
A characterisation of clique-width through nested partitions

Bruno Courcelle∗ Pinar Heggernes† Daniel Meister‡ Charis Papadopoulos§

Udi Rotics¶

Abstract

Clique-width of graphs is defined algebraically through operations on graphs with vertex
labels. We characterise the clique-width in a combinatorial way by means of partitions
of the vertex set, using trees of nested partitions where partitions are ordered bottom-up
by refinement. We show that the correspondences in both directions, between combinatorial
partition trees and algebraic terms, preserve the tree structures and that they are computable
in polynomial time. We apply our characterisation to linear clique-width. And we relate
our characterisation to a clique-width characterisation by Heule and Szeider that is used to
reduce the clique-width decision problem to a satisfiability problem.

1 Introduction

Hierarchical graph decompositions are useful for the design of efficient graph algorithms. This
usefulness is the foundation of the theory of fixed-parameter tractability, that emerged from the
large body of graph algorithms working on tree decompositions [8]. There are many graph de-
compositions with interesting algorithmic applications, such as modular decomposition [12], tree
decomposition [8, 10], and rank decomposition [19]. In most cases, a width notion is associated
with a graph decomposition, and the width of a graph is the minimum achievable width for the
graph using this decomposition. Fixed-parameter tractability results are often of the form: a
graph problem is tractable on graphs of bounded width, and the width of the input graph is a
measure for the complexity of determining the solution.

Modular decompositon, tree decomposition and rank decomposition can be defined combi-
natorially. Tree decomposition and rank decomposition can be defined also algebraically [3, 4].
An algebraic definition is built on operations from an appropriate graph algebra. Algebraic
descriptions yield clean definitions of finite automata, that themselves can be seen as abstract
descriptions of efficient parametrised algorithms (see [2] or Chapter 6 of [3] for a deeper treatment
of the matter).

Clique-width is a graph complexity measure [3, 5, 7]. The original definition of clique-width
is by means of algebraic terms. These terms use operations that create edgeless graphs, that add

∗LaBRI, CNRS, 351 Cours de la Libération, 33405 Talence, France. Email: courcell@labri.fr
†Department of Informatics, University of Bergen, Norway. Email: pinar.heggernes@ii.uib.no
‡Theoretical Computer Science, University of Trier, Germany. Email: daniel.meister@uni-trier.de
§Department of Mathematics, University of Ioannina, Greece. Email: charis@cs.uoi.gr
¶Netanya Academic College, Netanya, Israel. Email: rotics@netanya.ac.il

1

edges between specified vertices, and that combine graphs. Clique-width is a practically useful
graph measure, because the results by Courcelle et al. in [6] in combination with the results by
Oum and Seymour in [19] show that the model-checking problem for monadic second-order logic
on graphs is fixed-parameter tractable when choosing the clique-width of the input graph as the
parameter (see the monographs by Downey and Fellows [8] and by Flum and Grohe [10] for a
deep and comprehensive consideration of fixed-parameter tractability).

The algebraic definition of clique-width, the same as similar characterisations of treewidth
and rank-width, use vertex labels to specify classes of vertices. We can say that vertex labels
express a “neighbourhood similarity” relation, since vertices with the same label have the same
“one-sided” neighbourhood. The clique-width of a graph is the smallest number of necessary
different labels in a clique-width expression. Computing the clique-width of a graph is hard
[9], and the problem of choosing appropriate labels for vertices is a strong contribution to the
hardness of the problem [18]. Combinatorial characterisations avoid labels and the necessity of
choosing labels.

In this paper, we give a purely combinatorial characterisation of clique-width. Our charac-
terisation uses rooted trees and nested partitions of sets of vertices. The partitions are ordered
by the refinement relation, and they satisfy an adjacency condition. The resulting notion is
partition tree for graphs. With partition trees, we associate a width notion, that measures the
size of the nested partitions. In Section 3, we introduce partition trees and describe their re-
lationship to clique-width. As the main result of this paper, we obtain a characterisation of
clique-width by partition trees, that shows the equivalence between the clique-width of a graph
and the width of its partition trees. Our results also show and provide efficient transformation
algorithms between algebraic clique-width expressions and partition trees, and we provide a
space-efficient representation of partition trees, that is of interest for efficient algorithms. Our
combinatorial characterisation of clique-width is based on, combines, and extends combinatorial
clique-width characterisations by Heggernes et al. [15] and Heule and Szeider [16].

Tree-based graph decompositions have linear variants: pathwidth is the linear variant of
treewidth, linear rank-width is the linear variant of rank-width, and linear clique-width is the
linear variant of clique-width. The linear variants are obtained when restricting the decomposi-
tion tree to a path-like tree, a caterpillar, more precisely. In Section 4, we apply our clique-width
characterisation result to linear clique-width, obtaining an analogue combinatorial characterisa-
tion of linear clique-width. We also study combinatorial properties of our partition trees, that
provide an alternative approach to corresponding known results.

Finally, in Section 5, we review the clique-width characterisation by Heule and Szeider [16].
This characterisation is based on a sequence of pairs of partitions of the vertex set of graphs. We
relate this partition-sequence characterisation to our partition-tree characterisation, show the
equivalence of the two characterisations, and also provide efficient transformation algorithms.

2 Graph preliminaries and clique-width

Graph preliminaries. The studied graphs in this paper are simple, finite, undirected. In addition,
we use directed graphs and rooted trees for the representation of information about undirected
graphs. All definitions, if not otherwise said, are for undirected graphs. For rooted trees and

2

directed graphs, we use only standard terminology, that we do not always define explicitly.
A graph G is an ordered pair (V,E) where V = V (G) is the vertex set and E = E(G) is the

edge set of G. Edges are denoted as uv. Let u, v be a vertex pair of G with u 6= v. If uv is an
edge of G then u and v are adjacent in G, and u is a neighbour of v in G; if uv is not an edge of G
then u and v are non-adjacent in G. The neighbourhood of u in G, NG(u), is the set of neighbours
of u in G. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G),
the subgraph of G induced by X, G[X], has X as its vertex set, and for each vertex pair u, v

from X, uv is an edge of G[X] if and only if u 6= v and uv is an edge of G. For R ⊆ E(G),
G \ R denotes the graph (V (G), E(G) \ R), that is a subgraph of G. For X,Y ⊆ V (G), where
X ∩ Y = ∅, we denote by X × Y the set of all possible edges between vertices in X and vertices
in Y , that is X × Y = {xy : x ∈ X and y ∈ Y }.

An important graph operation throughout the paper is the disjoint union of graphs. Let
H1, . . . , Hp, where p ≥ 2, be pairwise vertex-disjoint graphs, which means V (Hi) ∩ V (Hj) = ∅
for every 1 ≤ i < j ≤ p. The disjoint union of H1, . . . , Hp, denoted as

⊕

(H1, . . . , Hp), is the
graph

(

V (H1) ∪ · · · ∪ V (Hp), E(H1) ∪ · · · ∪ E(Hp)
)

.

Clique-width and linear clique-width. Let k ≥ 1. A k-labelled graph is an ordered pair (G, ℓ)
where G is a graph and ℓ : V (G) → {1, . . . , k} is a mapping, that assigns a label from {1, . . . , k}
to every vertex of G. The vertices and edges of (G, ℓ) are the vertices and edges of G. For (G, ℓ)
a k-labelled graph, (G, ℓ)◦ denotes the underlying graph G without the labels, and ℓ is the label
function of (G, ℓ).

Consider the following inductive definition of k-expressions and linear k-expressions, slightly
generalising the original definition in [5]:

• for o ∈ {1, . . . , k} and u a vertex name, o(u) is a k-expression and a linear k-expression

• for δ a k-expression and s, o ∈ {1, . . . , k} with s 6= o, ηs,o(δ) and ρs→o(δ) are k-expressions;
if δ is a linear k-expression then ηs,o(δ) and ρs→o(δ) are linear k-expressions

• for p ≥ 2, and for δ1, . . . , δp pairwise vertex-disjoint k-expressions,
⊕

(δ1, . . . , δp) is a k-
expression;
if δ1 is a linear k-expression and δ2 = o2(u2), . . . , δp = op(up) then

⊕

(δ1, . . . , δp) is a linear
k-expression.

We call two k-expressions vertex-disjoint if the vertex names occurring in the two k-expressions
are pairwise different. Note that a vertex name occurring in a k-expression occurs exactly once.

The graphs defined by k-expressions are defined inductively. Let α be a k-expression. The
labelled graph defined by α is denoted as val(α), and it is defined as follows:

• if α = o(u) then val(α) is the k-labelled graph with the single vertex u and u has label o

• if α = ηs,o(δ) then val(α) is obtained from val(δ) by adding all missing edges between
vertices with label s and vertices with label o, and

if α = ρs→o(δ) then val(α) is obtained from val(δ) by replacing every occurring label s by
label o

• if α =
⊕

(δ1, . . . , δp) then val(α) is obtained as the disjoint union of val(δ1), . . . , val(δp).

3

u

v

w

x

y z
ρ3→2

η2,3

⊕

ρ4→3

⊕

ρ3→2

ρ2→1

η1,2

η2,3

⊕

1(u) 2(v) 3(w)

4(x)

ρ1→2

η1,2

⊕

2(y) 1(z)

a
1

{

{u, v}, {w, y, z}, {x}
}

a
2

{

{u, v}, {w}, {x}
}

a
4

{

{u}, {v}, {w}
}

{

{u}
} {

{v}
} {

{w}
}

{

{x}
}

a
3

{

{y}, {z}
}

{

{y}
} {

{z}
}

(a) (b) (c)

Figure 1: (a) our example graph G, (b) a 4-expression for G, that is given on its syntactic
tree, and (c) a partition tree (T, f) for G of width 3 with its assigned partial partition la-
bels f(a1), . . . , f(a4) for the inner nodes and f(au), . . . , f(az) at the leaves.

The disjoint union of k-labelled graphs is obtained from the disjoint union of the underlying
graphs and the union of the label functions. The underlying graph without labels defined by α,
that is (val(α))◦, is denoted shortly as val◦(α). We say that α is a k-expression for a graph G

if G = val◦(α). If α is a k-expression for G and α is a linear k-expression, we say that α is a
linear k-expression for G.

Let G be a graph. The clique-width of G, cwd(G), is the smallest integer k such that G

has a k-expression. And the linear clique-width of G, lcwd(G), is the smallest integer k such
that G has a linear k-expression. Recall from [5] that clique-width and linear clique-width are
originally defined using only the binary restriction of

⊕

. It is straightforward to verify that our
generalisation here to arbitrary arity of

⊕

does not alter the clique-width or linear clique-width
of a graph.

The goal of our work is to give a combinatorial characterisation of clique-width. The defini-
tion of clique-width is algebraic, and it represents graphs, in the meaning of α is a k-expression
for G, by algebraic terms. Terms have a tree structure. As an example, consider the two left-
side figures of Figure 1: figure (a) depicts a graph G on six vertices, and figure (b) shows a
4-expression for G, that is shown in its tree structure. This tree structure is often called the
syntactic tree of the term. Note that G itself is not a labelled graph.

For the central characterisation of clique-width in this paper, that we present in the next

4

section, we recall these definitions. Let M be a set, and let F be a family of subsets of M . If
the members of F are non-empty and pairwise disjoint then F is a partial partition of M . If F
is a partial partition of M and if the members of F cover M , i.e., if M =

⋃

F∈F F , then F is a
partition of M . Let F and F ′ be partial partitions of M . We say that F ′ refines F , F ′ ⊑ F , if
for every F ′ ∈ F ′, there is F ∈ F such that F ′ ⊆ F , and

⋃

F ′∈F ′ F ′ =
⋃

F∈F F .
For our results of Section 5, we need this restricted refinement notion. We say that F ′

strongly refines F , F ′ ⊑str F , if F ′ refines F and additionally for every F ∈ F , F ∈ F ′ implies
|F | = 1. We can say that F ′ strongly refines F if F ′ ⊑ F and each non-trivial partition class of
F is the union of at least two partition classes of F ′.

3 Partition trees and clique-width

Trees are connected acyclic graphs. The vertices of trees are called nodes, that we denote as a.
We consider rooted trees, and we distinguish between inner nodes, that are nodes with children,
and leaves, that are nodes without children. We use rooted trees to represent partitions of sets.

Definition 3.1 (Partition trees for sets). Let S be a non-empty finite set. A partition tree for
S is an ordered pair (T, f) where T is a rooted tree whose inner nodes have at least two children
and f is an assignment of partial partitions of S to the nodes of T that satisfies the following
two conditions, where for a node a of T , f(a) denotes the union of the members of f(a):

1) for every x ∈ S, there is a leaf a of T such that f(a) =
{

{x}
}

2) for every inner node a of T with b1, . . . , bp its children, where p ≥ 2, f(b1), . . . , f(bp) are
pairwise disjoint and f(b1) ∪ · · · ∪ f(bp) ⊑ f(a).

The size of (T, f) is the number of nodes of T , and the width of (T, f) is the maximum cardi-
nality |f(a)| taken over the nodes a of T .

The following observations are easy consequences of the properties of partial partitions. Let
(T, f) be a partition tree for a non-empty finite set S. For every leaf a of T , there is x ∈ S such
that f(a) =

{

{x}
}

. In fact, f when restricted to the leaves of T establishes a bijection between
the leaves of T and the elements of S. Then notice that the size of (T, f) is at most 2|S| since
every node of T has at least two children. Also, for r the root of T , f(r) is a partition of S.

We extend the definition of partition trees for sets to partition trees for labelled graphs, and
subsequently to partition trees for graphs. Let (G, ℓ) be a labelled graph. The label relation of
(G, ℓ) relates the vertices of G with the same label. The label relation is an equivalence relation
on V (G). The set of the equivalence classes of the label relation of (G, ℓ) is the label partition
of (G, ℓ).

Definition 3.2 (Partition trees for labelled graphs). Let (G, ℓ) be a labelled graph. A partition
tree for (G, ℓ) is a partition tree (T, f) for V (G) that satisfies the two conditions:

1) Compatibility condition
for every inner node a of T with b1, . . . , bp its children: for every adjacent vertex pair x, y

of G and every index pair i, j where i 6= j and every pair X,Y of members of f(a), if
x ∈ X, y ∈ Y , x ∈ f(bi), and y ∈ f(bj) then X 6= Y and X × Y ⊆ E(G)

5

2) for r the root of T , f(r) refines the label partition of (G, ℓ).

Definition 3.3 (Partition trees for graphs). Let G be a graph. A partition tree for G is a
partition tree for (G, ℓ) where ℓ : V (G) → {1, . . . , k}, x 7→ 1.

It is important to note that a partition tree for a graph does not represent the graph. This
is the case, since the adjacency relation is not represented in the partition tree. Furthermore,
in the definition of partition trees, we could allow a node a to have only one child b and require
that f(b) refines f(a). Such a node a can be eliminated by contracting the edge to b. Performing
all such contractions yields a partition tree as in Definition 3.1.

The objective of this section is to show that partition trees of width at most k are equivalent
to k-expressions, that is to show that a graph has a partition tree of width at most k if and only
if it has a k-expression, and thus, it is a graph of clique-width at most k. Before we proceed,
we consider the graph G of Figure 1 again. The right-side figure of Figure 1 shows a partition
tree for V (G): the two conditions of Definition 3.1 are verified straightforward. Additionally,
the partition tree also satisfies the Compatibility condition of Definition 3.2. As an example,
consider node a1 and the edge xy: x ∈ f(a2) and y ∈ f(a3), and x and y are contained in different
members, say X and Y , of f(a1). The Compatibility condition requires X × Y ⊆ V (G), that is
indeed the case because of X = {x} and Y = {w, y, z} and {xw, xy, xz} ⊆ E(G).

We want to show the equivalence between partition trees and expressions. We also want
to show that the one can be obtained from the other by an efficient transformation algorithm.
Since straightforward representations of partition trees contain much redundancy, we devise a
data structure for partition trees that reduces redundancy and is of linear space for partition
trees of bounded width.

Definition 3.4 (Representation graphs of partition trees for sets). Let S be a non-empty finite
set. Let (T, f) be a partition tree for S. The representation graph of (T, f) is the directed
graph D with the following vertex and arc set:

1) the vertex set of D is V (T) ∪ S ∪
⋃

a∈V (T)

{

(a, Y) : Y ∈ f(a)
}

2) the arc set of D consists of the arcs of the following four types

• type 0: a → b where a is an inner node of T and b is a child of a

• type 1: a → (a, Y) where a is a node of T and Y ∈ f(a)

• type 2: (a, Y) → (b, Z) where a is an inner node of T , b is a child of a, and Z ⊆ Y

• type 3: (a, {x}) → x where a is a leaf of T .

Definition 3.5 (Representation graphs of partition trees for labelled graphs). Let (G, ℓ) be a
labelled graph. Let (T, f) be a partition tree for (G, ℓ). The representation graph of (T, f) is a
partially labelled directed graph (D,h) where D is the representation graph of (T, f) for V (G)
and h is a partial labelling for the vertices of D such that, for r the root of T , the vertices (r, Y)
of D are labelled by h with ℓ(y) for y ∈ Y .

Observe that the label ℓ(y) of a vertex (r, Y) is well-defined in Definition 3.5, since all
vertices in Y have the same label in (G, ℓ) according to the second condition of Definition 3.2.

6

Also observe that (r, Y) and (r, Y ′) for Y 6= Y ′ can have the same label, which is the case if
f(r) is a proper refinement of the label partition of (G, ℓ).

Representation graphs offer an efficient and succinct representation of partition trees and of
the assignment function f . To see the improvement on the succinctness of the representation,
consider a labelled graph (G, ℓ) on n vertices, and let (T, f) be a partition tree for (G, ℓ). A
straightforward representation – or implementation – of (T, f) lists f(a) for each node a of T ,
which requires O(n) space, and results in an O(n2)-space representation in total. This space is
independent of the width of (T, f). We use representation graphs to benefit from a small width of
the partition tree: if (T, f) is of width at most k and T has p nodes then the representation graph
of (T, f) has at most p+n+p·k ≤ p(2+k) vertices and at most (p−1)+(p·k)+(p·k)+n ≤ 2p(1+k)
arcs. Since p is of order n, we can consider such a representation as very succinct.

We show that efficient transformations exist between expressions and representation graphs
of partition trees. For k ≥ 1, a width-k partition tree is a partition tree of width at most k.

Proposition 3.6. There is an algorithm that transforms a k-expression α into the representation
graph of a width-k partition tree for val(α) in time O(k · |α|), where |α| is the size of α.

Proof. The algorithm constructs a partition tree and its representation graph recursively,
according to the inductive definition of k-expressions.

Operation 1: α = o(u)

Observe that val(α) is a labelled graph on a single vertex. A width-k partition tree for val(α)
of size 1 and its representation graph are constructed straightforward.

Operation 2: α = ηs,o(δ)

Let (T, f) be a partition tree for val(δ). We show that (T, f) is a partition tree also for val(α).
It suffices to verify the Compatibility condition. Let a be an inner node of T , and let b and c

be two children of a, where b 6= c. Let x, y be an adjacent vertex pair of val(α) and assume
x ∈ f(b) and y ∈ f(c). Let X,Y ∈ f(a) and assume x ∈ X and y ∈ Y . If x, y is an adjacent
vertex pair of val(δ) then X × Y ⊆ E(val◦(δ)) ⊆ E(val◦(α)).

Otherwise, xy 6∈ E(val◦(δ)), and we can assume without loss of generality that x has label s
and y has label o in val(α) and val(δ). Let Ls and Lo be the sets of the vertices of val(α) with
label s and with label o, respectively. Observe: Ls×Lo ⊆ E(val◦(α)). So, if X ⊆ Ls and Y ⊆ Lo

then X × Y ⊆ E(val◦(α)), as is required. For r the root of T , there exist X ′, Y ′ ∈ f(r) such
that X ⊆ X ′ and Y ⊆ Y ′, by recursively applying the second condition of Definition 3.1. Since
f(r) refines the label partition of val(δ) and thus of val(α), it follows that X ′ ⊆ Ls and Y ′ ⊆ Lo,
which implies that X ⊆ Ls and Y ⊆ Lo is indeed the case.

Since each partition tree for val(δ) is a partition tree for val(α) and since val(δ) and val(α)
have the same label partitions, the representation graph for (T, f) of val(δ) is the representation
graph for (T, f) of val(α).

Operation 3: α = ρs→o(δ)

Let (T, f) be a partition tree for val(δ). Since val◦(δ) = val◦(α), (T, f) is also a partition tree
for val(α), especially since the label partition of val(δ) refines the label partition of val(α).

Let (D,h) be the representation graph of (T, f) for val(δ). Let h′ be obtained from h as
follows, for every x ∈ V (D): if h(x) 6= s then h′(x) =def h(x), and if h(x) = s then h′(x) =def o.
It is straightforward to observe that (D,h′) is the representation graph of (T, f) for val(α).

7

Operation 4: α =
⊕

(δ1, . . . , δp) where p ≥ 2

Let (T1, f1), . . . , (Tp, fp) be width-k partition trees for respectively val(δ1), . . . , val(δp). Let
r1, . . . , rp be the roots of respectively T1, . . . , Tp. Let r be a new node. We obtain T from
the disjoint union of T1, . . . , Tp by adding r as the root and making r adjacent to r1, . . . , rp. Let
f for T be defined as follows. For every node a of T , if a is a node of Ti, where 1 ≤ i ≤ p, then
f(a) =def fi(a), and if a is not a node of any of T1, . . . , Tp then a = r and we let f(a) be the
label partition of val(α).

We verify that (T, f) is a partition tree for val(α). Since val(δ1), . . . , val(δp) are pairwise
vertex-disjoint and since fi(ri) refines the label partition of val(δi) for every 1 ≤ i ≤ p, f(r1) ∪
· · · ∪ f(rp) ⊑ f(r). And since each edge of val(α) is an edge of one of val(δ1), . . . , val(δp), the
Compatibility condition for (T, f) is verified straightforward. Thus, (T, f) is a partition tree for
val(α), and since α is a k-expression and the label partition of val(α) is of size at most k, (T, f)
is of width at most k.

We construct the representation graph (D,h) of (T, f) for val(α). Let (D1, h1), . . . , (Dp, hp)
be the representation graphs of (T1, f1), . . . , (Tp, fp), respectively. We define D:

• vertex set of D
V (D) = V (D1) ∪ · · · ∪ V (Dp) ∪

{

r
}

∪
{

(r, Y) : Y ∈ f(r)
}

• arc set of D
A(D) = A(D1) ∪ · · · ∪A(Dp) ∪

{

r → ri : 1 ≤ i ≤ p
}

∪
{

r → (r, Y) : Y ∈ f(r)
}

∪
{

(r, Y) → (ri, Z) : 1 ≤ i ≤ p and Y ∈ f(r) and Z ∈ f(ri) and Z ⊆ Y
}

.

It is straightforward to observe that D is the representation graph of (T, f) indeed. The labelling
function h is defined on

{

(r, Y) : Y ∈ f(r)
}

only, according to Definition 3.5. It directly follows
that (D,h) is the representation graph of (T, f) for val(α).

We have described an incremental algorithm to construct the representation graph of a parti-
tion tree for val(α). It remains to determine the running time of the algorithm. The construction
of the representation graph with operation 1 takes constant time per vertex. Operation 2 does
not require any construction time. With operation 3, the modification of the label function to
obtain h′ takes time O(k), by examining the vertices of D of the form (r, Y). Recall here that
α being a k-expression implies that f(r) is of size at most k.

Finally, with operation 4, let oi be the
⊕

-operations in α, and for each operation oi, let pi
be the arity of oi. For each oi, at most k+1 new vertices and at most pi+k+pi ·k new arcs are
added. Adding the type-0 and type-1 arcs is easy. For the type-2 arcs, it suffices to observe that
the vertices in Y and Z have the same label. This together requires time O(pi · k). Summing
up the running times, all such operations take time O(k · |α|), since p1 + p2 + p3 + · · · ≤ |α|.

In total, our algorithm constructs a representation graph for val(α) in time O(k · |α|).

Proposition 3.7. There is an algorithm that transforms a graph G and the representation
graph (D,h) of a width-k partition tree for G into a k-expression for G in time O(k · |D|+ n2),
where |D| is the number of vertices of D and n is the number of vertices of G.

8

Proof. Let (T, f) be the partition tree represented by (D,h). Observe that (T, f) is uniquely
defined by (D,h). Let r be the root of T . Since (T, f) is of width at most k, we simply assume
that the vertices (r, Y) of D for Y ∈ f(r) have pairwise different labels. We will see in the
course of the construction that this assumption is no restriction to the general situation, where
different vertices may have the same label.

We begin our algorithm with a preparation step, that extends the labelling function h for
D to further vertices of D. The root of T , r, is already processed. In a top-down manner on
T , starting at r, we continue. Let b be a child of an already processed inner node a of T . We
process b in two steps:

a) for each Y ∈ f(a), arbitrarily choose Z ∈ f(b) such that Z ⊆ Y , if it exists, and assign
the label of (a, Y) to (b, Z)

b) arbitrarily assign labels to the still unlabelled vertices of the form (b, Z) for Z ∈ f(b) such
that all vertices of the form (b, Z) for Z ∈ f(b) have pairwise different labels.

Using the arcs of type 1 and 2 of D, the algorithm can assign the labels in linear time. Note
here in particular that step a of the procedure can be seen as simply picking a type-2 arc, and
step b is easily executable, since f(b) is of size at most k, and therefore, k colours suffice to label
the vertices (b, Z) with pairwise different labels.

We will use these assigned labels later.
Our transformation algorithm is a bottom-up algorithm on T , that defines a k-expression α(a)

for each node a of T such that val◦(α(a)) is equal to G[f(a)] and the labels of val(α(a)) corre-
spond to the labels assigned to the vertices (a, Y) of D in the preparation step. So, let a be a
node of T . If a is a leaf of T then let α(a) =def o(x) for f(a) =

{

{x}
}

and o the label of (a, {x}).
The claims about α(a) are clearly satisfied.

Next, assume that a is an inner node of T and its children b1, . . . , bp have already been
considered and appropriate k-expressions α(b1), . . . , α(bp) have already been defined. We obtain
α(a) in three steps: relabelling, combining, adding edges.

R) Relabelling α(b1), . . . , α(bp)

Let Y ∈ f(a) and Z ∈ f(bi) such that Z ⊆ Y . Note here that (a, Y) → (bi, Z) is a type-2
arc of D. Let o and s be the labels of the vertices (a, Y) and (bi, Z) of D, respectively.
Recall that the vertices in Z are the vertices of val(α(bi)) with label s, and due to the
preparation step, some vertex of val(α(b1)), . . . , val(α(bp)) must have label o; the latter is
of utmost importance, since this guarantees that in the construction of val(α(a)), described
below, all vertices of Y receive label o, as required. If o 6= s then we extend α(bi) through
ρs→o into ρs→o(α(bi)).

We repeat this extension procedure as often as possible, and obtain a k-expression α′(bi) for
val◦(α(bi)) such that the label of each vertex y of val(α′(bi)) is the label of the vertex (a, Y)
of D where y ∈ Y .

C) Combining α′(b1), . . . , α
′(bp)

Let β(a) =def
⊕

(α′(b1), . . . , α
′(bp)). It suffices to observe that β(a) is a k-expression for

the disjoint union of the graphs val◦(α(b1)), . . . , val
◦(α(bp)), the label partition of val(β(a))

9

is equal to f(a), and the labels of the vertices of val(β(a)) are as the corresponding labels
of the vertices (a, Y) of D.

A) Adding edges to β(a)

Let X,Y ∈ f(a) where X 6= Y , and let s and o be the labels of the vertices (a,X) and
(a, Y) of D, respectively. Recall from the label assignment in the preparation step that
s 6= o is the case. Let x, y be an adjacent vertex pair of G, and let i, j be with x ∈ f(bi)
and y ∈ f(bj). Recall that the definition of partition trees implies the uniqueness of i for
x and j for y. If x ∈ X and y ∈ Y then we extend β(a) through ηs,o into ηs,o(β(a)).

We claim that ηs,o adds only edges of G. Since (T, f) satisfies the Compatibility condition
and since the assumptions of the Compatibility condition are satisfied, X × Y ⊆ E(G) is
the case, and so, only edges of G are indeed added.

We repeat the extension procedure as often as possible, and obtain a k-expression α(a).
We claim that val◦(α(a)) is equal to G[f(a)]. Let x, y be an adjacent vertex pair of G. If
x, y ∈ f(bi) for some 1 ≤ i ≤ k then xy is an edge of val(α(bi)), and thus of val(α(a)).
Otherwise, x ∈ f(bi) and y ∈ f(bj) for 1 ≤ i, j ≤ k and i 6= j. Then, there are X ′ ∈ f(bi)
and Y ′ ∈ f(bj) such that x ∈ X ′ and y ∈ Y ′, and there are X,Y ∈ f(a) such that X ′ ⊆ X

and Y ′ ⊆ Y . The Compatibility condition yields X 6= Y , and our extension procedure has
made x and y adjacent.

By induction, we obtain α(r) as the desired k-expression for G.

We consider the running time of our algorithm. Recall that the preparation step takes time
linear in D. We consider the transformation algorithm and determine the time taken per node
of T . In overall linear time, the leaves of T can be identified, and processing a leaf of T takes
constant time. Next, let a be an inner node of T . We consider the three construction steps.

R) Relabelling

It suffices to observe that the label pairs can be determined by using the type-1 and type-2
arcs of D associated with a, which yields a linear running time in the number of these
arcs.

C) Combining

We use a pointer as a variable and hereby avoid an explicit combination of the p expressions.
This step takes time linear in p.

A) Adding edges

We need to determine the pairs X,Y from f(a) that contain vertices from different f(bi).
Observe that a pair X,Y is not of this form if and only if X∪Y ⊆ f(bi) for some 1 ≤ i ≤ k.
This can be checked by using the type-2 arcs of D. So, if X and Y contain vertices from
different f(bi), there are children b and b′ of a where b 6= b′ and X ′ ∈ f(b) and Y ′ ∈ f(b′)
such that X ′ ⊆ X and Y ′ ⊆ Y , i.e., such that (a,X) → (b,X ′) and (a, Y) → (b′, Y ′) are
arcs of D; any such pair of arcs can serve as a witness in the following.

We need to decide whether X ′ and Y ′ contain adjacent vertices; if this is the case then
X × Y ⊆ E(G) due to the Compatibility condition, and any pair of vertices from X ′ and

10

Y ′ would be a suitable witness. Observe here that D has no direct representation of the
vertices in X ′ and Y ′. However, in a bottom-up manner during a preprocessing step, we
can associate to each vertex (u, Z) of D a vertex z of G satisfying z ∈ Z. This can be
achieved in time linear in D.

We sum up the running times. At most k · |f(a)| pairs X,Y are considered, suitable
representative vertices are determined in constant time, and the adjacency relation of G
is represented by an adjacency matrix.

As the overall total running time, we obtain O(k · |D|+ n2), where O(n2) is the time taken for
building the adjacency matrix of G.

To complete the construction and obtain a k-expression for G that also respects the labels
in h, it suffices to recall that the label partition of val(α(r)) refines the label partition defined
by h, and we simply extend α(r) applying the above Relabelling step.

We can state our main characterisation result for clique-width. A partition tree (T, f) is
called binary if each inner node of T has exactly two children.

Theorem 3.8. Let k ≥ 1, and let G be a graph. The following statements are equivalent:

1) cwd(G) ≤ k

2) G has a width-k partition tree

3) G has a binary width-k partition tree.

Proof. The equivalence of statements 1 and 2 is a consequence of Propositions 3.6 and 3.7.
Since binary partition trees are partition trees obviously, statement 3 implies statement 2.

We show that statement 2 implies statement 3, by transforming a partition tree into a binary
partition tree of the same width. Let (T, f) be a partition tree that is not binary. Let a be
an inner node of T with b1, . . . , bp its children where p ≥ 3. Let a′ be a new node. We obtain
(T ′, f ′) from (T, f) by adding a′ as a new child of a, making b2, . . . , bp children of a′ instead of

a, and extending f into f ′ by letting f ′(a′) =def {X \ f(b1) : X ∈ f(a) and X 6⊆ f(b1)}. It is
not difficult to verify f ′(b2) ∪ · · · ∪ f ′(bp) ⊑ f ′(a′) and f ′(a′) ∪ f ′(b1) ⊑ f ′(a). It directly follows
that (T ′, f ′) is a width-k partition tree. And since the Compatibility condition is satisfied by
f(a) in (T, f) and since f ′(a′) is a restriction of f(a), the Compatibility condition is satisfied by
f ′(a′) and f ′(a) in (T ′, f ′).

If (T ′, f ′) is not yet a binary partition tree, we repeat the above transformation procedure
as often as necessary. Eventually, a binary width-k partition tree for G is obtained.

A computational problem that is related to expressions, and thus to partition trees, is the
relative clique-width problem [17]. Using our results about the equivalence of expressions and
partition trees and the properties of the two transformation algorithms of Propositions 3.6 and
3.7, the relative clique-width problem can be equivalently stated as follows: given an integer k,
a graph G on n vertices, a rooted binary tree T with n leaves, and a bijection λ between the
leaves of T and the vertices of G, it is to decide whether an assignment function f exists such
that (T, f) is a binary width-k partition tree for G and f(a) =

{

{λ(a)}
}

for every leaf a of T .
Müller and Urner showed that the relative clique-width problem is NP-hard [18].

11

At the beginning of this section, we were interested in a succinct representation of partition
trees, and we used the representation graphs mainly to succinctly represent the partial partitions
assigned to the nodes of the tree. The hardness, or intractability, result for the relative clique-
width problem explains that an algorithmically useful representation of partition trees, from
which the partial partitions are extractable efficiently, must represent the partitions necessarily.

4 Partition trees and linear clique-width

A variant of clique-width is linear clique-width, that is considered the clique-width analogue
of pathwidth in relation to treewidth. Characterisations of linear clique-width and closure
properties are known [1, 11, 13, 14, 17]. In this section, we discuss some consequences of our
clique-width characterisation, Theorem 3.8, when applied to linear clique-width.

We use a special class of rooted trees. In our applications of this section, a caterpillar is a
rooted tree whose inner nodes have at most one child that is not a leaf. Partition trees that are
caterpillars are called partition caterpillar trees.

Proposition 4.1. Let k ≥ 1, and let G be a graph. The linear clique-width of G is at most k if
and only if G has a width-k partition caterpillar tree.

Proof. If lcwd(G) ≤ k then G has a linear k-expression, and the algorithm of Proposi-
tion 3.6 generates a width-k partition tree for G that is a caterpillar, in particular since
δ2 = o2(u2), . . . , δp = op(up) for operation type 4.

Conversely, applying the transformation algorithm of Proposition 3.7 to the representation
graph of a width-k partition caterpillar tree for G yields a linear k-expression for G, in particular
since b2, . . . , bp in the second step combining are leaves and val◦(α(b2)), . . . , val

◦(α(bp)) are single-
vertex graphs, thus proving lcwd(G) ≤ k.

Proposition 4.1 characterises linear clique-width in analogy to the characterisation of clique-
width in Theorem 3.8. Further characterisations of linear clique-width are known [11, 13, 17],
that are mainly based on vertex layouts. Common to the vertex layout characterisations of linear
clique-width is the classification of already processed vertices with respect to their remaining
unprocessed neighbours. We discuss here how the partition caterpillar trees relate to the vertex
layout characterisations. A central tool is a combinatorial description of the partition classes in
the assigned partition labels of the partition trees.

Let G be a graph, and let R ⊆ E(G). Let H =def G \R. Let u, v be a vertex pair of G. We
say that u, v satisfies the group condition in H if NH(u) = NH(v), i.e., if u and v have the same
neighbours in H. For X ⊆ V (G), we call X a group of H if each vertex pair from X satisfies the
group condition in H. Groups are sets of vertices of G, and H, with the same neighbourhood in
H. As an example, reconsider graph G of Figure 1. The groups of G\{vw, yz} with at least two
vertices are {w, y}, {w, z}, {y, z}, {w, y, z}. Observe that {u, v} is not a group of G \ {vw, yz},
particularly since u and v are adjacent in G \ {vw, yz}.

The notion of a group generalises that of a module in modular decomposition. For B ⊆ V (G),
denote by E[B] the set {uv ∈ E(G) : u, v ∈ B}, that is the edge set of G[B]. A module of G
is a set M of vertices of G such that M is a group of G \ E[M]. The relationship between
clique-width and modular decomposition is fully known [7].

12

As a first result, we consider the partition labels of partition trees. Let G be a graph, let
(T, f) be a partition tree for G, and let a be a node of T . By G−

a , we denote the graph G\E[f(a)],
that is the residue graph of G when deleting the edges between the vertices in f(a).

Lemma 4.2. Let G be a graph, and let (T, f) be a partition tree for G. Let a be an inner node
of T with child b, and let X ∈ f(a). The following hold true:

1) X is a group of G−
a , and X ∩ f(b) is a group of G−

b

2) no vertex from X ∩ f(b) is adjacent to a vertex from X \ f(b) in G.

Proof. Let B =def f(b). Observe that no vertex from X ∩B is adjacent to a vertex from X \B
due to the Compatibility condition of Definition 3.2, which proves the second claim.

We prove the second part of the first claim, by proving its contraposition. Recall G−
b =

G \E[B]. Let Y =def X ∩B, and assume that Y is not a group of G−
b . Then, there are u, v ∈ Y

and z ∈ V (G) such that uz ∈ E(G−
b) and vz 6∈ E(G−

b). Recall that z 6∈ B must hold, since the
vertices in B are pairwise non-adjacent in G−

b .
Let a′ be the inner node of T that has children b′ and b′′ satisfying u, v ∈ f(b′) and z ∈ f(b′′);

note that a′, b′ and b′′ do exist. Choose X ′ ∈ f(a′) such that u ∈ X ′. Due to the Compatibility
condition for a′, X ′ ⊆ NG(z) is the case, which implies v 6∈ X ′. Descending from a′ to a in T

and iteratively applying the refinement property of the second condition of Definition 3.1, we
conclude that u and v do not appear in the same partition class of f(a).

The first part of the first claim follows as an application of the second part. If a is the root
of T , V (G) is a group of G−

a , and X in particular. Assume that a is not the root of T ; let a′

be the parent of a. According to the second condition of Definition 3.1, there exists X ′ ∈ f(a′)
such that X ⊆ X ′, and X ′ ∩ f(a) is a group of G−

a according to the second part of the first
claim, and X is a group of G−

a because of X ⊆ X ′ ∩ f(a).

Let G be a graph, let A ⊆ V (G), and let R ⊆ E(G). A maximal group of G \ R with
respect to A is a group X of G \R with X ⊆ A that is not properly contained in any group X ′

of G \ R with X ′ ⊆ A. Since the group condition for G \ R defines an equivalence relation
on V (G), A is partitioned uniquely into maximal classes, that are the maximal groups. With
the example of Figure 1, the maximal groups of G \ {vw, yz} with respect to {u, v, w, x, y} are
{u}, {v}, {x}, {w, y}.

Let (T, f) be a partition tree for G, and let a be a node of T . By M(a), we denote the set
of the maximal groups of G−

a with respect to f(a).

Corollary 4.3. Let k ≥ 1, let G be a graph, and let (T, f) be a binary width-k partition tree for
G. Let

ϑ =def max
{

|M(a)| : a is a node of T
}

.

Then, ϑ ≤ k and cwd(G) ≤ 2ϑ.

Proof. For the first inequality, observe for each node a of T : every maximal group of G−
a

with respect to f(a) consists of the union of one or more members of f(a) by the first claim of
Lemma 4.2. Therefore, the number of maximal groups of G−

a with respect to f(a) is at most
|f(a)|. This means |M(b)| ≤ |f(a)|. Since |f(a)| ≤ k clearly, ϑ ≤ k follows.

13

For the second inequality, we define a new partition assignment function g for T . For a a
node of T :

g(a) =def

{

f(a) , if a is a leaf

M(b1) ∪M(b2) , if a is an inner node with b1 and b2 its children .

If (T, g) is a partition tree for G, the result of the first paragraph directly show that (T, g) is of
size at most 2ϑ. We show that (T, g) is a partition tree for G indeed. We verify the conditions
of Definitions 3.1 and 3.2 for the inner nodes of T . Let a be an inner node of T with b1 and b2
its children.

We verify g(b1) ∪ g(b2) ⊑ g(a). Observe that G−
a is a subgraph of G−

b1
and of G−

b2
. Thus,

each group of G−
b1

and of G−
b2

is a group also of G−
a . So, g(a) is a set of groups of G−

a , and since
g(a) = g(b1) ∪ g(b2), we conclude g(b1) ∪ g(b2) ⊑ M(b1) ∪M(b2) ⊑ g(a) ⊑ M(a).

We verify the Compatibility condition. Let x, y be an adjacent vertex pair of G and let
X,Y ∈ g(a), and assume x ∈ X and y ∈ Y and x ∈ g(b1) and y ∈ g(b2). Then, X ∈ M(b1) and
Y ∈ M(b2), and X 6= Y in particular, and since xy is an edge of G−

b1
, and of G−

b2
, each vertex

in X is adjacent to y in G, so that X ⊆ NG(y), and thus, X ⊆ NG(y
′) for every vertex y′ ∈ Y ,

and thus, X × Y ⊆ E(G).
We conclude that (T, g) is a partition tree for G indeed, and the size of (T, g) is at least

cwd(G) due to Theorem 3.8.

We come back to partition caterpillar trees and linear clique-width: we apply Corollary 4.3
and the construction in the proof to a graph G and a partition caterpillar tree for G of
width lcwd(G), that exists due to Proposition 4.1, and we conclude ϑ ≤ lcwd(G) ≤ ϑ + 1.
We show that the ideas of Lemma 4.2 extend into a characterisation of linear clique-width. For
convenience, we restrict to binary partition caterpillar trees.

Theorem 4.4. Let k ≥ 1, and let G be a graph. The linear clique-width of G is at most k if
and only if there is a binary partition caterpillar tree (T, f) for V (G) of width at most k that
satisfies the following conditions for every inner node a of T with b1 and b2 its children, where
b2 is a leaf and f(b2) = {w}:

• for W ∈ M(a) with w ∈ W , if there is W ′ ∈ M(b1) such that W ′ ⊆ W and NG(w) ⊆
NG(w

′) for each w′ ∈ W ′ then f(a) =
(

M(b1) \ {W
′}
)

∪
{

W ′ ∪ {w}
}

• otherwise, f(a) = M(b1) ∪
{

{w}
}

.

Proof. Assume that a binary partition caterpillar tree (T, f) for V (G) of the given properties
exists. We show that (T, f) is a partition tree for G. Let a be an inner node of T with b1 and
b2 its children, where b2 is a leaf and f(b2) = {w}.

Note that (T, f) is indeed a partition tree: f(b1) ∪ f(b2) ⊑ M(b1) ∪
{

{w}
}

⊑ f(a) ⊑ M(a),
analogous to the proof of Corollary 4.3.

Next, for verifying the Compatibility condition, let x ∈ f(b1) with xw ∈ E(G) and let
X,Y ∈ f(a) with x ∈ X and w ∈ Y . If {w} ∈ f(a) then Y = {w}, and X 6= Y , and since xw is
an edge of G−

b1
and X is a group of G−

b1
, X ⊆ NG(w) follows. If {w} 6∈ f(a} then Y = W ′∪{w},

and since ww′ 6∈ E(G) for each w′ ∈ W ′, X 6= Y follows, and since X is a group of G−
b1
,

X ⊆ NG(w) follows, and thus, X ⊆ NG(y) for each y ∈ Y according to the choice of W ′.

14

Thus, (T, f) is a partition tree for G, and lcwd(G) is at most the width of (T, f) due to
Proposition 4.1.

For the converse, let (T, g) be a binary partition caterpillar tree for G. Obtain (T, f) from
(T, g) by defining f according to the theorem, based on (T, g). We compare the widths of (T, f)
and (T, g).

Let a be an inner node of T with b1 and b2 its children, where b2 is a leaf and f(b2) =
g(b2) = {w}. Observe |f(a)| ≤ |M(b1)| + 1. Assume |g(a)| ≤ |M(b1)|. Every maximal group
of G−

a with respect to g(a) consists of the union of one or more members of g(a) by the first
claim of Lemma 4.2. Thus, the number of maximal groups of G−

a with respect to g(a) is at most
|g(a)|. This means |M(b1)| ≤ |g(a)|, and therefore M(b1) =

{

X ∩ g(b1) : X ∈ g(a)
}

.
Let Y ∈ g(a) with w ∈ Y . So, Y \ {w} ∈ M(b1). Observe that Y is a group of G−

a by the
first claim of Lemma 4.2. The group condition and the Compatibility condition together show
NG(w) ⊆ NG(y) for each y ∈ Y \ {w}, and f(a) is defined according to the first case. This
means |f(a)| = |M(b1)| = |g(a)| in particular.

We conclude: the width of (T, f) is at most the width of (T, g). Choosing (T, g) of width at
most lcwd(G), which is possible according to Proposition 4.1, proves the theorem.

Theorem 4.4 shows that a partition assignment function of smallest width for a binary
caterpillar tree can be obtained simply by an extension from the labels of the leaves. This
partition label assignment is at the heart of the vertex layout characterisations of linear clique-
width in [11, 13, 17]. The characterisation in [13] employs an indicator function that determines
whether the first or the second case about the partition label in Theorem 4.4 must be chosen.

5 On a characterisation of clique-width by Heule and Szeider

A novel algorithmic approach to clique-width was presented by Heule and Szeider [16]. They
use SAT-solvers to solve the clique-width decision problem. As a central tool, they gave a
characterisation of clique-width by means of nested partitions. In this section, we review and
compare their characterisation and relate it to that of Theorem 3.8.

We will also use the notion of strong refinement defined at the end of Section 2.

Definition 5.1 (Derivation over sets). Let S be a set. A derivation over S is a
sequence (Ci, Di)0≤i≤q of partition pairs of S satisfying the following conditions:

1) C0 = D0 =
{

{x} : x ∈ S
}

, and Cq =
{

S
}

2) Ci ⊑ Ci+1 and Di ⊑ Di+1 for every 0 ≤ i < q, and
Di ⊑ Ci for every 0 ≤ i ≤ q.

The derivation (Ci, Di)0≤i≤q is called strict if |Ci| > |Ci+1| for every 0 ≤ i < q, and it is called
strong if Ci ⊑str Ci+1 for every 0 ≤ i < q.

Observe that strong derivations are strict, unless there is 0 ≤ i < q such that Ci = Ci+1 = C0.

Definition 5.2 (Derivations of graphs). Let G be a graph. A derivation of G is a deriva-
tion (Ci, Di)0≤i≤q over V (G) satisfying for every 0 ≤ i < q and every vertex pair u, v of G

where uv ∈ E(G) and u and v appear in different partition classes of Ci:

15

1) u and v appear in different partition classes of Di+1

2) for every vertex pair w, x of G, if x and u are in the same partition class of Di+1 and w

and v are in the same partition class of Di+1 then wx ∈ E(G).

The width of (Ci, Di)0≤i≤q is the maximum number of partition classes of Di that are contained
in the same partition class of Ci for 0 ≤ i ≤ q, and q is the length of (Ci, Di)0≤i≤q.

Clique-width and derivations of graphs are equivalent. The following result is proved as
Proposition 1 and Lemma 1 in [16].

Theorem 5.3 ([16]). Let k ≥ 1, and let G be a graph on n vertices. The clique-width of G is
at most k if and only if G has a derivation of width at most k, if and only if G has a strict
derivation of width at most k and of length at most n− k + 1.

Theorem 5.3 can be strengthened by asking for strong derivations in place of strict deriva-
tions, as we will show in Proposition 5.4 below. As a consequence of Theorem 5.3, Theorem 3.8
can be extended by adding derivations of graphs of bounded width as a fourth statement.

Before we prove the equivalence of partition trees and derivations, we want to discuss the
application of derivations to clique-width computation as applied by Heule and Szeider [16].
First, observe the difference between our Definition 5.2 and the original definition in [16]: our
condition 2 is originally expressed in two separate conditions:

2.1) for w a vertex different from u and v that is in the same partition class of Di+1 as v,
uw ∈ E(G)

2.2) for w, x a vertex pair such that u, v, w, x are pairwise different, if x and u are in a same
partition class of Di+1 and w and v are in the same partition class of Di+1 and if uw, vx ∈
E(G) then wx ∈ E(G).

Observe that conditions 2.1 and 2.2 are consequences of condition 2. For the converse, condition 2
for the particular case of x = u or v = w is concluded from condition 2.1, and the case of x 6= u

and v 6= w is concluded from condition 2.2.
The alternative definition of derivations in Definition 5.2 is interesting for the SAT-solver

application of [16], as we briefly explain. Let G be a graph on n vertices, and let k ≥ 1. We create
Boolean variables and clauses to express the existence of a strict k-derivation for G of width at
most k and of length n − k + 1. A typical variable is cu,v,i, whose value true has the meaning
that the vertices u and v are in a same partition class of Ci. This way, we create n2(n− k + 2)
variables. We also create variables du,v,i to express that u and v are in the same partition class of
Di. Furthermore, we assume a labelling of the partition classes of Di with labels from {1, . . . , k}
such that two partition classes of Di that are contained in the same partition class of Ci have
different labels. We create variables lv,a,i to express that the partition class of Di containing v

has label a. In total, (2n2 + nk)(n− k + 2) variables are created.
Clauses over the defined variables depend on the edges of G. Clauses express that an truth-

value assignment encodes a strict derivation for G of width at most k and of length n − k + 1.
The number of clauses is O(n4 · (n− k)).

16

The different formulations of derivations have direct efficiency consequences. The translation
of conditions 1 and 2 of Definition 5.2 needs more clauses than the translation of conditions 1
and 2.1 and 2.2, especially since the variables w and x have a smaller range in condition 2.2.
Using strong derivations instead of strict derivations adds more constraints and results in quicker
negative answers, which means a quicker response in case of cwd(G) > k.

We want to compare some computational aspects of the construction of derivations from
partition trees, and vice versa.

Let G be a graph, and let (T, f) be a partition tree for G. Recall the definition of depth
in rooted trees: the depth of a node is its distance to the root. The height of T is the largest
depth among the leaves of T (the right-side partition tree of Figure 1 has height 3). Let q be the
height of T . For every 0 ≤ i ≤ q, we define the partition pair (Ci, Di). Let Li be the set of the
nodes that are of depth q− i in T or that are leaves of T of depth less than q− i. Note that L0

is the set of the leaves of T exactly, and Lq contains the root of T as the only node. We define:

Ci =def

{

f(a) : a ∈ Li

}

and Di =def

⋃

a∈Li

f(a) .

Let Deriv(T, f) =def (Ci, Di)0≤i≤q be the constructed sequence of partition pairs. We will show
that Deriv(T, f) is a strong derivation of G.

As an example, consider the right-side partition tree of Figure 1: the height is 3, the sets
of nodes are L0 = {au, av, aw, ax, ay, az}, L1 = {a4, ax, ay, az}, L2 = {a2, a3}, L3 = {a1}, and the
constructed derivation (Ci, Di)0≤i≤3 is as follows:

C0 =
{

{u}, {v}, {w}, {x}, {y}, {z}
}

D0 =
{

{u}, {v}, {w}, {x}, {y}, {z}
}

C1 =
{

{u, v, w}, {x}, {y}, {z}
}

D1 =
{

{u}, {v}, {w}, {x}, {y}, {z}
}

C2 =
{

{u, v, w, x}, {y, z}
}

D2 =
{

{u, v}, {w}, {x}, {y}, {z}
}

C3 =
{

{u, v, w, x, y, z}
}

D3 =
{

{u, v}, {w, y, z}, {x}
}

.

For the converse, let G be a graph, and let D = (Ci, Di)0≤i≤q be a derivation of G. We
define a rooted tree T as follows:

• the nodes of T are in 1-to-1 correspondence with the members of
⋃q

i=0Ci, where each node
is labelled with its corresponding member

• two nodes a and b of T are adjacent if and only if, for A and B the member labels of
respectively a and b, B ⊂ A or A ⊂ B and there is no member X in

⋃q
i=0Ci such that

B ⊂ X ⊂ A or A ⊂ X ⊂ B

• the root of T is the node with label V (G), that is the unique member of Cq.

It is clear that C0 ⊑ · · · ⊑ Cq and the node labels from
⋃q

i=0Ci together implies that T is a
rooted tree whose inner nodes have at least two children indeed. We define a partition assignment
function f for T . Let a be a node of T , and let A be the label of a. Let 0 ≤ t ≤ q be smallest
such that A ∈ Ct. Then, let

f(a) =def

{

X ∈ Dt : X ⊆ A
}

.

17

Let Parti(D) =def (T, f) be the constructed pair. We show that Parti(D) is indeed a partition
tree for G.

Proposition 5.4. Let k ≥ 1, and let G be a graph.

1) If (T, f) is a width-k partition tree for G then Deriv(T, f) is a strong derivation of G of
width at most k.

2) If D is a derivation of G of width at most k then Parti(D) is a width-k partition tree for
G.

Proof. We prove the first claim. Let (T, f) be a width-k partition tree for G. Let Deriv(T, f) =
(Ci, Di)0≤i≤q, and let L0, . . . , Lq be the corresponding sets of nodes of T . We show that
Deriv(T, f) is a strong derivation over V (G), and verify the conditions of Definition 5.1:

1) since V (G) =
⋃

a∈L0
f(a) and Lq = {r} for r the root of T and f(r) = V (G), the first

condition of Definition 5.1 is satisfied

2) – for 0 ≤ i ≤ q: Di ⊑ Ci follows from f(a) ⊑
{

f(a)
}

– for 0 ≤ i < q: Di ⊑ Di+1 follows from the second condition of Definition 3.1

– for 0 ≤ i < q: Ci ⊑str Ci+1 follows from the assumption that each inner node of T
have at least two children.

Next, we verify the two conditions of Definition 5.2. Let 0 ≤ i < q, let u, v, w, x be a vertex
quadruple of G, and assume uv ∈ E(G) and that u and v appear in different partition classes of
Ci. Let j be smallest with 0 ≤ j ≤ q such that u, v ∈ f(a) for some node a in Lj . The definition
of C0, . . . , Cq and the above shown refinement structure implies j > i, and a is an inner node of
T . Let b′ and b′′ be two children of a such that b′ 6= b′′ and u ∈ f(b′) and v ∈ f(b′′).

1) Let c ∈ Li such that u ∈ f(c). If c ∈ Li+1 then c is a leaf of T and f(c) = {u}, and u and
v appear in different partition classes of Di+1. Otherwise, for d the parent of c, d ∈ Li+1,
and if v 6∈ f(d) then u and v appear in different partition classes because of Di+1 ⊑ Ci+1,
and if v ∈ f(d) then d = a, and the Compatibility condition for a, b′ and b′′ implies that
u and v appear in different partition classes of Di+1.

2) Assume that u and x appear in the same partition class of Di+1 and that v and w appear
in the same partition class of Di+1. Then, u and x appear in the same member of f(a) and
v and w appear in the same member of f(a). The Compatibility condition for a, b′ and b′′

together with uv ∈ E(G) implies {u, x} × {v, w} ⊆ E(G), and wx ∈ E(G) in particular.

It remains to observe that if (T, f) has width at most k then Deriv(T, f) also has width at most
k.

We prove the second claim. Let D = (Ci, Di)0≤i≤q be a derivation of G of width at most k.
Recall from Definition 5.1 that C0 =

{

{x} : x ∈ V (G)
}

and Cq =
{

V (G)
}

. This particularly
means that there is a 1-to-1 correspondence between the leaves of T and the members of C0,
thereby certifying the first condition of Definition 3.1 and proving |f(a)| ≥ 2 for every inner
node a of T .

18

Let a be an inner node of T with b1, . . . , bp its children, where p ≥ 2, as we already verified
at the definition of Parti(D). Let A and B1, . . . , Bp be the members of

⋃q
i=0Ci that respectively

a and b1, . . . , bp are labelled with. Let t be smallest with 0 ≤ t ≤ q such that A ∈ Ct. Note

that t ≥ 1, that B1, . . . , Bp ∈
⋃t−1

i=0 Ci, and that B1, . . . , Bp are pairwise disjoint. Also note
B1 ∪ · · · ∪Bp = A = f(a).

We show f(b1) ∪ · · · ∪ f(bp) ⊑ f(a): f(a) ⊆ Dt, and D0 ⊑ · · · ⊑ Dt−1 ⊑ Dt, and

f(b1), . . . , f(bp) ⊆
⋃t−1

i=0 Di. This verifies the second condition of Definition 3.1.

We verify the Compatibility condition. Let x, y be an adjacent vertex pair from f(a), let
x ∈ f(bi) and y ∈ f(bj), and assume i 6= j. Let X,Y ∈ f(a) be such that x ∈ X and y ∈ Y .

Recall X,Y ∈ Dt according to the definition of f(a) for Parti(D). Since f(a) 6∈ Ct−1 and thus
f(bi), f(bj) ∈ Ct−1 and f(bi) 6= f(bj), which means that x and y appear in different partition
classes of Ct−1, we can apply the two conditions of Definition 5.2 and conclude about X and Y

in Dt that X 6= Y by the first condition and X × Y ⊆ E(G) by the second condition.
It remains to observe that the width of Parti(D) is equal to the width of D.

6 Conclusions

The main results of the paper are characterisations of clique-width and linear clique-width,
that we obtained in Theorem 3.8, in Proposition 4.1, and in Theorem 4.4. We applied these
results to obtain results that are equivalent to results from the literature. The first statement of
Lemma 4.2 is related to Lemma 2 of [17], the two inequalities of Corollary 4.3 relate to Lemma 1
and Theorem 1 of [17]. The linear clique-width characterisation of Theorem 4.4 relates to results
of [11, 13, 17].

We considered the related characterisation of clique-width by Heule and Szeider in [16]. We
related our clique-width characterisation by partition trees to that by derivations, and we proved
the equivalence of the two characterisations.

We defined a space-efficient representation of partition trees and gave efficient algorithms for
converting expressions, partition trees, and derivations into one another.

As a result, clique-width admits three characterisations of different flavours: by algebraic
terms (expressions), by partition trees, and, very similarly, by derivations. Each of these char-
acterisations provides a different view on the clique-width notion, has particular advantages for
algorithmic applications, and enables to use results from different areas, because they can be
efficiently transferred by efficient algorithms.

References

[1] B. Courcelle. Clique-width and edge contraction. Information Processing Letters, 114:42–
44, 2014.

[2] B. Courcelle and I. Durand. Automata for the verification of monadic second-order graph
properties. Journal of Applied Logic, 10:368–409, 2012.

19

[3] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language
theoretic approach. Encyclopedia of Mathematics and its Application 138, Cambridge Uni-
versity Press, 2012.

[4] B. Courcelle and M. M. Kanté. Graph operations characterizing rank-width. Discrete
Applied Mathematics, 157:627–640, 2009.

[5] B. Courcelle, J. Engelfriet, G. Rozenberg. Handle-rewriting hypergraph grammars. Journal
of Computer and System Sciences, 46:218–270, 1993.

[6] B. Courcelle, J. A. Makowsky, U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems, 33:125–150, 2000.

[7] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101:77–114, 2000.

[8] R. Downey and M. Fellows. Parameterized complexity. Springer, 1999.

[9] M. R. Fellows, F. A. Rosamond, U. Rotics, S. Szeider. Clique-Width is NP-Complete.
SIAM Journal on Discrete Mathematics, 23:909–939, 2009.

[10] J. Flum and M. Grohe. Parametrized complexity theory. Springer, 2006.

[11] F. Gurski. Linear layouts measuring neighbourhoods in graphs. Discrete Mathematics,
306:1637–1650, 2006.

[12] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4:41–59, 2010.

[13] P. Heggernes, D. Meister, C. Papadopoulos. Graphs of linear clique-width at most 3.
Theoretical Computer Science, 412:5466–5486, 2011.

[14] P. Heggernes, D. Meister, C. Papadopoulos. Characterising the linear clique-width of a
class of graphs by forbidden induced subgraphs. Discrete Applied Mathematics, 160:888–
901, 2012.

[15] P. Heggernes, D. Meister, U. Rotics. Computing the clique-width of large path powers in
linear time via a new characterisation of clique-width. Proceedings of CSR 2011, Springer
LNCS, 6651:233–246, 2011.

[16] M. J. H. Heule and S. Szeider. A SAT Approach to Clique-Width. Proceedings of SAT
2013, Springer LNCS, 7962:318–334, 2013.

[17] V. Lozin and D. Rautenbach. The relative clique-width of a graph. Journal of Combinatorial
Theory, Series B, 97:846–858, 2007.

[18] H. Müller and R. Urner. On a disparity between relative cliquewidth and relative NLC-
width. Discrete Applied Mathematics, 158:828–840, 2010.

[19] S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Com-
binatorial Theory, Series B, 96:514–528, 2006.

20

