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Abstract. Given a vertex-weighted graph G = (V,E) and a set S ⊆
V , a subset feedback vertex set X is a set of the vertices of G such
that the graph induced by V \ X has no cycle containing a vertex of
S. The Subset Feedback Vertex Set problem takes as input G and
S and asks for the subset feedback vertex set of minimum total weight.
In contrast to the classical Feedback Vertex Set problem which is
obtained from the Subset Feedback Vertex Set problem for S = V ,
restricted to graph classes the Subset Feedback Vertex Set problem
is known to be NP-complete on split graphs and, consequently, on chordal
graphs. Here we give the first polynomial-time algorithms for the problem
on two subclasses of AT-free graphs: interval graphs and permutation
graphs. Moreover towards the unknown complexity of the problem for
AT-free graphs, we give a polynomial-time algorithm for co-bipartite
graphs. Thus we contribute to the first positive results of the Subset
Feedback Vertex Set problem when restricted to graph classes for
which Feedback Vertex Set is solved in polynomial time.

1 Introduction

For a given set S of vertices of a graph G, a subset feedback vertex set X is
a set of vertices such that every cycle of G[V \ X] does not contain a vertex
from S. The Subset Feedback Vertex Set problem takes as input a graph
G = (V,E) and a set S ⊆ V and asks for the subset feedback vertex set of
minimum cardinality. In the weighted version every vertex of G has a weight and
the objective is to compute a subset feedback vertex set with the minimum total
weight. The Subset Feedback Vertex Set problem is a generalization of the
classical Feedback Vertex Set problem in which the goal is to remove a set of
vertices X such that G[V \X] has no cycles. Thus by setting S = V the problem
coincides with the NP-complete Feedback Vertex Set problem [18]. Both
problems find important applications in several aspects that arise in optimization
theory, constraint satisfaction, and bayesian inference [1, 2, 14, 15]. Interestingly
the Subset Feedback Vertex Set problem for |S| = 1 also coincides with the
NP-complete Multiway Cut problem [17] in which the task is to disconnect a
predescribed set of vertices [9, 19].

Subset Feedback Vertex Set was first introduced by Even et al. who
obtained a constant factor approximation algorithm for its weighted version [14].
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The unweighted version in which all vertex weights are equal has been proved to
be fixed parameter tractable [13]. Moreover the fastest algorithm for the weighted
version in general graphs runs in O∗(1.87n) time1 by enumerating its minimal
solutions [17], whereas for the unweighted version the fastest algorithm runs in
O∗(1.76n) time [16]. As the unweighted version of the problem is shown to be
NP-complete even when restricted to split graphs [17], there is a considerable
effort to reduce the running time on chordal graphs, a proper superclass of split
graphs, and more general on other classes of graphs. Golovach et al. considered
the weighted version and gave an algorithm that runs in O∗(1.68n) time for
chordal graphs [20]. Reducing the existing running time even on chordal graphs
has been proved to be quite challenging and only for the unweighted version of
the problem a faster algorithm was given that runs in O∗(1.62n) time [10]. In fact
the O∗(1.62n)-algorithm given in [10] runs for every graph class which is closed
under vertex deletions and edge contractions, and on which the weighted Feed-
back Vertex Set problem can be solved in polynomial time. Thus there is an
algorithm that runs in O∗(1.62n) time for the unweighted version of the Sub-
set Feedback Vertex Set problem when restricted to AT-free graphs [10],
a graph class that properly contains permutation graphs and interval graphs.
Here we show that for the classes of permutation graphs and interval graphs we
design a much faster algorithm even for the weighted version of the problem.

As Subset Feedback Vertex Set is a generalization of the classical Feed-
back Vertex Set problem, let us briefly give an overview of the complexity
of Feedback Vertex Set on related graph classes. Concerning the complex-
ity of Feedback Vertex Set it is known to be NP-complete on bipartite
graphs [32] and planar graphs [18], whereas it becomes polynomial-time solv-
able on the classes of bounded clique-width graphs [8], chordal graphs [11, 31],
interval graphs [27], permutation graphs [4–6, 25], cocomparability graphs [26],
and, more generally, AT-free graphs [24]. Despite the many positive and nega-
tive results of the Feedback Vertex Set problem, very few similar results are
known concerning the complexity of Subset Feedback Vertex Set. Clearly
for graph classes for which the Feedback Vertex Set problem is NP-complete,
so does the Subset Feedback Vertex Set problem. However as the Subset
Feedback Vertex Set problem is more general that Feedback Vertex
Set problem, it is natural to study its complexity for graph classes for which
Feedback Vertex Set is polynomial-time solvable. In fact restricted to graph
classes there is only a negative result for the Subset Feedback Vertex Set
problem regarding its NP-completeness on split graphs [17]. Such a result, how-
ever, implies that there is an interesting algorithmic difference between the two
problems, as the Feedback Vertex Set problem is known to be polynomial-
time computable for split graphs [11, 31].

Both interval graphs and permutation graphs have unbounded clique-width
[22] and, therefore, excluding any application of algorithmic metatheorems re-
lated to MSOL formulation [12]. Let us also briefly explain that extending the
approach of [24] for the Feedback Vertex Set problem when restricted to

1 The O∗ notation is used to suppress polynomial factors.
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Fig. 1. The computational complexity of the Subset Feedback Vertex Set problem
restricted to the considered graph classes. All polynomial-time results (P) are obtained
in this work, whereas the NP-completeness result of split graphs is due to [17].

AT-free graphs is not straightforward. A graph is AT-free if for every triple of
pairwise non-adjacent vertices, the neighborhood of one of them separates the
two others. The class of AT-free graphs is well-studied and it properly contains
interval, permutation, and cocomparability graphs [7, 21]. One of the basic tools
in [24] relies on growing a small representation of an independent set into a suit-
able forest. Although such a representation is rather small on AT-free graphs
(and, thus, on interval graphs or permutation graphs), when considering Sub-
set Feedback Vertex Set it is not necessary that the fixed set induces an
independent set which makes it difficult to control how the partial solution may
be extended. Therefore the methodology described in [24] cannot be trivially
extended towards the Subset Feedback Vertex Set problem.

Our Results. Here we initiate the study of Subset Feedback Vertex Set re-
stricted on graph classes from the positive perspective. We consider its weighted
version and give the first positive results on permutation graphs and interval
graphs, both being proper subclasses of AT-free graphs. As already explained,
we are interested towards subclasses of AT-free graphs since for chordal graphs
the problem is already NP-complete [17]. Permutation graphs and interval graphs
are unrelated to split graphs and are both characterized by a linear structure
with respect to a given vertex ordering [7, 21, 31]. For both classes of graphs we
design polynomial-time algorithms based on dynamic programming of subprob-
lems defined by passing the vertices of the graph according to their natural linear
ordering. One of our key ingredients is that during the pass of the dynamic pro-
gramming we augment the considered vertex set and we allow the solutions to
be chosen only from a specific subset of the vertices rather than the whole vertex
set. Although for interval graphs such a strategy leads to a simple algorithm, the
case of permutation graphs requires further descriptions of the considered subso-
lutions by augmenting the considered part of the graph with a small number of
additional vertices. Moreover towards the unknown complexity of the problem
for the class of AT-free graphs, we consider the class of co-bipartite graphs (com-
plements of bipartite graphs) and settle its complexity status. More precisely we
show that the number of minimal solutions of a co-bipartite graph is polynomial
which implies a polynomial-time algorithm of the Subset Feedback Vertex
Set problem for the class of co-bipartite graphs. Our overall results are summa-
rized in Figure 1. Therefore, we contribute to provide the first positive results of
the Subset Feedback Vertex Set problem on subclasses of AT-free graphs.
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2 Preliminaries

We refer to [7, 21] for our standard graph terminology. A path is a sequence
of distinct vertices 〈v1v2 · · · vk〉 where each pair of consecutive vertices vivi+1

forms an edge of G. If in addition v1vk is an edge then we obtain a cycle. In this
paper, we distinguish between paths (or cycles) and induced paths (or induced
cycles). By an induced path (or cycle) of G we mean a chordless path (or cycle).
A chordless cycle on four vertices is referred to as square. A weighted graph
G = (V,E) is a graph, where each vertex v ∈ V is assigned a weight that is a
positive integer number. We denote by w(v) the weight of each vertex v ∈ V .
For a vertex set A ⊂ V , the weight of A is

∑
v∈A w(v).

The Subset Feedback Vertex Set (SFVS) problem is defined as follows: given
a weighted graph G and a vertex set S ⊆ V , find a vertex set X ⊂ V , such that
all cycles containing vertices of S, also contains a vertex of X and

∑
v∈X w(v) is

minimized. In the unweighted version of the problem all weights are equal and
positive. A vertex set X is defined as minimal subset feedback vertex set if no
proper subset of X is a subset feedback vertex set for G and S. The classical
Feedback Vertex Set (FVS) problem is a special case of the subset feedback
vertex set problem with S = V . Note that a minimum weight subset feedback
vertex set is dependent on the weights of the vertices, whereas a minimal subset
feedback vertex set is only dependent on the vertices and not their weights.
Clearly, both in the weighted and the unweighted versions, a minimum subset
feedback vertex set must be minimal.

An induced cycle of G is called S-cycle if a vertex of S is contained in the
cycle. We define an S-forest of G to be a vertex set Y ⊆ V such that no cycle in
G[Y ] is an S-cycle. An S-forest Y is maximal if no proper superset of Y is an
S-forest. Observe that X is a minimal subset feedback vertex set if and only if
Y = V \X is a maximal S-forest. Thus, the problem of computing a minimum
weighted subset feedback vertex set is equivalent to the problem of computing
a maximum weighted S-forest. Let us denote by FS the class of S-forests. In
such terms, given the graph G and the subset S of V , we are interested in
finding a maxw {Y ⊆ V | G[Y ] ∈ FS}, where maxw selects a vertex set having
the maximum sum of its weights. It is not difficult to see that for any clique C
of G, a maximal S-forest of G contains at most two vertices of S ∩ C.

3 Computing SFVS on interval graphs

Here we present a polynomial-time algorithm for the SFVS problem on interval
graphs. A graph is an interval graph if there is a bijection between its vertices
and a family of closed intervals of the real line such that two vertices are adjacent
if and only if the two corresponding intervals intersect. Such a bijection is called
an interval representation of the graph, denoted by I. Notice that every induced
subgraph of an interval graph is an interval graph. Moreover it can be decided
in linear time whether a given graph is an interval graph, and if so, an interval
representation can be generated in linear time [?]. Hereafter we assume that
the input graph is connected; otherwise, we apply the described algorithm in
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Fig. 2. An interval graph given by its interval representation and the corresponding
sets of Ve and Vf . Observe that <f = e whereas�f = c. Also notice that the intervals
that are properly contained within the gray area form the set Ve.

each connected component and take the overall solution as the union of the
sub-solutions.

As already mentioned, instead of finding a subset feedback vertex set X of
minimum weight of (G,S) we concentrate on the equivalent problem of finding
a maximum weighted S-forest Y of (G,S). We first define the necessary vertex
sets. Let G be a weighted interval graph and let I be its interval representation.
The left and right endpoints of an interval i, 1 ≤ i ≤ n, are denoted by `(i)
and r(i), respectively. The intervals are numbered from 1 to n according to their
ascending r(i). For technical reasons, we add an interval with label 0 that does
not belong to S, has weight zero, and augment I to I+ by setting `(0) = −1 and
r(0) = 0. Notice that interval 0 is non-adjacent to any vertex of G. Clearly if Y
is a maximum weighted S-forest for G[I+] then Y \ {0} is a maximum weighted
S-forest for G[I]. Moreover it is known that any induced cycle of an interval
graph is an induced triangle [27, 31].

We consider the two relations on V that are defined by the endpoints of the
intervals as follows: i ≤` j ⇔ `(i) ≤ `(j) and i ≤r j ⇔ r(i) ≤ r(j). Since all
endpoints of the collection’s intervals are distinct, ≤` and ≤r are total orders on
V . For a set of vertices U ⊆ V we write `- minU to denote the minimum vertex
of U with respect to ≤` and we write r- maxU to denote the maximum vertex of
U with respect to ≤r. For a vertex i ∈ V \ {0} we let Vi =def {h ∈ V : h ≤r i}.
We define two types of predecessors of the interval i with respect to ≤r, which
correspond to the subproblems that our algorithm wants to solve: <i =def

r- max(Vi \{i}) and �i =def r- max(Vi \ ({i}∪{h ∈ V : {h, i} ∈ E})). Observe
that for two vertices i, x ∈ V with r(i) < r(x), x ∈ V \ Vi. An example of an
interval representation that depicts the corresponding notation of Vi is shown in
Figure 2. By definition we get the following described partitions of Vi and V<i.

Observation 1. Let i ∈ V \ {0} and let j ∈ V \ Vi such that {i, j} ∈ E. Then,
(1) Vi = V<i ∪ {i} and (2) V<i = V�j ∪ {h ∈ V<i : {h, j} ∈ E}.

Next we define the sets that our dynamic programming algorithm uses in
order to compute the S-forest of G that has maximum weight.

A-sets: Let i ∈ V . Then, Ai =def maxw{X ⊆ Vi : G[X] ∈ FS}.
B-sets: Let i ∈ V , x ∈ V \Vi. Then,Bxi =def maxw{X ⊆ Vi : G[X ∪ {x}] ∈ FS}.
C-sets: Let i ∈ V and let x, y ∈ V \ (Vi ∪ S) such that x <` y and {x, y} ∈ E.
Then, Cx,yi =def maxw{X ⊆ Vi : G[X ∪ {x, y}] ∈ FS}.



6 C. Papadopoulos and S. Tzimas

Since V0 = {0} and w(0) ≤ 0, A0 = ∅ and, since Vn = V , An = maxw{X ⊆
V : G[X] ∈ FS}. The following lemmas state how to recursively compute all
A-sets, B-sets and C-sets besides A0.

Lemma 1. Let i ∈ V \ {0}. Then Ai = maxw
{
A<i, B

i
<i ∪ {i}

}
.

Proof. By Observation 1 (1), Vi = V<i ∪ {i}. Two cases hold: either i /∈ Ai or
i ∈ Ai. In the former we have Ai = A<i, whereas in the latter i cannot induce
an S-cycle in Bi<i by definition, which implies that Ai = Bi<i ∪ {i}. ut

Lemma 2. Let i ∈ V and let x ∈ V \Vi. Moreover, let x′ = `- min{i, x} and let
y′ be the remaining vertex of {i, x}.
(1) If {i, x} /∈ E, then Bxi = Ai.

(2) If {i, x} ∈ E, then Bxi =

maxw

{
Bx<i, B

x′

�y′ ∪ {i}
}
, if i ∈ S or x ∈ S

maxw

{
Bx<i, C

x′,y′

<i ∪ {i}
}
, if i, x /∈ S.

Proof. Assume first that {i, x} /∈ E. Then r(i) < `(x), so that x has no neighbor
in G[Vi ∪ {x}]. Thus no subset of Vi ∪ {x} containing x induces an S-cycle of G,
implying that Bxi = Ai.

Next assume that {i, x} ∈ E. If i /∈ Bxi then according to Observation 1 (1)
it follows that Bxi = Bx<i. So let us assume in what follows that i ∈ Bxi . Observe
that Bxi \ {i} ⊆ V<i, by Observation 1 (1). We distinguish two cases according
to whether i or x belong to S.

– Let i ∈ S or x ∈ S. Assume there is a vertex h ∈ Bxi \ {i} such that
{h, y′} ∈ E. Then we know that `(y′) < r(h) and by definition we have
`(x′) < `(y′) and r(h) < r(x′). This particularly means that h is adjacent
to x′. This however leads to a contradiction since 〈h, x′, y′〉 is an induced
S-triangle of G. Thus for any vertex h ∈ Bxi \ {i} we know that {h, y′} /∈ E.
By Observation 1 (2) notice that Bxi \ {i} ⊆ V�y′ . Also observe that the
neighborhood of y′ in G[V�y′ ∪ {x′, y′}] is {x′}. Thus no subset of V�y′ ∪
{x′, y′} that contains y′ induces an S-cycle of G. Therefore Bxi = Bx

′

�y′ ∪{i}.
– Let i, x /∈ S. Since Vi = V<i ∪ {i} and x′ <` y′, we get Bxi = Cx

′,y′

<i ∪ {i}.
Therefore in all cases we reach the desired equations. ut

Lemma 3. Let i ∈ V and let x, y ∈ V \(Vi∪S) such that x <` y and {x, y} ∈ E.
Moreover, let x′ = `- min{i, x, y} and let y′ = `- min({i, x, y} \ {x′}).
1. If {i, y} /∈ E, then Cx,yi = Bxi .

2. If {i, y} ∈ E, then Cx,yi =

{
Cx,y<i , if i ∈ S
maxw

{
Cx,y<i , C

x′,y′

<i ∪ {i}
}
, if i /∈ S.

Proof. Assume first that {i, y} /∈ E. Then r(i), `(x) < `(y) < r(x), so that the
neighborhood of y in G[Vi ∪ {x, y}] is {x}. Thus no subset of Vi ∪ {x, y} that
contains y induces an S-cycle of G. By definitions it follows that Cx,yi = Bxi .

Assume next that {i, y} ∈ E. Then `(x) < `(y) < r(i) < r(x), r(y), so that
〈i, x, y〉 is an induced triangle of G. If i /∈ Cx,yi then by Observation 1 (1) we



SFVS on Interval Graphs and Permutation Graphs 7

have Cx,yi = Cx,y<i . Suppose that i ∈ Cx,yi . If i ∈ S then 〈i, x, y〉 is an induced
S-triangle of G, contradicting the fact that i ∈ Cx,yi . By definition, x /∈ S and
y /∈ S. Hence i ∈ Cx,yi implies that S ∩ {i, x, y} = ∅. We show that under the

assumptions {i, y} ∈ E and i ∈ Cx,yi , we have Cx,yi = Cx
′,y′

<i ∪ {i}. Notice that

Cx,yi \ {i} ⊆ V<i, so that every solution of Cx,yi is a solution of Cx
′,y′

<i ∪ {i}.
To complete the proof we show that every solution of Cx

′,y′

<i ∪ {i} is indeed
a solution of Cx,yi . Let z′ be the vertex of {i, x, y} \ {x′, y′}. Observe that by
the leftmost ordering we have `(x′) < `(y′) < `(z′). By definition the vertices
of V<i that induce an S-triangle in G[V<i ∪ {x′, y′}] do not belong in Cx,yi .
Assume for contradiction that for an S-triangle that contains z′ and a subset
of V<i ∪ {x′, y′, z′} its non-empty intersection with V<i is a subset of Cx,yi . Let
〈v1, v2, z′〉 be an induced S-triangle where v1, v2 ∈ V<i∪{x′, y′}. Since x′, y′, z′ /∈
S, without loss of generality, assume that v1 ∈ S. This particularly means that
v1 ∈ V<i. Regarding the vertex ordering notice that the S-triangle implies that
`(z′) < r(v1). By the fact that v1 ∈ V<i we have r(v1) < r(x′), r(y′), r(z′). Since
`(x′) < `(y′) < `(z′), the previous inequalities imply that {v1, x′}, {v1, y′} ∈ E.

Thus 〈v1, x′, y′〉 is an induced S-triangle in Cx
′,y′

i , leading to a contradiction.

Therefore Cx,yi = Cx
′,y′

<i ∪ {i} as desired. ut

Now we are equipped with our necessary tools to obtain the main result of
this section, namely a polynomial-time algorithm for SFVS on interval graphs.

Theorem 1. Subset Feedback Vertex Set can be solved in O(n3) time on
interval graphs.

4 Computing SFVS on permutation graphs

Let π = π(1), . . . , π(n) be a permutation over {1, . . . , n}. The position of an
integer i in π is denoted by π−1(i). Given a permutation π, the inversion graph
of π, denoted by G(π), has vertex set {1, . . . , n} and two vertices i, j are adjacent
if (i− j)(π(i)− π(j)) < 0. A graph is a permutation graph if it is isomorphic to
the inversion graph of a permutation [7, 21]. For our purposes, we assume that a
permutation graph is given as a permutation π and equal to the defined inversion
graph. Permutation graphs are the intersection graphs of segments between two
horizontal parallel lines, that is, there is a one-to-one mapping from the segments
onto the vertices of a graph such that there is an edge between two vertices of
the graph if and only if their corresponding segments intersect. We refer to
the two horizontal lines as top and bottom lines. This representation is called a
permutation diagram and a graph is a permutation graph if and only if it has a
permutation diagram. Given a permutation graph, its permutation diagram can
be constructed in linear time [29].

We assume that we are given a connected permutation graph G = (V,E) such
that G = G(π) along with S ⊆ V and a weight function w : V → R+ as input.
We add an isolated vertex in G and augment π to π′ so that π′(0) = 0. Further
we assign zero value for 0’s weight and assume that 0 /∈ S. It is important to
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note that any induced cycle of a permutation graph is either an induced triangle
or an induced square [4–6, 25, 31].

We consider the two relations on V defined as follows: i ≤t j if and only if
i ≤ j and i ≤b j if and only if π−1(i) ≤ π−1(j) for all i, j ∈ V ∪ {0}. It is not
difficult to see that both ≤t and ≤b are total orders on V ; they are exactly the
orders in which the integers appear on the top and bottom line, respectively,
in the permutation diagram. Moreover we write i <t j or i <b j if and only if
i 6= j and i ≤t j or i ≤b j, respectively. We extend ≤t and ≤b to support sets
of vertices as follows. For two sets of vertices L and R we write L ≤t R (resp.,
L ≤b R) if for any two vertices u ∈ L and v ∈ R, u ≤t v (resp., u ≤b v).

Two vertices i, j ∈ {0, 1, . . . , n} with i ≤t j are called crossing pair, de-
noted by ij, if j ≤b i. We denote by X the set of crossing pairs in G. Let
I = {ii | i ∈ {1, . . . , n}}, so that X \ I contains exactly the edges of G. Given
two crossing pairs gh, ij ∈ X we define two partial orders ≤` and ≤r:

gh ≤` ij ⇔ g ≤t i and h ≤b j and gh ≤r ij ⇔ g ≤b i and h ≤t j.
Given a vertex set X ⊆ V we denote by X [X] the set of all crossing pairs of G
formed exclusively from vertices of X. It is not difficult to see that the mini-
mum crossing pair of X [X] with respect to ≤` and the maximum crossing pair
contained in X [X] with respect to ≤r are both well defined; we write `- min and
r- max to denote them respectively.

We next define the predecessors of a crossing pair with respect to ≤r, which
correspond to the subproblems that our dynamic programming algorithm wants
to solve. Let ij ∈ X \ {00} be a crossing pair. We define the set of vertices
that induce the part of the subproblem that we consider at each crossing pair
as follows: Vij =def {h ∈ V : hh ≤r ij}. Let x be a vertex such that i <b x or
j <t x. By definition notice that x does not belong in Vij . The predecessors of
the crossing pair ij are defined as follows:
0ij =def r- maxX [Vij \ {j}], 6ij =def r- maxX [Vij \ {i}],
<ij =def r- maxX [Vij \ {i, j}],
�ij =def r- maxX [Vij \ ({i, j} ∪ {h ∈ V : {h, i} ∈ E or {h, j} ∈ E})], and
<ij�xx =def r- maxX [Vij \ {h ∈ V : {h, x} ∈ E}].

Although it seems somehow awkward to use one the symbols {0,6, <,�, <�}
for the defined predecessors, we stress that such predecessors are required only
to describe the necessary subset Vgh of Vij . Moreover it is not difficult to see
that each of the symbol gravitates towards a particular meaning with respect
to the top and bottom orderings as well as the non-adjacency relationship. An
example of a permutation graph that illustrates the defined predecessors is given
in Figure 3. With the above defined predecessors of ij, we show how Vij can be
partitioned into smaller sets of vertices with respect to a suitable predecessor.

Observation 2. Let ij ∈ X and let x ∈ V \ Vij . Then,
(1) Vij = V0ij ∪ {j} = V6ij ∪ {i} = V<ij ∪ {i, j},
(2) V<ij = V�jj ∪ {h ∈ V<ij : {h, j} ∈ E} = V�ii ∪ {h ∈ V<ij : {h, i} ∈ E},
(3) V�ii = V�ij ∪ {h ∈ V�ii : {h, j} ∈ E},
(4) V�jj = V�ij ∪ {h ∈ V�jj : {h, i} ∈ E}, and
(5) V<ij = V<ij�xx ∪ {h ∈ V<ij : {h, x} ∈ E}.
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Fig. 3. A permutation graph given by its permutation diagram and the set Vdg of the
crossing pair dg together with the corresponding predecessors of dg. Observe that the
line segments that are properly contained within the gray area form the set Vdg.

It is clear that for any edge {i, j} ∈ E either i <t j and j <b i hold, or j <t i
and i <b j hold. If further ij ∈ X \ I then we know that i <t j and j <b i.

Our dynamic programming algorithm relies on similar sets that we used for
the case of interval graphs. That is, we need to describe appropriate sets that
define the solutions to be chosen only from a specific part of the considered
subproblem. Although for interval graphs we showed that adding two vertices
into such sets is enough, for permutation graphs we need to consider at most
two newly crossing pairs which corresponds to consider four newly vertices.

A-sets: Let ij ∈ X . Then, Aij = maxw{X ⊆ Vij : G[X] ∈ FS}.
B-sets: Let ij ∈ X and let x ∈ V \ Vij . Then, Bxxij =def maxw{X ⊆ Vij :
G[X ∪ {x}] ∈ FS}. Moreover, let xy ∈ X \ I such that j <t y, i <b x, and
x, y /∈ S. Then, Bxyij =def maxw{X ⊆ Vij : G[X ∪ {x, y}] ∈ FS}.
C-sets: Let ij ∈ X , xy ∈ X \ I, and z ∈ V \ (Vij \ {x, y}) such that xy <` zz,
at least one of x, y is adjacent to z, j <t y, i <b x, and x, y, z /∈ S. Then,
Cxy,zzij =def maxw{X ⊆ Vij : G[X ∪ {x, y, z}] ∈ FS}. Moreover, let zw ∈ X \ I
such that xy <` zw, {x,w}, {y, z} ∈ E, j <t {y, w}, i <b {x, z}, and x, y, z, w /∈
S. Then, Cxy,zwij =def maxw{X ⊆ Vij : G[X ∪ {x, y, z, w}] ∈ FS}.

Observe that, since V00 = {0} and w(0) ≤ 0, A00 = ∅ and, since Vπ(n)n =
V , Aπ(n)n = maxw{X ⊆ V : G[X] ∈ FS}. The following lemmas state how
to recursively compute all A-sets, B-sets, and C-sets other than A00. We first
consider the crossing pairs ii for the sets Aii, B

xx
ii , Bxyii , Cxy,zzii , and Cxy,zwii .

Lemma 4. Let i ∈ V \ {0}. Then Aii = A<ii ∪ {i}.
Proof. By Observation 2 (1), A<ii ∪ {i} ∈ Aii. Notice that i is non-adjacent to
any vertex of Vii. Thus no subset of Vii that contains i induces an S-cycle. ut
Lemma 5. Let i ∈ V and let x ∈ V \ Vii. 1. If {i, x} /∈ E then Bxxii = Aii.
2. If {i, x} ∈ E then Bxxii = Bxx<ii ∪ {i}.
Proof. Assume first that {i, x} /∈ E. Since x ∈ V \ Vii we know that i <t x
or i <b x. Moreover as {i, x} /∈ E we have i <t x and i <b x. Then x has no
neighbor in G[Vii ∪ {x}]. Thus no subset of Vii ∪ {x} that contains x induces an
S-cycle in G. Hence Bxxii = Aii follows. Next assume that {i, x} ∈ E. Then the
neighborhood of i in G[Vii ∪ {x}] is {x}. This means that no subset of Vii ∪ {x}
that contains i induces an S-cycle in G, so that i ∈ Bxxii . By Observation 2 (1)
it follows that Bxxii = Bxx<ii ∪ {i}. ut
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Lemma 6. Let i ∈ V and let xy ∈ X \ I such that i <t y, i <b x, and x, y /∈ S.

1. If {i, y} /∈ E then Bxyii = Bxxii .
2. If {i, x} /∈ E then Bxyii = Byyii .

3. If {i, x}, {i, y} ∈ E then Bxyii =

{
Bxy<ii , if i ∈ S
Bxy<ii ∪ {i}, if i /∈ S.

Lemma 7. Let i ∈ V , xy ∈ X \ I, and let z ∈ V \ (Vii \ {x, y}) such that
xy <` zz, at least one of x, y is adjacent to z, i <t y, i <b x, and x, y, z /∈ S.

1. If {i, z} /∈ E then Cxy,zzii = Bxyii .

2. If {i, z} ∈ E then Cxy,zzii =

{
Cxy,zz<ii , if i ∈ S
Cxy,zz<ii ∪ {i}, if i /∈ S.

Lemma 8. Let i ∈ V and let xy, zw ∈ X \I such that xy <` zw, {x,w}, {y, z} ∈
E, i <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S.

1. If {i, w} /∈ E then Cxy,zwii = Cxy,zzii .
2. If {i, z} /∈ E then Cxy,zwii = Cxy,wwii .

3. If {i, z}, {i, w} ∈ E then Cxy,zwii =

{
Cxy,zw<ii , if i ∈ S
Cxy,zw<ii ∪ {i}, if i /∈ S.

Lemmas 4–8 describe the subsolutions for each crossing pair ii. Next we
give the recursive formulations for Aij , B

xx
ij , Bxyij , Cxy,zzij , and Cxy,zwij whenever

ij ∈ X \ I which particularly means that i and j are distinct vertices in G.

Lemma 9. Let ij ∈ X \ I. Then,

Aij =

maxw

{
A0ij , A6ij , Bii�jj ∪ {i, j}, Bjj�ii ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
A0ij , A6ij , B

ij
<ij ∪ {i, j}

}
, if i, j /∈ S.

With the next two lemmas we describe recursively the sets Bxxij and Bxyij .

Lemma 10. Let ij ∈ X\I and let x ∈ V \Vij. Moreover let x′y′ = `- minX [{i, j, x}]
and let z′ be the remaining vertex of {i, j, x}.
1. If {i, x}, {j, x} /∈ E then Bxxij = Aij.
2. If {i, x} ∈ E and {j, x} /∈ E then

Bxxij =


maxw

{
Bxx0ij , B

xx
6ij , B

ii
�jj ∪ {i, j}, Bjj�ix ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
Bxx0ij , B

xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.

3. If {i, x} /∈ E and {j, x} ∈ E then

Bxxij =


maxw

{
Bxx0ij , B

xx
6ij , B

ii
�xj ∪ {i, j}, Bjj�ii ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
Bxx0ij , B

xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.
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4. If {i, x}, {j, x} ∈ E then

Bxxij =

{
maxw

{
Bxx0ij , B

xx
6ij
}
, if i ∈ S or j ∈ S or x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.

Let ij, xy ∈ X \ I such that {i, y}, {j, x} ∈ E. It is not difficult to see that if
we remove the vertices of a crossing pair uv ∈ X [{i, j, x, y}] from {i, j, x, y} then
the remaining two vertices are adjacent.

Lemma 11. Let ij, xy ∈ X \ I such that j <t y, i <b x and x, y /∈ S. More-
over, if {i, y}, {j, x} ∈ E then let x′y′ = `- minX [{i, j, x, y}] and let z′w′ =
`- minX [{i, j, x, y} \ {x′, y′}].
1. If {i, y} /∈ E then Bxyij = Bxxij .
2. If {j, x} /∈ E then Bxyij = Byyij .
3. If {i, y}, {j, x} ∈ E then

Bxyij =

maxw

{
Bxy0ij , B

xy
6ij
}
, if i ∈ S or j ∈ S

maxw

{
Bxy0ij , B

xy
6ij , C

x′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

Lemma 12. Let ij, xy ∈ X \ I and let z ∈ V \ Vij such that xy <` zz, at
least one of x, y is adjacent to z, j <t y, i <b x, and x, y, z /∈ S. Moreover, if
{i, z} ∈ E or {j, z} ∈ E then let x′y′ = `- minX [{i, j, x, y, z}] and let z′w′ =
`- minX [{i, j, x, y, z} \ {x′, y′}].
1. If {i, z}, {j, z} /∈ E then Cxy,zzij = Bxyij .
2. If {i, z} ∈ E or {j, z} ∈ E then

Cxy,zzij =

maxw

{
Cxy,zz0ij , Cxy,zz6ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zz0ij , Cxy,zz6ij , Cx

′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

The next lemma shows how to recursively compute Cxy,zwij . Note that in each
case we describe Cxy,zwij as a predefined smaller set of a subsolution that is either
in the same form or has already been described in one of the previous lemmas.

Lemma 13. Let ij, xy, zw ∈ X \ I such that xy <` zw, {x,w}, {y, z} ∈ E,
j <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S. Moreover, if {i, w}, {j, z} ∈ E, let
x′y′ = `- minX [{i, j, x, y, z, w}] and let z′w′ = `- minX [{i, j, x, y, z, w}\{x′, y′}].

1. If {i, w} /∈ E then Cxy,zwij = Cxy,zzij .
2. If {j, z} /∈ E then Cxy,zwij = Cxy,wwij .
3. If {i, w}, {j, z} ∈ E then

Cxy,zwij =

maxw

{
Cxy,zw0ij , Cxy,zw6ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zw0ij , Cxy,zw6ij , Cx

′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

It is important to notice that all described formulations are given recursively
based on Lemmas 4–13. Now we are in position to state our claimed polynomial-
time algorithm for the SFVS problem on permutation graphs.

Theorem 2. Subset Feedback Vertex Set can be solved in O(n+m3) time
on permutation graphs.
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5 Concluding remarks

From the complexity point of view, since FVS is polynomial-time solvable on
the class of AT-free graphs [24], a natural problem is to settle the complexity of
SFVS on AT-free graphs. Interestingly most problems that are hard on AT-free
graphs are already hard on co-bipartite graphs (see for e.g., [28]). Also notice
that SFVS remains NP-complete on bipartite graphs, as FVS is NP-complete
on bipartite graphs [32]. Co-bipartite graphs are the complements of bipartite
graphs and are unrelated to permutation graphs or interval graphs. Here we show
that SFVS admits a simple solution on co-bipartite graphs, therefore excluding
such an approach through a hardness result on co-bipartite graphs.

Theorem 3. The number of maximal S-forests of a co-bipartite graph is at most
22n4 and these can be enumerated in time O(n4).

We believe that such an approach towards AT-free graphs should deal first
with the complexity of the unweighted version of SFVS. Moreover it is inter-
esting to settle the complexity of SFVS on other related graph classes such as
strongly chordal graphs or subclasses of AT-free graphs like trapezoid graphs
or complements of triangle-free graphs. Regarding graphs of bounded structural
parameter and due to the nature of the dynamic programming used for SFVS on
interval and permutation graphs, it is interesting to consider graphs of bounded
maximum induced matching width introduced in [3].

Another interesting open question is concerned with problems related to
terminal-sets such as the Multiway Cut problem in which we want to dis-
connect a given set of terminals by removing vertices of minimum total weight.
As already mentioned in the Introduction, the Multiway Cut problem reduces
to the SFVS problem by adding a vertex s with S = {s} that is adjacent to all
terminals and whose weight is larger than the sum of the weights of all vertices
in the original graph [17]. Notice that through such an approach in order to solve
even the unweighted Multiway Cut problem one needs to solve the weighted
SFVS problem. This actually implies that Multiway Cut is polynomial-time
solvable in permutation graphs and interval graphs by using our algorithms for
the SFVS problem. However polynomial-time algorithms for the Multiway Cut
problem were already known for permutation and interval graphs by a more gen-
eral terminal-set problem [23, 30]. Nevertheless it is still interesting to consider
the computational complexity of the unweighted Multiway Cut problem on
subclasses of AT-free graphs such as cocomparability graphs.
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4. A. Brandstädt. On improved time bounds for permutation graph problems. In
Proceedings of WG 1992, pages 1–10, 1985.
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7. A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, 1999.
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A Appendix: Omitted proofs of Section 3

Observation 1. Let i ∈ V \ {0} and let j ∈ V \ Vi such that {i, j} ∈ E. Then,
(1) Vi = V<i ∪ {i} and (2) V<i = V�j ∪ {h ∈ V<i : {h, j} ∈ E}.
Proof. The first statement follows by the definitions of Vi and <i. For the second
statement observe that V<i can be partitioned into the non-neighbors of j in
V<i and the neighbors of j in V<i. The first set corresponds to V�j whereas the
second set is exactly the set {h ∈ V<i : {h, j} ∈ E}. ut

Theorem 1. Subset Feedback Vertex Set can be solved in O(n3) time on
interval graphs.

Proof. We briefly describe such an algorithm based on Lemmas 1, 2, and 3. In
a preprocessing step we compute < i and � i for each interval i ∈ V \ {0}. We
scan all intervals from 0 to n in an ascending order with respect to <`. For every
interval i that we visit, we compute first Ai according to Lemma 1 and then
compute Bxi and Cx,yi for every x, y such that `(i) < `(x) < `(y) according to
Lemmas 2 and 3, respectively. At the end we output An as already explained.
The correctness of the algorithm follows from Lemmas 1–3.

Regarding the running time, notice that computing < i and� i can be done
in O(n) time since the intervals are sorted with respect to their end-points. The
computation of a single A-set, B-set or C-set takes constant time. Therefore the
overall running time of the algorithm is O(n3). ut

B Appendix: Omitted proofs of Section 4

Observation 2. Let ij ∈ X and let x ∈ V \ Vij . Then,
(1) Vij = V0ij ∪ {j} = V6ij ∪ {i} = V<ij ∪ {i, j},
(2) V<ij = V�jj ∪ {h ∈ V<ij : {h, j} ∈ E} = V�ii ∪ {h ∈ V<ij : {h, i} ∈ E},
(3) V�ii = V�ij ∪ {h ∈ V�ii : {h, j} ∈ E},
(4) V�jj = V�ij ∪ {h ∈ V�jj : {h, i} ∈ E}, and
(5) V<ij = V<ij�xx ∪ {h ∈ V<ij : {h, x} ∈ E}.
Proof. Let ij1 be the predecessor 0ij. By the r- max choice of j1, there is no
vertex j′ such that j1 <t j

′ <t j. Thus Vij1 ∪ {j} is the set Vij . The rest of the
equalities in the first statement follow in a similar way.

Let i1j1 be the predecessor �jj. Then both i1 and j1 are non-adjacent to
j and have the maximum values such that i1 <b j and j1 <t j, respectively.
This particularly means that i1 <t j1 <t j and j1 <b i1 <b j. Thus any vertex
i′ ∈ Vij \ {i, j} with j1 <t i

′ <t j or i1 <b i
′ <b j must be adjacent to j

which implies that V<ij \V�jj contains exactly the neighbors of j in V<ij . These
arguments imply the second, third, and fourth statements.

For the last statement, notice that V<ij can be partitioned into the neighbors
and the non-neighbors of x. By definition V<ij�xx contains the non-neighbors
of x so that every vertex of V<ij \ V<ij�xx is adjacent to x. ut
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Lemma 6. Let i ∈ V and let xy ∈ X \ I such that i <t y, i <b x, and x, y /∈ S.

1. If {i, y} /∈ E then Bxyii = Bxxii .
2. If {i, x} /∈ E then Bxyii = Byyii .

3. If {i, x}, {i, y} ∈ E then Bxyii =

{
Bxy<ii , if i ∈ S
Bxy<ii ∪ {i}, if i /∈ S.

Proof. By i <t y, i <b x, and the fact that xy is a crossing pair, we have
{x, i} <t y and {y, i} <b x. Assume first that i is non-adjacent to at least one
of x and y. Let {i, y} /∈ E. Then {i, x} <t y and i <b y <b x, so that the
neighborhood of y in G[Vii ∪ {x, y}] is {x}. Thus no subset of Vii ∪ {x, y} that
contains y induces an S-cycle of G which implies that Bxyii = Bxxii . Completely
symmetric arguments apply if {i, x} /∈ E showing the second statement.

Next assume that {i, x}, {i, y} ∈ E. Then x <t i <t y and y <b i <b x, so
that the neighborhood of i in G[X ∪ {x, y}] is {x, y}. We distinguish two cases
according to whether i belongs to S. Suppose that i ∈ S. Then 〈i, x, y〉 is an
induced S-triangle of G, so that i /∈ Bxyii . Thus by Observation 2 (1), Bxyii = Bxy<ii
holds if i ∈ S.

Suppose next that i /∈ S. We will show that no subset of Vii ∪ {x, y} that
contains i induces an S-cycle of G. Recall that i is non-adjacent to any vertex of
Vii and the only induced cycles of a permutation graph is either a triangle or a
square. Assume that 〈v1, v2, i〉 is an induced S-triangle of G where v1, v2 ∈ V<ii∪
{x, y}. Then {v1, v2} = {x, y} leading to a contradiction, because i, x, y /∈ S. So
let us assume that 〈v1, v2, v3, i〉 is an induced S-square of G where v1, v2, v3 ∈
V<ii ∪ {x, y}. By the fact that i only adjacent to x and y in G[Vii ∪ {x, y}]
we have that v1, v3 correspond to the vertices x and y. This however leads to
a contradiction since {x, y} ∈ E and {v1, v3} /∈ E by the induced S-square.
Therefore no subset of Vii ∪ {x, y} that contains i induces an S-cycle of G, so
that i ∈ Bxyii . By Observation 2 (1) Bxyii = Bxy<ii ∪ {i} holds and this completes
the proof. ut

Lemma 7. Let i ∈ V , xy ∈ X \ I, and let z ∈ V \ (Vii \ {x, y}) such that
xy <` zz, at least one of x, y is adjacent to z, i <t y, i <b x, and x, y, z /∈ S.

1. If {i, z} /∈ E then Cxy,zzii = Bxyii .

2. If {i, z} ∈ E then Cxy,zzii =

{
Cxy,zz<ii , if i ∈ S
Cxy,zz<ii ∪ {i}, if i /∈ S.

Proof. Since z ∈ V \ (Vii \ {x, y}), we have i <t z or i <b z. Assume first that
{i, z} /∈ E. Observe that this means that i <t z and i <b z. Then z is non-
adjacent to any vertex of Vii so that the neighborhood of z in G[Vii ∪ {x, y, z}]
is a subset of {x, y}. Since x, y, z /∈ S, no subset of Vii ∪ {x, y, z} that contains
z induces an S-cycle in G. Thus Cxy,zzii = Bxyii .

Assume next that {i, z} ∈ E. This means that either i <t z and z <b i hold,
or z <t i and i <b z hold. Since i <t y and i <b x, we get either i <t {y, z} and
z <b i <b x, or z <t i <t y and i <b {x, z}. Moreover since xy is a crossing pair
and xy <` zz, exactly one of following holds:
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– {i, x} <t {y, z} and y <b z <b i <b x;
– x <t z <t i <t y and {i, y} <b {x, z}.

This means that y, z ∈ N(i) and x is adjacent to z, or x, z ∈ N(i) and y is
adjacent to z. We distinguish two cases depending on whether i belongs to S.

– Let i ∈ S. We will show that i /∈ Cxy,zzii . If both x and y are adjacent
to i then 〈i, x, y〉 is an induced S-triangle in G. Thus either y, z ∈ N(i)
and x is adjacent to z, or x, z ∈ N(i) and y is adjacent to z. Assume the
former, that is, y, z ∈ N(i), x /∈ N(i), and x is adjacent to z. If {y, z} ∈ E
then 〈i, y, z〉 is an induced S-triangle and if {y, z} /∈ E then 〈i, y, x, z〉 is an
induced S-square. Similarly if x, z ∈ N(i), y /∈ N(i), and y is adjacent to z
we obtain an induced S-cycle in G. Therefore in all cases i /∈ Cxy,zzii and by
Observation 2 (1) we get Cxy,zzii = Cxy,zz<ii .

– Let i /∈ S. We will show that i ∈ Cxy,zzii . Assume for contradiction that
there is an induced S-triangle 〈v1, v2, i〉 or S-square 〈v1, v2, v3, i〉 in G where
v1, v2, v3 ∈ V<ii ∪ {x, y, z}. Notice that N(i) ∩ V<ii = ∅ so that {v1, v2} ⊂
{x, y, z} or {v1, v3} ⊂ {x, y, z}, respectively. In the former case we reach a
contradiction because i, x, y, z /∈ S. In the latter case for the same reason
notice that v2 ∈ S which implies that v2 ∈ V<ii. If {v1, v3} = {x, y} then we
reach a contradiction to the S-square 〈v1, v2, v3, i〉 because {x, y} ∈ E. Thus
{v1, v3} = {y, z} or {v1, v3} = {x, z}. Without loss of generality assume
that {v1, v3} = {y, z}. Then {y, z} /∈ E, for otherwise we reach again a
contradiction to the given S-square. Observe that {y, z} /∈ E implies that
{x, z} ∈ E by the hypothesis for z. This however shows that 〈y, v2, x〉 or
〈y, v2, z, x〉 induce an S-triangle or an S-square of G without i depending on
whether x is adjacent to v2, so that v2 /∈ Cxy,zzii . Therefore in all cases we
reach a contradiction which means that i ∈ Cxy,zzii and by Observation 2 (1),
Cxy,zzii = Cxy,zz<ii ∪ {i} holds.

In each case we have showed the described equations and this completes the
proof. ut

Lemma 8. Let i ∈ V and let xy, zw ∈ X \I such that xy <` zw, {x,w}, {y, z} ∈
E, i <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S.

1. If {i, w} /∈ E then Cxy,zwii = Cxy,zzii .
2. If {i, z} /∈ E then Cxy,zwii = Cxy,wwii .

3. If {i, z}, {i, w} ∈ E then Cxy,zwii =

{
Cxy,zw<ii , if i ∈ S
Cxy,zw<ii ∪ {i}, if i /∈ S.

Proof. Observe that x, y, z, w ∈ V \ Vii because i <t {y, w} and i <b {x, z}.
Assume first that {i, w} /∈ E. Since i <t w and i <b w, w has no neighbor in
Vii. Thus the neighborhood of w in G[Vii ∪ {x, y, z, w}] is a subset of {x, y, z}.
We will show that w /∈ Cxy,zwii . Assume that a subset of Vii ∪ {x, y, z, w} that
contains w induces an S-cycle in G. If 〈v1, v2, w〉 is an induced S-triangle of G



18 C. Papadopoulos and S. Tzimas

then {v1, v2} ⊂ {x, y, z} which leads to a contradiction, because x, y, z, w /∈ S.
Suppose that 〈v1, v2, v3, w〉 is an induced S-square of G. Then {v1, v3} ⊂ {x, y, z}
and, since x, y, z, w /∈ S we know that v2 ∈ S and v2 ∈ Vii.

– Assume that {v1, v3} = {x, y} or {v1, v3} = {y, z}. Then we reach a contra-
diction to the induced S-square, because {x, y}, {y, z} ∈ E.

– Assume that {v1, v3} = {x, z}. If {x, z} ∈ E then 〈v1, v2, v3, w〉 does not
induce an S-square. If {x, z} /∈ E then 〈x, v2, y〉 or 〈x, v2, z, y〉 induce an S-
triangle or an S-square in G which reach to a contradiction to v2 /∈ Cxy,zzii .

Therefore, if a subset of Vii∪{x, y, z, w} that contains w induces an S-cycle of G,
then its non-empty intersection with Vii is not a subset of Cxy,zzii which implies
that Cxy,zwii = Cxy,zzii . The case for {i, z} /∈ E is completely symmetric showing
the second statement.

Let {i, z}, {i, w} ∈ E. Then either i <t {z, w} and {z, w} <b i, or {z, w} <t i
and i <b {z, w}. Since xy <` zw, i <t {y, w}, and i <b {x, z}, the following hold:

– x <t z <t i <t {y, w} and
– y <b w <b i <b {x, z}.

Thus the neighborhood of i in G[Vii ∪ {x, y, z, w}] is {x, y, z, w}. Assume that
i ∈ S. Then 〈i, x, y〉 is an S-triangle of G which implies i /∈ Cxy,zwii . By Observa-
tion 2 (1) we get Cxy,zwii = Cxy,zw<ii . Let us assume that i /∈ S. We will show that
if a subset of Vii ∪ {x, y, z, w} that contains i induces an S-cycle of G, then its
non-empty intersection with V<ii is not a subset of Cxy,zwii .

– Let v1, v2 ∈ V<ii ∪ {x, y, z, w} such that 〈v1, v2, i〉 is an induced S-triangle
of G. Then {v1, v2} ⊂ {x, y, z, w}, a contradiction, because i, x, y, z, w /∈ S.

– Let v1, v2, v3 ∈ V<ii ∪ {x, y, z, w} such that 〈v1, v2, v3, i〉 is an induced S-
square of G. Then {v1, v3} ⊂ {x, y, z, w} and, since i, x, y, z, w /∈ S, v2 ∈ S.
Thus v2 ∈ V<ii. Because v1, v3 are non-adjacent, we have {v1, v3} = {x, z}
or {v1, v3} = {y, w}. In both cases we reach a contradiction since 〈x, v2, z, y〉
or 〈y, v2, w, z〉 induce S-squares in G.

Thus if i /∈ S then i ∈ Cxy,zwii . Therefore by Observation 2 (1) we obtain Cxy,zwii =
Cxy,zw<ii ∪ {i}. ut

Lemma 9. Let ij ∈ X \ I. Then,

Aij =

maxw

{
A0ij , A6ij , Bii�jj ∪ {i, j}, Bjj�ii ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
A0ij , A6ij , B

ij
<ij ∪ {i, j}

}
, if i, j /∈ S.

Proof. Let j /∈ Aij . Then by Observation 2 (1) it follows that Aij = A0ij .
Similarly if i /∈ Aij then Aij = A6ij . For the rest of the proof we assume that
i, j ∈ Aij . Notice that by Observation 2 (1) we have Aij \ {i, j} ⊆ V<ij . We
distinguish two cases according to whether i or j belong to S.
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– Assume that i, j /∈ S. Then Aij = Bij<ij ∪ {i, j} holds which completes the
second description in the formula.

– Assume that i ∈ S or j ∈ S. Let h ∈ Aij \ {i, j} such that {h, i}, {h, j} ∈ E.
Then 〈h, i, j〉 is an induced S-triangle in G, resulting a contradiction to i, j ∈
Aij . Thus for every h ∈ Aij \ {i, j} we know that {h, i} /∈ E or {h, j} /∈ E.
Let g, h ∈ Aij \ {i, j} such that {g, j}, {h, i} ∈ E and {g, i}, {h, j} /∈ E.
Observe that {g, h} <b i and {g, h} <t j. Since ij is a crossing pair we know
that i <t j and j <b i. If i <t g or j <b h then g is adjacent to i or h is
adjacent to j, leading to a contradiction. Thu g <t i <t h and h <b j <b g
hold which imply that {g, h} ∈ E. Hence 〈g, h, i, j〉 is an induced S-square
in G, a contradiction. This means that all vertices of Aij \ {i, j} are non-
adjacent to i or j or both. Then by Observation 2 (2) it follows that either
Aij \ {i, j} ⊆ V�jj or Aij \ {i, j} ⊆ V�ii.
Suppose that the former holds, that is Aij \{i, j} ⊆ V�jj . The neighborhood
of j in G[V�jj ∪ {i, j}] is {i}. Thus no subset of V�jj ∪ {i, j} that contains
j induces an S-cycle in G. This means that Aij = Bii�jj ∪{i, j} as described
in the first description in the given formula. If Aij \ {i, j} ⊆ V�ii then

completely symmetric we have Aij = Bjj�ii ∪ {i, j}.
Therefore the corresponding formulas given in the statement follow. ut

Lemma 10. Let ij ∈ X\I and let x ∈ V \Vij. Moreover let x′y′ = `- minX [{i, j, x}]
and let z′ be the remaining vertex of {i, j, x}.
1. If {i, x}, {j, x} /∈ E then Bxxij = Aij.
2. If {i, x} ∈ E and {j, x} /∈ E then

Bxxij =


maxw

{
Bxx0ij , B

xx
6ij , B

ii
�jj ∪ {i, j}, Bjj�ix ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
Bxx0ij , B

xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.

3. If {i, x} /∈ E and {j, x} ∈ E then

Bxxij =


maxw

{
Bxx0ij , B

xx
6ij , B

ii
�xj ∪ {i, j}, Bjj�ii ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
Bxx0ij , B

xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.

4. If {i, x}, {j, x} ∈ E then

Bxxij =

{
maxw

{
Bxx0ij , B

xx
6ij
}
, if i ∈ S or j ∈ S or x ∈ S

maxw

{
Bxx0ij , B

xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
, if i, j, x /∈ S.

Proof. Let us assume first that {i, x}, {j, x} /∈ E. Since i <t j, j <b i, and
x ∈ V \ Vij , we know that i <t j <t x and j <b i <b x. Thus the neighborhood
of x in G[Vij ∪{x}] is ∅. Hence no subset of Vij ∪{x} that contains x induces an
S-cycle of G and it follows that Bxxij = Aij as described in the first statement.
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Assume next that {i, x} ∈ E or {j, x} ∈ E. Let j /∈ Bxxij . By Observation 2 (1)
we get Bxxij = Bxx0ij . Similarly, if i /∈ Bxxij then Bxxij = Bxx6ij . So suppose next that
i, j ∈ Bxxij . Notice that Bxxij \ {i, j} ⊆ V<ij by Observation 2 (1). We distinguish
the following cases.

– Assume that {i, x} ∈ E and {j, x} /∈ E. Since x /∈ Vij , j <t x or i <b x. If
i <b x then x <t i as {i, x} ∈ E but then x <t j and j <b i <b x so that
{j, x} ∈ E, leading to a contradiction. Thus j <t x holds. Since {i, x} ∈ E
and {j, x} /∈ E, we have j <b< x <b i and i <t< j <t x. We further reduce
to the situations depending on whether i, j, x belong to S.
• Let i ∈ S or j ∈ S. Let h ∈ Bxxij \{i, j} such that {h, i}, {h, j} ∈ E. Then
〈h, i, j〉 is an induced S-triangle in G, a contradiction. So {h, i} /∈ E
or {h, j} /∈ E for every h ∈ Bxxij \ {i, j}. Let g, h ∈ Bxxij \ {i, j} such
that {g, j}, {h, i} ∈ E. Since {g, h} <b i and {g, h} <t j by the choice
of g, h ∈ Bij , it follows that g <t i <t h and h <b j <b g. Thus
{g, h} ∈ E. This however results in an induced S-square 〈g, h, i, j〉 in
G. This means that for every h ∈ Bxxij \ {i, j} either {h, i} /∈ E or
{h, j} /∈ E. By Observation 2 (2) it follows that either Bxxij \{i, j} ⊆ V�jj
or Bxxij \ {i, j} ⊆ V�ii.
In the former case notice that both j and x in G[V�jj ∪ {i, j, x}] are
adjacent only to i. Thus no subset of V�jj ∪ {i, j, x} that contains j or
x induces an S-cycle of G so that Bxxij = Bii�jj ∪ {i, j} as described.
In the latter case we have Bxxij \ {i, j} ⊆ V�ii. Let h ∈ Bxxij \ {i, j}. We
show that {h, x} /∈ E. Assume for contradiction that {h, x} ∈ E. This
means that either h <t x and x <b h, or x <t h and h <b x. Observe
that h <t j and h <b i. Since j <b< x <b i and i <t< j <t x, we get the
following:
∗ h <t i <t j <t x and
∗ j <b x <b h <b i.

Thus {h, j} ∈ E. This however shows that 〈h, j, i, x〉 is an induced S-
square in G, leading to a contradiction. Thus {h, x} /∈ E for every h ∈
Bxxij \{i, j}. Then by Observation 2 (3) it follows that Bxxij \{i, j} ⊆ V�ix.
This means that i and x are only adjacent to j in G[V�ix ∪ {i, j, x}].
Hence no subset of V�ix∪{i, j, x} that contains i or x induces an S-cycle
in G, so that Bxxij = Bjj�ix ∪ {i, j} as described.
• Let i, j /∈ S and x ∈ S. Let h ∈ Bxxij \ {i, j}. We show that {h, x} /∈ E.

Assume for contradiction that {h, x} ∈ E. Then either h <t x and x <b h
hold, or x <t h and h <b x hold. Since {i, x} ∈ E, {j, x} /∈ E, and ij is
a crossing pair, we have
∗ {h, i} <t j <t x and
∗ j <b x <b h <b i

implying that {h, j} ∈ E. If {h, i} ∈ E then 〈h, i, j〉 is an induced S-
triangle whereas if {h, i} /∈ E then 〈h, j, i, x〉 is an induced S-square.
Thus we reach a contradiction so that {h, x} /∈ E. Then by Observa-
tion 2 (5) we get Bxxij = Bij<ij�xx ∪ {i, j}, as described.

• Let i, j, x /∈ S. By the fact Bxxij \{i, j} ⊆ V<ij , we have Bxxij = Bx
′y′,z′z′

<ij ∪
{i, j}.
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– Assume that {i, x} /∈ E and {j, x} ∈ E. This case is symmetric to the one
above, so that the following hold:
• If i ∈ S or j ∈ S then either Bxxij = Bii�xj ∪{i, j} or Bxxij = Bjj�ii∪{i, j}.
• If x ∈ S then Bxxij = Bij<ij�xx ∪ {i, j}.
• If i, j, x /∈ S then Bxxij = Bx

′y′,z′z′

<ij .
– Assume that both {i, x}, {j, x} ∈ E. Then no vertex of {i, x, y} can belong

to S as 〈i, j, x〉 is an induced triangle in G. Since Bxxij \ {i, j} ⊆ V<ij , we get

Bxxij = Bx
′y′,z′z′

<ij ∪ {i, j}.

Therefore every case results in the described statement of the formulas as re-
quired. ut

Lemma 11. Let ij, xy ∈ X \ I such that j <t y, i <b x and x, y /∈ S. More-
over, if {i, y}, {j, x} ∈ E then let x′y′ = `- minX [{i, j, x, y}] and let z′w′ =
`- minX [{i, j, x, y} \ {x′, y′}].
1. If {i, y} /∈ E then Bxyij = Bxxij .
2. If {j, x} /∈ E then Bxyij = Byyij .
3. If {i, y}, {j, x} ∈ E then

Bxyij =

maxw

{
Bxy0ij , B

xy
6ij
}
, if i ∈ S or j ∈ S

maxw

{
Bxy0ij , B

xy
6ij , C

x′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

Proof. Assume that {i, y} /∈ E. Then i <b y since i <t x <t y. Thus

– i <t j, {j, x} <t y, and
– j <b i <b y <b x,

so that the neighborhood of y in G[Vij ∪ {x, y}] is {x}. Thus no subset of
Vij ∪ {x, y} that contains y induces an S-cycle in G. Therefore Bxyij = Bxxij as
described. If {j, x} /∈ E then i is non-adjacent to x and similar to the previous
case we obtain Bxyij = Byyij .

Assume that {i, y}, {j, x} ∈ E. We distinguish cases depending on whether
i or j belong to the solution. Assume first that at least one of i or j does not
belong to Bxyij . Let j /∈ Bxyij . By Observation 2 (1) we have Bxyij = Bxy0ij . If

i /∈ Bxyij then in a similar fashion we get Bxyij = Bxy6ij .
Next assume that i, j ∈ Bxyij . Notice that by Observation 2 (1), we have

Bxyij \ {i, j} ⊆ V<ij . Let us show that both i and j do not belong to S. If
{i, x} ∈ E or {j, y} ∈ E then 〈i, x, y〉 or 〈j, x, y〉 induce a triangle in G, since
{i, y}, {j, x} ∈ E. Otherwise, {i, x}, {j, y} /∈ E, so that 〈i, j, x, y〉 is an induced
square in G. Thus in any case there is an S-cycle in G whenever i ∈ S or
j ∈ S which lead to a contradiction to the fact i, j ∈ Bxyij . Hence i, j /∈ S. Since

Bxyij \ {i, j} ⊆ V<ij , it follows Bxyij = Cx
′y′,z′w′

<ij ∪ {i, j} as required. ut
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Lemma 12. Let ij, xy ∈ X \ I and let z ∈ V \ Vij such that xy <` zz, at
least one of x, y is adjacent to z, j <t y, i <b x, and x, y, z /∈ S. Moreover, if
{i, z} ∈ E or {j, z} ∈ E then let x′y′ = `- minX [{i, j, x, y, z}] and let z′w′ =
`- minX [{i, j, x, y, z} \ {x′, y′}].
1. If {i, z}, {j, z} /∈ E then Cxy,zzij = Bxyij .
2. If {i, z} ∈ E or {j, z} ∈ E then

Cxy,zzij =

maxw

{
Cxy,zz0ij , Cxy,zz6ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zz0ij , Cxy,zz6ij , Cx

′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

Proof. Assume first that {i, z}, {j, z} /∈ E. Then i <t j, {j, x} <t {y, z},
{i, y} <b {x, z}, and j <b i. This means that the neighborhood of z in G[Vij ∪
{x, y, z}] is a subset of {x, y}. We will show that no subset of Vij ∪{x, y, z} that
contains z induces an S-cycle of G.

– Let 〈v1, v2, z〉 be an induced S-triangle such that v1, v2 ∈ Vij ∪ {x, y}. Then
{v1, v2} = {x, y} which leads to a contradiction, because x, y, z /∈ S.

– Let 〈v1, v2, v3, z〉 be an induced S-square such that v1, v2, v3 ∈ Vij ∪ {x, y}.
Then {v1, v3} = {x, y} which leads to a contradiction, because {x, y} ∈ E.

Thus no subset of Vij∪{x, y, z} that contains z induces an S-cycle ofG. Therefore
Cxy,zzij = Bxyij holds.

Assume that {i, z} ∈ E or {j, z} ∈ E. We distinguish cases depending on
whether i or j belong to Cxy,zzij . If j /∈ Cxy,zzij or i /∈ Cxy,zzij then by Observa-
tion 2 (1) we get Cxy,zzij = Cxy,zz0ij or Cxy,zzij = Cxy,zz6ij , respectively. The remaining

case is i, j ∈ Cxy,zzij . Here we will show the described formula given in the second
statement. By Observation 2 (3), notice that Cxy,zzij \ {i, j} ⊆ V<ij .
Case 1: Assume that i ∈ S or j ∈ S. We will show that there is an S-cycle that
contains i or j leading to a contradiction to the assumption i, j ∈ Cxy,zzij . Let us
assume that {i, z} ∈ E; the case for {j, z} ∈ E is completely symmetric. Thus
i <t z and z <b i hold or z <t i and i <b z hold. Moreover we know that x <t z
and y <b z because xy <` zz. Since ij, xy are crossing pairs and i <t j <t y,
i <b x, exactly one of the following holds:

– x <t z <t< i <t y and {i, y} <b {x, z};
– {i, x} <t {y, z} and y <b z <b i <b x.

If the former inequalities hold then it is not difficult to see that {i, x}, {y, z} ∈
E. And if the latter inequalities hold then {i, y}, {x, z} ∈ E. Suppose that
{i, x}, {y, z} ∈ E.

– If {i, y} ∈ E then 〈i, x, y〉 is an induced S-triangle.
– If {x, z} ∈ E then 〈i, x, z〉 is an induced S-triangle.
– If {i, y}, {x, z} /∈ E then 〈i, x, y, z〉 is an induced S-square.

Next suppose that {i, y}, {x, z} ∈ E.

– If {i, x} ∈ E then 〈i, x, y〉 is an induced S-triangle.



SFVS on Interval Graphs and Permutation Graphs 23

– If {y, z} ∈ E then 〈i, y, z〉 is an induced S-triangle.
– If {i, x}, {y, z} /∈ E then 〈i, y, x, z〉 is an induced S-square.

Therefore if i ∈ S or j ∈ S then i, j /∈ Cxy,zzij so that Cxy,zzij can be expressed as
Cxy,zz0ij or Cxy,zz6ij , as already explained previously.

Case 2: Assume that i, j /∈ S. Let a′ be the vertex of {i, j, x, y, z}\{x′, y′, z′, w′}.
Observe that a′ /∈ S since S ∩ {i, j, x, y, z} = ∅. We will show that if a subset
of V<ij ∪ {x′, y′, z′, w′, a′} that contains a′ induces an S-cycle of G, then its

non-empty intersection with V<ij is not a subset of Cx
′y′,z′w′

<ij . Assume for con-
tradiction that a subset of vertices of an induced S-cycle that contains a′ belongs

to Cx
′y′,z′w′

<ij . Since the only induced cycles in a permutation graph are triangles
or squares we assume that a′ is contained in an S-triangle or an S-square.

– Let 〈v1, v2, a′〉 be an induced S-triangle such that v1, v2 ∈ V<ij∪{x′, y′, z′, w′}.
Since x′, y′, z′, w′ /∈ S, without loss of generality, assume that v1 ∈ S which
implies that v1 ∈ V<ij . This means that v1 <t j ≤t y′ and v1 <b i ≤b x′.
By the choices of x′y′, z′w′, and a′ we know that x′ <t z′ <t a′ and
y′ <b w′ <b a′. Since {v1, a′} ∈ E, a′ <t v1 and v1 <b a

′ hold or v1 <t a
′

and a′ <b v1 hold. Thus exactly one of the following holds:
• x′ <t z′ <t< a′ <t v1 <t y′ and {v1, y′} <b {x′, z′, a′};
• {v1, x′} <t {y′, w′, a′} and y′ <b w′ <b< a′ <b v1 <b x′.

If the former inequalities hold then it is not difficult to see that {v1, x′}, {v1, z′} ∈
E. And if the latter inequalities hold then {v1, y′}, {v1, w′} ∈ E. Suppose
that {v1, x′}, {v1, z′} ∈ E.
• If {v1, y′} ∈ E then 〈v1, x′, y′〉 is an induced S-triangle.
• If {x′, z′} ∈ E then 〈v1, x′, z′〉 is an induced S-triangle.
• If {v1, y′}, {x′, z′} /∈ E then 〈v1, x′, y′, z′〉 is induced an S-square.

Next suppose that {v1, y′}, {v1, w′} ∈ E.
• If {v1, x′} ∈ E then 〈v1, x′, y′〉 is an induced S-triangle.
• If {y′, w′} ∈ E then 〈v1, y′, w′〉 is an induced S-triangle.
• If {v1, x′}, {y′, w′} /∈ E then 〈v1, y′, x′, w′〉 is induced an S-square.

Therefore in all cases we obtain that v1 /∈ Cx
′y′,z′w′

<ij .
– Let 〈v1, v2, v3, a′〉 be an induced S-square such that v1, v2, v3 ∈ V<ij ∪
{x′, y′, z′, w′}. If v1 ∈ S or v3 ∈ S then by the previous argument the S-vertex

is not an element of Cx
′y′,z′w′

<ij . So assume that v2 ∈ S. Since x′, y′, z′, w′ /∈ S,
we have v2 ∈ V<ij , so that v2 <t j ≤t y′ and v2 <b i ≤b x′. By the choices
of x′y′ and a′ we know that x′ <t a′ and y′ <b a′. Moreover the induced
S-square imply that either {v2, a′} <t {v1, v3} and {v1, v3} <b {v2, a′} hold
or {v1, v3} <t {v2, a′} and {v2, a′} <b {v1, v3} hold. Thus exactly one of the
following holds:
• {v2, x′} <t a′ <t {v1, v3} and {v1, v3} <b v2 <b {x′, a′};
• {v1, v3} <t v2 <t {y′, a′} and {v2, y′} <b a′ <b {v1, v3}.

The first inequalities imply that {v1, x′}, {v3, x′} ∈ E whereas the second
inequalities imply that {v1, y′}, {v3, y′} ∈ E. Suppose that {v1, x′}, {v3, x′} ∈
E.
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• If {v2, x′} ∈ E then 〈v1, v2, x′〉 is an induced S-triangle.
• If {v2, x′} /∈ E then 〈v1, v2, v3, x′〉 is an induced S-square.

Similarly if {v1, y′}, {v3, y′} ∈ E then we obtain an S-triangle 〈v1, v2, x′〉
or an S-square 〈v1, v2, v3, x′〉. Thus {v1, v2, v3} ∩ V<ij is not a subset of

Cx
′y′,z′w′

<ij .

Therefore if a subset of V<ij ∪ {x′, y′, z′, w′, a′} that contains a′ induces an S-

cycle then its non-empty intersection with V<ij is not a subset of Cx
′y′,z′w′

<ij . This

particularly implies that Cxy,zzij = Cx
′y′,z′w′

<ij ∪ {i, j} as described in the second
statement. ut

Lemma 13. Let ij, xy, zw ∈ X \ I such that xy <` zw, {x,w}, {y, z} ∈ E,
j <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S. Moreover, if {i, w}, {j, z} ∈ E, let
x′y′ = `- minX [{i, j, x, y, z, w}] and let z′w′ = `- minX [{i, j, x, y, z, w}\{x′, y′}].

1. If {i, w} /∈ E then Cxy,zwij = Cxy,zzij .
2. If {j, z} /∈ E then Cxy,zwij = Cxy,wwij .
3. If {i, w}, {j, z} ∈ E then

Cxy,zwij =

maxw

{
Cxy,zw0ij , Cxy,zw6ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zw0ij , Cxy,zw6ij , Cx

′y′,z′w′

<ij ∪ {i, j}
}
, if i, j /∈ S.

Proof. Assume first that {i, w} /∈ E. Then i <t w and i <b w hold, since
i <t j <t w. Thus the following hold, as ij, xy, zw are crossing pairs:

– i <t j <t {y, w}, x <t {y, z}, z <t w,
– j <b i <b w <b z, and {i, y} <b {x,w}.

Then the neighborhood of w in G[Vij ∪ {x, y, z, w}] is a subset of {x, y, z}. We
will show that if a subset of Vij ∪{x, y, z, w} that contains w induces an S-cycle
then its non-empty intersection with Vij is not a subset of Cxy,zzij . Since an S-
cycle in G is only an S-triangle or an S-square, we distinguish the following two
cases:

– Let 〈v1, v2, w〉 be an induced S-triangle such that v1, v2 ∈ Vij∪{x, y, z}. Then
{v1, v2} ⊂ {x, y, z} since N(w) ⊆ {x, y, z}, which leads to a contradiction,
because x, y, z, w /∈ S.

– Let 〈v1, v2, v3, w〉 be an induced S-square such that v1, v2, v3 ∈ Vij∪{x, y, z}.
Then {v1, v3} ⊂ {x, y, z}. Since x, y, z, w /∈ S, we have v2 ∈ S so that
v2 ∈ Vij .
• Assume that {v1, v3} = {x, y} or {y, z}. Then we reach a contradiction

because {x, y}, {y, z} ∈ E.
• Assume that {v1, v3} = {x, z}. Then it is clear that {x, z} /∈ E. This

however shows that 〈x, v2, z, y〉 is an induced S-square, so that v2 /∈
Cxy,zzij .
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Therefore, if a subset of Vij∪{x, y, z, w} that contains w induces an S-cycle then
its non-empty intersection with Vij is not a subset of Cxy,zzij . Thus Cxy,zwij =
Cxy,zzij holds.

If we assume that {j, z} /∈ E then similar arguments with the previous case
for {i, w} /∈ E show that Cxy,zwij = Cxy,wwij .

Our remaining case is {i, w}, {j, z} ∈ E. If j /∈ Cxy,zwij then by Observa-
tion 2 (1) we get Cxy,zwij = Cxy,zw0ij . Similarly if i /∈ Cxy,zwij then Cxy,zwij = Cxy,zw6ij .

So let us assume that both i, j belong to the solution Cxy,zwij , that is i, j ∈ Cxy,zwij .
Notice that by Observation 2 (1) we know that Cxy,zwij \{i, j} ⊆ V<ij . We distin-
guish two cases depending on whether i, j belong to S. If i ∈ S or j ∈ S then the
following induced S-cycles show that we reach a contradiction to i, j ∈ Cxy,zwij :

– If {i, z} ∈ E then 〈i, j, z〉 is an induced S-triangle.
– If {j, w} ∈ E then 〈i, j, w〉 is an induced S-triangle.
– If {i, z}, {j, w} /∈ E, then 〈i, j, z, w〉 is an induced S-square.

Thus if i ∈ S or j ∈ S then we know that j /∈ Cxy,zwij or i /∈ Cxy,zwij which shows
the first description of Cxy,zwij in the third statement.

Let i, j /∈ S and recall that i, j ∈ Cxy,zwij and {i, w}, {j, z} ∈ E. Observe that
the set {i, j, x, y, z, w} \ {x′, y′, z′, w′} contains two adjacent vertices. Let a′b′ be
the crossing pair of {i, j, x, y, z, w} \ {x′, y′, z′, w′} so that a′ <t b′ and b′ <b a′.
We will show that if a subset of V<ij ∪ {x′, y′, z′, w′, a′, b′} that contains a′ or b′

induces an S-cycle then its non-empty intersection with V<ij is not a subset of

Cx
′y′,z′w′

<ij . Such an S-cycle is either an S-triangle or an S-square.

– Let 〈v1, v2, b′〉 be an induced S-triangle such that v1, v2 ∈ V<ij∪{x′, y′, z′, w′, a′}.
Since x′, y′, z′, w′, a′, b′ /∈ S, without loss of generality, assume that v1 ∈ S
so that v1 ∈ V<ij . Then v1 <t j <t {y, w} and v1 <b i <b {x, z}. Our goal

is to show that v1 /∈ Cx
′y′,z′w′

<ij . Since {v1, b′} ∈ E and x′ <t a′ <t b′, we
get v1 <t b

′ and b′ <b v1. Also notice that x′y′ <` z′w′ <` a′b′ so that
y′ <b w′ <b b′. Thus the following hold:
• {v1, x′} <t {y′, w′, b′} and
• y′ <b w′ <b b′ <b {v1, x′}.

This shows that {v1, y′}, {v1, w′} ∈ E. With these facts we obtain the fol-

lowing S-cycles so that v1 /∈ Cx
′y′,z′w′

<ij :
• If {v1, x′} ∈ E then 〈v1, x′, y′〉 is an induced S-triangle.
• If {y′, w′} ∈ E then 〈v1, y′, w′〉 is an induced S-triangle.
• If {v1, x′}, {y′, w′} /∈ E then 〈v1, y′, x′, w′〉 is an induced S-square.

– Let 〈v1, v2, v3, b′〉 be an S-square such that v1, v2, v3 ∈ V<ij∪{x′, y′, z′, w′, a′}.
If v1 ∈ S or v3 ∈ S then similar to the previous argument we can show

that the S-vertex does not belong to Cx
′y′,z′w′

<ij . Assume that v2 ∈ S. Since
x′, y′, z′, w′, a′, b′ /∈ S, v2 ∈ V<ij . Thus v2 <t j <t {y, w} and v2 <b i <b
{x, z} which mean that v2 <t {y′, w′, b′} and v2 <b {x′, z′, a′}. Moreover
x′y′ <` z′w′ <` a′b′ imply x′ <t z′ <t a′ and y′ <b w′ <b b′. By the
given S-square we have {v1, v3} <t {v2, b′} and {v2, b′} <b {v1, v3}. Since
{v2, b′} /∈ E, we also have v2 <t b

′ and v2 <b b
′. Then the following hold:
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• {v1, v3} <t v2 <t {y′, b′} and
• {v2, y′} <b b′ <b {v1, v3}.

Thus {v1, y′}, {v3, y′} ∈ E. Now the following S-cycles show that v2 /∈
Cx

′y′,z′w′

<ij .
• If {v2, y′} ∈ E then 〈v1, v2, y′〉 is an induced S-triangle.
• If {v2, y′} /∈ E then 〈v1, v2, v3, y′〉 is an induced S-square.

– Following the same lines as above we can show that if a subset of V<ij ∪
{x′, y′, z′, w′, a′, b′} that contains a′ induces an S-cycle of G then its non-

empty intersection with V<ij is not a subset of Cx
′y′,z′w′

<ij .

Therefore, if a subset of V<ij ∪{x′, y′, z′, w′, a′, b′} that contains a′ or b′ induces

an S-cycle then its non-empty intersection with V<ij is not a subset of Cx
′y′,z′w′

<ij .

By this fact it follows that Cxy,zwij = Cx
′y′,z′w′

<ij ∪ {i, j} as described in the third
statement. ut

Theorem 2. Subset Feedback Vertex Set can be solved in O(n+m3) time
on permutation graphs.

Proof. Let us describe such an algorithm. Given the permutation diagram, that is
the ordering <t and <b on V , we first compute all crossing pairs ij of X . Observe
that the number of such pairs is n+m. For each crossing pair ij we compute its
predecessors {0,6, <,�, <�} according to the corresponding definition. Note
that such a simple application requires O(n2) time for every crossing pair ij,
giving a total running time of O(n2m). Next we scan all crossing pairs of X
according to their ascending order with respect to <r. For every crossing pair ij
we compute Aij according to Lemmas 4 and 9. That is, for every crossing pair
xy of V \ Vij in descending order with respect to <` we compute Bxyij according
to Lemmas 5, 6, 10, and 11. By the recursive formulations of Bxyij , for every
crossing pair zw of V \ Vxy in descending order with respect to <` we compute
Cxy,zwij according to Lemmas 7, 8, 12, and 13. In total such computations require

O(n + m3) time. At the end the set Aπ(n)n is the maximum weighted S-forest
for G so that V \ Aπ(n)n is exactly the minimum subset feedback vertex set of
G. ut

C Appendix: Omitted proof of Section 5

Theorem 3. The number of maximal S-forests of a co-bipartite graph is at most
22n4 and these can be enumerated in time O(n4).

Proof. Let G = (V,E) be a co-bipartite graph and let (A,B) be a partition of
V such that such that G[A] and G[B] are cliques. We further partition V as
(AS , AR, BS , BR) where AS = A∩S, AR = A \S, BS = B ∩S and BR = B \S.
For a vertex v of G and a set U ∈ {AS , BS , AR, BR} we denote by NU (v) the
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neighbors of v in the set U , that is,NU (v) =def N(v)∩U . Moreover the symmetric
difference of two sets L and R is the set (L \ R) ∪ (R \ L) and is denoted by
L M R. Let (X,Y, Z,W ) be the partition of the vertex set of a maximal S-forest
of G such that X ⊆ AS , Y ⊆ AR, Z ⊆ BS and W ⊆ BR. It is clear that |X| ≤ 2
and |Z| ≤ 2. Thus it is sufficient to consider the following cases with respect to
X and Z:

– Let X = ∅ and Z = ∅. Then the maximal S-forest contains no vertex of
S, so we can safely include all vertices of V \ S. Thus the following set is a
maximal S-forest of G:

1. (∅, AR, ∅, BR).
– Let X = {aS} and Z = ∅. Observe that |Y | ≤ 1, since G[X ∪ Y ] is a clique.

If Y = ∅ then including at least two neighbors of aS that are contained in
BR leads to an S-cycle. Thus we can safely include all non-neighbors of aS
and exactly one neighbor of aS contained in BR in the maximal S-forest.
If Y = {aR} then including a neighbor of aS and a neighbor of aR (may
well be the same) that are contained in BR leads to an S-cycle. If we do not
include a neighbor of aS then we can safely include all other vertices of BR.
However if we include a neighbor of aS that is non-adjacent to aR then we
can safely include all other vertices that are non-adjacent to both. Thus the
following sets induce the corresponding maximal S-forests of G:

2. ({aS}, ∅, ∅, BR), where NBR
(aS) = ∅;

3. ({aS}, ∅, ∅, {bR} ∪ (BR \N(aS))), where bR ∈ NBR
(aS);

4. ({aS}, {aR}, ∅, BR \N(aS));
5. ({aS}, {aR}, ∅, {bR} ∪ (BR \N({aS , aR}))), where bR ∈ NBR

(aS)\NBR
(aR).

– Let X = ∅ and Z = {bS}. Completely symmetric arguments with the pre-
vious case imply that the following sets induce the corresponding maximal
S-forests of G:

6. (∅, AR, {bS}, ∅), where NAR
(bS) = ∅;

7. (∅, {aR} ∪ (AR \N(bS)) , {bS}, ∅), where aR ∈ NAR
(bS);

8. (∅, AR \N(bS), {bS}, {bR});
9. (∅, {aR} ∪ (AR \N({bS , bR})) , {bS}, {bR}), where aR ∈ NAR

(bS)\NAR
(bR).

– Let X = {aS} and Z = {bS}. Then both |Y | ≤ 1 and |W | ≤ 1. Thus the
following sets induce the maximal S-forest of G:

10. ({aS}, ∅, {bS}, ∅), where {aS , bS} ∈ E and V \ S ⊆ N(aS) ∩N(bS);
11. ({aS}, {aR}, {bS}, ∅), where G[{aS , aR, bS}] is acyclic and BR ⊆ N(aS)∪

N(aR);
12. ({aS}, ∅, {bS}, {bR}), where G[{aS , bS , bR}] is acyclic and AR ⊆ N(bS)∪

N(bR);
13. ({aS}, {aR}, {bS}, {bR}), where G[{aS , aR, bS , bR}] is acyclic.

– Let X = {aS , a′S} and Z = ∅. Then |Y | = 0, since G[X ∪ Y ] is a clique.
Adding a vertex of BR that is adjacent to both aS and a′S leads to an S-
cycle. If we add a vertex of BR that is adjacent to either aS or a′S then
adding another such vertex leads to an S-cycle. Thus we can safely include
all other vertices that are non-adjacent to either aS or a′S .

14. ({aS , a′S}, ∅, ∅, BR \ (N(aS) ∩N(a′S))), where NBR
(aS) M NBR

(a′S) = ∅;
15. ({aS , a′S}, ∅, ∅, {bR} ∪ (BR \N({aS , a′S}))), where bR ∈ NBR

(aS) M NBR
(a′S).
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– Let X = ∅ and Z = {bS , b′S}. Completely symmetric arguments with the
previous case imply that the following sets induce the corresponding maximal
S-forest of G:
16. (∅, AR \ (N(bS) ∩N(b′S)), {bS , b′S}, ∅), where NAR

(bS) M NAR
(b′S) = ∅;

17. (∅, {aR} ∪ (AR \ (N(bS) ∪N(b′S))) , {bS , b′S}, ∅), where aR ∈ NAR
(bS) M

NAR
(b′S).

– Let X = {aS , a′S} and Z = {bS}. Then |Y | = 0 and |W | ≤ 1. Thus the
following sets induce the maximal S-forest of G:
18. ({aS , a′S}, ∅, {bS}, ∅), where G[{aS , a′S , bS}] is acyclic;
19. ({aS , a′S}, ∅, {bS}, {bR}), where G[{aS , a′S , bS , bR}] is acyclic.

– Let X = {aS} and Z = {bS , b′S}. Then similarly to the previous case we
obtain the following:
20. ({aS}, ∅, {bS , b′S}, ∅), where G[{aS , bS , b′S}] is acyclic.
21. ({aS}, {aR}, {bS , b′S}, ∅), where G[{aS , bS , b′S , a}] is acyclic.

– Let X = {aS , a′S} and Z = {bS , b′S}. Then |Y | = 0 and |W | = 0 so that the
following set induces such a maximal S-forest:
22. ({aS , a′S}, ∅, {bS , b′S}, ∅), where G[{aS , a′S , bS , b′S}] is acyclic.

Because |X|, |Y |, |Z|, |W | ≤ n, each described maximal S-forest gives at most n4

maximal S-forests. Therefore in total there are at most 22n4 maximal S-forests
that correspond to each particular case. Taking into account that any maximal
S-forest has at most n vertices, these arguments can be applied to obtain an
enumeration algorithm that runs in time O(n4). ut


