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Abstract

The CORRELATION CLUSTERING problem, also known as the CLUSTER EDITING prob-
lem, seeks to edit a given graph by adding and deleting edges to obtain a collection of
vertex-disjoint cliques, such that the editing cost is minimized. The EDGE CLIQUE PAR-
TITIONING problem seeks to partition the edges of a given graph into edge-disjoint cliques,
such that the number of cliques is minimized. Both problems are known to be NP-hard,
and they have been previously studied with respect to approximation and fixed parameter
tractability. In this paper we study these two problems in a more general setting that we
term fuzzy graphs, where the input graphs may have missing information, meaning that
whether or not there is an edge between some pairs of vertices of the input graph can be
undecided.

For fuzzy graphs the CORRELATION CLUSTERING and EDGE CLIQUE PARTITIONING
problems have previously been studied only with respect to approximation. Here we
give parameterized algorithms based on kernelization for both problems. We prove that
the CORRELATION CLUSTERING problem is fixed-parameter tractable on fuzzy graphs
when parameterized by (k,r), where k is the editing cost and r is the minimum number
of vertices required to cover the undecided edges. In particular we show that it has a
polynomial-time reduction to a problem kernel on O(k? + r) vertices. We provide an
analogous result for the EDGE CLIQUE PARTITIONING problem on fuzzy graphs. Using
(k,r) as parameters, where k bounds the size of the partition, and r is the minimum
number of vertices required to cover the undecided edges, we describe a polynomial-time
kernelization to a problem kernel on O(k* - 3") vertices. This implies fixed-parameter
tractability for this parameterization. Furthermore we also show that parameterizing
only by the number of cliques k, is not enough to obtain fixed-parameter tractability. The
problem remains, in fact, NP-hard for each fixed k& > 2.

1 Introduction

Given a complete graph with labels (+) or (—) on each edge, the CORRELATION CLUSTERING
problem is to partition the vertices into clusters so that the number of (—) edges inside each
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cluster plus the number of (+) edges between the clusters, is minimized. Taking (+) edges
as edges and (—) edges as non-edges, this problem is equivalent to the CLUSTER EDITING
problem, where we are given an ordinary graph and asked to add and delete the total minimum
number of edges so that the resulting graph is a collection of disconnected (i.e., vertex-disjoint)
cliques. The CORRELATION CLUSTERING (equivalent to CLUSTER EDITING) problem has been
proven NP-hard several times [2, 3], as it has been discovered and rediscovered in various
applications areas, such as hierarchical tree clustering [22], computational biology [4, 29], and
phylogenetic trees [10]. General versions of the CORRELATION CLUSTERING problem have
been defined [1, 5] and studied from the point of view of approximation [9, 11, 12, 14]. The
second problem that we study in this paper is the EDGE CLIQUE PARTITIONING problem,
which asks us to partition the edges of a given graph into edge-disjoint cliques such that the
number of cliques in the partitioned graph is minimized. This problem is NP-hard [27] for
general graphs, but also for K4-free and even chordal graphs [23].

A key point of what we offer here is to expand the investigation of both problems to
inputs consisting of fuzzy graphs, where some pairs of vertices of the input may have an
undetermined, unknown or undecided relation. Fuzzy graphs are also called incomplete graphs
in the literature [9, 11, 12, 14]. For many applications, such a notion clearly adds to the realism
of the modeling in an important way. To mention one application area where a similar idea
has been considered before, in bioinformatics the notion of “sandwich graph problems” has
played a useful role [18].

NP-hard problems remain hard also on fuzzy graphs, as they are a generalization of ordi-
nary graphs. Hence we investigate their tractability from a parameterized complexity point
of view, and we try to understand which structural parameters are more suitable to attack
problems on fuzzy graphs.

A problem is fixed parameter tractable (FPT) if its input can be partitioned into a main
part of size n and a parameter (usually an integer) k so that there is an algorithm that solves
the problem in time O(n® - f(k)), where f is a computable function and c is a fixed constant
[13]. A kernel is an instance of the problem smaller than the input, such that the problem
has a solution on the input if and only if it has a solution on the kernel. It is well known
that a problem is FPT if and only if a kernel of size g(k) can be computed from the input in
polynomial time, for a computable function g [13, 26].

The fixed-parameter tractability of the CLUSTER EDITING problem (for ordinary non-fuzzy
graphs) has been shown, with a series of improvements in [8, 19, 28], when using the editing
cost k as parameter. The problem has also been shown to admit a linear kernelization [16, 20].
On fuzzy graphs, it is not known whether using only k as parameter, ensures fixed parameter
tractability. Here we relax the problem by introducing a new parameter r, that represents the
minimum number of vertices required to cover the undecided edges. By parameterizing the
CLUSTER EDITING problem by (k,7), we show that the problem admits a quadratic kernel,
specifically on O(k? + r) vertices, and therefore the problem is FPT also for fuzzy graphs.
Furthermore the result holds also when the fuzzy graph is weighted.

We continue by showing that the parameter  might indeed be a good choice to capture the
structure of fuzzy problems in general, not only for the specific case of CLUSTER EDITING.
For that purpose we study the EDGE CLIQUE PARTITIONING problem. When the natural
parameter alone is not enough any more to handle the complexity added by the fuzzy edges,
using r as second parameter yields again an FPT algorithm.

The EDGE CLIQUE PARTITIONING problem has been recently shown to be FPT in [25],



when parameterized by the number £ of cliques that the edges can be partitioned into. In their
work the authors give a quadratic kernel for it. The corresponding parameterization on fuzzy
graphs asks, given a fixed k, whether the fuzzy edges can be turned into edges and non-edges
so that the resulting set of edges can be partitioned into at most k edge-disjoint cliques. We
prove that the problem becomes hard when the input is a fuzzy graph, namely NP-complete
for any fixed k > 3. Parameterizing only by k is thus not enough to ensure fixed-parameter
tractability. However, if we parameterize by (k,r), then the problem becomes FPT, and
admits a polynomial time kernelization to a kernel on O(k* - 3") vertices.

2 Notation and definitions

For an undirected graph G = (V, E), we denote its vertex set by V(G) = V and edge set
by E(G) = E with n = |V|. The set of neighbors of v € V' is Ng(v) = {u | wv € E}, and
the degree of v is dg(v) = |Ng(v)|. In addition, Ng[v] = Ng(v) U {v}. Analogously, for a
set S C V, Ng[S] = UzesNg[z] and Ng(S) = Ng[S] \ S. We omit subscripts when there
is no ambiguity. An induced subgraph of G by U C V is the graph G[U] = (U, Ey), where
Ey ={zv e E|z,v € U}. Given a vertex z of G, we denote the graph G[V \ {z}] by G — z.
In addition, for a set of edges M C E, we define G(M) = ({z | 3u,zu € M}, M).

A graph is complete if every pair of vertices are adjacent. If a subgraph is complete then
it is called a cligue. If G[K] is a clique for K C V, we also say that K is a clique. If G(M)
is a clique for M C E, we also say that M is a clique. A vertex subset S C V is a vertex
cover if every edge of G has at least one endpoint in S. A connected component is a maximal
connected subgraph.

We define a fuzzy graph (also known as incomplete graph) G = (V, E, F) to be a graph
with two types of edges:

e [ is the set of real edges (also known as positive edges),
e [ is the set of fuzzy edges (also known as unweighted edges), and

e for all other pairs of vertices in the graph we say that we have non-edges (also known
as negative edges).

When we decide for each fuzzy edge whether it should become a real edge or a non-edge, we
say that we realize the fuzzy edges. The resulting graph is called a normalization of the fuzzy
graph. Formally we say that (RT, R™) with F = RT UR™ is a realization of F into real edges
R™ and non-edges R~ such that G’ = (V, EU R™) is the corresponding normalization of
G = (V,E,F). When we speak about the connected components of a fuzzy graph, we mean
the connected components of the graph obtained by turning all fuzzy edges into non-edges.
So a connected fuzzy graph is a fuzzy graph where between any two vertices there is a path of
real edges.

3 Parameterized cluster editing with partial information

A cluster graph is a graph where each connected component is a clique. In this section we
study the problem of editing a weighted fuzzy graph G = (V, E, F') to obtain a cluster graph.
Editing means turning some real edges into non-edges (deleting), turning some non-edges into



real edges (adding), and turning all fuzzy edges into either real edges or non-edges. Each edge
and non-edge is associated with a positive weight, whereas each fuzzy edge has weight 0. The
cost of an edit is the sum of the weights of the deleted and added edges, and the goal is to
minimize the cost. The problem is formally defined as follows.

WEIGHTED Fuzzy CLUSTER EDITING (WFCE)

Instance: A fuzzy graph G = (V, E, F'), a weight function w : V' x V' — N such that w(uv) = 0
if wv € F and w(uv) > 0 if uv ¢ F, and a natural number k& > 0.

Question: Is there a set M C V x V such that: G' = (V,(E\M)U (M \ E)) is a cluster graph
and ), < w(uv) < k?

First we characterize the fuzzy graphs that can be turned into a cluster graph just by
realizing the fuzzy edges, that is, without any editing cost. As it was already noted in [14]
and [9], these graphs can be defined by a family of forbidden induced (fuzzy) subgraphs, which
they called erroneous cycles and negative polygon respectively. Since they are, in practice, a
fuzzy version of an induced path, we denote them as Plf = {v1,va, ..., v}, where: | > 3; vv; 41
is a real edge for every 1 < i <[ —1; vyv; is a non-edge; and all the other pairs of vertices are
joined by fuzzy edges (see Figure 1). In terms of our notation the results of [9, 14] imply the
following theorem.

Figure 1: Real edges are represented by continuous lines, non-edges by dashed lines, and fuzzy
edges by dotted lines.

Theorem 3.1 Let G be a fuzzy graph. Then there exists a realization of the fuzzy edges that
results in a cluster graph without editing any real edge or non-edge if and only if G does not
contain any induced subgraph isomorphic to a Plf forl > 3.

The k-WEIGHTED Fuzzy CLUSTER EDITING problem (k-WFCE) is the WFCE problem
where we choose k as the parameter of the problem. The complexity of k-WFCE is open even
for the unweighted case. The characterization given in Theorem 3.1 is through an infinite set
of forbidden induced subgraphs, and hence an FPT algorithm for k-WFCE does not follow
from the results of Cai [8].

In order to give an FPT algorithm, we introduce an additional parameter. We define a
fuzzy vertex cover of a fuzzy graph to be a vertex subset S such that each fuzzy edge has an
endpoint in S. The new parameter is r = |S| where S is a smallest fuzzy vertex cover of G.
We call the corresponding new problem the (k,r)-WEIGHTED Fuzzy CLUSTER EDITING, or
(k,r)-WFCE, problem.

Observe that checking whether a fuzzy graph G = (V, E, F') has a fuzzy vertex cover of
size at most r is FPT when parameterized by r. To do this we create a non-fuzzy graph G’
from G(F') by turning all real edges of G(F') into non-edges and all fuzzy edges into real edges.
It is easy to see that G has a fuzzy vertex cover with at most r vertices if and only if G’ has a



vertex cover of at most r vertices. Since the r-VERTEX COVER problem is well known to be
FPT, our claim follows.

3.1 Kernel for the (k,r)-Weighted Fuzzy Cluster Editing problem

We show fixed-parameter tractability by giving a set of rules that either enable us to answer
NO, or produce a kernel of size O(k? 4 r) in polynomial time, for the (k,r)-WFCE problem.
First we give a general observation based on the fact cluster graphs are hereditary, and that,
by definition, only fuzzy edges and non-edges are present among connected components of a
fuzzy graph.

Observation 3.2 Let G be a weighted fuzzy graph with connected components Cq,...,C.
Then G can be made into a cluster graph with editing cost at most k if and only if each
connected component C; can be made into a cluster graph with editing cost at most k;, such
that Y o, ki < k.

Now we start presenting the rules, that are mostly self-explanatory. We will not give sharp
bounds on the running time of each rule; instead, we will limit the explanation to why they
can be executed in polynomial time. Our main goal is to prove that there exists a quadratic
kernel that can be computed in polynomial time, and therefore the (k,r)-WFCE problem is
FPT.

Rule 3.1.1 If there is a connected component C with no non-edges, remove C'.
Lemma 3.3 Rule 3.1.1 is correct and can be applied in O(|V |+ |E| + |F|) time.

Proof. Since such a connected component can be made into a clique by only realizing fuzzy
edges, removing it will not affect the final result by Observation 3.2. Finding the connected
components of a graph and checking its edges can be clearly done in linear time. =

Rule 3.1.2 If Rule 3.1.1 does not apply and there are more than k—+1 connected components,
then answer NO.

Lemma 3.4 Rule 3.1.2 is correct and can be applied in O(|V|+ |E| + |F|) time.

Proof. If Rule 3.1.1 does not apply, then in every connected component there is at least one
non-edge, and at least one path of real edges connecting its endpoints. This means that there
exists an erroneous cycle in each connected component, and each of them requires at least
one editing to be destroyed. As there are more than k disjoint fuzzy paths, the result follows.
Checking the number of connected components of a graph can be obtained by a linear-time
graph traversal. m

For the following rule, note that a minimum cut between two vertices v and v is the
minimum total weight of a collection of real edges that must be deleted so that between u
and v there is no path of real edges.

Rule 3.1.3 If there are vertices u and v such that the value of a minimum cut between them
is at least k + 1, then replace u and v with a unique vertex x, and for every other vertex z
create the edge xz as following, depending on the edges e = uz and for f = vz:



Figure 2: An example of the application of Rule 3.1.3. Real edges are represented by contin-
uous lines, non-edges by dashed lines, and fuzzy edges by dotted lines.

1. If e is fuzzy then let xz = f, and vice-versa.

2. If e and f are both real edges or both non-edges, then let xz be a real edge or non-edge,
respectively, with w(zz) = w(e) + w(f).

3. If, without loss of generality, e is a real edge and f is non-edge, then:

(a) If w(e) > w(f), then let xz be a real edge with w(xz) = w(e) — w(f) and let
k=k—w(f).

(b) If w(e) < w(f), then let xz be a non-edge with w(xz) = w(f) — w(e) and let
— k- u(e).

(c) Ifw e) = w(f), then let xz be a fuzzy edge and let k = k — w(e).
4. If uv was a non-edge then let k = k — w(uv).

5. If now k < 0, answer NO.
Lemma 3.5 Rule 3.1.3 is correct and can be applied in polynomial time.

Proof. The idea of the rule is basically that, given an input weighted graph G, if two vertices
u and v cannot be separated by removing edges of total weight less than k£ + 1, then they
must belong to the same cluster in every possible solution. This implies also that in every
possible solution, v and v must be adjacent and every other vertex in the graph will have to
be either adjacent to both u and v, or to none of them. With this in mind, we can pay the
cost for making u and v adjacent (point 4) and construct a new graph H where u and v are
replaced by a unique vertex x such that, given any other vertex z of G, making z incident
to x in H will cost the the same as making z incident to both v and v in G, and similarly,
disconnecting z from x will have the same editing cost as disconnecting z from both v and v.
Once we prove that these editing costs are equivalent, since G — {u, v} is identical to H — z,
it will be straightforward to see that G has a solution of cost at most k if and only if H has
a solution of cost at most k', where k' is the new k obtained after applying Rule 3.1.3.

We will now show that the editing costs in G and H are equivalent.

If the two edges vz and wz are of different type, there is always a minimum editing
cost (possibly 0) to be paid to make z adjacent either to both or to none of them, i.e., the
min{w(uz),w(vz)}, because for every possible editing choice at least one of them must be
turned into a different type (points 1, 3a, 3b and 3c). Once we decrease the parameter k



by this fixed editing cost, if the new k is non-negative (point 5), we can create the new
edge zz of the same type of the edge of maximum weight between uz and vz, and with
w(zz) = |w(uz) — w(vz)|. We explain the reason by taking as an example the case where uz
is a real edge and vz a non-edge, and w(uz) > w(vz). If we pay w(vz), we can imagine that
either we have paid to make vz into a real edge, so that we can consider z adjacent to both u
and v, or that we have already paid some of the editing cost to make uz into a non-edge, so
that only w(uz) — w(vz) is left to pay to disconnect completely z from both u and v. This is
clearly equivalent to having a real edge zz with weight w(uz) — w(vz) in H. All other cases
are identical to this one, with the exception of the case when w(uz) — w(vz) = 0, in which
case both the possible editions have completely been paid for and zz is clearly equivalent to
a fuzzy edge.

If the edges are of the same type, instead, the minimum editing cost is 0 because there
might be a solution where no editing is necessary for these edges (Rule 2). In this situation,
the new edge xz will be simply an edge of the same type of both uz and vz, with weight
w(xz) = w(uz) + w(vz). The equivalence of the editing costs in G and H in this case is
immediate.

Finally, the running time is polynomial because the minimum cut of two vertices of a
graph can be found in polynomial time [17], and H can clearly be constructed in polynomial
time as well. n

Theorem 3.6 If Rules 3.1.1, 3.1.2 and 3.1.83 do not apply, and we have not answered NO
yet, then either the current graph has at most k* + 4k + r vertices, or the answer is NO.

Proof. Let us consider a fuzzy graph H = (V| E, F') obtained from a fuzzy input graph G by
applying Rules 3.1.1, 3.1.2 and 3.1.3 until it is possible, such that we did not answer NO in the
process. Let k and r the parameters associated to H, and k' and 7’ the parameter associated
to H. We first prove that if H is a YES instance to the fuzzy cluster editing problem, then it
has at most k% + 3k’ + r/ vertices.

If Rule 3.1.1 and Rule 3.1.2 do not apply, it means that H has at most k¥’ connected
components, and each of them must be edited. If Rule 3.1.3 does not apply, then there
cannot be cliques of size greater than &'+ 1. Hence H has no cliques of size greater than k' +1
and we assume that there exists a set M CV x V such that H' = (V,(E\ M)U (M \ E)) is a
cluster graph and )~ w(uv) < k. First we consider the case when H is connected. Let
us define the following;:

e S C V is the set of vertices that are incident to some real edge or non-edge in M (the
edited edges);

e R is a minimum fuzzy vertex cover of H, so that ' = |R];
e X =V \ R, so that H[X] does not contain any fuzzy edge;
e X'=5nX.

Then it is easy to see that |X'| < |S| < 2k'. Let us focus on the graph H[X \ X']. It does not
contain fuzzy edges, and none of its vertices is incident to an edited real edge or non-edge. We
can conclude that it must be a union of disjoint cliques. In particular we show that it must
be the union of at most k¥’ + 1 disjoint cliques, and that each of them has specific neighbors in



the rest of the graph. Since no vertex of these cliques is incident to an edited edge, and there
are no fuzzy edges in between them, each of the cliques must belong to a different cluster in
the solution. However, to create more than k¥’ + 1 connected components from a connected
graph, we need to remove at least k¥’ + 1 edges. Hence the first part of the claim is proved.

JFrom the previous argument, it also follows that all vertices in X’ connected to a clique
in H[X \ X'], must end up in the same cluster of the solution as the clique they are adjacent
to. Assume they do not, then we should delete an edge incident to a vertex in H[X \ X'],
getting a contradiction. Therefore every vertex in X’ can be connected to at most one clique
in H[X \ X'], and furthermore it must be adjacent to all vertices of this clique. This means
that every clique in H[X \ X'] has either some neighbors in X’ and size at most £/, or it has
neighbors only in R and size at most &’ + 1. Going back to H, if we define N as the number
of cliques in H[X \ X'] that have neighbors only in R, we have the following bound:

Vi< +1)-N+k - (K+1-N)+ (2 = N)+|R| = k?+ 3k +71'.

The first two terms give a bound on the number of vertices in H[X \ X’] according to the
previous discussion, while the term (2k’ — N) represents a tighter bound on | X’|. In fact, for
every clique with neighbors only in R, there must be at least one distinct vertex in R incident
to an edited edge. This is because we need to disconnect the clique from the rest of the graph,
but we cannot touch edges incident to its vertices. Besides at least one endpoint of the edge
we have to remove will belong to the same cluster as the clique.

Consider now the case when H has [ connected components C1,...,C;, where 1 <1 < K.
By Observation 3.2 we know that there is a solution for H that edits at most k' edges if and

only if there is a solution for each H|[C;] that edits at most k] edges, such that S\_ &k} <K/

7
This means that, by what we just proved for connected fuzzy graphs, if there is a solution for
H then |V(H[Ci])| < k* + 3k! + 7} for 1 < i < I, where 7/ is the size of a minimum vertex

cover of H[C;]. Hence |V| < 3" k2 + 3k! + +/, that is
l I l l
VIS K243 K+ ) ri< (O k) +3K +0" =k?+ 3K+,
i=1 i=1 i=1 i=1

To complete the proof, we simply show that ¥’ < k and ' < r + k. That k' is a most k
is straightforward from Rule 3.1.3, which is the only case when the parameter k is modified,
in particular decreased. As for the fuzzy vertex cover, when we apply Rules 3.1.1 and 3.1.2
we only remove vertices from G, therefore no fuzzy edges are introduced and the fuzzy vertex
cover can only get smaller or stay the same. Applying Rule 3.1.3, instead, might create new
fuzzy edges incident only to the new vertex that is created by merging two vertices in G. This
means that all new fuzzy edges can be covered by adding such new vertex to the fuzzy vertex
cover. Besides, when a fuzzy edge is created, the parameter k is always decreased by at least
one (see Rule 3.1.3 case 3 (¢)). Hence a vertex will be added to the fuzzy vertex cover of the
reduced graph, no more than k times. Concluding we have that ' < r + k as claimed, so
that if the graph H is YES instance, then it has at most k2 + 3k’ + 1/ < k? + 4k + r vertices,
concluding the proof. =

It is easy to construct examples where we have (k+1)-N+k-(k+1—-N)+(k+1—-N)+r =
k? + 2k + 1 + r vertices in a yes instance for any given k; see Figure 3 for an example. Hence
Theorem 3.6 gives a quite tight bound on the size of the kernel, that is in any case O(k? +r).



X\X’

Figure 3: Example of a kernel with k? + 2k + 1 + r vertices for k = 3. The non-edges are not
drawn to keep the figure easier to follow.

We have thus proved that the (k,7)-WFCE problem has a kernel of size O(k? + r), where
it is then possible to find a solution just by trying all possible editings of its edges. Given this,
and that all the reduction rules can clearly be applied only a polynomial number of times,
and all run in polynomial time by Lemmas 3.3, 3.4 and 3.5, we can state the final result of
this section.

Theorem 3.7 The (k,r)-WEIGHTED Fuzzy CLUSTER EDITING problem can be solved in
time n©M) 4+ O((k? +1)%k).

4 Parameterized edge clique partition with partial informa-
tion

In this section, we study the problem of partitioning the edges of a fuzzy graph G = (V, E, F)
into edge-disjoint cliques. In this problem, no editing of the edges or non-edges of G is
involved, but we have to decide for each fuzzy edge whether or not it should become a real
edge or a non-edge. Below is a formal definition of the problem.

Fuzzy EDGE CLIQUE PARTITIONING (FECP)

Instance: A fuzzy graph G = (V, E, F') and an integer k > 0.

Question: Is there a realization (RT, R™) of the fuzzy edges such that the edges of G' =
(V, EU R") can be partitioned into at most k edge-disjoint cliques?

Naturally, being a more general version of the problem on non-fuzzy graphs, the Fuzzy
EDGE CLIQUE PARTITIONING problem is NP-hard as well. Interestingly, we show that it
remains NP-hard also when k is a fixed constant and not a part of the input, for every
k > 3. Recall that, in contrast, the EDGE CLIQUE PARTITIONING problem is FPT when
parameterized by k. We show the FECP problem parameterized by both k£ and r, where r is
again the size of a minimum fuzzy vertex cover, is FPT. We call this version of the problem
(k,r)-FECP.



4.1 The k-Fuzzy Edge Clique Partitioning problem is NP-complete

Here we prove that deciding whether the edges of a fuzzy graph can be partitioned into at
most k edge-disjoint cliques, is NP-complete for every fixed k > 3, and polynomial otherwise.
The problem we reduce from, is the classical k-Coloring problem. In this problem, the input
is a graph G = (V, F) and a fixed k > 0, and the question is whether the vertices of G can
be colored with at most k colors, such that no two adjacent vertices have the same color. It
is well known that this problem is NP-complete for every fixed k > 3.

Theorem 4.1 The k-Fuzzy EDGE CLIQUE PARTITIONING problem is NP-complete for fized
k> 3.

Proof. Given a graph G = (V, E) we build a fuzzy graph G’ = (V', E', F') as follows. For each
vertex v; € V, create a new vertex u; and call U the set of such vertices, so that V/ =V UU.
Now the only real edges in E’ are the edges v;u;, because we replace each v;v; € E with
a non-edge, and for every other pair of vertices we add a fuzzy edge. See Figure 4 for an
example.

Now we claim that G = (V, E) can be colored with at most k colors if and only if there
exists a normalization of G’ = (V U U, E’, F) whose edges can be partitioned into at most k
edge-disjoint cliques.

Assume there is a coloring of G = (V, E) that uses only & colors, so that no two adjacent
vertices have the same color. This is equivalent to partitioning V into k sets Ay,---, A,
such that A; is an independent set for each 1 < j < k. Let us partition also U into k sets

1,7+ » Ay such that u; € A} if and only if v; € A;. Then, by construction and the fact that
G[Aj] contains only non-edges, we know that G'[A; U A’] contains only fuzzy edges and real
edges for each 1 < j < k. Hence, if we realize all fuzzy edges inside each G’ [Aj U A;] into real
edges, and all the remaining fuzzy edges into non-edges, we get a non-fuzzy graph consisting
of k vertex-disjoint cliques, with no edges between them. Hence, we have a natural solution
for the k-EDGE CLIQUE PARTITIONING problem on G’, since vertex-disjoint cliques are also
edge-disjoint and their union contains all edges.

Assume now that there exists a normalization H of G’, that admits a partition K =
{K1,...,K;} of its edges, so that H(K;) is a clique for each 1 < i < [ and [ < k. By
construction we know that G’ is not edgeless, so that [ > 1. Let us now build a solution for
the k-Coloring problem on G using K. We associate a different color ¢; with each element
K; € K, and if vju; € K; then we assign color ¢; to a vertex v; € V. We claim that this gives
a legal k-coloring. First of all, there are at most k cliques in K, so at most k colors are used.
Besides the color of a vertex in G is well defined because K is a partitioning. Assume, by
contradiction, that there is at least one edge v;v; € E such that v; and v; have the same color.
This implies that v;u; and vju; belong to the same clique of K. However, by construction,
there should be a non-edge between v; and v; in G’. Hence there cannot be any normalization
of G’ where v;u; and vju; belong to the same clique, and therefore to the same element of a
valid edge clique partition. This proves our claim.

Clearly, G’ can be constructed from G in polynomial time; hence the theorem follows. =

As a complementary result, we prove next that the k-FECP problem is solvable in polyno-
mial time when k is 0, 1, or 2. For the following result, we define an isolated vertex of a fuzzy
graph to be a vertex that is not incident to any real edge. Similarly, we define a universal
vertex of a fuzzy graph to be a vertex that is not incident to any non-edge.
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3-Coloring of G 3-Partition of G’
o—0O

Figure 4: An example of the graph G’ obtained from a graph G, and the equivalence of a
solution of the 3-Coloring problem on G with a solution of the 3-EDGE CLIQUE PARTITIONING

problem on G’. In G’ the fuzzy edges are not drawn to keep the figure clean, while in the
corresponding clique partition the non edges are not drawn.

Theorem 4.2 The k-FECP problem can be solved in polynomial time for k < 2.

Proof. The 0-FECP problem is solvable if and only if there is a normalization of the input
fuzzy graph that is edgeless. In other words if the input graph has no real edges.

The 1-FECP problem is solvable if and only if there are no non-edges in the input graph
after we removed all isolated vertices, i.e., the input graph can be realized into a clique plus
some isolated vertices.

In each case the conditions can clearly be checked in polynomial time.

For the 2-FECP problem we can assume that there are no isolated vertices in the input
graph, as they do not affect the solvability of the problem, and that no solution exists for
k < 1. In this case, if there exists a solution, then it consists of exactly two cliques, that
are either disjoint or intersect in exactly one vertex. In both cases it is easy to see that the
complement of a solution is always bipartite, in particular a complete bipartite graph, or a
complete bipartite graph plus an isolated vertex. Hence a necessary condition for the input
graph to be a YEs-instance, is that the graph induced by its non-edges is bipartite. This
condition alone, however, is clearly not sufficient, and that is why we distinguish two cases.

If all connected components of the input graph can be realized into cliques, i.e., do not
contain non-edges, we create a graph that has a vertex for each connected component and an
edge between two vertices only if there is a non-edge between the corresponding connected
components. If this graph is bipartite, then we clearly have a feasible solution, since each
bipartition can be realized into a clique.

If the above graph is not bipartite, or if at most one connected component of the input
graph contains non-edges, then we know that if a solution exists, it must consists of two cliques
intersecting in one vertex. Hence, we simply try and remove one universal vertex, and check
whether the graph without this vertex has a normalization consisting of two disjoint cliques,
with the technique explained above. If the answer is NO for each universal vertex, then there
is no solution, otherwise we can clearly add back the vertex making it universal to the two
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cliques we found, yielding a valid solution.
This approach can clearly be implemented to run in polynomial time, since it essentially
checks whether a graph is bipartite at most n 4+ 1 times. =

4.2 The (k,r)-Fuzzy Edge Clique Partitioning problem is FPT

To obtain a kernel for (k,r)-FECP, we first give some observations that apply to any valid
solution of the problem on non-fuzzy graphs, i.e., the k-EDGE CLIQUE PARTITIONING problem.

For a non-fuzzy graph G = (V, E), and a fixed k > 0, we call a feasible solution a partition
K = {Kj,Ks,...,K;} of E such that G(Kj;) is a clique for each i, and [ < k. For K; € K,
we define V(K;) as the union of the endpoints of the edges in K;, i.e. V(G[K;]). We call
gateways the vertices that are in the intersection of some cliques defined by elements of K,
while the vertices contained only in one clique are called normal. Two normal vertices in the
same clique are said to be co-normal. We define a set V/ C V to be a type if there is at least
one vertex v such that N[v] = V'. So we say that two vertices u and v are of the same type if
Nlu] = N[v], and that they are of different type otherwise. Finally notice that the intersection
of two cliques in any solution cannot consist of more than one vertex, or there would be one
edge covered by two cliques.

Theorem 4.3 ([7]) Every edge clique partition of a complete graph on n vertices, except the
trivial one of a single clique, contains at least n cliques.

Lemma 4.4 If the answer to the k-EDGE CLIQUE PARTITIONING problem for a graph G =
(V, E) is YES, then the answer is YES also for each induced subgraph of G.

Proof. Let K = {Kj,..., K;} be a partition of F, such that [ < k and G(Kj) is a clique for
each 1 <4 < [. Then consider V! C V, and G’ = G[V \ V']. Clearly, all vertices of G(K;)
which are also in G’, can also be covered by one clique whose edges will not belong to any
other clique. Therefore it is possible to map each clique defined by K to some, possibly empty,
clique in G, yielding a feasible solution for G’. =

Lemma 4.4 implies that if there is even only one induced subgraph of G for which the
answer is NO, then G itself is a NO instance. We will use this observation often.

Observation 4.5 In any solution of k-EDGE CLIQUE PARTITIONING, there cannot be more
than (g) gateway vertices.

Proof. Every two cliques defined by a feasible solution can intersect in at most one vertex,
or they would cover the same edge. Since there are at most (g) possible intersections among
k cliques, the result follows. =

In order to show that this upper bound is tight, we provide a way to construct a graph G
with k(k — 1)/2 gateways, for any k. Let K = {K1, Ks,..., K} be a partition of the edges
of a graph G into k cliques, and let |V (K;)| = k for each 1 < i < k. Now let v] be the vertex
i of G(Kj). Then for each 1 < i,j < k, we set vf = v§ and complete the construction of G.
In Figure 5 we give an example for k = 6. It is easy to see that every two cliques intersect in
exactly one vertex, so that there is no edge covered by more than one clique. Furthermore,
for every pair of cliques, we have a different intersection implying a tight bound. This also
means that all gateways have different types.
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Figure 5: Example of a graph with (g) gateway vertices. Every box represents a clique, and
every two cliques intersect in exactly one distinct vertex.

Observation 4.6 Given a feasible solution, all the vertices of the same type either belong to
the same clique and are co-normal, or they are all gateways.

Proof. Take a normal vertex v in the solution. It belongs to only one clique K by definition,
which is therefore also its type. Hence, all other vertices of the same type of v must be only
in K as well and be co-normal with v.

If v is not normal, then it must be a gateway, and by what we have just proved, no other
vertex of the same type of v can be normal either, or v would be as well giving a contradiction.

Observation 4.7 If there are more than k + (g) vertices of pairwise different type, then the
answer to k-EDGE CLIQUE PARTITIONING s NO.

Proof. By Observation 4.6, we know that to each type must correspond to either a clique
in a solution, or a set of gateways. Since a solution cannot have more than k cliques and by
Observation 4.5 there can be at most (g) gateway vertices, we can conclude that there cannot

be more than k + (g) different types of vertices in a YES-instance. m

Figure 5 shows that also the bound in Rule 4.7 is tight.

It is now enough to give a simple generalization of the previous observations to get a
polynomial time kernelization for the (k,r)-FECP problem. ;From now on we assume a fuzzy
input graph G = (V, E, F).

First we need to introduce a generalization of the type of a vertex for fuzzy graphs. The
fuzzy neighborhood of a vertex v is the set of the vertices w such that vw € F. We say that
two vertices are of the same absolute type if their closed and fuzzy neighborhoods are equal.

Consider a fuzzy graph G = (V, E, F), and let S C V be a minimum fuzzy vertex cover
of G, such that |S| < r. Then for each vertex in X = V'\ S, there can be at most 3" possible
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ways to have adjacencies in S. So we can classify the vertices of X into 3" categories, so that
the vertices in the same category have the same absolute type with respect to the vertices in
S. Since G[X] is a non-fuzzy graph, if there is no solution to k~-EDGE CLIQUE PARTITIONING
for G[X], then there is no solution to (k,r)-FECP on G no matter how we realize the fuzzy
edges, due to Lemma 4.4.

Rule 4.2.1 If there are more than (k + (g)) - 3" wertices with different absolute type in X,
then the answer is NO.

Lemma 4.8 Rule 4.2.1 is correct and can be executed in polynomial time.

Proof. If there are more then (k + (g)) - 3" absolute types of vertices, then G[X] must have
more than (k+ (g)) vertices of different types. Hence by Observation 4.7, there is no solution
for G[X]. By Lemma 4.4, this implies that there is no solution for G as well, proving the first
part of the statement.

The rule can be easily executed in polynomial time by listing the absolute closed neigh-
borhoods of the vertices of G, and checking whether there are more than (k+ (g)) -3" different
ones. Since k and r are constants, the result follows. =

Rule 4.2.2 [f Rule 4.2.1 does not apply and there are more than (’;) + 1 vertices of the same
absolute type in X, then remove one.

Lemma 4.9 Rule 4.2.2 is correct and can be executed in polynomial time.

Proof. Let u be the vertex we remove. Then we show that there is a solution for G if and
only if there is a solution for G — u. Assume that there is a normalization H of G — u that
admits a feasible solution K’. Since in G — u there are at least (’;) + 1 vertices of the same
absolute type as u, we know that at least one of them, let us say v, is a normal vertex for
exactly one clique induced by some set of K’. By Observation 4.5 there cannot be more than
(]2“) gateways in any solution. This means that if we realize the fuzzy edges of G|V \ {u}] as
in H and the fuzzy edges incident to u as the fuzzy edges incident to v in G — u, we get a
normalization H' of G where u and v have the same type. Hence a feasible solution can be
obtained from K’ by just adding all edges incident to u to the same set of K’ containing all
edges incident to v.

On the other hand, by Lemma 4.4, if there is a normalization G’ of G with a feasible
solution, then there is also a normalization of G — u that has a feasible solution, namely
G/ —Uu. =

Lemma 4.10 If Rules 4.2.1 and 4.2.2 do not apply, then the graph has at most ((g) +1)-
((k+ (5) - 3") + r vertices.

Proof. It follows directly by the fact that Rule 4.2.1 and Rule 4.2.2 do not apply. =

Theorem 4.11 (k,r)-Fuzzy EDGE CLIQUE PARTITIONING is FPT with a kernel of size
O(k*-3m).
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Proof. The size of the kernel follows from Lemma 4.10, so we only need to show that the
preprocessing can be performed in polynomial time. Rules 4.2.1 and 4.2.2 can be applied
in polynomial time by Lemma 4.8 and 4.9. Besides they are applied at most a polynomial
number of times. In fact, every time we apply Rule 4.2.2 we either remove one vertex or stop,
and Rule 4.2.1 needs to be applied only once before every application of Rule 4.2.2. In total
we can have at most 2n application of the rules, hence the theorem follows. =

5 Concluding remarks

In this paper we have studied the parameterized complexity of two important examples of
graph clustering problems on inputs consisting of fuzzy graphs: graphs that represent in-
complete information about relationships. We believe that the investigation of “problems
on fuzzy graphs” is extremely well-motivated by applications, particularly in areas such as
machine learning and bioinformatics, where complete information about the graphs modeling
various computational objectives is often not available. In this general context, much more
remains to be done.

We have described two FPT algorithms: one for the WEIGHTED Fuzzy CLUSTER EDIT-
ING problem, and another for the Fuzzy EDGE CLIQUE PARTITIONING problem. Both are
parameterized by the compound parameter (k,r) where k is a cost parameter representing:

- the total cost of the editing in the case of WEIGHTED Fuzzy CLUSTER EDITING, and

- the number of cliques in the partition in the case of Fuzzy EDGE CLIQUE PARTITION-
ING.

The parameter r is a structural parameter and in both problems it represents the minimum
number of vertices required to cover the undecided edges of the fuzzy graph taken as input.
This structural parameter could be well-motivated by applications where only a small number
of “trouble-maker” vertices are the “cause” of the uncertain information about the input.

We have also shown that in the case of Fuzzy EDGE CLIQUE PARTITIONING, it is not
possible to extend the above positive outcome to a parameterization only by k.

In the case of the Fuzzy CLUSTER EDITING problem, the analogous question remains
open, and this is in fact a prominent concrete open problem in parameterized complexity.
Apart from the important machine learning applications noted in [2, 3], it has recently been
shown that for the special case where all weights are 1, the Fuzzy CLUSTER EDITING prob-
lem (parameterized only by k) is FPT-equivalent [14], to the MINIMUM TERMINAL EDGE
SEPARATION problem left open by Marx in [24].

Another area of open problems concerning this work is that of improving kernelization
bounds. Because FPT kernelization is of great practical significance due to the general con-
nection to efficient pre-processing (see [15, 21, 26] for background and discussion of this point),
it is an outstanding open problem as to whether Fuzzy EDGE CLIQUE PARTITIONING admits
a Poly(k,r) kernelization.
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