G ⊗ H = (V ∪W,E ∪ F ∪ {vw | v ∈ V,w ∈W}). A graph is a cograph if it
can be generated from single-vertex graphs and recursively applying the disjoint union and
complete join operations. The complement of a cograph is also a cograph. Cographs are
exactly the graphs that do not contain any chordless path on four vertices [4], and they can
be recognized in linear time [5].

Let G be the given cograph. Our main goal is to show that there is an optimal solution
for MaxSTC on G that coincides with an optimal solution for Cluster Deletion. The
strong edges that belong to an optimal solution for MaxSTC span the graph ES(G). An
optimal solution for Cluster Deletion consists of a cluster graph EC(G) by removing a
minimum number of edges of G. Labeling all edges of a cluster graph as strong, results in a
strong-weak labeled graph that satisfy the strong triadic closure. Thus, our goal is to show
that there is an optimal solution ES(G) for MaxSTC that is a cluster graph.

A clique (resp. independent set) of G having the maximum number of vertices is denoted
by Cmax(G) (resp., Imax(G)). A greedy clique partition of G, denoted by C, is the ordering
of cliques (C1, C2, . . . , Cp) in G such that

• C1 = Cmax(G) and

• Ci = Cmax

(
G−

⋃i−1
j=1Cj

)
for i = 2, 3, . . . , p.

Similarly, a greedy independent set partition of G, denoted by I, is the ordering of indepen-
dent sets (I1, I2, . . . , Iq) in G such that

• I1 = Imax(G) and

• Ii = Imax

(
G−

⋃i−1
j=1 Ij

)
for i = 2, 3, . . . , q.

4

Observe that the subgraph spanned by the edges of C does not contain any P3 and, thus,
consists a solution for Cluster Deletion. Although in general a greedy clique partition
does not necessarily imply an optimal solution for Cluster Deletion, when restricted to
cographs the optimal solution is characterized by the greedy clique partition.

Lemma 3.1 ([9]). Let G be a cograph with a greedy clique partition C. Then the edges of C
span an optimal solution EC(G) for Cluster Deletion.

We will use such a characterization of Cluster Deletion in order to give its equivalence
with the MaxSTC problem. Notice, however, that due to the freedom of the adjacencies
between the cliques of a greedy clique partition, it is not sufficient to consider such a partition
of the vertices. For doing so, we will further decompose the cliques of a greedy clique
partition. It is known that a graph G is a cograph if and only if for any maximal clique C
and any maximal independent set I of every induced subgraph of G, |C ∩ I| = 1 holds (also
known as the clique-kernel intersection property) [4]. Thus, we state the following lemma.

Lemma 3.2 ([4]). Let G be a cograph. Then Cmax(G) ∩ Imax(G) = {v} for some vertex v.

We recursively apply Lemma 3.2 to obtain the following result.

Lemma 3.3. Let G be a cograph with a greedy clique partition C = (C1, . . . , Cp) and a greedy
independent set partition I = (I1, . . . , Iq). For every i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ q, if
|Ci| ≥ j or |Ij | ≥ i then Ci ∩ Ij 6= ∅.

Proof. We prove that if |Ci| ≥ j or |Ij | ≥ i then Ci ∩ Ij 6= ∅. Assume for contradiction
that there exist Ci and Ij such that Ci ∩ Ij = ∅. Let i and j be the smallest integers for
which Ci ∩ Ij = ∅. By the choice of j we know that for every j′ < j, Ci ∩ Ij′ 6= ∅ holds
because |Ci| ≥ j > j′. This means that there are j − 1 vertices u1, . . . , uj−1 such that
Ci ∩ I1 = {u1}, . . . , Ci ∩ Ij−1 = {uj−1}. Similarly, for every i′ < i we have |Ci′ | ≥ |Ci| ≥ j,
by the greedy choice of C1, . . . , Ci. Thus there are i − 1 vertices v1, . . . , vi−1 such that
C1 ∩ Ij = {v1}, . . . , Ci−1 ∩ Ij = {vi−1}. Let Gi,j be the graph obtained from G by removing
the sets of vertices C1, . . . , Ci−1 and I1, . . . , Ij−1. Notice that Gi,j contains at least one
vertex because |Ci| ≥ j or |Ij | ≥ i. We will prove that Cmax(Gi,j) = Ci \ {u1, . . . , uj−1} and
Imax(Gi,j) = Ij \ {v1, . . . , vi−1}.

Let C ′ be the vertices of C1, . . . , Ci−1 and let I ′ be the vertices of I1, . . . , Ij−1. By the
greedy independent set partition, the vertices of Gi,j can be partitioned into |Ci| − j + 1
independent sets Ij \C ′, . . . , I|Ci| \C ′. This implies that a maximum clique of Gi,j has size at
most |Ci| − j + 1. As Gi,j is an induced subgraph of G, Ci \ {u1, . . . , uj−1} is a clique of size
|Ci| − j + 1 of Gi,j . Thus, we have Cmax(Gi,j) = Ci \ {u1, . . . , uj−1}. Following symmetric
arguments, the vertices of Gi,j can be partitioned into |Ij |− i+ 1 cliques Ci \ I ′, . . . , C|Ij | \ I ′.
This implies that a maximum independent set of Gi,j has size at most |Ij | − i + 1. Thus
Imax(Gi,j) = Ij \ {v1, . . . , vi−1}.

Notice that {u1, . . . , uj−1} ∩ {v1, . . . , vi−1} = ∅, due to the choice of i and j. Then
Lemma 3.2 applies to Gi,j , which shows that

(Ci \ {u1, . . . , uj−1}) ∩ (Ij \ {v1, . . . , vi−1}) 6= ∅.

Therefore Ci ∩ Ij 6= ∅, leading to a contradiction that proves the desired statement.

Lemma 3.3 suggests a partition of the vertices of G with respect to C and I as follows.
We call greedy canonical partition a pair (C, I) with elements 〈vi,j〉, where 1 ≤ i ≤ p and
1 ≤ j ≤ |Ci|, such that V (G) =

{
v1,1, . . . , vp,|Cp|

}
and vi,j ∈ Ci ∩ Ij . Figure 2 shows such

a greedy canonical partition of a given cograph. Observe that such a partition corresponds

5

a b

c

d

e f

u
x

a c x

b d

f u

e

C1

C2

C3

C4

I1 I2 I3

Figure 2: A cograph and its greedy canonical partition (C, I) where C = (C1, C2, C3, C4) and
I = (I1, I2, I3).

to a 2-dimensional representation of G. By Lemma 3.3 it follows that a cograph admits a
greedy canonical partition.

Let us turn our attention back to the initial MaxSTC problem. We first consider the
disjoint union of cographs.

Lemma 3.4. Let G and H be vertex-disjoint cographs. Then ES(G⊕H) = ES(G)⊕ES(H)
and EC(G⊕H) = EC(G)⊕ EC(H).

Proof. There are no edges between G and H so that a strong edge of G and a strong edge of
H have no common endpoint. Thus the union of the solutions for G and H satisfy the strong
triadic closure. By Lemma 3.1, EC(G ⊕H) contains the edges of a greedy clique partition
which is obtained from the corresponding cliques of G and H.

We next consider the complete join of cographs. Given two vertex-disjoint cographs G
and H with greedy clique partitions C = (C1, . . . , Cp) and C′ = (C ′1, . . . , C

′
p′), respectively,

we denote by Ci(G,H) the edges that have one endpoint in Ci and the other endpoint in C ′i,
for every 1 ≤ i ≤ min{p, p′}.

Lemma 3.5. Let G and H be vertex-disjoint cographs with greedy clique partitions C =
(C1, . . . , Cp) and C′ = (C ′1, . . . , C

′
p′), respectively. Then,

• ES(G⊗H) = (ES(G)⊕ ES(H)) ∪ E(G,H) and

• EC(G⊗H) = (EC(G)⊕ EC(H)) ∪ E(G,H),

where E(G,H) = C1(G,H) ∪ · · · ∪ Ck(G,H) and k = min{p, p′}.

Proof. For the edges of EC(G⊗H) we know that a greedy clique partition of G⊗H forms
an optimal solution by Lemma 3.1. A greedy clique partition of G⊗H is obtained from the
cliques Ci ∪C ′i, for every 1 ≤ i ≤ k, since all the vertices of G are adjacent to all the vertices
of H. The edges of Ci ∪ C ′i can be partitioned into the sets E(Ci), E(C ′i), and Ci(G,H)
giving the desired formulation for EC(G⊗H).

We consider the optimal solution for MaxSTC described by the edges of ES(G⊗H). Let
us show that any solution on the edges of G satisfy the strong triadic closure in the graph
G ⊗ H. Consider a strong edge {x, y} of G. If the resulting labeling does not satisfy the
strong triadic closure then there is a strong edge {x,w} such that y and w are non-adjacent.

6

As G and H are vertex-disjoint graphs, w ∈ V (G) or w ∈ V (H). If w ∈ V (G) then we
already know that the labeling of ES(G) satisfies the strong triadic closure so that y and w
are adjacent. If w ∈ V (H) then by the complete join operation w is adjacent to y. Thus
maximizing the number of strong edges that belong in G and H results in an optimal solution
for G⊗H.

We next consider the edges that have one endpoint in G and the other in H, denoted by
E(G,H). Our goal is to show that edges of C1(G,H)∪ · · · ∪Ck(G,H) belong to an optimal
solution. Let (C, I) and (C′, I ′) be the greedy canonical partitions of G and H, respectively,
where

• C = (C1, . . . , Cp), I = (I1, . . . , Iq), and

• C′ = (C ′1, . . . , C
′
p′), I ′ = (I ′1, . . . , I

′
q′).

Now observe that |C1(G,H) ∪ · · · ∪ Ck(G,H)| =
∑k

i=1 |Ci||C ′i|. Notice that the edges of
C1(G,H) ∪ · · · ∪ Ck(G,H) satisfy the strong triadic closure, since every two strong edges
incident to a vertex of G belong to Ci(G,H) which implies that the endpoints of H belong to
a clique C ′i and, thus, are adjacent in G⊗H. Therefore, we have |ES(G⊗H)| ≥ |EC(G⊗H)|
and

|E(G,H)| ≥
k∑

i=1

|Ci||C ′i|.

In the forthcoming arguments we prove that |E(G,H)| ≤
∑k

i=1 |Ci||C ′i|.
We consider the vertices of Ij , 1 ≤ j ≤ q, and count the number of strong edges that

have one endpoint in Ij and the other endpoint on a vertex of H. Without loss of generality
assume that |I1| ≤ |I ′1|. Then, k = |I1| since p = |I1| and p′ = |I ′1| by Lemma 3.3. For a
subset W of vertices of G, we denote by s(W) the number of strong edges of E(G,H) that
are incident to the vertices of W . By the strong triadic closure principle, any vertex of H has
at most one strong neighbor in Ij and any vertex of G has at most one strong neighbor in
I ′j′ , 1 ≤ j′ ≤ q′. Thus, for any I ′j′ of H there are at most min{|Ij |, |I ′j′ |} strong edges between
the vertices of Ij and I ′j′ . Let rj be the largest index of {1, . . . , q′} for which |I ′rj | ≥ |Ij |;
notice that rj exists, since |Ij | ≤ |I1| ≤ |I ′1|. Then, since |I ′1| ≥ · · · ≥ |I ′q′ |, it is clear that |Ij |
is smaller than or equal to any of |I ′1|, . . . , |I ′rj | and greater than to any of |I ′rj+1|, . . . , |I ′q′ |.
Thus, we get the following inequality:

s(Ij) ≤
q′∑

j′=1

min{|Ij |, |I ′j′ |} =

rj∑
j′=1

|Ij |+
q′∑

j′=rj+1

|I ′j′ |.

We next describe the vertices of I ′1, . . . , I
′
rj , I

′
rj+1, . . . , I

′
q′ by the cliques of H. In particular,

for every 1 ≤ i ≤ |Ij |, we consider a clique C ′i of H. By Lemma 3.3 we know that C ′i contains
exactly one vertex from each of I ′1, . . . , I

′
rj , I

′
rj+1, . . . , I

′
|C′i|

. This means that all previously

described vertices are contained in the disjoint union of cliques C ′1, . . . , C
′
|Ij |. Thus, the

previous inequality can be written as follows.

s(Ij) ≤
rj∑

j′=1

|Ij |+
q′∑

j′=rj+1

|I ′j′ | =
|Ij |∑
i=1

|C ′i|.

Summing up each of s(Ij) for every Ij , 1 ≤ j ≤ q, we obtain:

|E(G,H)| =
q∑

j=1

s(Ij) ≤
q∑

j=1

|Ij |∑
i=1

|C ′i|.

7

Observe that, in the described sum, each |C ′i| is counted for all 1 ≤ j ≤ q for which |Ij | ≥ i.
For such |Ij | and i, by Lemma 3.3 we have Ci ∩ Ij 6= ∅. Thus, the number that |C ′i| appears
in the formula is exactly |Ci|. Moreover, by the greedy canonical partition we know that∑q

j=1 |Ij | =
∑p

i=1 |Ci| and p = |I1|. Hence, we get the desired upper bound for the number
of strong edges in E(G,H):

|E(G,H)| ≤
q∑

j=1

|Ij |∑
i=1

|C ′i| =
|I1|∑
i=1

|Ci||C ′i|.

Therefore, the claimed formula holds for the strong edges of ES(G⊗H) and this concludes
the proof.

We are now ready to state our claimed result, namely that the solutions for MaxSTC
and Cluster Deletion coincide for the class of cographs.

Theorem 3.6. Let G be a cograph. There is an optimal solution for MaxSTC on G that
is a cluster graph. Moreover MaxSTC on G can be solved in O(n2) time.

Proof. An optimal solution for MaxSTC coincides with an optimal solution for Cluster
Deletion trivially for graphs that consist of a single vertex. If G is a non-trivial cograph
then it is constructed by the disjoint union or the complete join operation. In the former
case Lemma 3.4 applies, whereas in the later Lemma 3.5 applies showing that in all cases
ES(G) = EC(G).

Regarding the running time, a maximum clique C1 of G can be found in O(n) time [4],
due to a suitable data structure called cotree. We first construct the cotree of G which takes
time O(n + m) [5]. Removing a vertex v from a cograph G and updating the cotree takes
O(d(v)) time, where d(v) is the degree of v in G [20]. Thus, after removing all vertices from
G we can mantain the cotree in an overall O(n + m) time. In every intermediate step, we
first remove the set of vertices Ci in O(d(Ci)) time where d(Ci) is the sum of the degree
of the vertices of Ci, and then spend O(n) time to compute a maximum clique by using
the resulting cotree. Therefore, since there are at most n such cliques in C, a greedy clique
partition of G can be found in total O(n2) time.

3.1 Maximum independent set of the cartesian product of cographs

In this section we apply the characterization of Theorem 3.6 in order to show an interest-
ing computational characterization of the cartesian product of cographs. Towards such a
characterization we take advantage of an equivalent transformation of an optimal solution
for MaxSTC in terms of a maximum independent set of an auxiliary graph that is called
the line-incompatibility graph. The line-incompatibility graph (also known under the term
Gallai graph [3, 18]), denoted by Γ(G), has a node uv in Γ(G) for every edge {u, v} of G, and
two nodes uv, vw of Γ(G) are adjacent if and only if the vertices u, v, w induce a P3 in G.
The connection between a maximum independent set in Γ(G) and a solution for MaxSTC
in G is given in the following result.

Proposition 3.7 ([17]). For any graph G, a subset ES of edges span ES(G) if and only if
the nodes corresponding to ES form Imax (Γ (G)).

Let G and H be two vertex-disjoint graphs. The cartesian product of G and H, denoted
by G ×H, is the graph with the vertex set V (G) × V (H) and any two vertices (u, u′) and
(v, v′) are adjacent in G × H if and only if either u = v and u′ is adjacent to v′ in H, or
u′ = v′ and u is adjacent to v in G. We are interested in computing a maximum independent
set of G×H whenever G and H are cographs. We first characterize the graph Γ(G⊗H) in
terms of G×H.

8

Lemma 3.8. Let G and H be two vertex-disjoint cographs. Then, Γ(G ⊗ H) = Γ(G) ⊕
Γ(H)⊕

(
G×H

)
.

Proof. Notice that G⊗H is a connected cograph, as every vertex of G is adjacent to every
vertex of H. The edges of G⊗H can be partitioned into the following sets of edges: E(G),
E(H), and E(G,H) where E(G,H) is the set of edges between G and H in G ⊗ H. By
definition the nodes of Γ(G) and Γ(H) correspond to the sets E(G) and E(H). Moreover
since G and H are vertex-disjoint graphs, Γ(G) and Γ(H) are also node-disjoint. This means
that there are no common endpoints in the edges inside G and H. Hence every node of Γ(G)
is non-adjacent to all nodes of Γ(H).

Next we show that every node of Γ(G ⊗ H) that corresponds to an edge of E(G,H) is
non-adjacent to the nodes of Γ(G) and Γ(H). If a node xy of Γ(G) is adjacent to a node
xa of E(G,H) then a is a vertex of H and {y, a} is not an edge of G⊗H contradicting the
adjacency between the vertices of G and H. Symmetric arguments show that any node of
Γ(H) is non-adjacent to any node of E(G,H). Thus no node that corresponds to an edge of
E(G,H) is adjacent to any node of Γ(G)⊕ Γ(H).

To complete the proof we need to show that graph of Γ(G⊗H) induced by the nodes of
E(G,H) is exactly the graph G×H. Let x, y be two vertices of G and let w, z be two vertices
of H. By the definition of Γ(G⊗H), two nodes xw, yz are adjacent if and only if either x = y
and w is non-adjacent to z in H (so that w is adjacent to z in H), or w = z and x is non-
adjacent to y in G (so that x is adjacent to y in G). Such an adjacency corresponds exactly
to the definition of the cartesian product of G and H. Therefore the graph of Γ(G ⊗ H)
induced by the nodes of E(G,H) is exactly the graph G×H.

Now we are ready to give the characterization of a maximum independent set of the
cartesian product of cographs, in terms of their greedy independent set partition. Although
a polynomial-time algorithm for computing such a maximum independent set has already
been claimed earlier [11], no characterization is proposed nor an explicit bound on the running
time is reported.

Theorem 3.9. Let G and H be two vertex-disjoint cographs with greedy independent set
partitions I = (I1, . . . , Iq) and I ′ = (I ′1, . . . , I

′
q′), respectively. Then the vertices of (I1 × I ′1)⊕

· · · ⊕ (I` × I ′`) form a maximum independent set of G×H, where ` = min {q, q′}. Moreover
Imax(G×H) can be computed in O(n2) time, where n = max{|V (G)|, |V (H)|}.

Proof. Let (C1, . . . , Cp) and (C ′1, . . . , C
′
p′) be greedy clique partitions of G and H, respec-

tively. By Lemma 3.5, we know that ES(G ⊗ H) = ES(G) ⊕ ES(H) ∪ E(G,H), where
E(G,H) = C1(G,H) ∪ · · · ∪ Ck(G,H) and k = min{p, p′}. Notice that if (C1, . . . , Cp) is
a greedy clique partition for G then (C1, . . . , Cp) is a greedy independent set partition for
G. Moreover, by Proposition 3.7, we know that the edges of ES (G⊗H) correspond to the
nodes of Imax (Γ (G⊗H)). Since Γ (G⊗H) = Γ(G) ⊕ Γ(H) ⊕

(
G×H

)
by Lemma 3.8, we

get E(G,H) = Imax(G ×H). Therefore, the vertices of (I1 × I ′1) ⊕ · · · ⊕ (I` × I ′`) consist a
Imax (Γ (G⊗H)).

For the running time, we need to compute two greedy independent set partitions (I1, . . . , Iq)
and (I ′1, . . . , I

′
q′) for G and H, respectively, and then combine each of Ij with I ′j , for 1 ≤ j ≤ `.

Computing a greedy independent set partition for a cograph G can be done in O(n2) time by
applying the algorithm on G given in the proof of Theorem 3.6. Therefore, the total running
time is bounded by O(|V (G)|2 + |V (H)|2).

9

4 Graphs of Low Maximum Degree

Here we study the influence of the bounded degree in a graph for the MaxSTC problem.
We show an interesting complexity dichotomy result: for graphs of maximum degree four
MaxSTC remains NP-complete, whereas for graphs of maximum degree three the problem
has a polynomial solution.

We prove the hardness result even on a proper subclass of graphs with maximum degree
four. A graph G is a 4-regular K4-free graph, if every vertex of G has degree four and there
is no K4 in G. The decision version of MaxSTC takes as input a graph G and an integer k
and asks whether there is a strong-weak labeling of G that satisfies the strong triadic closure
with at least k strong edges. Similarly the decision version of Cluster Deletion takes as
input a graph G and an integer k and asks whether G has a spanning cluster subgraph by
removing at most k edges. It is known that the decision version of Cluster Deletion on
connected 4-regular K4-free graphs is NP-complete [15].

Theorem 4.1. The decision version of MaxSTC is NP-complete on connected 4-regular
K4-free graphs.

Proof. We give a polynomial-time reduction to MaxSTC from the Cluster Deletion
problem on connected 4-regular K4-free graphs which is already known to be NP-complete
[15]. Let G = (V,E) be a connected 4-regular K4-free graph with n = 3q and 2n edges. Let
EC(G) be a solution for the Cluster Deletion with k = n edges. It is not difficult to see
that every connected component of EC(G) is a triangle, since the graph is 4-regular and K4

is a forbidden graph [15]. Then EC(G) is a solution for MaxSTC with at least n strong
edges.

For the opposite direction, assume that ES(G) is a solution for MaxSTC with at least n
strong edges. We show that the graph spanned by the strong edges of ES(G) is a two-regular
graph. That is, every vertex of G has exactly two strong neighbors. Assume that there is a
vertex v that has at least three strong neighbors. By the strong triadic closure all its strong
neighbors must induce a clique in G. Then N [v] induces a K4 which is a forbidden subgraph.
Thus every vertex has at most two strong neighbors. Furthermore if there is a vertex having
only one strong neighbor then |ES(G)| < n which contradicts the assumption of n strong
edges. Hence every vertex has exactly two strong neighbors in ES(G).

Since ES(G) is a 2-regular graph we know that the graph spanned by the strong edges
is the disjoint union of triangles or chordless cycles Cp, with 4 ≤ p ≤ n. Let us also rule out
that a connected component of ES(G) is a chordless cycle on four vertices C4. To see this,
observe that if there is a C4 in ES(G) then the four vertices of the C4 induce a K4 in G.
Now assume that there is a connected component of ES(G) that is a chordless cycle Cp with
4 < p < n. In such a connected component, every vertex belongs to two distinct P3’s as an
endpoint. More precisely, let v1, . . . , vp be the vertices of Cp such that {vi, vi+1} and {vp, v1}
are strong edges with 1 ≤ i < p. Then, for every vertex vi of Cp there two P3’s vi−2, vi−1, vi
and vi, vi+1, vi+2 such that vi−2 6= vi+2. By the strong triadic closure, we know that vi is
adjacent to both vi−2 and vi+2 in G. Since G is a 4-regular graph, there are no more edges
incident to any vertex of Cp. Thus, every vertex of Cp is non-adjacent to any other vertex of
G − Cp which contradicts the original connectivity of G. Therefore, either every connected
component of ES(G) is a triangle or ES(G) is connected and ES(G) = Cn.

If every connected component of ES(G) is a triangle then clearly ES(G) spans a cluster
graph. Suppose that ES(G) = Cn. Since n = 3q, we can partition the vertices of Cn into
q triangles with the same number of strong edges as follows. For every triplet of vertices
vi, vi+1, vi+2, 1 ≤ i ≤ n − 2, we further label the edge {vi, vi+2} strong and we label both
edges {vi+2, vi+3} and {vn, v1} weak. Observe that {vi, vi+2} is an edge of G, since both

10

{vi, vi+1}, {vi+1, vi+2} are strong edges. Such a labeling satisfies the strong triadic closure
property and maintain the same number of strong edges. Therefore in every case a solution
for MaxSTC with n edges can be equivalently transformed into a solution for Cluster
Deletion with n edges.

We can also obtain lower bounds for the running time of MaxSTC with respect to the
integer k (size of the solution) or the number of vertices n. For that purpose, we make use
of the exponential-time hypothesis: it states that k-SAT, k ≥ 3, cannot be solved in time
2o(n) or 2o(m) where n is the number of variables and m is the number of clauses in the given
k-CNF formula (see for e.g., [12, 19, 23]). In this context, algorithms with running time 2o(p)

for some parameter p are called subexponential-time algorithms.
A subexponential-time algorithm for MaxSTC would imply an algorithm for solving

Cluster Deletion that has running time subexponential in the size of the solution k or
the number of vertices n. However, Cluster Deletion does not admit such subexponential-
time algorithms even if we restrict to graphs of maximum degree four [15]. Since we can
reduce Cluster Deletion to MaxSTC instances on the same graph with k = n, we arrive
at the following.

Corollary 4.2. MaxSTC cannot be solved in 2o(k) · poly(n) time or in O(2o(n)) time unless
the exponential-time hypothesis fails.

Due to Proposition 3.7, we stress that MaxSTC reduces to finding a minimum vertex
cover of Γ(G) corresponding to the weak edges in an optimal solution. Thus MaxSTC
admits algorithms with running times 2Ω(k) poly(n) or O∗(cn)1 where k is the minimum
number of weak edges and c < 2 is a constant [6, 8].

Now let us show that if we restrict to graphs of maximum degree three then MaxSTC
becomes polynomial-time solvable. Our goal is to show that there is an optimal solution for
MaxSTC that is a cluster graph, since Cluster Deletion is solved in polynomial time
on such graphs [15].

Theorem 4.3. Let G be a graph with maximum degree three. Then, there is an optimal
solution for MaxSTC on G that is a cluster graph.

Proof. Observe that if there is a K4 in G then the vertices of the K4 form a connected
component in G since no vertex can have degree more than three. Let ES(G) be the graph
spanned by the strong edges in an optimal solution for MaxSTC. For a vertex v, we denote
by NS(v) the strong neighbors of v. Clearly |NS(v)| ≤ 3. If |NS(v)| = 3 then the vertices
of N [v] form a K4 since the strong neighbors of v are adjacent in G, which implies that all
edges of G[N [v]] are strong. In what follows we assume that for every vertex v, |NS(v)| ≤ 2
holds.

If every connected component of ES(G) is a clique then ES(G) is a cluster graph. Assume
that there is a connected component of ES(G) that is not a clique. Then, there is a P3 =
x, y, z in ES(G) so that {x, y} and {y, z} are strong edges. Notice that y has no other strong
neighbor in ES(G). We distinguish cases according to the strong neighbors of x and z.

• Let NS(x) = {y} and NS(z) = {y}. Observe that {x, z} is an edge of G by the
strong triadic closure. Then, we reach a contradiction to the optimality of ES(G) since
labeling the edge {x, z} as strong does not violate the strong triadic closure.

• Let NS(x) = {x′, y} and NS(z) = {y}. Then, observe that the edge {y, x′} is weak. We
show that we can label the edge {y, x′} as strong and the edge {y, z} as weak without

1The O∗ notation suppresses polynomial factors of n.

11

violating the strong triadic closure. Assume for contradiction that labeling the edge
{y, x′} as strong violates the strong triadic closure. Then, since there is no other strong
edge incident to y, there is a strong edge {x′, a}. Since NS(z) = {y}, a 6= z. Then,
however, we reach a contradiction to the degree of x since x is adjacent to a, x′, y, and
z in G. Hence, we can safely label the {y, x′} as strong so that x, y, x′ does not induce
a P3 in ES(G).

• Let NS(x) = {x′, y} and NS(z) = {z′, y}. If x′ 6= z′ then y must be adjacent in G to all
four vertices x, z, x′, z′ which contradicts its degree in G. Thus x′ = z′ and the vertices
x, y, z, x′ induce a K4 in G by the strong triadic closure. This means that all edges of
the K4 are strong.

Since |NS(x)| ≤ 2 and |NS(z)| ≤ 2, we have considered all cases for the strong neighbors of
x and z. Thus, we can reform the solution ES(G) for MaxSTC into a union of cliques and
keep the same size. Therefore, there is a solution for Cluster Deletion having the same
size with an optimal solution for MaxSTC.

By combining Theorem 4.3 with the fact that Cluster Deletion can be solved in
O(n1.5 · log2 n) on graphs with maximum degree three [15], we get the following result.

Corollary 4.4. MaxSTC can be solved in O(n1.5 · log2 n) time when the input graph has
maximum degree three.

5 Concluding Remarks

We have performed a systematic study on families of graphs for which optimal solutions for
both MaxSTC and Cluster Deletion problems coincide. As an important outcome, we
have complemented previous results regarding the complexity of MaxSTC when restricted
to cographs or graphs of bounded degree. Some open questions arise from our work. It is
interesting to completely characterize graphs by forbidden subgraphs for which MaxSTC
and Cluster Deletion solutions coincide. Towards such an approach, Proposition 3.7
seems to be a useful tool. Moreover, despite the fact that the optimal solutions for MaxSTC
and Cluster Deletion coincide on cographs, there exist superclasses of cographs, namely,
permutation graphs (the lowest example of Figure 1 is a permutation graph), for which
both problems do not coincide and both problems restricted to such graphs have unresolved
complexity status. Settling the complexity of both problems on superclasses of cographs
consists an interesting research area for future work.

A more general and realistic scenario for both problems is to restrict the choice of the
considered edges. Assume that a subset F of edges is required to be included in the same
clusters for Cluster Deletion or those edges are required to be strong for MaxSTC.
Then, it is natural to ask for a suitable set of edges E′ ⊆ E \F with |E′| as large as possible
such that the edges of E′ ∪ F span a cluster graph or satisfy the strong triadic closure.
Clarifying the complexity of such generalized problems is interesting on graphs for which
Cluster Deletion or MaxSTC are solved in polynomial time.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56:89–
113, 2004.

[2] F. Bonomo, G. Durán, and M. Valencia-Pabon. Complexity of the cluster deletion
problem on subclasses of chordal graphs. Theor. Comp. Science, 600:59–69, 2015.

12

[3] M. Cochefert, J.-F. Couturier, P.A. Golovach, D. Kratsch, and D. Paulusma. Parame-
terized algorithms for finding square roots. Algorithmica, 74:602–629, 2016.

[4] D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Discrete
Applied Mathematics, 3:163–174, 1981.

[5] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing, 14:926–934, 1985.

[6] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[7] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, 2010.

[8] F.V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.

[9] Y. Gao, D.R. Hare, and J. Nastos. The cluster deletion problem for cographs. Discrete
Mathematics, 313:2763–2771, 2013.

[10] M. Granovetter. The strength of weak ties. American Journal of Sociology, 78:1360–
1380, 1973.

[11] W.-K. Hon, T. Kloks, H.H. Liu, S.-H. Poon, and Y.-L. Wang. On independence domi-
nation. In Proceedings of FCT 2013, pages 183–194, 2013.

[12] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63:512–530, 2001.

[13] W. Imrich, S. Klavzar, and D.F. Rall. Topics in Graph Theory: Graphs and Their
Cartesian Product. AK Peters Ltd, 2008.

[14] P.K. Jha and G. Slutzki. Independence numbers of product graphs. Applied Mathematics
Letters, 7:91–94, 1994.

[15] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifications.
Discrete Applied Mathematics, 160:2259–2270, 2012.

[16] A.L. Konstantinidis, S.D. Nikolopoulos, and C. Papadopoulos. Strong triadic closure in
cographs and graphs of low maximum degree. In COCOON 2017, pages 346–358, 2017.

[17] A.L. Konstantinidis and C. Papadopoulos. Maximizing the strong triadic closure in split
graphs and proper interval graphs. In ISAAC 2017, pages 53:1–53:12, 2017.

[18] V.B. Le. Gallai graphs and anti-gallai graphs. SIAM J. Disc. Math., 159:179–189, 1996.

[19] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time
hypothesis. Bulletin of the European Association for Theoretical Computer Science,
105:41–72, 2011.

[20] R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition and
recognition of cographs. Discrete Applied Mathematics, 136:329–340, 2004.

[21] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144:173–182, 2004.

13

[22] S. Sintos and P. Tsaparas. Using strong triadic closure to characterize ties in social
networks. In Proceedings of KDD 2014, pages 1466–1475, 2014.

[23] G.J. Woeginger. Exact algorithms for NP-hard problems: a survey, volume 2570. Lecture
Notes in Computer Science, Springer, 2003.

14

