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Abstract

We study the linear clique-width of graphs that are obtained from paths by disjoint union
and adding true twins. We show that these graphs have linear clique-width at most 4, and we
give a complete characterisation of their linear clique-width by forbidden induced subgraphs.
As a consequence, we obtain a linear-time algorithm for computing the linear clique-width
of the considered graphs. Our results extend the previously known set of forbidden induced
subgraphs for graphs of linear clique-width at most 3.

1 Introduction and motivation

Clique-width is a well established graph parameter that is algorithmically useful in a similar way
as treewidth, since problems that are expressible in a certain kind of monadic second order logic
can be solved in linear time on graphs of bounded clique-width [4]. Clique-width can be viewed
as more general than treewidth since there are graphs of bounded clique-width but unbounded
treewidth, whereas graphs of bounded treewidth have bounded clique-width. The relationship
between clique-width and its variant linear clique-width is similar to that between treewidth and
pathwidth [6, 10]. Despite their important applications and different attempts to characterise
them, the general understanding of clique-width and linear clique-width is still very limited.
Even the proof that both parameters are NP-hard to compute is quite recent [6].

So far, we do not know whether the computation of clique-width or linear clique-width is fixed
parameter tractable, or whether there is an algorithm with running time O(cn) to compute either
of these parameters, for c a constant and n the number of vertices of the input graph. We know
of only few cases where clique-width or linear clique-width can be computed in polynomial time.
Graphs of clique-width at most 2 and at most 3 can be recognised efficiently [2, 5, 8]. Similarly,
graphs of linear clique-width at most 2 and at most 3 can be recognised in polynomial time
[12]. Furthermore, for graphs whose clique-width or linear clique-width is at most 2, forbidden
induced subgraph characterisations are known [5, 8]. No such characterisation is known for
graphs whose clique-width or linear clique-width is bounded by 3 or a larger constant.

In this paper we study the linear clique-width of a class of graphs that are obtained from
paths by the following two operations: disjoint union and adding true twins. We call these
graphs thickened paths. Our main aim is not the study of this graph class, but increasing the
understanding of and the knowledge on linear clique-width. Hence thickened paths are merely a
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tool to aid in this quest. Since paths have clique-width at most 3, and clique-width is preserved
under disjoint union and adding true twins [5], it can be easily seen that the clique-width of
thickened paths is at most 3. We prove that thickened paths have linear clique-width at most
4. We completely characterise the thickened paths that have linear clique-width at most 3
and that have linear clique-width 4 by giving forbidden induced subgraphs. Since the proof
of this characterisation is constructive and the set of forbidden induced subgraphs is finite, we
obtain a simple linear-time algorithm for computing the linear clique-width of thickened paths.
Surprisingly, even on this well-structured graph class, the list of forbidden induced subgraphs
for linear clique-width at most 3 is quite long and contains non-trivial graphs.

One implication of our results is that we extend the list of known forbidden induced subgraphs
of graphs of linear clique-width at most 3. The previously known forbidden induced subgraphs
for such graphs are the complements of induced cycles of length at least 5, the square of a path
on eight vertices, and all forbidden induced graphs of cocomparability graphs, as graphs of linear
clique-width at most 3 are cocomparability graphs [12, 13].

The main implication and importance of our results are the structural proofs of lower bounds
on the linear clique-width of certain graphs. The most important obstacle for computing the
clique-width or linear clique-width of any interesting graph class exactly is the difficulty in
proving lower bounds, and very few lower bound proofs are known [7, 3, 13]. Hence, in addition
to contributing towards a possible complete list of forbidden induced subgraphs for graphs
of linear clique-width at most 3, our results contribute to developing new lower-bound proof
techniques for these graph parameters.

The paper has the following structure. We define thickened paths and give some properties
of them in Section 3. In Section 4 we formally define linear clique-width and we prove some
upper bounds on the linear clique-width of thickened paths. As a result of independent interest,
we consider general graphs with true twins and show that the linear clique-width of a graph does
not change when true twins are added to vertices that already have true twins. A similar result
is known for false twins, where linear clique-width is invariant with respect to adding false twins
[12]. In Sections 5, 6 and 7, we prove structural results about linear expressions for paths and
show lower bounds on the linear clique-width of particular thickened paths. Finally, in Section 8,
we show that the above considered thickened paths form a set of forbidden induced subgraphs
for thickened paths of linear clique-width at most 3, and thereby complete the characterisation
of the linear clique-width of thickened paths.

2 Definitions and notation

We consider simple finite undirected graphs. For a graph G = (V,E), V = V (G) denotes the
vertex set of G and E = E(G) denotes the edge set of G. An edge between vertices u and v is
denoted as uv. If uv ∈ E then u and v are adjacent; otherwise, they are non-adjacent. For u
and v adjacent vertices, u is a neighbour of v, and vice versa. The (open) neighbourhood of u,
denoted as NG(u), is the set of neighbours of u in G. By NG[u] =def NG(u)∪{u}, we denote the
closed neighbourhood of u in G. Two vertices u and v are called false twins if NG(u) = NG(v),
and they are called true twins if NG[u] = NG[v]. Note that false twins are non-adjacent and true
twins are adjacent. The true twin relation is an equivalence relation and thus defines a partition
of V into maximal sets of vertices that are pairwise true twins.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set S of vertices of
G, G[S] denotes the subgraph of G induced by S: the vertex set of G[S] is S and the edge set
contains exactly the edges uv of G with u, v ∈ S. For a vertex x of G, G−x denotes the graph
G[V (G) \ {x}]. For two graphs G and H where V (G) ∩ V (H) = ∅, the disjoint union of G and
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Figure 1: From left to right, the figure shows the three graphs claw, bull and gem, that are
forbidden as induced subgraphs of thickened paths.

H is the graph (V (G) ∪ V (H), E(G) ∪E(H)). When we apply the disjoint union operation, we
always implicitly assume that the operand graphs have disjoint vertex sets. It is easy to see how
to generalise the disjoint union operation to more than two operand graphs.

A vertex ordering, or (linear) layout, of a graph G = (V,E) is a bijection between {1, . . . , |V |}
and V , and it is denoted as β = ⟨x1, . . . , xn⟩. For a vertex pair xi, xj of G, we say that xi is to
the left of xj with respect to β if i < j. We also write u ≺β v for u and v vertices of G if u is
to the left of v with respect to β. The leftmost vertex of G with respect to β satisfying some
condition is the vertex xi with the smallest index i that satisfies the specified condition. To the
right and rightmost are defined analogously.

For n ≥ 1 and a1, . . . , an pairwise different vertices, we denote by P = (a1, . . . , an) the graph
({a1, a2, . . . , an}, {a1a2, a2a3, . . . , an−1an}), that is called path, it has length n−1, and a1 and an
are called endvertices. A path of length n− 1 is shortly denoted as Pn, where we do not specify
the vertex set. P1 has exactly one endvertex. We denote by Cn a graph that is isomorphic to
({a1, a2, . . . , an}, {a1a2, . . . , an−1an, ana1}) and call such a graph a cycle of length n. By 2K2,
we denote a graph that is isomorphic to ({a1, a2, a3, a4}, {a1a2, a3a4}). The graphs claw, bull,
and gem are defined as depicted in Figure 1. Given a set F of graphs, a graph G is F-free if G
does not contain any of the graphs in F as an induced subgraph.

A graph G is connected if for every vertex pair u, v of G, G contains a subgraph that is a
path and contains u and v; otherwise, G is disconnected. The maximal connected subgraphs
of a graph are called connected components. For graphs G and H, we say that H is “obtained
from G by adding a true twin” if there is a vertex x of H such that V (G) = V (H) \ {x},
H[V (G)] = G and there is a vertex y of G such that NH [x] = NH [y]. Iteration of this operation
defines “H is obtained from G by adding true twins”. Note the important difference of our
definition of adding true twins to the case when true twins are added simultaneously. In the
simultaneous case, added true twins are pairwise non-adjacent. The notion “H is obtained from
G by adding false twins” is defined analogous to true twins, with the only difference that we
require NH(x) = NH(y).

3 Thickened paths

A thickened path is a graph that is obtained from a disjoint union of paths by adding true twins.
Examples of thickened paths are depicted in Figures 2, 3 and 4. It is not difficult to see that
thickened paths can be recognised in linear time. Furthermore, every induced subgraph of a
thickened path is a thickened path.

Theorem 3.1. Thickened paths are exactly the {claw, bull, gem, Ck : k ≥ 4}-free graphs.

Proof. It is easy to verify that none of the forbidden graphs is a thickened path. Thus, no
thickened path can contain any of these graphs as induced subgraph. For the converse, let G
be a graph that is not a thickened path such that every properly induced subgraph of G is a
thickened path. Every graph that is not a thickened path contains such a graph as induced
subgraph. Note that G must contain at least four vertices. We show that G has one of the

3



listed graphs as induced subgraph. Let x be a vertex of G. Since G−x is a thickened path,
x is adjacent to at least one vertex of G−x. Let H1, . . . , Ht be the connected components of
G−x with a vertex from NG(x). If t ≥ 3 then G has a claw as induced subgraph formed by
x and a vertex adjacent to x from three of the connected components. Next, we assume that
t ≤ 2, which means that x has a neighbour in at most two of the connected components. We
distinguish between two cases with respect to t.

t = 1
Since H1 is a thickened path, we can assume that H1 is obtained from P = (a1, . . . , ap) by adding
true twins. If p ≤ 2 then H1 is a complete graph. In this case, G[V (H1)∪ {x}] is obtained from
adding true twins to a path of length at most 2, where x and a possible non-neighbour of x are
endvertices. So, G is a thickened path, contradicting the choice of G. Thus, p ≥ 3. Assume that
H1 has no true twins. If there are 1 ≤ i < j < k ≤ p such that x is adjacent to ai and ak and
non-adjacent to aj then G contains a cycle of length at least 4 as induced subgraph. Otherwise,
the neighbours of x appear consecutively on P . If x has at least four neighbours in H1 then G
contains a gem as induced subgraph. Otherwise, x contains at most three neighbours in H1. If
x has exactly three neighbours in H1 then x is a true twin of one of the three neighbours, which
yields a contradiction to the choice of G. Thus, x has at most two neighbours in H1. If x has
exactly two neighbours in H1 and one of the two neighbours is an endvertex of P then x is a
true twin of the endvertex, contradicting the choice of G. Thus, if x has exactly two neighbours
in H1 then there is 1 < i ≤ p−2 such that NG(x) = {ai, ai+1}, and G contains a bull as induced
subgraph. If x has exactly one neighbour in H1 then this neighbour cannot be an endvertex of
P , and G contains a claw as induced subgraph.

Next, assume that H1 has true twins. If there is ai of P and a true twin a′i of ai in H1 and
x is adjacent to both vertices or non-adjacent to both vertices then ai and a′i are true twins
in G, and G is a thickened path if and only if G−a′i is a thickened path. This contradicts
the choice of G. With a symmetry argument, we can assume without loss of generality that
NG(x) ⊆ {a1, . . . , ap}. IfG[{a1, . . . , ap, x}] is not a thickened path then we obtain a contradiction
to the choice of G. Hence, NG(x) = {a1, a2} or NG(x) = {ap−1, ap} or NG(x) = {ai, ai+1, ai+2}
for some 1 ≤ i ≤ p − 2. If NG(x) = {a1, a2} and a1 has a true twin a′1 then {x, a′1, a2, a3}
induces a claw, if a2 has a true twin a′2 then {x, a1, a′2, a3, a2} induces a gem. Analogously for
the case when NG(x) = {ap−1, ap}. Let NG(x) = {ai, ai+1, ai+2}. If ai has a true twin a′i then
{a′i, ai, x, ai+2, ai+1} induces a gem; analogously for the case when ai+2 has a true twin. If ai+1

has a true twin a′i+1 then {ai, x, ai+2, a
′
i+1} induces a C4. This completes the case when t = 1.

t = 2
Let H1 and H2 be obtained from P = (a1, . . . , ap) and Q = (b1, . . . , bq) by adding true twins,
respectively. Due to the choice of G, G[V (H1) ∪ {x}] and G[V (H2) ∪ {x}] are thickened paths,
so that the choice of G (and arguments similar to the previous case) implies that H1 = P and
H2 = Q. If x is adjacent to a pair of non-adjacent vertices in H1 or H2 then G contains a claw
as induced subgraph. Otherwise, the neighbours of x in H1 and in H2 are pairwise adjacent.
It follows that x can have at most two neighbours on P and on Q and one of the two is an
endvertex. Without loss of generality, we can assume that {a1, b1} ⊆ NG(x) ⊆ {a1, a2, b1, b2}.
If p ≤ 2 or q ≤ 2 then G is a thickened path, so that p, q ≥ 3. If NG(x) = {a1, b1} then G is a
thickened path, so that a2 ∈ NG(x) or b2 ∈ NG(x). Then, {a3, a2, a1, x, b1} or {a1, x, b1, b2, b3}
induces a bull. This completes the proof.

Thickened paths form a subclass of proper interval graphs, since paths are proper interval
graphs and proper interval graphs are closed under adding true twins and taking the disjoint
union. Due to the characterisation of proper interval graphs by Wegner [16], Theorem 3.1 shows
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that thickened paths are exactly the {bull, gem}-free proper interval graphs.

4 Linear clique-width and first results

Linear clique-width is defined using operations on labelled graphs. For k ≥ 0, a k-labelled graph
is a graph where each of its vertices is assigned a number from the set {1, . . . , k}. Let G be a
k-labelled graph. We use three operations on labelled graphs:

– for 1 ≤ i ≤ k and v a vertex that does not appear in G, i(v) adds vertex v with label i to
G

– for 1 ≤ i < j ≤ k, ηi,j adds all (not yet existing) edges between vertices with label i and
vertices with label j to G

– for i, j ∈ {1, . . . , k}, i ̸= j, ρi→j changes all occurrences of label i to label j.

A linear k-expression is an expression a1 · · · ar where ai is one of the above defined operations.
The (labelled) graph defined by a1 · · · ar is ar(· · · a1((∅, ∅)) · · ·), which is the result of iteratively
applying the operations a1, . . . , ar to the initial empty graph. The linear clique-width of a
graph G, denoted as lcwd(G), is the smallest k such that there is a linear k-expression for G,
which means that the linear k-expression defines a graph H that is equal to G after removing
the assigned labels. The following result is not difficult to verify.

Lemma 4.1. Let G be a graph and let H be an induced subgraph of G. Then, lcwd(H) ≤
lcwd(G).

Let G = (V,E) be a graph. For A ⊆ V , a group of A is a maximal set of vertices with
the same neighbourhood in V \ A. Note that two groups of A are either equal or disjoint,
implying that the group relation defines a partition of A. For a vertex triple u, v, w of G, we
say that w distinguishes u and v if w is adjacent to the one vertex and non-adjacent to the
other. Observe that for u, v ∈ A, u and v do not belong to the same group of A if and only if
there is a vertex w with w ∈ V \ A such that w distinguishes u and v. By νG(A), we denote
the number of groups of A. Let β be a layout for G. Let x be a vertex of G and let p be the
position of x in β, i.e., p = β−1(x). The set of vertices to the left of x with respect to β is
{β(1), . . . , β(p− 1)} and denoted as Lβ(x), and the set of vertices to the right of x with respect
to β is {β(p+ 1), . . . , β(|V |)} and denoted as Rβ(x). We write Lβ[x] and Rβ[x] if x is included.
The groupnumber of G with respect to β, denoted as gn(G, β), is the maximum taken over all
values νG(Lβ[β(i)]) for 1 ≤ i ≤ |V |. The groupnumber of G, denoted as gn(G), is the smallest
number k such that there is a layout β for G with gn(G, β) ≤ k. Function adβ is a function
on V and with values from {0, 1}. Given a vertex x of G, if one of the following conditions is
satisfied:

– all (other) vertices in the group of Lβ[x] that contains x are neighbours of x

– {x} is not a group of Lβ[x] and there are a non-neighbour y of x in the group of Lβ[x]
containing x and a neighbour z of x in Lβ(x) such that y and z are non-adjacent

then adβ(x) = 1; if none of the conditions is satisfied then adβ(x) = 0. The groupwidth of a
graph G with respect to a layout β for G, denoted as gw(G, β), is the smallest number k such
that νG(Lβ(x))+adβ(x) ≤ k for all x ∈ V (G). The groupwidth of a graph G, denoted as gw(G),
is the smallest number k such that there is a layout β for G satisfying gw(G, β) ≤ k.
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Theorem 4.2 ([9, 14, 11]). For every graph G, lcwd(G) = gw(G).

Most of our lower-bound proofs will analyse the groupwidth of layouts. The following tech-
nical lemma will be of help.

Lemma 4.3. Let P be the disjoint union of a set of paths, and let G be a thickened path that is
obtained from P by adding true twins. Let β be a layout for G. If adβ(x) = 0 for a vertex x of
G then x is an endvertex of a path in P and has no true twin in G.

Proof. Let x be a vertex of G with adβ(x) = 0. Let B be the group of Lβ[x] that contains x.
Due to the definition of function ad, |B| ≥ 2 and B contains a vertex y that is non-adjacent to
x. Again due to the definition of ad, all neighbours of x in Lβ(x) are adjacent to y. If x has a
true twin x′ then x has a neighbour that distinguishes x and y. If x′ ∈ Lβ(x) then we obtain
a contradiction to the above observations. If x′ ∈ Rβ(x) then x and y are distinguished by x′

and therefore cannot be in the same group of Lβ[x]. Hence, x has no true twin. If x is not an
endvertex of some path in P then x has two neighbours in P , say u and v. Clearly, one of them,
say v, is not adjacent to y in G. Similar to the case of true twin, we observe a contradiction and
thus conclude that x is an endvertex of P and has no true twin in G.

The result of Lemma 4.3 provides a simple tool for determining the linear clique-width for a
class of thickened paths.

Lemma 4.4. Let P be the disjoint union of a set of paths. Let G be a thickened path that is
obtained from P by adding true twins such that every endvertex of a path in P has a true twin
in G. Then, lcwd(G) = gn(G) + 1.

Proof. Let β be a layout for G. If there is a vertex x of G with adβ(x) = 0 then x is an
endvertex of a path in P and has no true twin in G according to Lemma 4.3. However, such
vertices do not exist in G due to the assumption about G. Hence, gw(G, β) = gn(G, β) + 1. It
follows that gw(G) = gn(G) + 1, and the claim of the lemma follows by applying Theorem 4.2.

The linear clique-width is exactly known only for a few classes of graphs. The following
observation is necessary for lower bounds.

Proposition 4.5 ([8]). lcwd(P1) = 1; lcwd(P2) = lcwd(P3) = 2; lcwd(P4) = 3; lcwd(2K2) = 3.

Graphs of linear clique-width at most 2 are characterised as the graphs that do not contain
P4, 2K2 and a graph that is not a thickened path as induced subgraph [8]. This characterisation
directly implies the following result.

Proposition 4.6 ([8]). Let G be a thickened path. If G contains P4 or 2K2 as induced subgraph
then lcwd(G) ≥ 3, otherwise, lcwd(G) ≤ 2.

It can be checked in linear time whether a graph contains P4 or 2K2 as induced subgraph [1].
Proposition 4.6, together with Theorem 3.1, shows that thickened paths of linear clique-width
at most 2 are exactly the {P4, 2K2, C4, claw}-free graphs. Threshold graphs are the {P4, 2K2,
C4}-free graphs [15]. It follows that thickened paths of linear clique-width at most 2 are exactly
the claw-free threshold graphs.

It has been shown that the linear clique-width is invariant under adding false twins [12]. A
simple example shows that the same is not true for true twins: a graph on a single vertex has
linear clique-width 1 and adding a true twin yields a graph of linear clique-width 2. Nevertheless,
we are able to show a true twin counterpart of the result for false twins.
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Lemma 4.7. Let G be a graph. Let u, v, w be pairwise different vertices of G with NG[u] =
NG[v] = NG[w]. Then, lcwd(G) ≤ lcwd(G−w).

Proof. Let G−w have n vertices. Let β be a layout for G−w. Since u and v are true twins
in G−w, we can assume without loss of generality that u ≺β v. Let i =def β−1(v). Let
α =def ⟨β(1), . . . , β(i), w, β(i+1), . . . , β(n)⟩. We show that gw(G,α) ≤ gw(G−w, β). Let x be a
vertex of G. We first look at the groups defined by α, and then we determine the groupwidth of
α. Let B1, . . . , Br be the groups of Lα(x) in G. Let a and b be vertices in Lα(x) and let a ∈ Bj

and b ∈ Bj′ . By definition of groups, it holds that j ̸= j′ if and only if there is a vertex in Rα[x]
that distinguishes a and b. We consider three cases.

– x 4α v
Note that Lα(x) = Lβ(x) and Rα[x] = Rβ[x] ∪ {w}. Since v and w are true twins and
v ∈ Rβ[x], it holds that there is a vertex in Rα[x] that distinguishes a and b if and only if
there is a vertex in Rα[x] \ {w} = Rβ[x] that distinguishes a and b. Hence, B1, . . . , Br are
the groups of Lβ(x) in G−w.

– w ≺α x
Note that Lα(x) = Lβ(x) ∪ {w} and Rα[x] = Rβ[x]. Without loss of generality, we can
assume that v ∈ B1. Since v and w are true twins in G, it holds that no vertex in Rα[x]
distinguishes v and w, so that w ∈ B1. It follows that (B1\{w}), B2, . . . , Br are the groups
of Lβ(x) in G−w.

– x = w
Note that Lα(x) = Lα[v] = Lβ[v] and Rα[x] = Rα(v) = Rβ(v) ∪ {w}. Without loss of
generality, we can assume that v ∈ B1. Since u and v are true twins in G, it holds with the
same arguments as in the previous case that u ∈ B1. Furthermore, since v distinguishes a
vertex pair a, b of G, where {a, b} ∩ {v, w} = ∅, if and only if w distinguishes a and b, it
follows that B1 \ {v}, B2, . . . , Br are the groups of Lβ(v) in G−w. And due to the above
proven facts, B1 \ {v}, B2, . . . , Br are the groups of Lα(v) in G. Note that u ∈ B1 implies
B1 \ {v} ̸= ∅.

We determine adα(x). Since adα(x) depends only on Lα[x] and its groups and since u, v and
w are true twins, it holds for all x ̸∈ {v, w} with the above results about the groups that
adα(x) = adβ(x). Now, let x ∈ {v, w}. Since u, v and w are true twins, it holds that x is
in the group of Lα[x] that contains u. In particular, {x} is not a group of Lα[x] and x has
a neighbour, namely u, in its group. If the group of x contains no non-neighbour of x then
adα(x) = adβ(v) = 1. If the group of x contains a non-neighbour y of x then u and y are
non-adjacent, and since u and x are adjacent, it again follows that adα(x) = adβ(v) = 1. We
summarise that νG(Lα(x)) + adα(x) = νG−w(Lβ(x)) + adβ(x) for all vertices x of G with x ̸= w
and νG(Lα(w)) + adα(w) = νG−w(Lβ(v)) + adβ(v). Thus, the claim follows, and therefore,
gw(G) ≤ gw(G−w). The lemma follows by applying Theorem 4.2.

Let G be a graph. Let ⟨M1, . . . ,Mr⟩ be the partition of V (G) into maximal sets of pairwise
true twins. A true twin reduction of G is a graph H = G[M ] where M =def

∪
1≤i≤r M

′
i and for

every 1 ≤ i ≤ r, M ′
i = Mi if |Mi| ≤ 2, and M ′

i ⊆ Mi with |M ′
i | = 2 if |Mi| ≥ 3. Informally, a

true twin reduction of G is obtained from G by iteratively deleting a true twin for which the
graph contains at least two further copies.

Theorem 4.8. Let G be a graph and let H be a true twin reduction of G. Then, lcwd(G) =
lcwd(H).
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Proof. Since H is an induced subgraph of G, lcwd(H) ≤ lcwd(G) by Lemma 4.1. For the
converse, note that there is a sequence (x1, . . . , xs) of vertices of G such that G0 =def G,
Gi =def Gi−1−xi for every 1 ≤ i ≤ s and Gs = H. Furthermore, and independent of the chosen
vertex sequence, it holds that for every 1 ≤ i ≤ s, there are two vertices y′i and y′′i in Gi−1

where |{xi, y′i, y′′i }| = 3, i.e., the three vertices are pairwise different, such that xi, y
′
i and y′′i are

pairwise true twins in Gi−1. We apply Lemma 4.7 and obtain that lcwd(Gi−1) ≤ lcwd(Gi). It
follows that lcwd(G) = lcwd(G0) ≤ lcwd(Gs) = lcwd(H).

The result of Theorem 4.8 shows that for determining the linear clique-width of a graph with
true twins, we can always restrict to induced subgraphs that contain only sets of pairwise true
twins of size at most 2. Thus, in the course of the paper, we will only encounter graphs for
which a vertex has either no true twin or exactly one true twin.

As the last result in this section, we give an upper bound on the linear clique-width of
thickened paths. We show that the linear clique-width of thickened paths is at most 4. In
particular, thickened paths form a class of graphs of bounded linear clique-width.

Lemma 4.9. Let G be a thickened path. Then, lcwd(G) ≤ 4.

Proof. We apply a true twin reduction to G and obtain G′. Every vertex of G′ has at most
one true twin. Let H be a graph that is obtained from G′ by adding true twins such that
every vertex of H has exactly one true twin. It holds that G′ is an induced subgraph of H.
Thus, due to Lemma 4.1 and Theorem 4.8, lcwd(G) ≤ lcwd(G′) ≤ lcwd(H). Let C1, . . . , Cr

be the connected components of H. Every connected component of H is obtained from a path

by adding true twins. Let Ci be obtained from a path (x
(i)
0 , . . . , x

(i)
ki
) by adding true twins.

For every 1 ≤ i ≤ r and 0 ≤ j ≤ ki, let y
(i)
j be the uniquely defined true twin of x

(i)
j . Let

β =def ⟨x
(1)
0 , y

(1)
0 , x

(1)
1 , . . . , y

(1)
k1

, x
(2)
0 , . . . , y

(r)
kr

⟩. We approximate the groupwidth of β. Let u be a
vertex of H. We determine νH(Lβ(u)). We distinguish between two cases. As the first case, let

u = x
(i)
j for some 1 ≤ i ≤ r and 0 ≤ j ≤ ki. If j = 0 then no vertex in Lβ(u) has a neighbour in

Rβ[u], and thus, νH(Lβ(u)) ≤ 1. So, let j ≥ 1. The vertices in Lβ(u) with neighbours in Rβ[u]

are exactly the neighbours of u in Lβ(u), which are x
(i)
j−1 and y

(i)
j−1. Since these two vertices are

true twins, it holds that Lβ(u) contains at most two groups, namely the group that contains

only vertices without a neighbour in Rβ[u] and the group {x(i)j−1, y
(i)
j−1}. Thus, νH(Lβ[u]) ≤ 2.

As the second case, let u = y
(i)
j for some 1 ≤ i ≤ r and 0 ≤ j ≤ ki. If j = 0 then Lβ(u)

contains at most two groups, namely Lβ(x
(i)
0 ) (in case i ≥ 2) and {x(i)0 }. Thus, νH(Lβ(u)) ≤ 2.

Then, let j ≥ 1. The vertices with a neighbour in Rβ[u] are exactly x
(i)
j−1, y

(i)
j−1 and x

(i)
j . So,

Lβ(u) has the group that contains all vertices without a neighbour in Rβ[u] and the group

that contains x
(i)
j−1 and y

(i)
j−1. Vertex x

(i)
j may be in a singleton group or it may be in the

same group as x
(i)
j−1; the latter holds if j = ki. Then, νH(Lβ(u)) ≤ 3. We summarise that

νH(Lβ(u)) + adβ(u) ≤ 3 + 1 = 4. Thus, gw(H) ≤ gw(H,β) ≤ 4, which concludes the proof due
to Theorem 4.2.

In the following sections, we will classify the thickened paths of linear clique-width exactly
4 and thereby obtain a complete characterisation of the linear clique-width of thickened paths.

5 Connected thickened paths of length 4 and 5

We consider thickened paths that are obtained from adding true twins to a path of length 4
or 5. We consider the two cases separately. Each case begins with a structural result about

8



layouts of the paths and is concluded with a result about added true twins that increase the
linear clique-width. We start with paths of length 4.

Lemma 5.1. Let P = (a1, . . . , a5). Let β = ⟨x1, . . . , x5⟩ be a layout for P such that gw(P, β) ≤ 3
and a1 ≺β a5. Then,

{x1, x2, x3} ∈
{
{a1, a2, a3}, {a1, a3, a4}, {a2, a3, a4}

}
.

Proof. Let X3 =def {x1, x2, x3}. Suppose that {a1, a5} ⊆ X3. Independent of whether a2 ∈ X3

or a3 ∈ X3 or a4 ∈ X3, set X3 has three groups. The assumption about the groupwidth of β
implies that adβ(x4) = 0. However, this is a contradiction to the statement of Lemma 4.3, since
x4 is not endvertex of P . If a1, a5 ̸∈ X3 then X3 = {a2, a3, a4}, and the statement holds. Let X3

contain either a1 or a5. Due to assumption a1 ≺β a5, it holds that a1 ∈ X3 and a5 ̸∈ X3. Suppose
that the statement does not hold, which means that X3 = {a1, a2, a4}. Then, νP (X3) = 3, and
thus adβ(x4) = 0. According to Lemma 4.3, x4 is an endvertex of P , which means that x4 = a5.
Since x5 = a3, {a1, a5} is a group of Lβ[x4]. And since a1 and a5 are non-adjacent and a4 is
adjacent to a5 and non-adjacent to a1, the definition of function ad shows that adβ(a5) = 1,
which gives a contradiction. Hence, the statement of the lemma holds.

Proposition 5.2. Let P = (a1, . . . , a5). Let G be obtained from P by adding a true twin to
each vertex. Then, lcwd(G) ≥ 4.

Proof. Let a′1, . . . , a
′
5 be the added true twins of respectively a1, . . . , a5. For a contradiction,

suppose that there is a layout β for G with gw(G, β) ≤ 3. We apply Lemma 4.4 and see that
gn(G, β) ≤ 2. Without loss of generality, we can assume due to symmetry arguments that a1 ≺β

a5 and that ai ≺β a′i for all 1 ≤ i ≤ 5. Let β′ be the restriction of β to the vertices a1, . . . , a5.
Then, β′ = ⟨x1, . . . , x5⟩ is a layout of groupwidth at most 3 for P and we can apply Lemma 5.1.
Suppose that {x1, x2, x3} = {a2, a3, a4}. Since a1, a5 ̸∈ Lβ[x3], it holds that νG(Lβ[x3]) ≥ 3,
which implies gn(G, β) ≥ 3. Thus, {x1, x2, x3} = {a1, a2, a3} or {x1, x2, x3} = {a1, a3, a4}. Note
that x4 ∈ {a2, a4, a5}\{x1, x2, x3}. Suppose that {x1, x2, x3} = {a1, a2, a3}. Then, x4 ∈ {a4, a5}
and {a′4, a′5} ⊆ Rβ(x4). We consider the groups of Lβ[x4] in G: a3 is distinguished from a1 and
a2 by a′4, and a4 or a5 is distinguished from a1, a2, a3 by a′5. Hence, gn(G, β) ≥ νG(Lβ[x4]) ≥ 3.
Finally, suppose that {x1, x2, x3} = {a1, a3, a4}. By our assumptions about β, it holds that the
true twin of x3 is not contained in Lβ[x3]. Then, a1 and a3 are distinguished by a′1 or a′3 or
a′4, and a4 is distinguished from a1 and a3 by a5. Thus, gn(G, β) ≥ νG(Lβ[x3]) ≥ 3. Hence, we
obtain only contradictions, so that gw(G) ≥ 4.

Next, we consider thickened paths that are obtained from P6 by adding true twins. Analogous
to the previous case, we first show a result about the structure of layouts, and then we consider
graphs with true twins.

Lemma 5.3. Let P = (a1, . . . , a6). Let β be a layout for P such that gw(P, β) ≤ 3 and a2 ≺β a5.
Then,

{a2, a3, a4} ≺β {a5, a6} or {a3, a4, a6} ≺β a2 ≺β a5 .

Proof. Denote by β1,5 and β2,6 the restriction of β respectively to the vertices a1, . . . , a5 and
to the vertices a2, . . . , a6. Note that β1,5 and β2,6 are layouts for paths of length 4, and we can
apply Lemma 5.1. We obtain five possible situations in β for the two layouts, which are given
in the following table.
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for β1,5 for β2,6
(1) {a2, a3, a4} ≺β {a1, a5} ∗ {a3, a4, a5} ≺β {a2, a6}
(2) {a1, a3, a4} ≺β {a2, a5} {a2, a4, a5} ≺β {a3, a6} (5)
(3) {a1, a2, a3} ≺β {a4, a5} {a2, a3, a4} ≺β {a5, a6} (6)

{a5, a4, a3} ≺β {a1, a2} ∗ ∗ {a6, a5, a4} ≺β {a2, a3}
(4) {a5, a3, a2} ≺β {a1, a4} {a6, a4, a3} ≺β {a2, a5} (7)

The cases that are marked with the sign ∗ contradict the assumption a2 ≺β a5, so they are not
possible. The remaining seven cases are assigned a number. In the next step, we check left and
right column pairs against each other and determine whether they contradict each other; the
result is given in the next table, where the entries give the problematic vertex pairs.

(1) (2) (3) (4)

(5) a3, a5 a3, a5 a3, a5 a3, a4
(6) a4, a5
(7) a2, a4 a2, a4

Five combinations remain without contradiction and give the following refined information about
β.

(1, 6) {a2, a3, a4} ≺β {a1, a5, a6}
(2, 6) {a1, a3, a4} ≺β a2 ≺β {a5, a6}
(3, 6) {a1, a2, a3} ≺β a4 ≺β {a5, a6}
(1, 7) {a3, a4, a6} ≺β a2 ≺β {a1, a5}
(2, 7) {a1, a3, a4, a6} ≺β a2 ≺β a5

Note that for the combination (1, 7) we are also taking into account the initial assumption about
β. Then, we delete vertex a1 and simplify the cases, which shows the result of the lemma.

Proposition 5.4. Let P = (a1, . . . , a6). Let G be a thickened path that has one of the following
three properties:

1) G is obtained from P by adding a true twin to a3, a4, a5, a6

2) G is obtained from P by adding a true twin to a1, a2, a5, a6

3) G is obtained from P by adding a true twin to a1, a3, a4, a6.

Then, lcwd(G) ≥ 4.

Proof. Let a′i be the added true twin of ai. For a contradiction, suppose that there is a layout β
for G with gw(G, β) ≤ 3. Without loss of generality, we can assume ai ≺β a′i for each ai with a
true twin in G. Furthermore, if G has the second or third property then we can assume without
loss of generality and by symmetry arguments that a2 ≺β a5. Let β′ be the restriction of β to
a1, . . . , a6. We apply Lemma 5.3 to β′, and we consider the possible cases.

G has the third property
We apply Lemma 4.4 and see that gn(G, β) ≤ 2.
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– {a2, a3, a4} ≺β {a5, a6}
Let a be rightmost from {a2, a3, a4} with respect to β. We consider the groups of Lβ[a].
Observe that a5 distinguishes a4 from a2 and a3. Then, a2 and a3 are in the same group
of Lβ[a], which implies that {a1, a′1, a′4} ⊆ Lβ[a], and a ∈ {a2, a3}. If a = a3 then a1, a2, a4
are in pairwise different groups of Lβ(a), so that a = a2. If a

′
3 ∈ Rβ[a] then a1, a3, a4 are in

pairwise different groups of Lβ(a). Let a′3 ∈ Lβ(a). Let a′ be rightmost from {a′1, a′3, a′4}
with respect to β. Then, a1, a3, a4 are in pairwise different groups of Lβ(a

′).

– {a3, a4, a6} ≺β a2 ≺β a5
Let a be rightmost from {a3, a4, a6} with respect to β. Then, a′i ̸∈ Lβ[a] for some i ∈
{3, 4, 6}, so that {a2, a5, a′i} ⊆ Rβ(a). This shows that a3, a4, a6 are in pairwise different
groups of Lβ[a].

In both cases, we have seen that gn(G, β) ≥ 3, which shows a contradiction to the choice of β.

G has the second property
Similar to the previous case, we see that gn(G, β) ≤ 2 due to Lemma 4.4.

– {a2, a3, a4} ≺β {a5, a6}
Let a be leftmost from {a5, a6} with respect to β. Then, {a′5, a′6} ⊆ Rβ(a), and thus,
a3, a4, a are in pairwise different groups of Lβ[a].

– {a3, a4, a6} ≺β a2 ≺β a5
We distinguish between two cases. Let a1 ≺β a2. Let a be rightmost from {a1, a3, a4, a6}
with respect to β and let b be the vertex following a in β. Observe that {a1, a3, a4, a6} ⊆
Lβ(b) and a2 ∈ Rβ[b]. If a ∈ {a3, a4} then the three vertices in {a1, a3, a4, a6} \ {a} are in
pairwise different groups of Lβ(a). If a ∈ {a1, a6} then a′ ∈ Rβ[b] for a

′ the true twin of a
in G. Then, a1, a4, a6 or a1, a3, a6 are in pairwise different groups of Lβ(b).

Let a2 ≺β a1. Then, {a2, a3, a4} ⊆ Lβ[a2] and {a1, a5} ⊆ Rβ(a2), and a2, a3, a4 are in
pairwise different groups of Lβ[a2].

We have seen for both cases that gn(G, β) ≥ 3, which implies a contradiction to the choice of β.

G has the first property
This case requires a more detailed analysis, since G does not have the nice symmetry properties
as in the previous two cases. First, suppose that a2 ≺β a5.

– {a2, a3, a4} ≺β {a5, a6}
Let i ∈ {5, 6} be such that {a3, a4, ai} ⊆ Lβ(a

′
i) and {a′5, a′6} ⊆ Rβ[a

′
i]. Observe that

a3, a4, ai are in pairwise different groups of Lβ(a
′
i). Furthermore, a′i ̸= a1, and due to

Lemma 4.3, adβ(a
′
i) = 1. Thus, lcwd(G, β) ≥ νG(Lβ(a

′
i)) + adβ(a

′
i) ≥ 3 + 1.

– {a3, a4, a6} ≺β a2 ≺β a5
Let a be a vertex of G such that a ̸= a1 and {a3, a4, a6} ⊆ Lβ(a) and {a2, a′i} ⊆ Rβ[a]
for some i ∈ {3, 4, 6}. Then, a3, a4, a6 are in pairwise different groups of Lβ(a). Due to
Lemma 4.3, adβ(a) = 1, and thus, lcwd(G, β) ≥ 4.

In both cases, we obtain a contradiction to the choice of β. Hence, a5 ≺β a2.

– {a5, a4, a3} ≺β {a2, a1}
Let a be such that a ̸= a1 and {a3, a4, a5} ⊆ Lβ(a) and a2 ∈ Rβ[a]. Note that a3 is not in
the same group of Lβ(a) as a4 or a5. If a3, a4, a5 are not in pairwise different groups of Lβ(a)
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Figure 2: The four different connected thickened paths of linear clique-width at least 4 that are
considered in Propositions 5.2 and 5.4.

then a4 and a5 are in the same group of Lβ(a). This means that {a3, a′3, a4, a5, a6, a′6} ⊆
Lβ(a). If a′4 ∈ Rβ[a] then a3, a4, a6 are in pairwise different groups of Lβ(a). Otherwise,
{a3, a′3, a4, a′4, a6, a′6} ⊆ Lβ(a). Let b be rightmost from {a′3, a′4, a′6} with respect to β.
Then, {a3, a4, a6} ⊆ Lβ(b), and since {a2, b} ⊆ Rβ[b], it holds that a3, a4, a6 are in pairwise
different groups of Lβ(b).

– {a4, a3, a1} ≺β a5 ≺β a2
If there is i ∈ {3, 4, 6} such that a′i ∈ Rβ[a2] then a1, a3, a4 or a3, a4, a5 are in pairwise
different groups of Lβ(a2). Otherwise, {a′3, a′4, a′6} ⊆ Lβ(a2), and there is i ∈ {3, 4, 6} such
that {a3, a4, a6} ⊆ Lβ(a

′
i) and {a2, a′i} ⊆ Rβ[a

′
i]. Then, a3, a4, a6 are in pairwise different

groups of Lβ(a
′
i).

We have seen that Lβ(a) or Lβ(b) or Lβ(a2) or Lβ(a
′
i) contains at least three groups, and since

a, b, a2, a
′
i ̸= a1, it follows that lcwd(G, β) ≥ 4.

The results of this section are summarised in Figure 2. The depicted thickened paths with
true twins are the graphs for which we have shown a lower bound on the linear clique-width in
this section.

6 Connected thickened paths of length at least 6

In the previous section, we have considered only a finite set of thickened paths. In this section,
we will consider an infinite set of thickened paths. The proof techniques in this section are
similar to the ones used in the previous section, and the main structural lemma of this section
relies on Proposition 5.3 of the previous section.

Lemma 6.1. Let k ≥ 7. Let P = (a1, . . . , ak). Let β be a layout for P such that gw(P, β) ≤ 3
and a2 ≺β ak−1. Then,

{a1, a2, a3, a4} ≺β a5 ≺β · · · ≺β ak−2 ≺β {ak−1, ak} .

Proof. For 1 ≤ i < j ≤ k, denote by βi,j the restriction of β to the vertices ai, . . . , aj . We prove
the statement by induction over k. For the induction base, let k = 7. Consider β1,6 and β2,7.
The assumption about β, that is a2 ≺β a6, and application of Lemma 5.3 gives the following
three possible situations for β1,6:

{a2, a3, a4} ≺β {a5, a6} or {a5, a4, a3} ≺β {a2, a1} or {a4, a3, a1} ≺β a5 ≺β a2 .

Note that our assumption a2 ≺β a6 saves one of the four possible cases. Analogously, we obtain
three cases for β2,7:

{a3, a4, a5} ≺β {a6, a7} or {a4, a5, a7} ≺β a3 ≺β a6 or {a5, a4, a2} ≺β a6 ≺β a3 .
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Similar to the proof of Lemma 5.3, we compare the different partial orderings. We assign
numbers 1, 2, 3 to the upper row of partial orderings, and we assign numbers 1′, 2′, 3′ to the
lower row of partial orderings. We compare the nine possible pairs and determine conflicts. The
pairs (1, 2′) and (3, 2′) do not match because of a3, a5, the pair (1, 3′) does not match because
of a3, a6, and the pairs (2, 3′) and (3, 3′) do not match because of a2, a3. The pairs (2, 1′),
(3, 1′) and (2, 2′) imply the following subordering: {a3, a4, a5} ≺β {a2, a6}. Let a be leftmost
from {a2, a6} with respect to β. Then, a3, a4, a5 are in pairwise different groups of Lβ(a),
and since adβ(a) = 1 due to Lemma 4.3, νP (Lβ(a)) + adβ(a) ≥ 4 yields a contradiction to the
choice of β. So, only pair (1, 1′) remains, and this implies {a2, a3, a4} ≺β a5 ≺β {a6, a7}. If
a1 ∈ Rβ[a5] then a2, a3, a4 are in pairwise different groups of Lβ(a5), and since adβ(a5) = 1
due to Lemma 4.3, νP (Lβ(a5)) + adβ(a5) ≥ 4 yields a contradiction to the assumption about β.
Thus, {a1, a2, a3, a4} ≺β a5.

For the induction step, let k ≥ 8 and assume that the statement of the lemma holds for paths
of length k− 2. We consider P−ak and P−a1 and apply the induction hypothesis to β1,k−1 and
β2,k. Because of a2 ≺β ak−1 for β, we obtain for β1,k−1:

{a1, a2, a3, a4} ≺β a5 ≺β · · · ≺β ak−3 ≺β {ak−2, ak−1} .

With this result, we observe that a2 ≺β ak−1 also implies a3 ≺β ak−1, and so, we obtain for β2,k:

{a2, a3, a4, a5} ≺β a6 ≺β · · · ≺β ak−2 ≺β {ak−1, ak} .

The two partial orderings of β show the claimed result.

Proposition 6.2. Let k ≥ 7. Let P = (a1, . . . , ak). Let G be a thickened path that has one of
the following three properties:

1) G is obtained from P by adding a true twin to a3 and ak−2

2) G is obtained from P by adding a true twin to a1, a2 and ak−2

3) G is obtained from P by adding a true twin to a1, a2, ak−1 and ak.

Then, lcwd(G) ≥ 4.

Proof. Let a′i be the added true twin of ai. For a contradiction, suppose that there is a layout β
for G with gw(G, β) ≤ 3. Without loss of generality, we can assume that ai ≺β a′i for each ai
with a true twin in G. Let β′ be the restriction of β to a1, . . . , ak. We apply Lemma 6.1 to β′

and obtain the following two cases:

{a1, a2, a3, a4} ≺β′ a5 ≺β′ · · · ≺β′ ak−2 ≺β′ {ak−1, ak} or

{ak, ak−1, ak−2, ak−3} ≺β′ ak−4 ≺β′ · · · ≺β′ a3 ≺β′ {a2, a1} .

We consider the three rightmost vertices with respect to β′. If G has the first or third property,
we can restrict to the first case for β′ by a symmetry argument. If G has the second property then
the situation for the three rightmost vertices is equal to one of the two other cases. We extend
the second property by a second possible situation: true twins for a3, ak−1 and ak are added.
This makes also the second property into a symmetric property and clearly does not change
the statement of the proposition. So, we can restrict to the first case for β′. We consider the
groups of Lβ(ak−2). Observe that ak−1 and ak have no neighbours in {a1, . . . , ak−3}, and ak−2

has exactly one neighbour in {a1, . . . , ak−3}. Thus, νG(Lβ(ak−2)) ≥ 2. Let γ′ be the restriction
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of β to the vertices ak−2, ak−1, ak and their corresponding true twins. Let G′ be the subgraph
of G induced by the vertices in γ′. Note that ak−2 is the leftmost vertex with respect to γ′. We
define a new graph. Let H be the thickened path that is obtained from the path (b1, b2, b3, b4)
by adding the true twins b′1, b′2, b′3 to respectively b1, b2, b3. Let γ = ⟨b1, b′1, b3, b′3, b2, b′2⟩
be a layout, such that the concatenation γ ◦ ⟨b4⟩ is a layout for H. It is easy to verify that
gw(H, γ ◦ ⟨b4⟩) ≤ 3. We define another graph, H ′, as follows: take the disjoint union of H−b4
and G′ and add all edges between b3 and its true twin b′3 and ak−2 and its possible true twin.
Note that H ′ can be obtained from a path of length 5 by adding true twins. Now, observe that
the concatenation γ ◦ γ′ is a layout for H ′, and by the assumptions about the groupwidth of β,
it holds that gw(H ′, γ ◦ γ′) ≤ 3. This follows from the above proved νG(Lβ(ak−2)) ≥ 2 and the
construction of H ′. This means that gw(H ′) ≤ 3. However, H ′ contains as induced subgraph a
thickened path with one of the properties as in Proposition 5.4, which implies gw(H ′) ≥ 4. We
obtain a contradiction, and thus, we conclude the claim of the proposition.

Proposition 6.3. Let k ∈ {7, 8, 9}. Let P = (a1, . . . , ak). Let G be a thickened path that has
one of the following three properties:

1) k = 7 and G is obtained from P by adding a true twin to a4, a5 and a7

2) k = 8 and G is obtained from P by adding a true twin to a4 and a5

3) k = 9 and G is obtained from P by adding a true twin to a5.

Then, lcwd(G) ≥ 4.

Proof. Suppose that there is a layout β for G such that gw(G, β) ≤ 3. We can assume that
ai ≺β a′i for each a′i that is the true twin of ai. Let β′ be the restriction of β to the vertices
of P . First, we assume that G has the second or third property. By a symmetry argument,
we can assume without loss of generality that a2 ≺β ak−1. Applying Lemma 6.1 and the above
assumption, we obtain {a3, a4, a5} ≺β {a′5, a6}. Let a be leftmost from {a′5, a6} with respect to
β. Observe that a3, a4, a5 are in pairwise different groups of Lβ(a) because of {a′5, a6} ⊆ Rβ[a].
Due to Lemma 4.3, adβ(a) = 1, so that νG(Lβ(a)) + adβ(a) ≥ 4 yields a contradiction.

Now, assume that G has the first property. Similar to the above case, we apply Lemma 6.1
and obtain {a3, a4, a5} ≺β {a′5, a6} or {a7, a5, a4} ≺β a3. Assume the first case. Let a be
leftmost from {a′5, a6} with respect to β. Then, {a3, a4, a5} ⊆ Lβ(a) and {a′5, a6} ⊆ Rβ[a],
and thus, a3, a4, a5 are in pairwise different groups of Lβ(a). Assume the second case. Let
a be leftmost from {a3, a′4, a′5, a′7} with respect to β such that {a4, a5, a7} ⊆ Lβ(a). Note that
a3 ∈ Rβ[a] and {a′7, a′4, a′5}∩Rβ[a] ̸= ∅. Then, a4, a5, a7 are in pairwise different groups of Lβ(a).
Since adβ(a) = 1 due to Lemma 4.3, we conclude that gw(G, β) ≥ 4, which is a contradiction.

We summarise the results of this section, that are also depicted in Figure 3.

Corollary 6.4. Let k ≥ 7 and let P = (a1, . . . , ak). Let T ⊆ {1, . . . , k} be non-empty. Let G be
obtained from P by adding a true twin to ai for every i ∈ T . If T satisfies one condition from
each column of the table

(1) T ∩ {3, . . . , k − 4} ̸= ∅ T ∩ {5, . . . , k − 2} ̸= ∅ (3)

(2) {1, 2} ⊆ T {k − 1, k} ⊆ T (4)

or if {k − 3, k − 2, k} ⊆ T then lcwd(G) ≥ 4.
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Figure 3: The different connected thickened paths of linear clique-width at least 4 that are
considered in Propositions 6.2 and 6.3.

Proof. We first consider the conditions of the table. Let T satisfy condition 1 or 2 and
condition 3 or 4. This gives four cases to consider. If T satisfies the pair (2, 4) then G has an
induced subgraph with the third property of Proposition 6.2. If T satisfies the pair (2, 3) or (1,
4) then G contains an induced subgraph with the second property of Proposition 6.2. Note in
this case that the induced subgraph may be obtained from a path of length smaller than k − 1.
Let T satisfy the pair (1, 3). Let s be the smallest number in T ∩{3, . . . , k− 4} and let t be the
largest number in T ∩ {5, . . . , k − 2}. Clearly, s ≤ t. If t − s ≥ 2 then G contains an induced
subgraph with the first property of Proposition 6.2, if t− s = 1 then k ≥ 8, s > 3 and t < k− 2,
and G contains an induced subgraph with the second property of Proposition 6.3, if s = t then
{3, . . . , k − 4} ∩ {5, . . . , k − 2} ̸= ∅, which means that k ≥ 9, and 5 ≤ s ≤ k − 4, and thus, G
contains an induced subgraph with the third property of Proposition 6.3.

If {k − 3, k − 2, k} ⊆ T then G contains an induced subgraph with the first property of
Proposition 6.3.

7 Disconnected thickened paths

In the two previous sections, we have considered connected thickened paths only. In this section,
we look at the situation for disconnected thickened paths. It will turn out that already small
graphs require larger linear clique-width.

Proposition 7.1. Let P3 = (a1, a2, a3), P4 = (b1, b2, b3, b4) and P5 = (c1, c2, c3, c4, c5).

– Let G3 be obtained from P3 by adding a true twin to a1, a2, a3.

– Let G4 be obtained from P4 by adding a true twin to b1, b2.

– Let G5 be obtained from P5 by adding a true twin to c3.

Let H be the disjoint union of two graphs H ′ and H ′′ where each of H ′ and H ′′ is a copy of G3

or G4 or G5. Then, lcwd(H) ≥ 4.

Proof. Suppose that there is a layout β for H such that gw(H,β) ≤ 3. Denote by d the leftmost
vertex of H with respect to β. Without loss of generality, we can assume that d is a vertex of
H ′. Let a′1, a

′
2, a

′
3, b

′
1, b

′
2, c

′
3 be the added true twins for G3, G4, G5. The following observation

is important for the proof and is an implication of our assumption about the groupwidth of β.
Let x be a vertex of H ′′. It holds that d cannot be in a group of Lβ(x) that contains a vertex
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of H ′′ with a neighbour in Rβ[x]. Thus, if adβ(x) = 1 then νH(Lβ(x)) ≤ 2 and at most one
group of Lβ(x) contains vertices of H ′′ with a neighbour in Rβ[x]. We distinguish the three
cases according to whether H ′′ is a copy of G3 or G4 or G5.

H ′′ is a copy of G3

By a symmetry argument, we can assume that {a1, a′1, a3} ≺β a′3 and a2 ≺β a′2. There is
i ∈ {1, 2, 3} such that {a1, a2} ⊆ Lβ(a

′
i) or {a1, a3} ⊆ Lβ(a

′
i) and such that {a′1, a′3} ⊆ Rβ[a

′
i]

or {a′2, a′3} ⊆ Rβ[a
′
i]. Then, Lβ(a

′
i) contains two groups with vertices from H ′′ that have a

neighbour in Rβ[a
′
i]. Since adβ(a

′
i) = 1 due to Lemma 4.3, we obtain a contradiction.

H ′′ is a copy of G4

Let ⟨x1, x2, x3, x4⟩ be the restriction of β to the vertices of P4. Let x be the leftmost vertex of
H ′′ with respect to β such that {x1, x2} ⊆ Lβ(x). With this choice of x, Lβ(x) contains at most
three vertices of H ′′. If {x1, x2} ⊆ {b1, b2, b3} then x1 and x2 are in pairwise different groups
of Lβ(x), and x1 as well as x2 has a neighbour in Rβ[x]. If x ̸= b4 then adβ(x) = 1 due to
Lemma 4.3, and we obtain a contradiction. As the other case, let b4 ∈ Lβ[x]. Let b4 = x. We
obtain the three cases:

{b1, b2} ≺β b4 ≺β b3 or {b1, b3} ≺β b4 ≺β b2 or {b2, b3} ≺β b4 ≺β b1 .

One verifies that b′1 ∈ Rβ[x] or b′2 ∈ Rβ[x] in all three cases and that x1 and x2 are not in the
same group of Lβ(x). Furthermore, adβ(x) = 1 in all three cases: in the first case, {b4} is a
group of Lβ[x], in the second case, b4 is in the group in Lβ[x] with all vertices in Lβ[x] that
have no neighbour in Rβ(x), and in the third case, since in case b′2 ∈ Lβ(x), b3 and b4 are in the
same group of Lβ[x] but they are adjacent. Since we observe a contradiction in every case, we
must conclude that x ̸= b4 and thus b4 ∈ Lβ(x). Due to Lemma 4.3, adβ(x) = 1. If b3 ∈ Rβ[x]
then b4 has a neighbour in Rβ[x] and we observe a contradiction as in the above cases. So, let
b3 ∈ Lβ(x), which means {b3, b4} ⊆ Lβ(x) and {b1, b′1, b2, b′2} ⊆ Rβ[x]. Independent of whether
x = b1 or x = b2, we obtain a contradiction to the groupwidth of β with the vertex of H ′′ that
follows x in β. This completes this case.

H ′′ is a copy of G5

By a symmetry argument, we can assume that c1 ≺β c5 and c3 ≺β c′3. Let β
′ be the restriction

of β to the vertices of P5. Let x be the vertex of P5 with |Lβ′ [x]| = 3. We apply Lemma 5.1 to
β′ and obtain the following three cases:

Rβ′(x) groups of Lβ′ [x]

{c4, c5} {c1, c2}, {c3}∗
{c2, c5} {c1, c3}∗, {c4}∗
{c1, c5} {c2}∗, {c3}, {c4}∗

The symbol ∗ marks the groups that contain vertices with a neighbour in Rβ(x). Consider the
last case of the table. Due to Lemma 4.3, it holds that adβ(x) = 1. However, independent
of the actual choice of x, Lβ(x) contains at least two groups with vertices of H ′′ that have a
neighbour in Rβ[x]. This yields contradiction. For the second case of the table, let y be leftmost
from {c2, c5} with respect to β. If y = c2 then adβ(y) = 1 due to Lemma 4.3, and we observe a
contradiction. If y = c5 then Lemma 4.3 does not provide information. However, the definition
of function ad shows that adβ(c5) = 1, so that also this case leads to a contraction. It remains
to consider the first case of the table. If x = c2 then adβ(x) = 1 and a contradiction follows
analogous to the previous cases. If x = c1 then, analogous to the arguments seen before, the
definition of function ad shows that adβ(x) = 1, and we conclude a contradiction. It remains to
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Figure 4: The three thickened paths that are discussed in Proposition 7.1. Any disjoint union
of at least two copies of the depicted graphs has linear clique-width at least 4.

consider the case when x = c3. Due to our assumptions about β, c1 and c2 are distinguished by
c′3, so that Lβ[x] contains (at least) three groups. By our assumption about the groupwidth of β,
it holds that adβ(y) = 0 for y the leftmost vertex of H ′′ with respect to β such that x ∈ Lβ(y).
Clearly, y = c5, and therefore, {c′3, c4, c5} ⊆ Rβ[y]. However, the definition of function ad shows
that adβ(c5) = 1, in particular, since c5 is not in group with any of the vertices c1, c2, c3. We
conclude a contradiction.

We have seen that every case yields a contradiction to the assumption that gw(H,β) ≤ 3,
so that gw(H) ≥ 4 follows.

It is interesting to observe that Proposition 7.1 implies the result of Proposition 6.2 for
connected thickened paths that are obtained from paths of sufficiently large length. The three
graphs considered in Proposition 7.1 are depicted in Figure 4.

8 The complete characterisation

In the previous sections, we have shown lower bounds on the linear clique-width. The results
show a sufficient condition for a thickened path to have linear clique-width at least 4. In this
section, we complete the results by showing that the given conditions are also necessary.

Lemma 8.1. Let k ≥ 6 and let P = (a1, . . . , ak). Let T ⊆ {1, . . . , k} be non-empty. Let G be
obtained from P by adding a true twin to ai for every i ∈ T . If T satisfies the following three
conditions:

1) T ⊆ {1, 2} ∪ {k − 3, k − 2, k − 1, k}

2) k − 3 ̸∈ T or k − 2 ̸∈ T or k ̸∈ T

3) 1 ̸∈ T or 2 ̸∈ T

then lcwd(G) ≤ 3.

Proof. We assume T to be maximal possible. We distinguish between three cases according to
the second condition and two cases according to the third condition. We give a linear 3-expression
for G, that is constructed in three steps, the first step creating vertices ak−3, ak−2, ak−1, ak, the
second step creating vertices ak−4, . . . , a3 and the third case creating vertices a2 and a1. Note
that the second step is empty for k = 6. For the first and third step, the expression naturally
depends on the actual situation in T . Denote by a′1, a

′
2, a

′
k−3, a

′
k−2, a

′
k−1, a

′
k the true twins of

respectively a1, a2, ak−3, ak−2, ak−1, ak of G (as they exist). We begin with the three cases for
the first step. Instead of giving full linear 3-expressions, we give layouts for the seven vertices.
The layouts translate into linear expressions in a canonical way. The three layouts are:

if k ̸∈ T : ⟨ak−3, a
′
k−3, ak−2, a

′
k−2, ak, ak−1, a

′
k−1⟩

if k − 2 ̸∈ T : ⟨ak−3, a
′
k−3, ak, a

′
k, ak−2, ak−1, a

′
k−1⟩

if k − 3 ̸∈ T : ⟨ak, a′k, ak−2, a
′
k−2, ak−1, a

′
k−1, ak−3⟩ .
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Figure 5: The three figures show the beginnings of linear 3-expressions for thickened paths, as
they are constructed in the proof of Lemma 8.1. The left figure considers the case of a thickened
path without a true twin of ak, the middle thickened path contains no true twin of ak−2, and
the right thickened path is without a true twin of ak−3. The three figures show a possible
label assignment at the moment of adding a′k−1. The crossed labels are the result of a relabel
operation.

Translating the layouts into expressions, we can assume without loss of generality that ak−3 and
its possible true twin a′k−3 receive label 3 and the other vertices, all without neighbour in the
rest of the graph, receive label 1 at the end of the expression. For illustration, Figure 5 shows the
results of linear 3-expressions for the three cases at the moment of adding vertex a′k−1. With these
assumptions, the expression continues with a sequence of subexpressions, for i = k − 4, . . . , 3:(

2(ai) η2,3 ρ3→1 ρ2→3

)
.

This sequence iteratively adds the vertices ak−4, . . . , a3 to the already created graph, following
their ordering in P . It is important to remember that none of these vertices has a true twin
in G. For the last three vertices, we have to distinguish between the two cases according to
whether 1 ∈ T or 2 ∈ T . The two subexpressions are given here:

if 1 ∈ T :
(
2(a2) η2,3 ρ3→1 ρ2→3

)(
2(a1) η2,3 ρ2→3

)(
2(a′1) η2,3 ϱ2→3

)
if 2 ∈ T :

(
3(a1)

)(
2(a2) η2,3 ρ2→3

)(
2(a′2) η2,3 ρ2→3

)
.

This completes the construction of the expression for G. If T is not maximal with respect to the
three conditions then G is induced subgraph of some thickened path with maximal T , and the
result follows with the monotonicity of linear clique-width for induced subgraphs (Lemma 4.1).

Note that the result of Lemma 8.1 directly extends to graphs that are isomorphic to a
thickened path that satisfies the given conditions. In such a case, condition 1 of the lemma
could also be formulated as T ⊆ {1, 2, 3, 4, k − 1, k}, and the two other conditions would be
re-formulated correspondingly.

We combine all obtained results to a complete characterisation of the linear clique-width of
thickened paths.

Theorem 8.2. Let G be a thickened path. Let one of the following three conditions be true for
G:

1) G contains a copy of the graphs in Figure 2 as induced subgraph

2) G contains a copy of the graphs in Figure 3 as induced subgraph

3) for G3, G4, G5 the three graphs in Figure 4, G has induced subgraphs H ′ and H ′′ such that
V (H ′) ∩ V (H ′′) = ∅ and H ′ and H ′′ are copies of G3, G4, G5.
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Then, lcwd(G) = 4, otherwise, lcwd(G) ≤ 3.

Proof. Due to the results of Propositions 5.2 and 5.4, Corollary 6.4, Proposition 7.1 and
Lemmata 4.1 and 4.9, if G satisfies one of the three conditions of the theorem then lcwd(G) = 4.
For the converse, assume that G does not satisfy any of the three conditions. This particularly
means that G contains at most one connected component that contains a copy of G3, G4 or G5

as induced subgraph. Let C be a connected component of G that does not contain a copy of
G3, G4, G5 as induced subgraph. We show that there is a linear 3-expression for G that does not
use label 1 for creating edges. Let T be such that C is obtained from a path (a1, . . . , ak) by adding
a true twin a′i to each vertex ai with i ∈ T . Because of G5, we notice that T ∩{3, . . . , k−2} = ∅.
And if k ≥ 4 then G4 implies that 1 ̸∈ T or 2 ̸∈ T and that k ̸∈ T or k − 1 ̸∈ T . For the
following construction, we can assume without loss of generality that T is maximal with these
properties. We partition the construction of an appropriate linear expression for G into two
steps. Depending on the case, the expression begins as:

if k ∈ T :
(
2(ak) 3(a

′
k) η2,3 ρ3→2 3(ak−1) η2,3 ρ2→1

)
if k − 1 ∈ T :

(
2(ak−1) 3(a

′
k−1) η2,3 ρ2→3 2(ak) η2,3 ρ2→1

)
.

We continue as in the second and third step of the proof of Lemma 8.1, which defines a desired
linear 3-expression for C. For the case when k ≤ 3, it suffices to observe that C is induced
subgraph of some graph that is obtained from a path of length 2 with T = {1, 3} or T = {2, 3}.
This particularly holds since C cannot contain G3 as induced subgraph.

Now, let C be a connected component of G that contains a copy of G3, G4 or G5 as in-
duced subgraph. Similar to the above case, let T be a set such that C is obtained from a
path (a1, . . . , ak) by adding a true twin a′i to each ai with i ∈ T . By assumption about G, C
does not satisfy condition 1 or 2. If k ≥ 7 then T does not satisfy the conditions of Corollary 6.4.
This means that {k − 3, k − 2, k} ̸⊆ T and {1, 3, 4} ̸⊆ T and that

– T ∩ {3, . . . , k − 4} = ∅ and {1, 2} ̸⊆ T , or

– T ∩ {5, . . . , k − 2} = ∅ and {k − 1, k} ̸⊆ T .

This exactly means that C satisfies the conditions of Lemma 8.1, and thus, lcwd(C) ≤ 3. If
k ≤ 6 then C contains no copy of a graph depicted in Figure 2 as induced subgraph. Let k = 6.
We consider the possible cases. Let T ⊆ {2, 3, 4, 6}. It suffices to show that lcwd(C) ≤ 3 for
the case when T = {2, 3, 4, 6}. The vertex ordering ⟨a4, a′4, a3, a′3, a1, a2, a′2, a5, a6, a′6⟩ defines a
linear 3-expression for G. If T ⊆ {1, 3, 4, 5} then an analogous linear 3-expression for G exists.
If 1 ̸∈ T and 6 ̸∈ T then lcwd(C) ≤ 3 due to Lemma 8.1. If 1 ̸∈ T and 6 ∈ T then 2 ̸∈ T or 3 ̸∈ T
or 4 ̸∈ T or 5 ̸∈ T : since {3, 4, 5, 6} ̸⊆ T due to condition 1, lcwd(C) ≤ 3 due to Lemma 8.1 (if
3 ̸∈ T or 4 ̸∈ T ) or due to an above shown case (if 5 ̸∈ T ); symmetrically, lcwd(C) ≤ 3 for 1 ∈ T
and 6 ̸∈ T . Let {1, 6} ⊆ T . Then, 2 ̸∈ T or 5 ̸∈ T and 3 ̸∈ T or 4 ̸∈ T (due to condition 1). Thus,
lcwd(C) ≤ 3 due to Lemma 8.1. This completes the case of k = 6. If k ≤ 5, it is not difficult to
see, since {1, 2, 3, 4, 5} ̸⊆ T , that C is induced subgraph of some thickened path obtained from a
path on six vertices by adding true twins and that satisfies the conditions of Lemma 8.1. Thus,
lcwd(C) ≤ 3.

The final linear 3-expression for G is obtained by first constructing the connected component
that contains a copy of G3, G4 or G5 as induced subgraph (if such exists), then changing all
labels to 1 and then iteratively constructing all other connected components, using a linear 3-
expression where label 1 is not used for creating edges. Such expressions exist due to the above
paragraphs, and this completes the proof.
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The proof of Theorem 8.2 directly translates into a linear-time algorithm for deciding for a
given thickened path whether its linear clique-width is at most 3. In combination with Propo-
sition 4.6, we obtain a linear-time algorithm for computing the linear clique-width of thickened
paths.

9 Conclusions

We have given a complete characterisation of thickened paths of linear clique-width at most 3
by forbidden induced subgraphs. It is important to note that our obtained set is finite. We see
that all connected graphs in Figure 2 and on the right hand side of Figure 3 have ten vertices,
and all disconnected graphs from Figure 4 have twelve vertices. Furthermore, for the graphs in
Figure 4, G5 is a subgraph of G4 and G4 is a subgraph of G3. Similar subgraph relationships
are observed for the other graphs. These relationships trigger the question whether there is a
general result about the linear clique-width of graphs that are sandwiched between two graphs
of large linear clique-width. As an example, G4 of Figure 4 is sandwiched between G5 and G3.

Thickened paths are proper interval graphs, so our results provide a class of forbidden induced
subgraphs of proper interval graphs of linear clique-width at most 3. A next step towards a
complete characterisation of graphs of linear clique-width at most 3 can be to consider subclasses
of proper interval graphs that disallow either only bull or only gem as induced subgraph.

How can our results help for better understanding of not only linear clique-width but also
clique-width? Expressions for clique-width have a tree structure, and expressions for linear
clique-width have a path structure. Fixing an expression for clique-width and restricting to a
leaf-root path in the tree defines a linear clique-width expression for a subgraph. The linear
clique-width of this subgraph provides a lower bound on the clique-width of the whole graph,
and the structure of its expressions provides information about the whole expression. Due to this
connection, the study of linear clique-width of certain graph classes potentially gives valuable
insights into the nature of clique-width of larger graph classes.
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