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Abstract
In social networks the Strong Triadic Closure is an assignment of the edges with strong
or weak labels such that any two vertices that have a common neighbor with a strong edge are
adjacent. The problem of maximizing the number of strong edges that satisfy the strong triadic
closure was recently shown to be NP-complete for general graphs. Here we initiate the study of
graph classes for which the problem is solvable. We show that the problem admits a polynomial-
time algorithm for two unrelated classes of graphs: proper interval graphs and trivially-perfect
graphs. To complement our result, we show that the problem remains NP-complete on split
graphs, and consequently also on chordal graphs. Thus we contribute to define the first border
between graph classes on which the problem is polynomially solvable and on which it remains
NP-complete.
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1 Introduction

Predicting the behavior of a network is an important concept in the field of social networks
[9]. Understanding the strength and nature of social relationships has found an increasing
usefulness in the last years due to the explosive growth of social networks (see e.g., [2]).
Towards such a direction the Strong Triadic Closure principle enables us to understand
the structural properties of the underlying graph: it is not possible for two individuals to
have a strong relationship with a common friend and not know each other [12]. Such a
principle stipulates that if two people in a social network have a “strong friend” in common,
then there is an increased likelihood that they will become friends themselves at some point
in the future. Satisfying the Strong Triadic Closure is to characterize the edges of
the underlying graph into weak and strong such that any two vertices that have a strong
neighbor in common are adjacent. Since users interact and actively engage in social networks
by creating strong relationships, it is natural to consider the MaxSTC problem: maximize
the number of strong edges that satisfy the Strong Triadic Closure. The problem has
been shown to be NP-complete for general graphs while its dual problem of minimizing the
number of weak edges admits a constant factor approximation ratio [28].

In this work we initiate the computational complexity study of the MaxSTC problem
in important classes of graphs. If the input graph is a P3-free graph (i.e., a graph having
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no induced path on three vertices which is equivalent with a graph that consists of vertex-
disjoint union of cliques) then there is a trivial solution by labeling strong all the edges. Such
an observation might falsely lead into a graph modification problem, known as Cluster
Deletion problem (see e.g., [3, 14]), in which we want to remove the minimum number of
edges that correspond to the weak edges, such that the resulting graph does not contain a
P3 as an induced subgraph. More precisely the obvious reduction would consist in labeling
the deleted edges in the instance of Cluster Deletion as weak, and the remaining ones as
strong. However, this reduction fails to be correct due to the fact that the graph obtained
by deleting the weak edges in an optimal solution of MaxSTC may contain an induced
P3, so long as those three vertices induce a triangle in the original graph (prior to deleting
the weak edges). We stress that there are examples on split graphs (Figure 1) and proper
interval graphs (Figure 3) showing such a difference.

To the best of our knowledge, no previous results were known prior to our work when
restricting the input graph for the MaxSTC problem. It is not difficult to see that for bi-
partite graphs the MaxSTC problem has a simple polynomial-time solution by considering
a maximum matching that represent the strong edges [15]. In fact such an argument re-
garding the maximum matching generalizes to the larger class of triangle-free graphs. Also
notice that for triangle-free graphs a set of edges is a maximum matching if and only if
it is formed by a solution for the Cluster Deletion problem. It is well-known that a
maximum matching of a graph corresponds to a maximum independent set of its line graph
that represents the adjacencies between the edges [10]. As previously noted, for general
graphs it is not necessarily the case that a maximum matching corresponds to the optimal
solution for MaxSTC. Here we show a similar characterization for MaxSTC by consid-
ering the adjacencies between the edges of a graph that participate in induced P3’s. Such
a characterization allows us to exhibit structural properties towards an optimal solution of
MaxSTC.

Due to the nature of the P3 existence that enforce the labeling of weak edges, there
is an interesting connection to problems related to the square root of a graph; a graph H

is a square root of a graph G and G is the square of H if two vertices are adjacent in G

whenever they are at distance one or two in H. Any graph does not have a square root (for
example consider a simple path), but every graph contains a subgraph that has a square
root. Although it is NP-complete to determine if a given chordal graph has a square root
[21], there are polynomial-time algorithms when the input is restricted to bipartite graphs
[20], or proper interval graphs [21], or trivially-perfect graphs [25]. Among several square
roots that a graph may have, one can choose the square root with the maximum or minimum
number of edges [5, 23]. The relationship between MaxSTC and to that of determining
square roots can be seen as follows. In the MaxSTC problem we are given a graph G and
we want to select the maximum possible number of edges, at most one from each induced
P3 in G. Thus we need to find the largest subgraph (in terms of the number of its edges) H
of G such that the square of H is a subgraph of G. However the known results related to
square roots were concerned with deciding if the whole graph has a (maximum or minimum)
square root and there are no such equivalent formulations related to the largest square root.

Our main motivation is to understand the complexity of the problem on subclasses of
chordal graphs, since the class of chordal graphs (i.e., graphs having no chordless cycle of
length at least four) finds important applications in both theoretical and practical areas
related to social networks [1, 19, 26]. More precisely two famous properties can be found in
social networks. For most known social and biological networks their diameter, that is, the
length of the longest shortest path between any two vertices of a graph, is known to be a small
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Figure 1 A split graph G is shown to the left side. The right side depicts a solution for MaxSTC
on G where the weak edges are exactly the edges of G that are not shown.

constant [17]. On the other hand it has been shown that the most prominent social network
subgraphs are cliques, whereas highly infrequent induced subgraphs are cycles of length four
[29]. Thus it is evident that subclasses of chordal graphs are close related to such networks,
since they have rather small diameter (e.g., split graphs or trivially-perfect graphs) and are
characterized by the absence of chordless cycles (e.g., proper interval graphs). Towards such
a direction we show that MaxSTC is NP-complete on split graphs and consequently also
on chordal graphs. On the positive side, we present the first polynomial-time algorithm
for computing MaxSTC on proper interval graphs. Proper interval graphs, also known as
unit interval graphs or indifference graphs, form a subclass of interval graphs and they are
unrelated to split graphs [27]. By our result they form the first graph class, other than
triangle-free graphs, for which MaxSTC is shown to be polynomial time solvable. In order
to obtain our algorithm, we take advantage of their clique path (consecutive arrangement
of maximal cliques) and apply a dynamic programming on subproblems defined by passing
the clique path in its natural ordering. Our structural proofs on proper interval graphs
can be seen as useful tools towards settling the complexity of MaxSTC on interval graphs.
Furthermore by considering the characterization of the induced P3’s mentioned earlier, we
show that MaxSTC admits a simple polynomial-time solution on trivially-perfect graphs
(i.e., graphs having no induced P4 or C4).

2 Preliminaries

We refer to [4] for our standard graph terminology. Due to space restrictions, some of our
proofs have been moved in an appendix. Given a graph G = (V,E), a strong-weak labeling
on the edges of G is a function λ that assigns to each edge of E(G) one of the labels strong
or weak; i.e., λ : E(G) → {strong,weak}. An edge that is labeled strong (resp., weak) is
simply called strong (resp. weak). The strong triadic closure of a graph G is a strong-weak
labeling λ such that for any two strong edges {u, v} and {v, w} there is a (weak or strong)
edge {u,w}. In other words, in a strong triadic closure there is no pair of strong edges {u, v}
and {v, w} such that {u,w} /∈ E(G).

The problem of computing a maximum strong triadic closure, denoted by MaxSTC, is
to find a strong-weak labeling on the edges of E(G) that satisfies the strong triadic closure
and has the maximum number of strong edges. Note that its dual problem asks for the
minimum number of weak edges. Here we focus on maximizing the number of strong edges
in a strong triadic closure.

Let G be a strong-weak labeled graph. We denote by (ES , EW ) the partition of E(G)
into strong edges ES and weak edges EW . The graph spanned by ES is the graph G \EW .
For a vertex v ∈ V (G) we say that the strong neighbors of v are the other endpoints of the
strong edges incident to v. We denote by NS(v) ⊆ N(v) the strong neighbors of v. Similarly
we say that a vertex u is strongly adjacent to v if u is adjacent to v and {u, v} is strong.
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I Observation 1. Let G = (ES , EW ) be a strong-weak labeled graph. G satisfies the strong
triadic closure if and only if for every P3 in G \ EW , the vertices of P3 induce a K3 in G.

Therefore in the MaxSTC problem we want to minimize the number of the removal
(weak) edges EW from G such that every three vertices that induce a P3 in G \EW form a
clique in G.

3 MaxSTC on split graphs

Here we provide an NP-hardness result for MaxSTC on split graphs. A graph G = (V,E) is
a split graph if V can be partitioned into a clique C and an independent set I, where (C, I)
is called a split partition of G. Split graphs form a subclass of the larger and widely known
graph class of chordal graphs, which are the graphs that do not contain induced cycles of
length 4 or more as induced subgraphs. It is known that split graphs are self-complementary,
that is, the complement of a split graph remains a split graph. Hereafter for two vertices u
and v we say that u sees v if {u, v} ∈ E(G); otherwise, we say that u misses v. First we
need the following.

I Lemma 2. Let G = (V,E) be a split graph with a split partition (C, I). Let ES be the set
of strong edges in an optimal solution for MaxSTC on G and let IW be the vertices of I
that are incident to at least one edge of ES.
1. If every vertex of IW misses at least three vertices of C in G then ES = E(C).
2. If every vertex of IW misses exactly one vertex of C in G then |ES | ≤ |E(C)|+ b |IW |

2 c.

Proof. Let wi be a vertex of I and let Bi be the set of vertices in C that are non-adjacent
to wi. Let Ai be the strong neighbors of wi in an optimal solution. For the edges of the
clique, there are |Ai||Bi| weak edges due to the strong triadic closure. Moreover any vertex
wj of I \ {wi} cannot have a strong neighbor in Ai. This means that Ai ∩ Aj = ∅. Notice,
however, that both sets Bi ∩Bj and Ai ∩Bj are not necessarily empty.

Observe that IW contains the vertices of I that are incident to at least one strong
edge. Let E(A,B) be the set of weak edges that have one endpoint in Ai and the other
endpoint in Bi, for every 1 ≤ i ≤ |IW |. We show that 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|. Let
{a, b} ∈ E(A,B) such that a ∈ Ai and b ∈ Bi. Assume that there is a pair Aj , Bj such
that {a, b} is an edge between Aj and Bj , for j 6= i. Then a cannot belong to Aj since
Ai ∩ Aj = ∅. Thus a ∈ Bj and b ∈ Aj . Therefore for every edge {a, b} ∈ E(A,B) there are
at most two pairs (Ai, Bi) and (Aj , Bj) for which a ∈ Ai ∪Bj and b ∈ Bi ∪Aj . This means
that every edge of E(A,B) is counted at most twice in

∑
wi∈IW

|Ai||Bi|.
For any two edges {u, v}, {v, z} ∈ E(C) \ E(A,B), observe that they satisfy the strong

triadic closure since there is the edge {u, z} in G. Thus the strong edges of the clique are
exactly the set of edges E(C) \ E(A,B). In total by counting the number of strong edges
between the independent set and the clique, we have |ES | = |E(C)\E(A,B)|+

∑
wi∈IW

|Ai|.
Since 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|, we get

|ES | ≤ |E(C)|+
∑

wi∈IW

|Ai|
(

1−
⌊
|Bi|

2

⌋)
.

Now the first claim of the lemma holds because |Bi| ≥ 3 so that IW = ∅. For the second
claim we show that for every vertex of IW , |Ai| = 1. Let wi ∈ IW such that |Ai| ≥ 2 and
let Bi = {bi}. Recall that no other vertex of IW has strong neighbors in Ai. Also note that
there is at most one vertex wj in IW that has bi as a strong neighbor. If such a vertex wj
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exist and for the vertex bj of the clique that misses wj it holds bj ∈ Ai, then we let v = bj ;
otherwise we choose v as an arbitrary vertex of Ai. Observe that no vertex of I \ {wi} has a
strong neighbor in Ai \{v} and only wj ∈ IW is strongly adjacent to bi. Then we label weak
the |Ai| − 1 edges between wi and the vertices of Ai \ {v} and we label strong the |Ai| − 1
edges between bi and the vertices of Ai \ {v}. Making strong the edges between bi and the
vertices of Ai \ {v} does not violate the strong triadic closure since every vertex of C ∪{wj}
is adjacent to every vertex of Ai \ {v}. Therefore for every vertex wi ∈ IW , |Ai| = 1 and by
substituting |Bi| = 1 in the formula for |ES | we get the claimed bound. J

In order to give the reduction, we introduce the following problem that we call max-
imum disjoint non-neighborhood: given a split graph (C, I) where every vertex of I misses
three vertices from C, we want to find the maximum subset SI of I such that the non-
neighborhoods of the vertices of SI are pairwise disjoint. In the corresponding decision
version, denoted by MaxDisjointNN, we are also given an integer k and the problem asks
whether |SI | ≥ k. The polynomial-time reduction to MaxDisjointNN is given from the
classical NP-complete problem 3-Set Packing [18]: given a universe U of n elements, a
family F of triplets of U , and an integer k, the problem asks for a subfamily F ′ ⊆ F with
|F ′| ≥ k such that all triplets of F ′ are pairwise disjoint.

I Corollary 3. MaxDisjointNN is NP-complete on split graphs.

Now we turn to our original problem MaxSTC. The decision version of MaxSTC takes
as input a graph G and an integer k and asks whether there is strong-weak labeling of the
edges of G that satisfies the strong triadic closure with at least k strong edges.

I Theorem 4. The decision version of MaxSTC is NP-complete on split graphs.

Proof. Given a strong-weak labeling (ES , EW ) of a split graph G = (C, I), checking whether
(ES , EW ) satisfies the strong triadic closure amounts to check in G \ EW whether there is
a non-edge in G between the endvertices of every P3 according to Observation 1. Thus
by listing all P3’s of G \ EW the problem belongs to NP. Next we give a polynomial-time
reduction to MaxSTC from the MaxDisjointNN problem on split graphs which is NP-
complete by Corollary 3. Let (G, k) be an instance of MaxDisjointNN where G = (C, I)
is a split graph such that every vertex of the independent set I misses exactly three vertices
from the clique C. For a vertex wi ∈ I, we denote by Bi the set of the three vertices in C
that are non-adjacent to wi. Let n = |C|. We extend G and construct another split graph
G′ as follows (see Figure 2):

We add n vertices y1, . . . , yn in the clique that constitutes the set CY .
We add n vertices x1, . . . , xn in the independent set that constitutes the set IX .
For every 1 ≤ i ≤ n, yi is adjacent to all vertices of (C ∪ CY ∪ I ∪ IX) \ {xi}.
For every 1 ≤ i ≤ n, xi is adjacent to all vertices of (C ∪ CY ) \ {yi}.

Thus wi misses only the vertices of Bi from the clique. By construction it is clear that G′
is a split graph with a split partition (C ∪ CY , I ∪ IX). Notice that the clique C ∪ CY has
2n vertices and G = G′[I ∪ C].

We claim that G has a solution for MaxDisjointNN of size at least k if and only if
G′ has a strong triadic closure with at least n(2n − 1) + bn

2 c + dk
2 e strong edges. Due to

space restriction we only show the one direction. For the opposite direction we refer to the
Appendix A.

Assume that {w1, . . . , wk} ⊆ I is a solution for MaxDisjointNN on G of size at least
k. Since the sets B1, . . . , Bk are pairwise disjoint, there are k distinct vertices y1, . . . , yk in
CY such that k ≤ n. We will give a strong-weak labeling for the edges of G′ that fulfills the
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· · ·

· · ·
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xk
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Bk
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xk+1
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Bk+1

wk+1

xk+2

yk+2
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· · ·

· · ·

· · ·

xn−1

yn−1

xn

yn

B|I|

w|I|

IX
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I

Figure 2 The split graph (C ∪CY , I ∪ IX) given in the polynomial-time reduction. Every vertex
wi misses the vertices of Bi and sees the vertices of (C ∪ CY ) \ Bi. Every vertex xi misses yi and
sees the vertices of (C ∪CY ) \ {yi}. The sets B1, . . . , Bk are pairwise disjoint whereas for every set
Bj , k < j ≤ |I|, there is a set Bi, 1 ≤ i ≤ k, such that Bi ∩ Bj 6= ∅. The drawn edges correspond
to the strong edges between the independent set and the clique, and the dashed edges are the only
weak edges in the clique C ∪ CY .

strong triadic closure and has at least the claimed number of strong edges. For simplicity,
we describe only the strong edges; the edges of G′ that are not given are all labeled weak.
We label the edges between each vertex wi, yi, xi and the three vertices of each set Bi, for
1 ≤ i ≤ k as follows:

The edges of the form {yi, v} are labeled strong if v ∈ (C ∪ CY ) \Bi or v = wi.
The edges between xi and the three vertices of Bi are labeled strong.

Next we label the edges incident to the rest of the vertices. No edge incident to a vertex
of I \ {w1, . . . , wk} is labeled strong. For every vertex u ∈ C \ (B1 ∪ · · · ∪ Bk) we label the
edge {u, v} strong if v ∈ (C ∪ CY ). Let C ′Y = {yk+1, . . . , yn} and let I ′X = {xk+1, . . . , xn}.
Recall that every vertex xk+j is adjacent to every vertex of C ′Y \ {yk+j}. Let ` = bn−k

2 c.
Let M = {e1, . . . , e`} be a maximal set of pairwise non-adjacent edges in G′[C ′Y ] where
ej = {yk+2j−1, yk+2j}, for j ∈ {1, . . . , `}; note that M is a maximal matching of G′[C ′Y ].
For every vertex y ∈ C ′Y , we label the edge {y, v} strong if v ∈ (C ∪ CY ) \ {y′} such that
{y, y′} ∈ M . Moreover, for j ∈ {1, . . . , `}, the edges {xk+2j−1, yk+2j} and {xk+2j , yk+2j−1}
are labeled strong. Note that if n− k is odd then no edge incident to the unique vertex yn

belongs to M and all edges between yn and the vertices of C ∪ CY are labeled strong; in
such a case also note that no edge incident to xn is strong.

Let us show that such a labeling fulfills the strong triadic closure. Any labeling for the
edges inside G′[C ∪ CY ] is satisfied since G′[C ∪ CY ] is a clique. Also note that there are
no two adjacent strong edges that have a common endpoint in the clique C ∪ CY and the
two other endpoints in the independent set I ∪ IX . If there are two strong edges incident
to the same vertex v of the independent set then v ∈ {x1, . . . , xk} and NS [v] = Bi which
is a clique. Assume that there are two adjacent strong edges {u, v} and {v, z} such that
u ∈ I ∪ IX , and v, z ∈ C ∪ CY .

If u ∈ {w1, . . . , wk} then {u, z} ∈ E(G′) since every wi misses only the vertices of Bi.
If u ∈ {x1, . . . , xk} then v ∈ Bi and {u, z} ∈ E(G′) since every vertex xi misses only yi.
If u ∈ IX \ {x1, . . . , xk} then the strong neighbors of v in C ∪ CY are adjacent to u in
G′ since for the only non-neighbor of u in C ∪ CY there is a weak edge incident to v.

Recall that there is no strong edge incident to the vertices of I \ {w1, . . . , wk}. Therefore
the given strong-weak labeling fulfills the strong triadic closure.
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Observe that the number of vertices in C ∪ CY is 2n. There are exactly 3k + ` weak
edges in G′[C ∪CY ]. Thus the number of strong edges in G′[C ∪CY ] is n(2n− 1)− 3k − `.
There are k strong edges incident to {w1, . . . , wk}, 3k strong edges incident to {x1, . . . , xk},
and 2` strong edges incident to IX \ {x1, . . . , xk}. Thus the total number of strong edges is
n(2n− 1)− 3k − `+ k + 3k + 2` = n(2n− 1) + `+ k and by substituting ` = bn−k

2 c we get
the claimed bound. J

4 Computing MaxSTC on proper interval graphs

Due to the NP-completeness on split graphs given in Theorem 4, it is natural to consider
interval graphs that form another well-studied subclass of chordal graphs. However besides
few observations of this section that may be applied for interval graphs, we found several
unresolved technicalities. Moreover, to the best of our knowledge, the complexity of the
close-related Cluster Deletion problem remains unresolved on interval graphs [3]. Thus
we further restrict the input to the class of proper interval graphs that form a proper subclass
of interval graphs. Our polynomial solution for MaxSTC on proper interval graphs can be
seen as a first step towards determining its complexity on interval graphs.

A graph is a proper interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals overlap and no interval is properly contained in another interval. A
vertex ordering σ is a linear arrangement σ = 〈v1, . . . , vn〉 of the vertices of G. For a vertex
pair x, y we write x � y if x = vi and y = vj for some indices i ≤ j; if x 6= y which implies
i < j then we write x ≺ y. The first position in σ will be referred to as the left end of σ,
and the last position as the right end. We will use the expressions to the left of, to the right
of, leftmost, and rightmost accordingly.

A vertex ordering σ for G is called a proper interval ordering if for every vertex triple
x, y, z of G with x ≺ y ≺ z, {x, z} ∈ E(G) implies {x, y}, {y, z} ∈ E(G). Proper interval
graphs are characterized as the graphs that admit such orderings, that is, a graph is a proper
interval graph if and only if it has a proper interval ordering [24]. We only consider this
vertex ordering characterization for proper interval graphs. Moreover it can be decided in
linear time whether a given graph is a proper interval graph, and if so, a proper interval
ordering can be generated in linear time [24]. It is clear that a vertex ordering σ for G is
a proper interval ordering if and only if the reverse of σ is a proper interval ordering. Two
adjacent vertices u and v are called twins if N [u] = N [v]. A connected proper interval graph
without twin vertices has a unique proper interval ordering σ up to reversal [8, 16]. Figure 3
shows a proper interval graph with its proper interval ordering.

Let us turn our attention to the MaxSTC problem. Instead of maximizing the strong
edges of the original graph G, we will look at the maximum independent set of the following
graph that we call the line-incompatibility graph Ĝ of G: for every edge of G there is a node
in Ĝ and two nodes of Ĝ are adjacent if and only if the vertices of the corresponding edges
induce a P3 in G. In a different context the notion of line-incompatibility has already been
considered under the term Gallai graph in [22] or as an auxiliary graph in [5]. Note that
the line-incompatibility graph of G is a subgraph of the line graph1 of G. Moreover observe
that for a graph G, its line graph and its line-incompatibility graph coincide if and only if
G is a triangle-free graph.

1 The line graph of G is the graph having the edges of G as vertices and two vertices of the line graph
are adjacent if and only if the two original edges are incident in G.
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a b

{cde} {fgh}
i j

G:

a b {cde} {fgh} i j
G:

a b {cde} {fgh} i j
G:

Figure 3 A proper interval graph G and its proper interval ordering. The vertices {c, d, e} and
{f, g, h} form twin sets in G. The two lower orderings depict two solutions for MaxSTC on G.
A solid edge corresponds to a strong edge, whereas a dashed edge corresponds to a weak edge.
Observe that the upper solution contains larger number of strong edges than the lower one. Also
note that the lower solution consists an optimal solution for the Cluster Deletion problem on
G.

ab

a{cde}

b{cde}

b{fgh}

{cde}{fgh}

{cde}i

{fgh}i

{fgh}j

ij

Ĝ:

IĜ

Figure 4 The line-incompatibility graph Ĝ of the proper interval graph G given in Figure 3.
The set I

Ĝ
is a maximum weighted independent set of Ĝ, by taking into account the weight of each

node (i.e., an edge of G) that corresponds to the number of the twin vertices of its endpoints in G

(see Lemma 6).

I Proposition 5. A subset S of edges E(G) is an optimal solution for MaxSTC of G if
and only if S is a maximum independent set of Ĝ.

Therefore we seek for the optimal solution of G by looking at a solution for a maximum
independent set of Ĝ. As a byproduct, if we are interested in minimizing the number of
weak edges then we ask for the minimum vertex cover of Ĝ. We denote by I

Ĝ
the maximum

independent set of Ĝ. To distinguish the vertices of Ĝ with those of G we refer to the
former as nodes and to the latter as vertices. For an edge {u, v} of G we denote by uv

the corresponding node of Ĝ. Figure 4 shows the line-incompatibility graph of the proper
interval graph given in Figure 3.

A natural contraction for several graph problems is to group twin vertices since they
play the same role on the given graph. With the next result, we show that this is indeed
the case for the MaxSTC problem.

I Lemma 6. Let x and y be twin vertices of a graph G. Then there is an optimal solution
I

Ĝ
such that xy ∈ I

Ĝ
and for every vertex u ∈ N(x), xu ∈ I

Ĝ
if and only if yu ∈ I

Ĝ
.



A. L. Konstantinidis and C. Papadopoulos XX:9

Lemma 6 suggests to consider a graphG that has no twin vertices as follows. We partition
V (G) into sets of twins. For every twin set Wx we choose an arbitrary vertex x and remove
all its twin vertices except x from G. Let G′ be the resulting graph that has no twin vertices.
For every edge {x, y} of G′ we assign a weight equal to the product |Wx| · |Wy|. This value
corresponds to all edges of the original graph G between the vertices of Wx and Wy. The
line-incompatibility graph Ĝ′ of G′ is constructed as defined above with the only difference
that a node of Ĝ′ has weight equal to the weight of its corresponding edge in G′. Let I

Ĝ′ be
a maximum weighted independent set, that is an independent set of Ĝ′ such that the sum of
the weights of its nodes is maximized. Then by Lemma 6 we have I

Ĝ
= I

Ĝ′ ∪ S(W ) where
S(W ) contains |Wx|(|Wx| − 1)/2 nodes for every twin set Wx. Therefore we are interested
in computing a maximum weighted independent set of Ĝ′. Also note that G′ is an induced
subgraph of the original graph G. In order to avoid heavier notation we refer to Ĝ′ as Ĝ by
assuming that G has no twin vertices and every vertex of G has a positive weight.

Before reaching the details of our algorithm for proper interval graphs, let us highlight
the difference between the optimal solution for MaxSTC and the optimal solution for the
Cluster Deletion. As already explained in the Introduction a solution for Cluster
Deletion satisfies the strong triadic closure, though the converse is not necessarily true.
In fact such an observation carries out for the class of proper interval graphs as shown in
the example given in Figure 3. For the Cluster Deletion problem twin vertices can be
grouped together following a similar characterization with Lemma 6, as proved in [3]. This
means that the P3-free graph depicted in the lower part of Figure 3 that is obtained by
removing its weak edges (i.e., the dashed drawn lines) is an optimal solution for Cluster
Deletion problem on the given proper interval graph. Therefore when restricted to proper
interval graphs the optimal solution for Cluster Deletion does not necessarily imply an
optimal solution for MaxSTC.

Let G be a proper interval graph and let σ be a proper interval ordering for G. We say
that a solution I

Ĝ
has the consecutive strong property with respect to σ if for any three

vertices x, y, z of G with x ≺ y ≺ z the following holds: xz ∈ I
Ĝ

implies xy, yz ∈ I
Ĝ
. Our

task is to show that such an optimal ordering exists. We start by characterizing the optimal
solution I

Ĝ
with respect to the proper interval ordering σ.

I Lemma 7. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z.
If xz ∈ I

Ĝ
then xy ∈ I

Ĝ
or yz ∈ I

Ĝ
.

Proof. We show that at least one of xy or yz belongs to I
Ĝ
. Assume towards a contradiction

that neither xy nor yz belong to I
Ĝ
. Consider the node xy in Ĝ. If xy is adjacent to a node

xx` ∈ IĜ
then {x`, y} /∈ E(G). Then observe that x` ≺ y because x ≺ y and {x`, y} /∈ E(G).

Since both xx` and xz belong to I
Ĝ
, {x`, z} ∈ E(G). This however contradicts the proper

interval ordering because x` ≺ y ≺ z, {x`, z} ∈ E(G) and y is non-adjacent to x`. Thus xy
is non-adjacent to any node xx` ∈ IĜ

and, in analogous fashion, yz is non-adjacent to any
node zzr ∈ IĜ

.
Now assume that xy is adjacent to a node yyr ∈ IĜ

and yz is adjacent to a node y`y ∈ IĜ
.

This means that {x, yr} /∈ E(G) and {z, y`} /∈ E(G). Since {x, z} ∈ E(G), by the proper
interval ordering we have y` ≺ x ≺ y ≺ z ≺ yr. Then notice that {y`, yr} ∈ E(G), because
both yyr, yy` ∈ IĜ

. By the proper interval ordering we know that both x and z are adjacent
to y`, yr, leading to a contradiction to the assumptions {x, yr} /∈ E(G) and {z, y`} /∈ E(G).
Therefore at least one of xy or yz belongs to I

Ĝ
. J

Thus by Lemma 7 we have two symmetric cases to consider. The next characterization
suggests that there is a fourth vertex with important properties in each corresponding case.
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I Lemma 8. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z

and xz ∈ I
Ĝ
.

If xy /∈ I
Ĝ

and yz ∈ I
Ĝ

then xy is non-adjacent to any node x`x ∈ IĜ
and there is a

vertex w such that yw ∈ I
Ĝ
, {x,w} /∈ E(G), and z ≺ w.

If xy ∈ I
Ĝ

and yz /∈ I
Ĝ

then yz is non-adjacent to any node zzr ∈ IĜ
and there is a

vertex w such that wy ∈ I
Ĝ
, {w, z} /∈ E(G) and w ≺ x.

Now we are ready to show that there is an optimal solution that has the described
properties with respect to the given proper interval ordering.

I Lemma 9. There exists an optimal solution I
Ĝ

that has the consecutive strong property
with respect to σ.

Lemma 9 suggests to find an optimal solution that has the consecutive strong property
with respect to σ. In fact by Proposition 5 and the proper interval ordering, this reduces to
computing the largest proper interval subgraph H of G such that the vertices of every P3 of
H induce a clique in G.

Let G be a proper interval graph and let σ = 〈v1, . . . , vn〉 be its proper interval order-
ing. For a vertex vi we denote by `(i) and r(i) the positions of its leftmost and rightmost
neighbors, respectively, in σ. Observe that for any two vertices vi ≺ vj in σ, v`(i) � v`(j)
and vr(i) � vr(j) [8]. For 1 ≤ j ≤ r(1), let Vj = {v1, . . . , vj}, that is, Vj contains the first j
vertices in σ. Observe that any subset of vertices of Vj induces a clique in G. For the set
Vj we denote by B(Vj) the value that corresponds to the total weight of the edges incident
to v1 and each of v2, . . . , vj .

Let A(G) be the value of an optimal solution I
Ĝ
for G. For technical reasons we assume

that vivi is an edge of G with weight equal to zero. For every vertex vi we denote by L[i] = i

and R[i] = r(i). The vectors L and R are called the rightmost limits of the vertices. Let
A(G,L,R) be the value of the optimal solution I(G,L,R) such that for every vertex vi its
rightmost strong neighbor vk lies between the positions L[i] and R[i]. That is, for every
vertex vi with vivk ∈ I(G,L,R) and k as large as possible, L[i] ≤ k ≤ R[i] holds. The key
idea is that we try all positions j among the rightmost limits of the first vertex v1. This is
achieved through the consecutive strong property by making v1 strongly adjacent to every
vertex of Vj . Then, however, we need to update accordingly the rightmost limits of each
vertex of Vj in order to obey the consecutive strong property. As a trivial case observe that
if G contains exactly one vertex then A(G) = 0.

I Lemma 10. Let G be a proper interval graph and let L and R be the rightmost limits of
the vertices with respect to σ. Then A(G) = A(G,L,R) and

A(G,L,R) = max
L[1]≤j≤R[1]

{A(G− {v1}, Lj , Rj) +B(Vj)} ,

where Lj [i] =
{
j if i ≤ j,
L[i] otherwise

and Rj [i] =
{

min{r(1), R[i]} if i ≤ j,
R[i] otherwise.

Now we are equipped with our necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves the MaxSTC problem on proper interval graphs.

I Theorem 11. There is a polynomial-time algorithm that computes the MaxSTC of a
proper interval graph.

5 Concluding remarks
Given the first study with positive and negative results for the MaxSTC problem on re-
stricted input, there are some interesting open problems. As we pointed out MaxSTC is
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more difficult than Cluster Deletion in the following sense: a solution for Cluster
Deletion forms a solution for MaxSTC but the converse is not necessarily true. We have
given examples showing that such an observation carries out for split graphs as well as for
proper interval graphs. Despite the structural difference of both problems, our result on
split graphs points out an important and interesting complexity difference between the two
problems: on split graphs Cluster Deletion has already been shown to be polynomially
solvable [3] whereas we prove that MaxSTC remains NP-complete. It is interesting to ex-
plore other graph classes that exhibit the same behavior. Towards such a direction observe
that every problem expressible in monadic second order logic (MSOL) with quantification
over the vertices and vertex sets can be solved in linear time for graphs of bounded treewidth
[7]. Indeed, MaxSTC can be formulated in MSOL: (i) the edges are partitioned into two
subsets ES , EW (i.e., a strong-weak labeling), (ii) the endpoints of every path of length two
spanned by the edges of ES have an edge (i.e., satisfy the strong triadic closure), and (iii)
|ES | is as large as possible. Therefore there is a linear-time algorithm for MaxSTC on
graphs of bounded treewidth [7].

Apart from the structural properties that we proved for the solution on proper interval
graphs, the complexity of MaxSTC on interval graphs is still open. Moreover it is natural
to characterize the graphs for which their line-incompatibility graph is perfect. Such a
characterization will lead to further polynomial cases of MaxSTC, since the problem of
finding a maximum independent set of perfect graphs admits a polynomial solution [13].
A typical example is the class of bipartite graphs for which their line graph coincides with
their line-incompatibility graph and it is known that the line graph of a bipartite graph is
perfect (see for e.g., [4]). As we show next, another paradigm of this type is the class of
trivially-perfect graphs.

A graph G is called trivially-perfect (also known as quasi-threshold) if for each induced
subgraph H of G, the number of maximal cliques of H is equal to the maximum size of an
independent set of H. It is known that the class of trivially-perfect graphs coincides with
the class of (P4, C4)-free graphs, that is every trivially-perfect graph has no induced P4 or
C4 [11]. A cograph is a graph without an induced P4, that is a cograph is a P4-free graph.
Hence trivially-perfect graphs form a subclass of cographs.

I Theorem 12. The line-incompatibility graph of a trivially-perfect graph is a cograph.

By Theorem 12 and the fact that the maximum independent set of a cograph can be
computed in linear time [6], MaxSTC can be solved in polynomial time on trivially-perfect
graphs. We would like to note that the line-incompatibility graph of a cograph or a proper
interval graph is not necessarily a perfect graph.

More general there are extensions and variations of the MaxSTC problem that are
interesting to consider as proposed in [28]. An interesting and realistic problem is to allow
multiple types of strong edges S0, S1, . . . , Sk that do not allow violating “ordered” P3’s.
More precisely the objective is to partition the edges of G into S0, S1, . . . , Sk with k ≥ 1
so that there is no pair of edges {u, v} ∈ Si and {v, w} ∈ Si such that {u,w} /∈ E(G) and
|S1|+ · · ·+ |Sk| is as large as possible.
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A Appendix: Omitted proofs

Proof of Observation 1. Observe that G \ EW is the graph spanned by the strong edges.
If for two strong edges {u, v} and {v, w}, {u,w} /∈ E(G \ EW ) then {u,w} is an edge in G
and, thus, u, v, w induce a K3 in G. On the other hand notice that any two strong edges of
G \ EW are either non-adjacent or share a common vertex. If they share a common vertex
then the vertices must induce a K3 in G, implying that (ES , EW ) satisfies the strong triadic
closure. J

Proof of Corollary 3. Given a split graph G = (C, I) and SI ⊆ I, checking whether SI is a
solution for MaxDisjointNN amounts to checking whether every pair of vertices of SI have
common neighborhood. As this can be done in polynomial time the problem is in NP. We
will give a polynomial-time reduction to MaxDisjointNN from the classical NP-complete
problem 3-Set Packing [18]: given a universe U of n elements, a family F of triplets of
U , and an integer k, the problem asks for a subfamily F ′ ⊆ F with |F ′| ≥ k such that all
triplets of F ′ are pairwise disjoint.

Let (U ,F , k) be an instance of the 3-Set Packing. We construct a split graphG = (C, I)
as follows. The clique of G is formed by the n elements of U . For every triplet Fi of F we add
a vertex vi in I that is adjacent to every vertex of C except the three vertices that correspond
to the triplet Fi. Thus every vertex of I misses exactly three vertices from C and sees the rest
of C. Now it is not difficult to see that there is a solution F ′ for 3-Set Packing(U ,F , k) of
size at least k if and only if there is a solution SI for MaxDisjointNN(G, k) of size at least
k. For every pair (Fi, Fj) of F ′ we know that Fi ∩ Fj = ∅ which implies that the vertices vi

and vj have disjoint non-neighborhood since Fi corresponds to the non-neighborhood of vi.
By the one-to-one mapping between the sets of F and the vertices of I, every set Fi belongs
to F ′ if and only if vi belongs to SI . J

Continuation of the Proof of Theorem 4. We have claimed thatG has a solution for MaxDis-
jointNN of size at least k if and only if G′ has a strong triadic closure with at least
n(2n−1)+bn

2 c+d
k
2 e strong edges. If G has a solution for MaxDisjointNN of size at least

k then the claimed labeling has already been shown in the main text.
For the opposite direction, assume that G′ has a strong triadic closure with at least

n(2n − 1) + bn
2 c + dk

2 e strong edges. Let ES be the set of strong edges in such a strong-
weak labeling. Observe that the number of edges in G′[C ∪ CY ] is n(2n− 1) which implies
that ES contains edges between the independent set I ∪ IX and the clique C ∪ CY . If no
vertex of IX is incident to an edge of ES then the first statement of Lemma 2 implies that
|ES | = |E(C ∪CY )| = n(2n− 1). And if no vertex of I is incident to an edge of ES then the
second statement of Lemma 2 shows that |ES | ≤ |E(C ∪CY )|+ bn

2 c. Therefore ES contains
edges that are incident to a vertex of I and edges that are incident to a vertex of IX .

In the graph spanned by ES we denote by SW the set of vertices of I that have strong
neighbors in C ∪ CY . We will show that the non-neighborhoods of the vertices of SW in
C∪CY are disjoint in G′ and, since G is an induced subgraph of G′, their non-neighborhoods
are also disjoint in G.

I Claim 13. For every wi ∈ SW , NS(wi) ⊆ CY and there exists a unique vertex x ∈ IX

such that NS(x) = Bi.
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Proof: Let wi be a vertex of SW . We first show that NS(wi) ⊆ CY . Let Wi be the strong
neighbors of wi in C and let Yi be the strong neighbors of wi in CY . Observe that no other
vertex of SW has a strong neighbor inWi∪Yi. Further notice that there are (|Wi|+ |Yi|)|Bi|
weak edges since wi is non-adjacent to the vertices of Bi. We show that for every vertex
wi ∈ SW it holds Wi = ∅. For all vertices wi for which Wi 6= ∅ we replace in ES the strong
edges between wi and the vertices of Wi by the edges between the vertices of Bi and Wi.
Notice that making strong the edges between the vertices of Bi and Wi does not violate the
strong triadic closure since no vertex from SW has a strong neighbor in Bi and every vertex
of IX is adjacent to all the vertices of Wi. Let E(W,B) be the set of edges that have one
endpoint in Wi and the other endpoint in Bi, for every wi ∈ SW . Notice that the difference
between the two described solutions is |E(W,B)| −

∑
|Wi|. By Lemma 2 and |Bi| = 3, we

know that |E(W,B)| ≥ 3/2
∑
|Wi|. Thus such a replacement is safe for the number of edges

of ES and every vertex wi ∈ SW has strong neighbors only in CY .
Let Xi be the set of vertices of IX that have at least one non-neighbor in Yi. By

construction every vertex of Yi is non-adjacent to exactly one vertex of IX , and thus |Xi| =
|Yi|. Since wi has strong neighbors in Yi, every edge between Xi and Yi is weak. By the
previous argument every vertex of SW has strong neighbors only in CY so that NS(Bi)∩I =
∅. Also notice that no two vertices of the independent set have a common strong neighbor
in the clique, which means that there are at most |Bi| strong neighbors between the vertices
of Bi and IX . Choose an arbitrary vertex x ∈ Xi. We replace all strong edges in ES

between Bi and IX by |Bi| strong edges between x and the vertices of Bi. Notice that such
a replacement is safe since the unique non-neighbor of x belongs to Yi and there are weak
edges already in the solution between Bi and Yi because of the strong edges between wi and
Yi. Thus Bi ⊆ NS(x). We focus on the edges between the vertices of (C ∪ CY ) \ (Bi ∪ Yi)
and x. If a vertex x of Xi has a strong neighbor u in (C ∪ CY ) \Bi then the edge {u, y} is
weak where y ∈ Yi is the unique non-neighbor of x. Also notice that NS(u)∩(I∪IX) = {x},
NS(y) ∩ (I ∪ IX) = {wi}, and wi is adjacent to u. Then we can safely replace the strong
edge {x, u} by the edge {u, y} and keep the same size of ES . Hence NS(x) = Bi. ♦

I Claim 14. For every wi ∈ SW , NS(wi) = {y} where y ∈ CY is the non-neighbor of x with
NS(x) = Bi.

Proof: Let Yi = NS(wi). By Claim 13 we know that Yi ⊆ CY and there exists x ∈ IX

such that NS(x) = Bi. Both wi and x are vertices of the independent set and, thus, no
other vertex of I ∪ IX has strong neighbors in Bi ∪ Yi. This means that if we remove wi

from SW by making weak the edges incident to wi and the vertices of Yi then the edges
between the vertices of Bi and Yi \ {y} are safely turned into strong. Let E′S be the set
of strong edges in an optimal solution such that all edges incident to wi are weak. Then
|ES | − |E′S | = |Yi|+ |Bi| − |Yi||Bi| and |ES | > |E′S | only if |Yi| = 1 because |Bi| > 1. Thus
NS(wi) contains exactly one vertex y ∈ CY . ♦

We claim that for every pair of vertices wi, wj ∈ SW , Bi ∩ Bj = ∅. Assume for contra-
diction that Bi ∩Bj 6= ∅. Applying Claim 13 for wi shows that there exists x ∈ IX that has
strong neighbors in every vertex of Bi ∩Bj . With a similar argument for wj we deduce that
there exists x′ ∈ IX that has strong neighbors in every vertex of Bi ∩ Bj . If x 6= x′ then a
vertex from Bi∩Bj has two distinct strong neighbors in IX which is not possible due to the
strong triadic closure. Thus x = x′. Claim 14 implies that the unique non-neighbor y of x is
strongly adjacent to both wi and wj . This however violates the strong triadic closure for the
edges of ES since wi, wj are non-adjacent and we reach a contradiction. Thus Bi ∩Bj = ∅.
This means that the number of edges in ES is at least n(2n − 1) + bn

2 c + d |SW |
2 e which is
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maximized for k = |SW |. Therefore ES contains the maximum number of |SW | which is a
solution for MaxDisjointNN on G, since G is an induced subgraph of G′. J

Proof of Proposition 5. By Observation 1 for every P3 in G at least one of its two edges
must be labeled weak in S. This means that these two edges are adjacent in Ĝ and they
cannot belong to an independent set of Ĝ. On the other hand, by construction two nodes
of Ĝ are adjacent if and only if there is a P3 in G. Thus the nodes of an independent set of
Ĝ can be labeled strong in G satisfying the strong triadic closure. J

Proof of Lemma 6. First we show that xy is an isolated node in I
Ĝ
. If xy is adjacent to

xu then y is non-adjacent to u in G which contradicts the fact that x and y are twins. Thus
xy is an isolated node in Ĝ which implies xy ∈ I

Ĝ
. For the second argument observe that

for every vertex u ∈ N(x), xu and yu are non-adjacent in I
Ĝ
. Let u ∈ N(x). Then notice

that u ∈ N(y). This means that if xu ∈ I
Ĝ
(resp., yu ∈ I

Ĝ
) then yu (resp., xu) is a node of

Ĝ. We define the following sets of nodes in Ĝ:
Let Ax be the set of nodes xa such that xa ∈ I

Ĝ
and ya /∈ I

Ĝ
and let Ay be the set of

nodes ya such that xa ∈ Ax.
Let By be the set of nodes yb such that yb ∈ I

Ĝ
and xb /∈ I

Ĝ
and let Bx be the set of

nodes xb such that yb ∈ By.
It is clear that Ax ⊆ I

Ĝ
, By ⊆ I

Ĝ
, and Ax ∩ By = ∅. Also note that |Ax| = |Ay| and

|By| = |Bx|, since N [x] = N [y].
Let Ixy = I

Ĝ
\ (Ax ∪By) so that I

Ĝ
= Ax ∪By ∪ Ixy. We show that every node of Ay is

non-adjacent to any node of I
Ĝ
\By. Let ya be a node of Ay. If there is a node az ∈ I

Ĝ
\By

that is adjacent to ya then z and y are non-adjacent in G which implies that z and x are
non-adjacent in G. This however leads to a contradiction because xa, az ∈ I

Ĝ
and xa is

adjacent to az in Ĝ. If there is a node yb ∈ I
Ĝ
that is adjacent to ya then a is non-adjacent

to b in G so that xa is also adjacent to xb in Ĝ. This means that xb /∈ I
Ĝ

implying that
yb ∈ By. Thus every node of Ay is non-adjacent to any node of I

Ĝ
\By and with completely

symmetric arguments, every node of Bx is non-adjacent to any node of I
Ĝ
\Ax. Hence both

sets I1 = Ax ∪ Ay ∪ Ixy and I2 = Bx ∪ By ∪ Ixy form independent sets in Ĝ. By the facts
that |Ax| = |Ay| and |By| = |Bx| we have |I1| ≥ |IĜ

| whenever |Ax| ≥ |By| and |I2| ≥ |IĜ
|

whenever |Ax| < |By|. Therefore we can safely replace one of the sets Ax or By by Bx or Ay

and obtain the solutions I2 or I1, respectively. Now observe that in both solutions I1 and
I2 we have xu ∈ Ii if and only if yu ∈ Ii, for i ∈ {1, 2}, and this completes the proof. J

Proof of Lemma 8. Let xy /∈ I
Ĝ

and yz ∈ I
Ĝ
. The case for xy ∈ I

Ĝ
and yz /∈ I

Ĝ
is

completely symmetric. Assume towards a contradiction that there is no vertex w such that
yw ∈ I

Ĝ
, {x,w} /∈ E(G), and z ≺ w. We prove that xy is non-adjacent to any node of I

Ĝ
,

contradicting the optimality of I
Ĝ
. Suppose first that xy is adjacent to a node x`x ∈ IĜ

.
Then y is non-adjacent to x` in G. Notice that x` ≺ x because y is adjacent to x and x ≺ y.
Due to the fact that xz ∈ I

Ĝ
, we have that x`x and xz are non-adjacent in Ĝ which implies

that {x`, z} ∈ E(G). Since x` ≺ x ≺ y ≺ z and {x`, z} ∈ E(G), by the proper interval
ordering we get {x`, y} ∈ E(G) leading to a contradiction. Thus xy is non-adjacent to any
node x`x ∈ IĜ

.
Next assume that xy is adjacent to a node yyr ∈ I

Ĝ
. Then {x, yr} /∈ E(G). By the

assumption that there is no vertex w with yw ∈ I
Ĝ
, {x,w} /∈ E(G), and z ≺ w, we have
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yr ≺ z. This particularly means that yr ≺ x or x ≺ yr ≺ z. However both cases lead
to a contradiction to {x, yr} /∈ E(G) since in the former case we have {yr, y} ∈ E(G) and
yr ≺ x ≺ y, and in the latter case we know that {x, z} ∈ E(G). Therefore xy has no
neighbor in I

Ĝ
reaching a contradiction to the optimality of I

Ĝ
. J

Proof of Lemma 9. Let σ be a proper interval ordering for G. Assume for contradiction
that I

Ĝ
does not have the consecutive strong property. Then there exists a conflict with

respect to σ, that is, there are three vertices x, y, z with x ≺ y ≺ z and xz ∈ I
Ĝ

such that
xy /∈ I

Ĝ
or yz /∈ I

Ĝ
. We will show that as long as there are conflicts in σ, we can reduce the

number of conflicts in σ without affecting the value of the optimal solution I
Ĝ
. Consider

such a conflict formed by the three vertices x ≺ y ≺ z with xz ∈ I
Ĝ
. By Lemma 7 we know

that xy ∈ I
Ĝ
or yz ∈ I

Ĝ
. Assume that yz ∈ I

Ĝ
. Then clearly xy /∈ I

Ĝ
, for otherwise there is

no conflict. Then by Lemma 8 there is a vertex w such that yw ∈ I
Ĝ
, {x,w} /∈ E(G), and

x ≺ y ≺ z ≺ w. Notice that both triples x, y, z and y, z, w create conflicts in σ.
We start by choosing an appropriate such conflict that is formed by four vertices x, y, z, w

so that x ≺ y ≺ z ≺ w, xz, yz, yw ∈ I
Ĝ
, and {x,w} /∈ E(G). Fix y and z in σ with y, z

being the leftmost and the rightmost vertices, respectively, such that for every vertex v with
y ≺ v ≺ z, yv, vz ∈ I

Ĝ
holds. Recall that yz ∈ I

Ĝ
. We choose x as the leftmost vertex

such that xz ∈ I
Ĝ

and we choose w as the rightmost vertex such that yw ∈ I
Ĝ
. Observe

that {x,w} /∈ E(G) since y and z participate in a conflict. Due to the properties of the
considered conflicts all such vertices exist (see for e.g., Figure 5).

Let W (x) be the set of vertices wi such that ywi ∈ I
Ĝ

and {x,wi} /∈ E(G), and let
X(w) be the set of vertices xj such that xjz ∈ IĜ

and {xj , w} /∈ E(G). For a vertex wi of
W (x) observe the following. If wi ≺ x then {wi, x} ∈ E(G) because {wi, y} ∈ E(G) and if
x ≺ wi ≺ z then {wi, x} ∈ E(G) because {x, z} ∈ E(G). Thus z ≺ wi which implies that
{z, wi} ∈ E(G) since {y, wi} ∈ E(G). If zwi ∈ IĜ

then by the fact that xz ∈ I
Ĝ

we have
{x,wi} ∈ E(G) contradicting the definition of W (x). This means that w is the rightmost
vertex in W (x) and x is the leftmost vertex in X(w). Moreover for every vertex b1 such that
wib1 ∈ IĜ

notice that x ≺ b1 since {x,wi} /∈ E(G). If x ≺ b1 ≺ wi then {z, b1} ∈ E(G) since
x ≺ z ≺ wi; and if wi ≺ b1 then due to the fact that ywi, wib1 ∈ IĜ

and {y, b1} ∈ E(G)
we have again {z, b1} ∈ E(G) since y ≺ z ≺ b1. Furthermore consider a vertex b2 such that
z ≺ b2 ≺ w and b2 /∈ W (x). This means that yb2 /∈ I

Ĝ
or yb2 ∈ IĜ

with {b2, x} ∈ E(G).
The latter case implies that b2 is adjacent to every vertex of X(w), since x is the leftmost
vertex in X(w) and every vertex of X(w) is to the left of z. Hence for every vertex wi of
W (x) the following hold:

z ≺ wi,
zwi /∈ IĜ

,
for every node wib1 ∈ IĜ

, {z, b1} ∈ E(G), and
for every vertex b2 with z ≺ b2 ≺ w and b2 /∈ W (x), yb2 /∈ IĜ

or b2 is adjacent to every
vertex of X(w).

With symmetric arguments for every vertex xj of X(w) we have the following:
xj ≺ y,
xjy /∈ IĜ

,
for every node a1xj ∈ IĜ

, {a1, y} ∈ E(G), and
for every vertex a2 with x ≺ a2 ≺ y and a2 /∈ X(w), a2z /∈ IĜ

or a2 is adjacent to every
vertex of W (x).
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a1 x
· · ·

xj

X(w)

a2 y u z b2 wi

· · ·
w

W (x)

b1

a1 x
· · ·

xj

X(w)

a2 y u z b2 wi

· · ·
w

W (x)

b1

a1 x
· · ·

xj

X(w)

a2 y u z b2 wi

· · ·
w

W (x)

b1

Figure 5 A proper interval ordering for a graph G with three different solutions considered
in the proof of Lemma 9. A solid edge corresponds to a node of Ĝ that belongs to I

Ĝ
, which

means that such an edge is labeled strong in an optimal strong-weak labeling, whereas a dashed
edge corresponds to a node of Ĝ that does not belong to I

Ĝ
, which means that such an edge is

labeled weak in an optimal strong-weak labeling. Observe that the lowest two orderings contain less
conflicts than the topmost, that is, triple of vertices that violate the consecutive strong property.

The topmost ordering given in Figure 5 illustrates the corresponding cases.
Let Yw be the set of nodes ywi in Ĝ such that wi ∈W (x), and let Zx be the set of nodes

xjz in Ĝ such that xj ∈ X(w). Observe that Yw, Zx ⊆ I
Ĝ

by the previous arguments. We
show that removing either Yw or Zx from I

Ĝ
does not create any new conflict. Let ywi ∈ Yw

and let u be a vertex such that uy ∈ I
Ĝ

and uwi ∈ IĜ
. If y ≺ u ≺ wi then no conflict is

created by removing ywi from I
Ĝ
. Assume that u ≺ y ≺ wi. Observe that x ≺ u ≺ z. Then

xu /∈ I
Ĝ

because {x,wi} /∈ E(G). Since xz ∈ I
Ĝ

and at least one of xu, uz belongs to I
Ĝ
,

we have uz ∈ I
Ĝ
. However this contradicts the leftmost choice for y in x ≺ u ≺ y ≺ z and

there is no such vertex u. Next assume that y ≺ wi ≺ u. Since wi is non-adjacent to x and
wi ≺ u, u is non-adjacent to x, as well. Then according to the definition of W (x), u ∈W (x)
and yu ∈ Yw. The case for the nodes of Zx is completely symmetric. Thus no conflicts are
created by removing the nodes of Yw or the nodes of Zx from I

Ĝ
.

Let Yx be the set of nodes xjy in Ĝ such that xj ∈ X(w), and let Zw be the set of
nodes zwi in Ĝ such that wi ∈ W (x). We denote by I(Yx) and I(Zw) the following sets of
nodes: I(Yx) =

(
I

Ĝ
\ Yw

)
∪ Yx and I(Zw) =

(
I

Ĝ
\ Zx

)
∪Zw. We show that both sets form

independent sets in Ĝ. Consider the case for I(Yx). The nodes of Yx form an independent
set in Ĝ, since the vertices of X(w) induce a clique in G. Moreover it is clear that the nodes
of I

Ĝ
\Yw form an independent set in Ĝ. Let xjy be a node of Yx. Assume for contradiction
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that there is a node in I
Ĝ
\ Yw that is adjacent to xjy. There are two cases to consider:

there is a node vxj ∈ IĜ
\ Yw and {v, y} /∈ E(G) or

there is a node yv ∈ I
Ĝ
\ Yw and {xj , v} /∈ E(G).

In the former case we know from the previous properties for X(w) that for any vertex a1 with
a1xj ∈ IĜ

we have {a1, y} ∈ E(G). Thus we reach a contradiction to the non-adjacency of
v and y. For the latter case observe that yv ∈ I

Ĝ
\ Yw and v /∈W (x). Since {xj , v} /∈ E(G)

and {y, v} ∈ E(G), we have z ≺ v and by the rightmost choice of w for y we have z ≺ v ≺ w.
This however implies that z ≺ v ≺ w, v /∈ W (x) and yv ∈ I

Ĝ
showing that {xj , v} ∈ E(G)

leading again to a contradiction. Completely symmetric arguments hold for I(Zw). The two
lowest orderings given in Figure 5 illustrate the considered cases. Thus I(Yx) and I(Zw)
form independent sets in Ĝ.

Now observe that both I(Yx) and I(Zw) have a smaller number of conflicts with respect to
I

Ĝ
because either x, y, z in I(Yx) or y, z, w in I(Zw) satisfy the consecutive strong property.

It is clear that the difference between I(Yx) and I
Ĝ
are the nodes of Yx and Yw, whereas the

difference between I(Zw) and I
Ĝ
are the nodes of Zw and Zx. For a set A of vertices having

positive weights, denote by M(A) the sum of the weights of its vertices. If M(X(w)) ≥
M(Z(x)) then M(I(Yx)) ≥ M(I

Ĝ
) and if M(X(w)) < M(Z(x)) then M(I(Zw)) > M(I

Ĝ
).

Thus in any case we can replace appropriate set of nodes in I
Ĝ

and obtain an optimal
solution with a smaller number of conflicts. Therefore by applying such a replacement in
every such conflict, we get an optimal solution that has no conflicts and, thus, it satisfies
the consecutive strong property. J

Proof of Lemma 10. We show that A(G) computes the value of an optimal solution that
satisfies the consecutive strong property with respect to σ. By Lemma 9 such an ordering
exists. Since there is no edge between v1 and vk with k > r(1) and v1 is adjacent to every
vertex Vr(1), it follows that A(G) = A(G,L,R). Observe that every induced subgraph of
a proper interval graph is proper interval, which implies that the graph G − {v1} remains
proper interval. Recall that for every two vertices vi ≺ vj , r(i) ≤ r(j) holds by the proper
interval ordering. According to Lemma 9, if v1vj ∈ I(G,L,R) with j ≤ r(1) then we have
the following properties:

(P1) every node vivj , i ≤ j, belongs to I(G,L,R);
(P2) every node vivk, i ≤ j ≤ r(1) < k, does not belong to I(G,L,R).

Let L′, R′ be the rightmost limits of the vertices computed by the given formulas. It is
clear that for any vertex vi, i ≤ L′[i] ≤ R′[i] ≤ r(i) holds. Assume that we have already
encountered the vertices v1, . . . , vt. We first give two properties of L′ and R′ for the vertices
that lie to the right of vt in σ.

In particular for L′ we show that for any two vertices vt ≺ vi ≺ vj with j ≤ r(i) and
L′[i] ≤ j, there is no vertex vk with i ≤ k ≤ j and L′[k] > j. Assume for contradiction
that such a vertex vk exists. Then there is a vertex vi′ ≺ vk that has altered the value of
L′[k] in some previous step. If vt ≺ vi′ then we have not yet encountered vi′ that caused
L′[k] > j. This means that vi′ ≺ vt ≺ vi which implies that L′[i] = L′[k] > j leading to
a contradiction.
With respect to R′[i] we show that for any two vertices vi ≺ vj we have R′[i] ≤ R′[j]. At
the beginning we know that R[i] ≤ R[j] by the proper interval ordering. Let vj be the
leftmost vertex for which R′[i] > R′[j]. This can only happen because of some vertex
vi′ ≺ vi so that R′[j] = r(i′). Then, however, we get R′[i] ≤ r(i′) since i′ < i < j which
implies that R′[i] ≤ R′[j].
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Next we prove that the rightmost limits L′, R′ satisfy the consecutive strong property.
Let vj be the vertex with L′[1] ≤ j ≤ R′[1] that is chosen from the first vertex v1. Consider
any vertex vi ∈ Vj so that i ≤ j. By the previous argument for vk with respect to L′ we
know that L′[i] ≤ j, since L′[1] ≤ j. Then by property (P1) the nodes vivk, i ≤ k ≤ j

belong to I(G,L,R). Thus L′[i] = j.
Furthermore by the fact that R′[i] ≤ R′[j] we know that R′[i] ≥ j because j ≤ R′[1] ≤

R′[i]. If j ≤ R′[i] ≤ r(1) then any node vivk with L′[i] ≤ k ≤ R′[i] is non-adjacent to v1vi,
since k ≤ r(1). If R′[i] > r(1) then by property (P2) vivk /∈ I(G,L,R) with k > r(1). Thus
R′[i] = min{r(1), R[i]}. Therefore the described formulas for the rightmost limits satisfy
the consecutive strong property. J

Proof of Theorem 11. Let G be a proper interval graph on n vertices and m edges. We
first compute its proper interval ordering σ in linear time [24]. Then we compute its twin
sets by using the fact that u and v are twins if and only if `(u) = `(v) and r(u) = r(v).
Contracting the twin sets according to Lemma 6 results in a proper interval graph in which
every vertex is associated with a positive weight. In order to compute the optimal solution
A(G) we use a dynamic programming approach based on its recursive formulation given in
Lemma 10. Correctness follows from Proposition 5 and Lemmata 9 and 10.

Regarding the running time, notice that given the ordering σ we can remove the twin
vertices in linear time. In a preprocessing step we compute the partial sums that are stored
in B(Vj) for every set Vj since the vertex ordering is described by σ. Such values can be
stored in an n2 array. All instances of A(G,L,R) can be computed as follows. Given the
first vertex v1 we compute the rightmost limits L[1], R[1] which are bounded by n2, since
L[1] ≤ R[1] ≤ r(1) ≤ n. Thus the number of instances A(G,L,R) generated by v1 is O(n2).
Also observe that computing the value B(Vi) takes constant time from the preprocessing
step. Because we visit n vertices, the total running time of the algorithm is O(n3). J

Proof of Theorem 12. Let G be a trivially-perfect graph, that is G is a (P4, C4)-free graph.
We will show that the line-incompatibility graph Ĝ of G is a P4-free graph. Consider any P3
in Ĝ. Due to the construction of Ĝ, the P3 has one of the following forms: (i) v1v2, v2v3, v3v4
or (ii) v1x, v2x, v3x. We prove that the P3 has the second form because G has no induced
P4 or C4. If (i) applies then {v1, v3}, {v2, v4} /∈ E(G) and {v1, v2}, {v2, v3}, {v3, v4} ∈ E(G)
which implies that v4 6= v1. Thus G contains a P4 or a C4 depending on whether there is
the edge {v1, v4} in G. Hence every P3 in Ĝ has the form v1x, v2x, v3x where v1, v2, v3, x are
distinct vertices of G. Now assume for contradiction that Ĝ contains a P4. Then the P4 is
of the form v1x, v2x, v3x, v4x because it contains two induced P3’s. The structure of the P4
implies that {v1, v2}, {v2, v3}, {v3, v4} /∈ E(G) and {v1, v3}, {v2, v4}, {v4, v1} ∈ E(G). This
however shows that the vertices v3, v1, v4, v2 induce a P4 in G leading to a contradiction
that G is a (P4, C4)-free graph. Therefore Ĝ is a P4-free graph. J
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