
Parameterized Aspects of Strong Subgraph Closure∗

Petr A. Golovach† Pinar Heggernes† Athanasios L. Konstantinidis‡

Paloma T. Lima† Charis Papadopoulos‡

Abstract

Motivated by the role of triadic closures in social networks, and the importance of
finding a maximum subgraph avoiding a fixed pattern, we introduce and initiate the
parameterized study of the Strong F -closure problem, where F is a fixed graph.
This is a generalization of Strong Triadic Closure, whereas it is a relaxation of F -
free Edge Deletion. In Strong F -closure, we want to select a maximum number
of edges of the input graph G, and mark them as strong edges, in the following way:
whenever a subset of the strong edges forms a subgraph isomorphic to F , then the
corresponding induced subgraph of G is not isomorphic to F . Hence, the subgraph of G
defined by the strong edges is not necessarily F -free, but whenever it contains a copy of
F , there are additional edges in G to forbid that strong copy of F in G.

We study Strong F -closure from a parameterized perspective with various natural
parameterizations. Our main focus is on the number k of strong edges as the parameter.
We show that the problem is FPT with this parameterization for every fixed graph F ,
whereas it does not admit a polynomial kernel even when F = P3. In fact, this latter
case is equivalent to the Strong Triadic Closure problem, which motivates us to
study this problem on input graphs belonging to well known graph classes. We show
that Strong Triadic Closure does not admit a polynomial kernel even when the
input graph is a split graph, whereas it admits a polynomial kernel when the input
graph is planar, and even d-degenerate. Furthermore, on graphs of maximum degree
at most 4, we show that Strong Triadic Closure is FPT with the above guarantee
parameterization k−µ(G), where µ(G) is the maximum matching size of G. We conclude
with some results on the parameterization of Strong F -closure by the number of edges
of G that are not selected as strong.

1 Introduction

Graph modification problems are at the heart of parameterized algorithms. In particular,
the problem of deleting as few edges as possible from a graph so that the remaining graph
satisfies a given property has been studied extensively from the viewpoint of both classical
and parameterized complexity for the last four decades [10, 13, 26]. For a fixed graph F , a
graph G is said to be F-free if G has no induced subgraph isomorphic to F . The F -Free
Edge Deletion problem asks for the removal of a minimum number of edges from an input
graph G so that the remaining graph is F -free. In this paper, we introduce a relaxation of
this problem, which we call Strong F -closure. Our problem is also a generalization of
the Strong Triadic Closure problem, which asks to select as many edges as possible of

∗A preliminary version of this paper appeared as an extended abstract in the proceedings of SWAT
2018 [16]. This work is supported by Research Council of Norway via project “CLASSIS”.
†Department of Informatics, University of Bergen, Norway. Emails: {petr.golovach, pinar.heggernes,

paloma.lima}@uib.no
‡Department of Mathematics, University of Ioannina, Greece. Emails: skonstan@cc.uoi.gr,

charis@cs.uoi.gr

1

a graph as strong, so that whenever two strong edges uv and vw share a common endpoint
v, the edge uw is also present in the input graph (not necessarily strong). This problem is
well studied in the area of social networks [3, 15], and its classical computational complexity
has been studied recently both on general graphs and on particular graph classes [22, 25].

In the Strong F -closure problem, we have a fixed graph F , and we are given an
input graph G, together with an integer k. The task is to decide whether we can select at
least k edges of G and mark them as strong, in the following way: whenever the subgraph
of G spanned by the strong edges contains an induced subgraph isomorphic to F , then the
corresponding induced subgraph of G on the same vertex subset is not isomorphic to F .
The remaining edges of G that are not selected as strong, will be called weak. Consequently,
whenever a subset S of the strong edges form a copy of F , there must be an additional strong
or weak edge in G with endpoints among the endpoints of edges in S. A formal definition of
the problem is easier to give via spanning subgraphs. If two graphs H and F are isomorphic
then we write H ' F , and if they are not isomorphic then we write H 6' F . Given a graph
G and a fixed graph F , we say that a (not necessarily induced) subgraph H of G satisfies
the F -closure if, for every S ⊆ V (H) with H[S] ' F , we have that G[S] 6' F . In this case,
the edges of H form exactly the set of strong edges of G.

Strong F -closure
Input: A graph G and a nonnegative integer k.
Task: Decide whether G has a spanning subgraph H that satisfies the F -closure,

such that |E(H)| ≥ k.

Based on this definition and the above explanation, the terms “marking an edge as weak
(in G)” and “removing an edge (of G to obtain H)” are equivalent, and we will use them
interchangeably. An induced path on three vertices is denoted by P3. Relating Strong F -
closure to the already mentioned problems, observe that Strong P3-closure is exactly
Strong Triadic Closure. Observe also that a solution for F -free Edge Deletion is
a solution for Strong F -closure, since the removed edges in the first problem can simply
be taken as the weak edges in the second problem. However it is important to note that the
reverse is not always true. For instance, consider the square of a chordless cycle on seven
vertices, denoted by C2

7 (i.e., the graph obtained from C7 by adding edges between vertices
that are in distance two in C7). An optimal solution for the P3-free Edge Deletion
consists of two vertex-disjoint triangles and a singleton vertex spanned by 6 edges. For
the Strong P3-closure, an optimal solution is spanned by the 7 edges of the C7. Such
observations arise from the fact that any edge removal of a P3 in C2

7 results in a new P3 which
needs to be handled for the P3-free Edge Deletion, whereas for the Strong P3-closure
we cannot create new forbidden structure by the removal of edges.

All of the mentioned problems are known to be NP-hard. The parameterized complexity
of F -free Edge Deletion has been studied extensively when parameterized by `, the
number of removed edges. With this parameter, the problem is fixed parameter tractable
(FPT) if F is of constant size [6], whereas it becomes W[1]-hard when parameterized by the
size of F even for ` = 0 [19]. Moreover, there exists a small graph F on seven vertices for
which F -free Edge Deletion does not admit a polynomial kernel [23] when the problem
is parameterized by `. In Table 1 we summarize the parameterized complexity of F -free
Edge Deletion. To our knowledge, Strong Triadic Closure has not been studied with
respect to parameterized complexity before our work.

In this paper, we study the parameterized complexity of Strong F -closure with three
different natural parameters: the number of strong edges, the number of strong edges above
guarantee (maximum matching size), and the number of weak edges.

• In Section 3, we show that Strong F -closure is FPT when parameterized by k =

2

Parameter Restriction
Parameterized

Reference
Complexity

|E(H)|+ |V (F)| |E(F)| ≤ 1 W[1]-hard [19]

|E(G)| − |E(H)| None
FPT [6]

no polynomial kernel [23]

Table 1: Summary of known results: parameterized complexity analysis of F -free Edge
Deletion.

|E(H)| for a fixed F . Moreover, we prove that the problem is FPT even when we
allow the size of F to be a parameter, that is, if we parameterize the problem by
k + |V (F)|, except if F has at most one edge. In the latter case Strong F -closure
is co-W[1]-hard when parameterized by |V (F)| even if k ≤ 1. We also observe that
Strong F -closure parameterized by k + |V (F)| admits a polynomial kernel if F
has a component with at least three vertices and the input graph is restricted to be
d-degenerate.

• In Section 4, we focus on the case F = P3, that is, we investigate the parameterized
complexity of Strong Triadic Closure. We complement the FPT results of the
previous section by proving that Strong Triadic Closure does not admit a poly-
nomial kernel even on split graphs unless NP ⊆ coNP/ poly. It is straightforward to
see that if F has a connected component on at least three vertices, then a matching in
G gives a feasible solution for Strong F -closure. Thus the maximum matching size
µ(G) provides a lower bound for the maximum number of edges of H. Consequently,
parameterization above this lower bound becomes interesting. Motivated by this, we
study Strong F -closure parameterized by |E(H)|−µ(G). It is known that Strong
Triadic Closure can be solved in polynomial time on subcubic graphs, but it is NP-
complete on graphs of maximum degree at most d for every d ≥ 4 [21]. As a first step
in the investigation of the parameterization above lower bound, we show that Strong
Triadic Closure is FPT on graphs of maximum degree at most 4, parameterized by
|E(H)| − µ(G).

• Finally, in Section 5, we consider Strong F -closure parameterized by ` = |E(G)| −
|E(H)|, that is, by the number of weak edges. We show that the problem is FPT and
admits a polynomial generalized kernel if F is a fixed graph. Notice that, contrary to
the parameterization by k+ |V (F)|, we cannot hope for FPT results when the problem
is parameterized by ` + |V (F)|. This is because, when ` = 0, Strong F -closure
is equivalent to asking whether G is F -free, which is equivalent to solving Induced
Subgraph Isomorphism that is well known to be W[1]-hard [13, 19]. We also state
some additional results and open problems. Our findings are summarized in Table 2.

Independently from our work, Grüttemeier and Komusiewicz [18] very recently studied
Strong Triadic Closure and showed that the problem parameterized by |E(H)| = k,
the number of strong edges, is fixed-parameter tractable but has no polynomial kernel unless
NP ⊆ coNP/ poly. Also, they showed that Strong Triadic Closure parameterized by
` = |E(G)| − |E(H)|, the number of weak edges, admits a linear kernel.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[11] for standard graph terminology that is undefined here. Given an input graph G, we

3

Parameter Restriction
Parameterized

Result
Complexity

|E(H)|+ |V (F)|

|E(F)| ≤ 1 co-W[1]-hard Propositions 1, 2

|E(F)| ≥ 2 FPT Theorem 1

F has a component with ≥ 3
polynomial kernel Proposition 3

vertices, G is d-degenerate

|E(H)| F has no isolated vertices FPT Corollary 1

F = P3, G is split no polynomial kernel Theorem 2

|E(H)| − µ(G)
F = P3, ∆(G) ≤ 4 FPT Theorem 3

F = K1,t, t ≥ 3 FPT Theorem 8

|E(G)| − |E(H)| None

FPT Theorem 4

polynomial generalized
Theorem 5

kernel

Table 2: Summary of our results: parameterized complexity analysis of Strong F -closure.

use the convention that n = |V | and m = |E|. A subgraph H of G is a spanning subgraph
of G if V (H) = V (G). For a set of vertices U ⊆ V (G), G[U] denotes the subgraph of G
induced by U , and we write E(U) to denote E(G[U]). For disjoint sets of vertices X and
Y , E(X,Y) = {xy ∈ E(G) | x ∈ X, y ∈ Y }. For a set of vertices X ⊆ V (G), G − X
denotes G[V (G) \ X]. Given v ∈ V (G), we denote by N(v) the neighborhood of v and by
d(v) the degree of v. That is, d(v) = |N(v)|. Two vertices u and v are said to be false twins
if uv /∈ E and N(u) = N(v), where N(u) stands for the neighborhood of u; if uv ∈ E and
N(u) \ {v} = N(v) \ {u} then u and v are called true twins. We denote N [v] = N(v) ∪ {v}
the closed neighborhood of v and write N [U] =

⋃
v∈U N [v] for U ⊆ V (G). For a graph F ,

it is said that G is F -free if G has no induced subgraph isomorphic to F . For a positive
integer d, G is d-degenerate if every subgraph of G has a vertex of degree at most d. The
maximum degree of G is denoted by ∆(G). We denote by G + H the disjoint union of two
graphs G and H. For a positive integer p, pG denotes the disjoint union of p copies of G.
A matching in G is a set of edges having no common endpoint. The maximum matching
number, denoted by µ(G), is the maximum number of edges in any matching of G. We say
that a vertex v is covered by a matching M if v is incident to an edge of M . We denote by
V (M) the set of vertices covered by a matching M . An induced matching, denoted by qK2,
is a matching M of q edges such that G[V (M)] is isomorphic to qK2.

Let us give a couple of observations on the nature of our problem. An F -graph of a
subgraph H of G is an induced subgraph H[S] ' F such that G[S] ' F . Clearly, if H is
a solution for Strong F -closure on G, then there is no F -graph in H, even though H
might have induced subgraphs isomorphic to F . For F -free Edge Deletion, note that
the removal of an edge that belongs to a forbidden subgraph might generate a new forbidden
subgraph. However, for Strong F -closure problem, it is not difficult to see that the
removal of an edge that belongs to an F -graph cannot create a new critical subgraph.

Observation 1. Let G be a graph, and let H and H ′ be spanning subgraphs of G such that
E(H ′) ⊆ E(H). If H satisfies the F -closure for some F , then H ′ satisfies the F -closure.

In particular, Observation 1 immediately implies that if an instance of Strong F -
closure has a solution, it has a solution with exactly k edges.

We conclude this section with some definitions from the parameterized complexity theory
and kernelization; for further details we refer to [10, 13].

Parameterized complexity is a two dimensional framework for studying the computational

4

complexity of a problem. One dimension is the input size n and the other is a parameter k
associated with the input. A problem with input size n and parameter k is fixed parameter
tractable (FPT), if it can be solved in time f(k) ·nO(1) for some computable function f . Re-
spectively, the complexity class FPT is composed by all fixed parameter tractable problems.
Parameterized complexity also provides tools to refute the FPT algorithms under plausible
complexity-theoretic assumptions. The main assumptions is the conjecture that FPT 6= W [1]
for the parameterized complexity class W [1]. The basic way to show that it is unlikely that
a parameterized problem admit an FPT algorithm is to show that it is W [1]-hard using a
parameterized reduction from a known W [1]-hard problem. As it is standard for decision
problems, a parameterized problem is co-W[1]-hard if it is W[1]-hard to decide whether the
problem has a no-answer.

A generalized kernelization [4] (or bi-kernelization [2]) for a parameterized problem P
is a polynomial algorithm that maps each instance (x, k) of P with the input x and the
parameter k into to an instance (x′, k′) of some parameterized problem Q such that

(i) (x, k) is a yes-instance of P if and only if (x′, k′) is a yes-instance of Q,

(ii) the size of x′ is bounded by f(k) for a computable function f , and

(iii) k′ is bounded by g(k) for a computable function g.

The output (x′, k′) is called a generalized kernel of the considered problem. The function f
defines the size of a generalized kernel and the generalized kernel has polynomial size if the
function f is polynomial. If Q = P , then generalized kernel is called kernel. Note that if Q is
in NP and P is NP-complete, then the existence of a polynomial generalized kernel implies
that P has a polynomial kernel because there exists a polynomial reduction of Q to P . A
polynomial compression of a parameterized problem P into a (nonparameterized) problem
Q is a polynomial algorithm that takes as an input an instance (x, k) of P and returns an
instance x′ of Q such that

(i) (x, k) is a yes-instance of P if and only if x′ is a yes-instance of Q,

(ii) the size of x′ is bounded by p(k) for a polynomial p.

Clearly, the existence of a (generalized) polynomial kernel implies that the problem admit a
polynomial compression but not the other way around. It is well-known that every decidable
parameterized problem is FPT if and only if it admits a kernel, but it is unlikely that every
problem in FPT has a polynomial kernel or polynomial compression. In particular, the now
standard composition and cross-composition techniques [4, 5] allow to show that certain
problems have no polynomial compressions unless NP ⊆ coNP/poly.

It is common to build an FPT algorithm or a kernel for a parameterized problem by
constructing a series of reduction rules, that is, polynomial algorithms that either solve the
problem or produce instances of the problem that, typically, have lesser sizes or lesser values
of the parameter. Respectively, it is said that a rule is safe or sound if it either correctly
solves the problem or constructs an equivalent instance.

3 Parameterized complexity of Strong F-closure

In this section we give a series of lemmata, which together lead to the conclusion that Strong
F -closure is FPT when parameterized by k = |E(H)|. Observe that in our definition of
the problem, F is a fixed graph of constant size. However, the results of this section allow
us to also take the size of F as a parameter, making the results more general. We start by
making some observations that will rule out some simple types of graphs as F .

5

Observation 2. Let p be a positive integer. A graph G has a spanning subgraph H satisfying
the pK1-closure if and only if G is pK1-free, and if G is pK1-free, then every spanning
subgraph H of G satisfies the pK1-closure.

Recall that the Independent Set problem asks, given a graph G and a positive integer
k, whether G has an independent set of size at least k. By combining Observation 2 and the
well known result that Independent Set is W[1]-hard when parameterized by the size of
the independent set [13], we obtain the following:

Proposition 1. For a positive integer p, Strong pK1-closure can be solved in time nO(p),
and it is co-W[1]-hard for k ≥ 0 when parameterized by p.

Using Proposition 1, we assume throughout the remaining parts of the paper that every
considered graph F has at least one edge. We have another special case F = pK1 +K2.

Proposition 2. For a nonnegative integer p, Strong (pK1 + K2)-closure can be solved
in time nO(p), and it is co-W[1]-hard for k ≥ 1 when parameterized by p.

Proof. Let F = pK1 +K2. If p = 0, then (G, k) is a yes-instance of Strong F -closure if
and only if k = 0. Assume that p ≥ 1. Let H be a spanning subgraph of G. Notice that H
satisfies the F -closure if and only if for every edge uv of H, G−N [{u, v}] has no independent
set of size p.

This observation implies that to find a spanning subgraph H of G satisfying the F -
closure, we can use the following procedure: for every edge uv ∈ E(G), we check whether
G−N [{u, v}] has an independent set with p vertices, and then if this holds, we discard uv,
and we include uv in the set of edges of H otherwise. Clearly, it can be done in time nO(p).

To show hardness, we reduce Independent Set. For simplicity, we prove the claim for
k = 1. Let (G, p) be an instance of Independent Set. Let Q be the graph obtained from
two copies of the star K1,p by making their central vertices u and v adjacent. We define
G′ = G+Q. We claim that G′ has a spanning subgraph H satisfying the F -closure that has
exactly one edge if and only if G has no independent set with p vertices. Suppose that G has
no independent set with p vertices. Then the spanning subgraph H of G′ with E(H) = {uv}
satisfies the F -closure. Assume now that H is a spanning subgraph of G′ with E(H) = {xy}.
We show that xy = uv. Suppose this is not the case. If u (resp. v) is not an endpoint of xy,
then G′−N [{x, y}] contains an independent set of size at least p, namely the one formed by
the p vertices of degree one adjacent to u (resp. v) in G′. This contradicts the property that
H satisfies the F -closure. Hence, xy = uv. Then G = G′ − N [{u, v}] has no independent
set with p vertices. By Observation 1, we have that (G, p) is a no-instance of Independent
Set if and only if (G′, k) is a yes-instance of Strong F -closure.

From now on we assume that F 6= pK1 and F 6= pK1 + K2. We show that Strong
F -closure is FPT when parameterized by k and |V (F)| in this case. We will consider
separately the case when F has a connected component with at least 3 vertices and the case
F = pK1 + qK2 for p ≥ 0 and q ≥ 2.

Lemma 1. Let F be a graph that has a connected component with at least 3 vertices. Then
Strong F -closure can be solved in time 2O(k2)(|V (F)|+ k)O(k) + nO(1).

Proof. We show the claim by proving that the problem has a kernel with at most 22k−2(|V (F)|+
k)+2k−2 vertices. Let (G, k) be an instance of Strong F -closure. We recursively apply
the following reduction rule in G:

Rule 1.1. If there are at least |V (F)|+ k + 1 false twins in G, then remove one of them.

6

To show that the rule is sound, let v1, . . . , vp be false twins of G for p = |V (F)|+ k + 1
and assume that G′ is obtained from G by deleting vp. We claim that (G, k) is a yes-instance
of Strong F -closure if and only if (G′, k) is a yes-instance.

Let (G, k) be a yes-instance. By Observation 1, there is a solution H for (G, k) such that
|E(H)| = k. Since |E(H)| = k, there is i ∈ {1, . . . , p} such that vi is an isolated vertex of H.
Since v1, . . . , vp are false twins we can assume without loss of generality that i = p. Then
H ′ = H − vp is a solution for (G′, k), that is, this is a yes-instance. Assume that (G′, k) is
a yes-instance of Strong F -closure. Let H ′ be a solution for the instance with k edges.
Denote by H the spanning subgraph of G with E(H) = E(H ′). We show that H satisfies
the F -closure with respect to G. To obtain a contradiction, assume that there is a set of
vertices S of G such that H[S] ' F and G[S] ' F . Since H ′ satisfies the F -closure with
respect to G, S * V (H ′). Thus, vp ∈ S. Note that vp is an isolated vertex of H. Because
p = |V (F)| + k + 1, there is i ∈ {1, . . . , p − 1} such that vi is an isolated vertex of H and
vi /∈ S. Let S′ = (S \ {vp}) ∪ {vi}. Since vi and vp are false twins, H[S′] = H ′[S′] ' F
and G[S′] ' F ; a contradiction. Therefore, we conclude that H satisfies the F -closure with
respect to G, that is, H is a solution for (G, k).

It is straightforward to see that the rule can be applied in polynomial time. To simplify
notations, assume that (G, k) is the instance of Strong F -closure obtained by the ex-
haustive application of Rule 1.1. We greedily find an inclusion maximal matching M in G.
Notice that the spanning subgraph H of G with E(H) = M satisfies the F -closure because
every component of H has at most two vertices and by the assumption of the lemma F has
a component with at least 3 vertices. Therefore, if |M | ≥ k, we have that H is a solution for
the instance. Respectively, we return H and stop.

Assume that |M | ≤ k − 1. Let X be the set of end-vertices of the edges of M . Clearly,
|X| ≤ 2k − 2 and X is a vertex cover of G. Let Y = V (G) \ X. We have that Y is
an independent set, since M is an inclusion-wise maximal matching. Every vertex in Y
has its neighbors in X. Hence, there are at most 2|X| vertices of Y with pairwise distinct
neighborhoods. Hence, the vertices of Y can be partitioned into at most 2|X| classes of false
twins. After applying Rule 1.1, each class of false twins has at most |V (F)|+ k vertices. It
follows that |Y | ≤ 2|X|(|V (F)|+ k) and

|V (G)| = |X|+ |Y | ≤ |X|+ 2|X|(|V (F)|+ k) ≤ (2k − 2) + 22k−2(|V (F)|+ k).

Now we can find a solution for (G, k) by brute force checking all subsets of edges of size
k by Observation 1. This can be done it time |V (G)|O(k). Hence, the total running time is
2O(k2)(|V (F)|+ k)O(k) + nO(1).

Now we consider the case F = pK1 + qK2 for p ≥ 0 and q ≥ 2. First, we explain how to
solve Strong qK2-closure for q ≥ 2. We use the random separation technique proposed
by Cai, Chen and Chan [8] (see also [10]). To avoid dealing with randomized algorithms and
subsequent standard derandomization we use the following lemma stated in [9].

Lemma 2 ([9]). Given a set U of size n and integers 0 ≤ a, b ≤ n, one can construct in
time 2O(min{a,b} log(a+b)) · n log n a family S of at most 2O(min{a,b} log(a+b)) · log n subsets of U
such that the following holds: for any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B| ≤ b, there
exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

Lemma 3. For q ≥ 2, Strong qK2-closure can be solved in time 2O(k log k) · nO(1).

Proof. Let (G, k) be an instance of Strong qK2-closure. If k < q, then every spanning
subgraph H of G with k edges satisfies the F -closure, that is, (G, k) is a yes-instance of
Strong F -closure if k ≤ |E(G)|. Assume from now that q ≤ k.

7

Suppose that G has a vertex v of degree at least k. Let X be the set of edges of G
incident to v and consider the spanning subgraph H of G with E(H) = X. Since F = qK2

and q ≥ 2, H satisfies the F -closure. Hence, H is a solution for (G, k). We assume that this
is not the case and ∆(G) ≤ k − 1.

Suppose that (G, k) is a yes-instance. Then by Observation 1, there is a solution H with
exactly k edges. Let A = E(H) and denote by X the set of end-vertices of the edges of
A. Denote by B the set of edges of E(G) \ A that have at least one end-vertex in N [X].
Clearly, A∩B = ∅. We have that |A| = k and because the maximum degree of G is at most
k − 1, |B| ≤ 2k(k − 1)(k − 2). Applying Lemma 2 for the universe U = E(G), a = k and
b = 2k(k−1)(k−2), we construct in time 2O(k log k) ·nO(1) a family S of at most 2O(k log k) ·log n
subsets of E(G) such that there exists a set S ∈ S with A ⊆ S and B ∩ S = ∅. For every
S ∈ S, we find (if it exists) a spanning subgraph H of G with k edges such that (i) E(H) ⊆ S
and (ii) for every e1, e2 ∈ S that are adjacent or have adjacent end-vertices, it holds that
either e1, e2 ∈ E(H) or e1, e2 /∈ E(H). Property (ii) ensures that the set of edges of S \E(H)
do not belong to B. By Lemma 2, we have that if (G, k) is a yes-instance of Strong F -
closure, then it has a solution satisfying (i) and (ii). Hence, if we find a solution for some
S ∈ S, we return it and stop and, otherwise, if there is no solution satisfying (i) and (ii) for
some S ∈ S, we conclude that (G, k) is a no-instance.

Assume that S ∈ S is given. We describe the algorithm for finding a solution H with k
edges satisfying (i) and (ii). Let R be the set of end-vertices of the edges of S. Consider the
graph G[R] and denote by C1, . . . , Cr its components. Let Ai = E(Ci)∩S for i ∈ {1, . . . , r}.

Observe that if H is a solution with k edges satisfying (i) and (ii), then for each i ∈
{1, . . . , r}, either Ai ⊆ E(H) or Ai ∩E(H) = ∅. It means that we are looking for a solution
H such that E(H) is union of some sets Ai, that is, E(H) = ∪i∈IAi for I ⊆ {1, . . . , r}. Let
ci = |Ai| for i ∈ {1, . . . , r}. Clearly, we should have that

∑
i∈I ci = k. In particular, it means

that if |Ai| > k, then the edges of Ai are not in any solution. Therefore, we discard such sets
and assume from now that |Ai| ≤ k for i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, denote by wi the
maximum number of edges in Ai that form an induced matching in Ci. Since each |Ai| ≤ k,
the values of wi can be computed in time 2k · nO(1) by brute force. Observe that for distinct
i, j ∈ {1, . . . , r}, the vertices of Ci and Cj are at distance at least two in G and, therefore,
the end-vertices of edges of Ai and Aj are not adjacent. It follows, that the problem of
finding a solution H is equivalent to the following problem: find I ⊆ {1, . . . , r} such that∑

i∈I ci = k and
∑

i∈I wi ≤ q. It is easy to see that we obtain an instance of a variant of
the well known Knapsack problem (see, e.g., [20]); the only difference is that we demand∑

i∈I ci = k instead of
∑

i∈I ci ≥ k as in the standard version. This problem can be solved
by the standard dynamic programming algorithm (again see, e.g., [20]) in time O(kn).

Since the family S is constructed in time 2O(k log k) ·nO(1) and we consider 2O(k log k) · log n
sets S, we obtain that the total running time is 2O(k log k) · nO(1).

We use Lemma 3 to solve Strong (pK1 + qK2)-closure.

Lemma 4. For p ≥ 0 and q ≥ 2, Strong (pK1 + qK2)-closure can be solved in time
2O((k+p) log(k+p)) · nO(1).

Proof. Let F = pK1 + qK2. If p = 0, we can apply Lemma 3 directly. Assume that p ≥ 1.
Let (G, k) be an instance of Strong F -closure. If k < q, then every spanning subgraph
H of G with k edges satisfies the F -closure, that is, (G, k) is a yes-instance of Strong
F -closure if k ≤ |E(G)|. Assume from now that q ≤ k.

Suppose that G has a vertex v of degree at least k. Then we argue in exactly the same
way as in the proof of Lemma 3. We consider the set of edges X incident to v and define H
be the spanning subgraph of G with E(H) = X. Since q ≥ 2, H satisfies the F -closure and

8

we have that H is a solution for (G, k). We assume from now that this is not the case and
∆(G) ≤ k − 1.

Suppose that |V (G)| < 2k(k−1)+pk. In this case we solve Strong F -closure by brute
force trying all possible subsets X of k edges and checking whether the spanning subgraph
H with E(H) = X is a solution. By Observation 1, it is sufficient to solve the problem. To
check whether H is a solution, we have to verify whether H satisfies the F -closure. We do
it by brute force in time nO(|V (F)|). Since n ≤ 2k(k− 1) + pk and |V (F)| = p+ 2q ≤ p+ 2k,
this can be done in time 2O((k+p) log(k+p)). Since the number of sets X is 2O((k+p) log(k+p)),
the total running time is 2O((k+p) log(k+p)).

Assume now that |V (G)| ≥ 2k(k − 1) + pk.
We claim that in this case a spanning subgraph H of G satisfies the pK1 + qK2-closure

if and only if H satisfies the qK2-closure. It is straightforward to see that if H satisfies the
qK2-closure, then H satisfies the pK1 + qK2-closure. Suppose that H does not satisfy the
qK2-closure. Then there is S ⊆ V (G) of size 2q such that G[S] = H[S] is a matching with
q edges. Let X = V (G) \ N [S]. Since ∆(G) ≤ k − 1, |N [S]| ≤ 2k(k − 1) and, therefore,
|X| ≥ pk. It implies that G[X] has an independent set S′ of size at least p because the
maximum degree is bounded by k − 1. We have that G[S ∪ S′] = H[S ∪ S′] ' pK1 + qK2.
It means that H does not satisfy the pK1 + qK2-closure.

By the proved claim, we have to solve Strong qK2-closure and this can be done in
time 2O(k log k) · nO(1) by Lemma 3.

Combining Lemmata 1, 3, and 4, we obtain the following theorem.

Theorem 1. If F 6= pK1 for p ≥ 1 and F 6= pK1 +K2 for p ≥ 0, then Strong F -closure
is FPT when parameterized by |V (F)|+ k.

Notice that if |E(F)| > k, then (G, k) is a yes-instance of Strong F -closure. This
immediately implies the following corollary.

Corollary 1. If F has no isolated vertices, then Strong F -closure is FPT when param-
eterized by k, even when F is given as a part of the input.

We conclude this section with a kernel result. It can be observed that if the input graph
G is restricted to be a graph from a sparse graph class and is closed under taking subgraphs,
then the kernel constructed in Lemma 1 becomes polynomial in some cases. We demonstrate
this for d-degenerate graphs 1.

Proposition 3. If F has a connected component with at least 3 vertices, then Strong
F -closure has a kernel with kO(d)d(|V (F)|+ k) vertices on d-degenerate graphs.

Proof. Let (G, k) be an instance of Strong F -closure and G is d-degenerate. First,
we exhaustively apply Rule 1.1. To simplify notations, assume that (G, k) is the obtained
instance. Then we find an inclusion maximal matching M in G. If |M | ≥ k, we have that H
is a solution for the instance. Respectively, we return H and stop. Assume that this is not
the case, that is, |M | ≤ k − 1. Let X be the set of end-vertices of the edges of M . Clearly,
|X| ≤ 2k − 2 and X is a vertex cover of G. Let Y = V (G) \ X. We have that Y is an
independent set.

Observe that if Y contains at least
(|X|
d+1

)
d + 1 vertices of degree at least d + 1, then G

contains the complete bipartite graph Kd+1,d+1 as a subgraph contradicting d-degeneracy.
We conclude that Y contains d ·kO(d) vertices of degree at least d+1. The number of vertices
of degree at most d with pairwise distinct neighborhoods is kO(d). This immediately implies
that G has kO(d)d(|V (F)|+ k) vertices.

1NP-completeness result for F = P3 restricted to planar graphs (and, thus, 5-degenerate graphs) is given
in Section 5.

9

In particular, we have a polynomial kernel when F = P3. Similar results can be obtained
for some classes of dense graphs. For example, if G is dK1-free, then V (G) \X has at most
d− 1 vertices and we obtain a kernel with 2k + d− 3 vertices.

4 Parameterized complexity of Strong Triadic Closure

In this section we study the parameterized complexity of Strong P3-closure, which is
more famously known as Strong Triadic Closure.

Note that Strong Triadic Closure is FPT and admits an algorithm with running
time 2O(k

2)·nO(1) by Lemma 1. We complement this result by showing that Strong Triadic
Closure does not admit a polynomial kernel, even when the input graph is a split graph.
A graph is a split graph if its vertex set can be partitioned into an independent set and a
clique. Strong Triadic Closure is known to be NP-hard on split graphs [22].

Theorem 2. Strong Triadic Closure has no polynomial compression unless NP ⊆
coNP/ poly, even when the input graph is a split graph.

Proof. The reduction comes from the Set Packing problem: given a universe U of t elements
and subsets B1, . . . , Bp of U decide whether there are at least k subsets which are pairwise
disjoint. Set Packing (also known as Rank Disjoint Set problem), parameterized by
|U|, does not admit a polynomial compression unless NP ⊆ coNP/ poly [12]. Clearly, it
can be assumed that k ≤ t as, otherwise, we have a trivial no-instance. Given an instance
(U , B1, . . . , Bp, k) for the Set Packing, we construct a split graph G with a clique U ∪ Y
and an independent set W ∪X as follows:

• The vertices of U correspond to the elements of U .

• For every Bi there is a vertex wi ∈W that is adjacent to all the vertices of (U ∪Y)\Bi.

• X and Y contain additional 2t vertices with X = {x1, . . . , xt} and Y = {y1, . . . , yt}
such that yi is adjacent to all the vertices of (W ∪X) \ {xi} and xi is adjacent to all
the vertices of (U ∪ Y) \ {yi}.

Notice that the clique of G contains 2t vertices. We will show that there are at least
k pairwise disjoint sets in {B1, . . . , Bp} if and only if there is a solution for Strong P3-
closure on G with at least k′ = |E(U ∪ Y)|+ dk/2e+ bt/2c edges. Since k ≤ t = |U |, this
means that k′ = O(t2) and, therefore, the existence of a polynomial compression for Strong
Triadic Closure would imply the same result for Set Packing parameterized by t.

Assume that B′ is a family of k pairwise disjoint sets of B1, . . . , Bp. For every B′i ∈ B′ we
choose three vertices wi, yi, xi from W , Y , and X, respectively, such that xi is non-adjacent
to yi with the following strong edges: wi is strongly adjacent to yi and xi is strongly adjacent
to the vertices of B′i in U . We also make weak the edges inside the clique between the vertices
of B′i and yi. All other edges incident to wi and xi are weak. Let W ′, Y ′, X ′ be the set of
vertices that are chosen from the family B′ according to the previous description. Every
vertex of W \W ′ is not incident to a strong edge and, thus, it is isolated in H. For the t− k
vertices of Y \ Y ′ we choose a maximum matching of b t−k2 c edges. For each matched pair
yj , yj′ we make the following edges strong: xjyj′ and xj′yj where xj and xj′ are non-adjacent
to yj and yj′ , respectively. Moreover each edge yjyj′ of the clique is weak and all other edges
incident to xj and xj′ are weak. The rest of the edges inside the clique U ∪ Y are strong.
Figure 1 illustrates such a labeling on the edges of G.

Let us now show that the described subgraph H satisfies the P3-closure with the claimed
number of strong edges. Observe that if there is a P3-graph in H then it must contain a

10

W

U

Y

X

B1 B2 B3

Figure 1: Illustrating the split graph G given in the construction in the proof of Theorem 2,
where U∪Y is a clique and W ∪X is an independent set. Given an instance (U,B1, B2, B3, 2)
for the Set Packing, the labeled edges correspond to a solution for Strong P3-closure
on G. To keep the figure clean, we only draw the strong edges between the independent set
W ∪X and the clique U ∪ Y ; the dashed edges of the clique U ∪ Y correspond to its weak
edges. Notice that the dashed edges span a union of star graphs.

vertex of the independent set incident to a strong edge. Also notice that no vertex of the
clique U ∪ Y is strongly adjacent to more than one vertex of the independent set W ∪ X.
By construction for each B′i ∈ B′ the vertices wi, xi of the independent set are incident to a
strong edge. The vertices of the clique that are non-adjacent to wi constitute B′i, and xi is
non-adjacent only to vertex yi. Since all edges of E(B′i, {yi}) are weak, both vertices wi and
xi cannot induce a P3-graph. The rest of the vertices of the independent set that are incident
to at least one strong edge belong to X \ X ′. Every vertex xj of X \ X ′ is adjacent to all
vertices of (U ∪Y) \ {yj}. For the strong edge xjyj′ there is a weak edge yjyj′ implying that
xj does not participate in any P3-graph of H. Thus for any vertex v of the independent set
that is strongly adjacent to a vertex v′ of the clique there are weak edges between v′ and the
non-neighbors of v in the clique. Consequently there is no P3-graph in H. For the number
of edges in H notice that for every weak edge inside the clique U ∪ Y there is a unique
matched strong edge incident to a vertex of X. Furthermore every vertex of W ′ is incident

to an unmatched strong edge and each of the b |X\X
′|

2 c vertices is incident to an additional

unmatched strong edge. Hence |E(H)| = |E(U ∪ Y)| + k + b t−k2 c, which gives the claimed
bound k′.

For the opposite direction, assume that H is a subgraph of G that satisfies the P3-closure
with at least k′ edges. For a vertex v ∈ W ∪ X, let S(v) be the strong neighbors of v in
H and let B(v) be the non-neighbors of v in U ∪ Y . Our task is to show that for any two
vertices u, v of W ∪X with non-empty sets S(u), S(v), we have B(u)∩B(v) = ∅. Since there
is no P3-graph in H, it is clear that all edges of E(S(v), B(v)) are weak. Also observe that
for any two vertices u, v ∈W ∪X, S(u) ∩ S(v) = ∅.

A spanning subgraph H of G that satisfies the P3-closure is called nice solution if for any
weak edge uv of the clique U ∪ Y the following property holds:

(W1) there are two vertices u′, v′ in the independent set W ∪X such that u ∈ S(u′) ∩B(v′)
and v ∈ S(v′) ∩B(u′).

We first prove that every solution can be transformed into an equivalent nice solution.

Claim 2.1. For any spanning subgraph H of G that satisfies the P3-closure with at least k′

edges, there is a nice solution H ′ with at least k′ edges.

11

Proof: We assume that H is not a nice solution. This means that there is a weak edge uv
with u, v ∈ U ∪Y that does not admit property (W1). We will show that we can safely make
the edge uv strong and maintain the same number of strong edges. If u, v /∈ S(x) for every
vertex x of W ∪X then we can make the edge uv strong without violating the P3-closure.
Thus there is at least one vertex u′ that is strongly adjacent to u so that u ∈ S(u′). Moreover
if v ∈ S(u′) then both u and v have no other strong neighbor in the independent set which
means that we can safely make the edge uv strong. This implies that v /∈ S(u′). Now assume
that v /∈ B(u′), meaning that v is a neighbor of u′ in G but not a neighbor of u′ in H.
Observe that v has at most one strong neighbor in the independent set. If there is such a
strong neighbor v′ of v in W ∪X then we make vv′ weak and uv strong. Such a replacement
is safe, since u has exactly one strong neighbor u′ in W ∪X and all other strong neighbors
of u or v belong to the clique. Hence v ∈ B(u′).

Suppose next that v has no strong neighbor in the independent set. Then we replace the
strong edge u′u by the edge uv; such a replacement is safe since v has no strong neighbors in
the independent set and u′ is the only strong neighbor of u in the independent set. Thus there
is a strong neighbor v′ of v such that v′ ∈W ∪X. Summarizing, there are u′, v′ ∈W ∪X such
that u ∈ S(u′), v ∈ S(v′), v ∈ B(u′), and by symmetry for v′ we get u ∈ B(v′). Therefore
u ∈ S(u′) ∩B(v′) and v ∈ S(v′) ∩B(u′). y

In what follows we assume that H is a nice solution. We next consider the vertices of X
from the independent set.

Claim 2.2. Let H be a nice solution in which no vertex of W is incident to a strong edge.
Then |E(H)| ≤ |E(U ∪ Y)|+ bt/2c.

Proof: We first show that for every vertex xi of X, S(xi) contains at most one vertex. Recall
that B(xi) contains exactly one vertex. Assume for contradiction that S(xi) contains at least
two vertices. Let u, v ∈ S(xi) and let B(xi) = z. By the P3-closure, both edges uz and vz of
the clique must be weak. Then by property (W1) and Claim 2.1, there is a vertex xj ∈ X
such that z ∈ S(xj) and {u, v} ⊆ B(xj). This however is not possible since by construction
we know that B(xj) contains exactly one vertex. Thus |S(xi)| ≤ 1 for every vertex xi ∈ X.

Let EW be the set of weak edges that have both their endpoints in the clique. If there
are two edges of EW incident to the same vertex u then by property (W1) and Claim 2.1
the unique vertex u′ ∈ X that is strongly adjacent to u has two non-adjacent vertices in
the clique. Since every vertex of X is non-adjacent to exactly one vertex, there are no two
edges of EW incident to the same vertex. This means that the edges of EW form a matching
in E(U ∪ Y). Moreover property (W1) and the fact that H is nice solution, imply that for
every edge of EW there are exactly two strong edges between the vertices of the independent
set and the clique. Thus EW ⊆ E(Y) and |EW | ≤ b t2c, since |Y | = t. For the same reason,
also observe that |S(X)| = 2|EW | where S(X) are the strong edges with one endpoint in X.
Therefore E(H) = (E(U ∪ Y) \ EW) ∪ S(X) which implies |E(H)| ≤ |E(U ∪ Y)|+ b t2c. y

Thus by Claim 2.2 and the fact that a nice solution H contains k′ > |E(U ∪ Y)|+ bt/2c
edges, we know that some vertices of W are incident to strong edges in H. We next show that
these type of vertices of W must have disjoint non-neighborhood in G. To do so, we consider
the weak components of E(H) in the clique. A weak component is a connected component of
the clique spanned by the weak edges, that is, by the edges of E(G)− E(H).

Let Cw be a weak component with n(Cw) its number of vertices and m(Cw) its number
of weak edges. Denote by ES(Cw) the set of strong edges between Cw and W ∪ X. By
property (W1) and Claim 2.1, ES(Cw) is non-empty. Notice that every vertex of Cw has
exactly one strong neighbor in the independent set, since H satisfies the P3-closure. This

12

means that |ES(Cw)| = n(Cw). Then the number of edges in H can be described as follows:

|E(H)| = |E(U ∪ Y)|+
∑
Cw

(n(Cw)−m(Cw)) . (1)

We say that a nice solution H is a nice sparse solution if every weak component of H is a
tree.

Claim 2.3. For every nice solution H, there is a nice sparse solution H ′ such that |E(H)| =
|E(H ′)|.

Proof: Consider a weak component Cw of H. If we make strong all edges among the vertices
of Cw and remove the edges of ES(Cw) from H then the resulting graph H ′ satisfies the
P3-closure. Thus if m(Cw) ≥ n(Cw) then we can safely ignore such a component in the sum
of |E(H)| in Equation 1 by replacing all its weak edges by the strong edges of ES(Cw). This
means that m(Cw) = n(Cw)− 1 because the weak edges of Cw span a connected component.
Therefore every weak component Cw is a tree in H ′. y

In fact we will prove that there is a nice solution in which every weak component is a tree
of height one (star graph). Before that, let us first show the following property with respect
to the nested non-neighborhood of vertices of W ∪X. For a vertex v ∈W ∪X, observe that
all edges between S(v) and B(v) are weak. Thus all vertices of S(v) belong to the same weak
component of H.

We say that a nice sparse solution H is nice disjoint solution if for any vi, vj ∈ W ∪X
with non-empty S(vi) and S(vj), we have B(vi) 6⊆ B(vj) and B(vj) 6⊆ B(vi).

Claim 2.4. For every nice sparse solution H, there is a nice disjoint solution H ′ such that
|E(H)| = |E(H ′)|.

Proof: By the P3-closure of H, we know that no vertex of the clique has more than one
strong neighbor in the independent set, which implies S(vi) ∩ S(vj) = ∅. Assume that there
are two vertices vi, vj in W ∪ X such that B(vi) ⊆ B(vj). This means that the vertices of
S(vi) ∪ S(vj) belong to the same weak component Cw. We show that there is an optimal
solution H ′ for which S(vj) = ∅ and |E(H ′)| = |E(H)|. There is no weak edge with the
endpoints in S(vi) and S(vj), respectively, since Cw is a tree. Thus all edges between the
vertices of S(vi) and S(vj) are strong. This means that vi is adjacent to every vertex of
S(vj). We construct H ′ by replacing all strong edges incident to vj by strong edges incident
to vi. Remove all strong edges incident to vj and let S(vi)∪S(vj) be the strong neighbors of
vi in H ′. Notice that |E(H ′)| = |E(H)|. Since we only added strong edges incident to vi and
B(vi) ⊆ B(vj), all edges between B(vi) and S(vi)∪S(vj) are weak and, thus, H ′ satisfies the
P3-closure. Therefore applying the same replacement for every pair of vertices with nested
non-neighborhood, results in an optimal solution as desired. y

Claim 2.5. Every weak component of a nice disjoint solution H is a star graph.

Proof. Let u1, u2, . . . , ur be a path of a weak component Cw of H where u1 is a leaf vertex
of Cw. Since u1u2 is a weak edge, property (W1) implies that there is a vertex vi in the
independent set that is strongly adjacent to u1 such that B(vi) = {u2}. If Cw is not a star
then r ≥ 4. For r ≥ 4, the weak edge u3u4 implies that there is a vertex vj in the independent
set that is strongly adjacent to u3 such that {u2, u4} ⊆ B(vj). Then we reach a contradiction
since B(vi) ⊂ B(vj) which is not possible by the definition of H. Therefore we have r ≤ 3,
which implies that Cw is a tree of height one.

Claim 2.6. For any two vertices vi, vj ∈W ∪X of a nice disjoint solution H with non-empty
S(vi) and S(vj), we have B(vi) ∩B(vj) = ∅.

13

Proof: Recall that S(vi) ∩ S(vj) = ∅ and notice that all edges of E(S(vi), B(vi)) and
E(S(vj), B(vj)) are weak. If the vertices of S(vi) belong to a different weak component
than the vertices of S(vj) then B(vi) and B(vj) are disjoint. Suppose that the vertices of
S(vi) and S(vj) belong to the same weak component Cw. By Claim 2.5, Cw is a star graph.
Let u be the non-leaf vertex of the star Cw. If both vi and vj are strongly adjacent to
leaf vertices of Cw, then B(vi) = B(vj) = {u}. Thus by the definition of H, vi is strongly
adjacent to u so that B(vi) = V (Cw) \ {u} and vj is strongly adjacent to all leaf vertices of
Cw so that B(vj) = {u}. Consequently B(vi) and B(vj) are disjoint sets. y

Claim 2.7. Let H be a nice disjoint solution. Then, the following hold:

(i) The number of weak components in H is at least dk/2e+ bt/2c.

(ii) Every vertex of W ∪X has strong neighbors in at most one weak component of H.

(iii) For every weak component Cw of H, there are exactly two vertices of W ∪X that have
strong neighbors in Cw.

Proof: Let Cw be a weak component of H. Since H is a nice disjoint solution, Cw is a tree
which means m(Cw) = n(Cw)− 1. From Equation 1 we get |E(H ′)| = |E(U ∪Y)|+ c, where
c is the number of weak components in H ′. Thus we have c = dk/2e+ bt/2c.

For (ii), let v be a vertex of W ∪X that has strong neighbors in a weak component Cw.
Property (W1) implies that B(v) ∩ Cw 6= ∅. This means that for any vertex v′ ∈ S(v) all
edges between v′ and B(v) are weak from the P3-closure. Thus we have S(v) ⊂ V (Cw).

For a weak component Cw, we know that there are at least two vertices v1, v2 of W ∪X
that have strong neighbors in Cw by property (W1). By Claim 2.5, Cw is a star graph. Let u
be the non-leaf vertex of Cw. If u /∈ S(v1)∪S(v2) then u ∈ B(v1)∩B(v2) which is not possible
by Claim 2.6. Without loss of generality assume that u ∈ B(v1). Then, by property (W1) we
have u ∈ S(v2). Recall that S(v)∩S(v′) = ∅ for any two vertices v, v′ ∈W ∪X. Assume that
there is a vertex v ∈ (W ∪X) \ {v1, v2} that is strongly adjacent to Cw. Then u /∈ S(v) and
S(v) contains a non-leaf vertex of Cw. Thus we reach a contradiction to Claim 2.6 because
u ∈ B(v) by property (W1) and u ∈ B(v1). Therefore the third statement follows. y

Now we are equipped with our necessary tools to show our claimed result. Given a
solution H of G with at least k′ edges, Claims 2.1, 2.3, and 2.4 imply that there is a nice
disjoint solution H ′ with |E(H ′)| = k′. By Claim 2.7 (i) there are at least dk/2e + bt/2c
weak components in H ′. Moreover, Claim 2.7 (ii) and (iii) imply that there are at least
k + t vertices of W ∪X that have a strong neighbor in U ∪ Y . Recall that |X| = t and, by
construction, B(x) with x ∈ X is disjoint with any B(v) of a vertex v ∈ (W ∪X)\{x}. Thus
there are at least k vertices in W that have a strong neighbor in U ∪ Y . Claim 2.6 shows
that all vertices of W that are incident to at least one strong edge in H ′ must have disjoint
non-neighborhood. Since B(wi) = Bi, there are k pairwise disjoint sets in {B1, . . . , Bp} for
the k vertices of W that are incident to at least one strong edge in H ′. Therefore there is a
solution for the Set Packing problem for (U , B1, . . . , Bp, k).

Let F be a graph that has at least one component with at least three vertices. If M
is a matching in a graph G, then the spanning subgraph H of G with E(H) = M satisfies
the F -closure. Hence, if G has a matching of size at least k, then (G, k) is a yes instance of
Strong F -Closure. Such instances that admit a solution that is given by a matching can
be detected in polynomial time, since the size of a maximum matching of a graph can be
computed in polynomial time [24]. This gives rise to the question about the parameterized
complexity of Strong F -Closure with the parameter r = k−µ(G). We show that Strong
Triadic Closure is FPT with this parameter for the instances where ∆(G) ≤ 4. Note that
Strong Triadic Closure is NP-complete on graphs G with ∆(G) ≤ d for every d ≥ 4 [21].

14

Theorem 3. Strong Triadic Closure can be solved in time 2O(r) · nO(1) on graphs of
maximum degree at most 4, where r = k − µ(G).

Proof. Let (G, k) be an instance of Strong Triadic Closure such that ∆(G) ≤ 4. Let
also r = k − µ(G).

Recall that a triangle is a cycle on three vertices. Slightly abusing notation, we do not
distinguish between a triangle and its set of vertices and write G − T instead of G − V (T)
for a triangle T and do the same for a union of triangles.

We construct the set of vertices X and the set of edges A as follows. Initially, X = ∅ and
A = ∅. Then we exhaustively perform the following steps in a greedy way:

1. If there exists a copy of K4 in G − X, we add the vertices of this K4 to X and the
edges between these vertices to A.

2. If there exists a triangle T in G−X such that µ(G−X) < 3 + µ(G−X − T), we add
the vertices of T to X and and the edges of T to A.

Let M be a maximum matching of G−X for the obtained set X. Note that the spanning
subgraph H of G with the set of edges A∪M is a disjoint union of complete graphs with 1,
2, 3 or 4 vertices, that is, H has no induced path on three vertices. Hence, H satisfies the
P3-closure. Assume that Step 1 was applied p times and we used Step 2 q times. Clearly,
|A| = 6p + 3q. Notice that the vertices of a copy of K4 can be incident to at most 4 edges
of a matching and the complete graph with 4 vertices has 6 edges. Observe also that by the
application of Step 2, we increase the size of A by 3 and µ(G − X) − µ(G − X − T) ≤ 2.
This implies that |E(H)| = |A| + |M | ≥ µ(G) + 2p + q. Therefore, if 2p + q ≥ r, (G, k) is
a yes-instance of Strong Triadic Closure. Assume from now that this is not the case.
In particular, it means that |X| ≤ 4r and G′ = G − X is a K4-free graph. By the choices
made in both steps, notice that every vertex of X has at least two neighbors inside X. Let
Y = V (G) \X = V (G′).

We need some structural properties of G′ and (possible) solutions for the considered
instance of Strong Triadic Closure.

Claim 3.1. If T is a triangle in G′, then T satisfies the following properties:

(i) T contains no edge of M ;

(ii) every vertex of T is incident to an edge of M .

Proof: If either (i) or (ii) does not hold, the triangle T is such that at most two edges of the
matching M are incident to its vertices. This implies that µ(G′) < 3 + µ(G′ − T), which is
a contradiction with the fact that Step 2 can no longer be applied. y

We say that a solution H for (G, k) is regular if H[Y] is a disjoint union of triangles, edges
and isolated vertices. We also say that a solution H is triangle-maximal if (i) it contains the
maximum number of edges and, subject to (i), (ii) contain the maximum number of pairwise
distinct triangles.

Claim 3.2. If (G, k) is a yes-instance of Strong Triadic Closure, then every triangle-
maximal solution is regular.

Proof: Let H be a triangle-maximal solution for (G, k).
We first note that, H has no K1,3 as a subgraph. Otherwise it would imply the existence

of a K4 in G−X, because for every copy xyz of (not necessarily induced) P3 in H, xz ∈ E(G)
if H satisfies the P3-closure. This implies that H consists of a disjoint union of paths and
cycles. Consider an induced path on three vertices P3 = v1v2v3 in H. By the P3-closure there

15

is the edge v1v3 in G. We prove that the P3 has a particular form which allows us to make
v1v3 strong, i.e., the triangle v1v2v3 belongs to a solution H. In particular we show that
NH(v2) = {v1, v3} and either NH(v1) = {v2} and NH(v3) = {v2, y} hold or NH(v1) = {v2, y}
and NH(v3) = {v2} hold, where y is a vertex in G.

• First observe that v2 has no other neighbor in H, because v2 belongs to a path or a
cycle in H. Assume that there is a vertex x ∈ X that is adjacent to v2 in H. Then by
the P3-closure, x is adjacent in G to all three vertices of P3 which contradicts the fact
that d(x) ≤ 4, because x is adjacent to at least two vertices inside X. Thus v2 has no
other neighbor in H.

• Next assume that there are vertices u1, u3 such that u1 ∈ NH(v1) \ {v2} and u3 ∈
NH(v3) \ {v2}. If u = u1 = u3 then u does not belong to Y because there is no K4

in G′. And if u ∈ X then by the P3-closure, u is adjacent to all three vertices of the
P3 which contradicts the fact that d(u) ≤ 4. For u1 6= u3, notice that v2 is adjacent
to both u1, u3 by the P3-closure. Then both u1v1v2 and u3v3v2 form triangles in G,
which implies by Claim 3.1 that there is an edge v2v of M with v /∈ {v1, v3, u1, u3}.
This, however, contradicts the fact that d(v2) ≤ 4.

• By the previous two arguments, we know that at least one of v1, v3 is only adjacent to v2
in H. Without loss of generality, assume that NH(v1) = {v2}. If NH(v3) = {v2, y, y′}
then by the P3-closure v2 is adjacent in G to both y, y′. Applying Claim 3.1 shows that
there is another edge incident v2, contradicting the fact that d(v2) ≤ 4. Also note that
if NH(v3) = {v2} then both v1, v3 have no other strong edge incident to them, so that
the edge v1v3 of G can be made strong which contradicts the maximality of H.

Thus for the given P3 we know that NH(v1) = {v2}, NH(v2) = {v1, v3}, and NH(v3) = {v2, y}
or NH(v1) = {v2, y}, NH(v2) = {v1, v3}, and NH(v3) = {v2}. This means that in both cases
we can replace in H the edge v3y or v1y by the edge v1v3 without violating the P3-closure.
Iteratively applying such a replacement for every P3 of H ′ shows that H is regular. y

In the following we use the notion of distance between two subsets of vertices. For two
disjoint subsets of vertices X1 and X2 the distance between X1 and X2 is the length of the
shortest path among all pairs of vertices v1 and v2 with v1 ∈ X1 and v2 ∈ X2.

Claim 3.3. Let T = abc be a triangle in G′ that is at distance one from X. If H is a solution
containing T , then H contains no other edge incident to the vertices a, b, and c.

Proof: Let T = abc be a triangle as described above and let H be a solution containing T .
Assume for a contradiction that there exists an edge xa in H that is incident to a vertex
of T . Suppose that x ∈ X. This implies that xb ∈ E(G) and xc ∈ E(G). Since x has at
least two neighbors inside X, we conclude that d(x) > 4, a contradiction. If x ∈ G−X, this
would imply the existence of K4 in G′, a contradiction. y

Claim 3.4. Let T be a triangle at distance at least two from X that does not intersect any
other triangle. Then T is included in every triangle-maximal regular solution for (G, k).

Proof: Let T = abc be a triangle as described above and assume that H is a triangle-maximal
regular solution that does not contain T . Since no other triangle intersects T , at most one
edge of H is incident to each vertex of T by Claim 3.2 and these edges are not included in
any other triangle except, possibly, T . If no edge of T is in H, we can replace the edges
incident to T by the edges ab, bc and ac and obtain a solution with at least as many edges
as H containing T . This solution contains an additional triangle contradicting the condition
that H is a triangle-maximal solution. If there exists an edge of T in H, let ab be such an

16

edge. Clearly, ab is the unique edge of the solution in T . Again, since no other triangle
intersects T , there is no other edge of the solution that is incident to a or b and at most one
edge is incident to c. Then we replace the edge incident to c by the two edges of the triangle
abc and obtain a solution with more edges, a contradiction. We conclude that the edges of
T are included in H. y

Claim 3.5. If T1 and T2 are two intersecting triangles in G′, then the following holds:

1. T1 and T2 have one edge in common;

2. No other triangle intersects T1 or T2.

Proof: Let T1 and T2 be two intersecting triangles as described above. Assume for a con-
tradiction that T1 and T2 have only a single vertex in common and let a be such a vertex.
Recall that M is a maximum matching in G − X. By Claim 3.1, there exists an edge of
the matching incident to a that cannot be contained neither in T1 nor in T2, which implies
that d(a) > 4, which is a contradiction. We conclude that the triangles must intersect in one
edge. Let T1 = abc and T2 = bcd. Assume for the sake of contradiction that there exists a
triangle T that intersects T1. Since by the first argument of the claim the triangles T and
T1 cannot intersect in a single vertex, T contains at least one of b or c. Assume b ∈ V (T).
Again, by Claim 3.1, there must be an edge of M incident to b that is not contained in any
of the triangles, which implies that d(b) > 4, a contradiction. This concludes the proof. y

Claim 3.6. If T1 and T2 are two intersecting triangles such that T1 is at distance at least
two from X, then either T1 or T2 is included in every triangle-maximal regular solution for
(G, k).

Proof: Let H be a solution. By Claim 3.5, T1 and T2 have exactly one common edge. Let
T1 = abc and T2 = bcd. Assume that a triangle-maximal regular solution H contains neither
T1 nor T2. Note that at most one edge of H is incident to a by Claim 3.2. Because H does
not contain all the edges of T2, the same holds for b and c by Claim 3.2. By Claim 3.5, these
edges are not included in any other triangles except, possibly, T1 and T2. Now we repeat the
same arguments as in the proof of Claim 3.4. If no edge of T1 is in H, we can replace the
edges incident to T1 by the edges ab, bc and ac and obtain a solution with at least as many
edges as H containing one additional triangle T1 contradicting the triangle-maximality of H.
If there exists an edge of T1 in H, then at most two edges of H are incident to the vertices
of T1 and we can replace them by the edges of T1 and increase the number of edges in the
solution contradicting the choice of H. y

Given the properties of the triangles in G′ and the properties of triangle-maximal regular
solutions, we are now ready to solve the problem by finding a regular solution if it exists.
Recall that by Claim 3.2, a regular solution H to the problem when restricted to G − X
is a disjoint union of triangles, edges and isolated vertices. The crucial step is to sort out
triangles in G′.

We first consider the triangles in G′ that are at distance at most one from the set X in
G, that is, the triangles that contain at least one vertex that is adjacent to a vertex of X
in G. Since |X| ≤ 4r and since every vertex of X has at least two neighbors inside X, we
have that |NG(X)| ≤ 8r. By Claim 3.5, at most 2 triangles of G′ contain the same vertex.
Thus, the number of pairwise distinct triangles in G′ that are at distance at most one from
the set X in G is at most 16r. We list all these triangles, and branch on all at most 216r

choices of the triangles that are included in a triangle-maximal regular solution. Then, for
each choice of these triangles, we try to extend the partial solution. If we obtain a solution
for one of the choices we return it and the algorithm returns NO otherwise.

17

Assume that we are given a set T1 of triangles at distance one from X that should be in
a solution. Note that by Claim 3.2, the triangles in T1 are pairwise disjoint. We apply the
following reduction rule.

Rule 3.1. Set G = G− ∪T∈T1T and set k = k − 3|T1|.

By Claim 3.3, the original instance has a regular solution if and only if the obtained
instance has a regular solution that does not contain triangles in G−X that are at distance
one from X. Our aim now is to find such a solution. For simplicity, we keep the same
notation and assume that G′ = G−X.

Now we deal with triangles that are at distance at least 2 from X. Consider the set T2
of triangles in G′ that are at distance at least 2 from X and have no common vertices with
other triangles in G′. By Claim 3.4, all these triangles are in every triangle-maximal regular
solution. It immediately gives us the following rule.

Rule 3.2. Set G = G− ∪T∈T2T and set k = k − 3|T2|.

We again assume that G′ = G −X. To consider the remaining triangles, recall that by
Claim 3.5, for every such a triangle T , T is intersecting with a unique triangle T ′ of G′ and
T, T ′ are sharing an edge.

Let T3 be the set of triangles in G′ that are at distance at least 2 from X in G and have
a common edge with a triangle at distance one from X. Recall that we are looking for a
regular solution that does not contain triangles in G −X that are at distance one from X.
Then by Claim 3.6, triangles of T3 should be included to a triangle-maximal regular solution,
and we get the next rule.

Rule 3.3. Set G = G− ∪T∈T3T and set k = k − 3|T3|.

As before, let G′ = G−X. The remaining triangles in G′ at distance at least 2 from X in
G form pairs {T1, T2} such that T1 and T2 have a common edge and are not intersecting any
other triangle. Let P be the set of all such pairs. By Claim 3.6, a triangle-maximal regular
solution contains either T1 or T2. We use this to apply the following rule.

Rule 3.4. For every pair {T1, T2} ∈ P, delete the vertices of T1 and T2 from G, construct a
new vertex u and make it adjacent to the vertices of NG((T1\T2)∪(T2\T1)). Set k = k−3|P|.

Denote by (Ĝ, k̂) the instance of Strong Triadic Closure obtained from (G, k) by
the application of Rule 3.4. We show the following claim.

Claim 3.7. If the instance (G, k) has a triangle-maximal regular solution H that has no
triangles in G −X at distance one from X, then there is a solution Ĥ for (Ĝ, k̂) such that
Ĥ − X is a disjoint union of edges and isolated vertices, and if there is a solution Ĥ for
(Ĝ, k̂) such that Ĥ −X is a disjoint union of edges and isolated vertices, then (G, k) has a
regular solution H that has no triangles in G−X at distance one from X.

Proof: Let H be a triangle-maximal regular solution for (G, k) such that H has no triangles
in G−X at distance one from X. Notice that if H contains a triangle, then it belongs to one
of the pairs of P. By Claim 3.6, we can assume that H contains a triangle from every pair
from P. We construct a solution Ĥ for (Ĝ, k̂) by modifying H as follows. First, we include
in Ĥ the edges of H that are not incident to the vertices of the pairs of triangles of P. For
every pair {T1, T2} ∈ P, H contains either T1 or T2. Assume without loss of generality that
T1 is in H. Let v be the vertex of T2 that is not included in T1. By Claims 3.2 and 3.1, at
most one edge of H is incident to v and there is no edge in H that is incident to exactly one
vertex of T1. Let u be the vertex of Ĝ constructed by Rule 3.4 for {T1, T2}. If vx ∈ E(H)
for some x ∈ V (G), then we include the edge ux′ in Ĥ, where x′ is the vertex constructed
from x by the rule; note that it can happen that x is a vertex of some other pair of triangles.

18

Since we include in Ĥ at most one edge incident to a vertex constructed by the rule, Ĥ does
not contain triangles and is a disjoint union of edges and isolated vertices. Moreover, since
|E(H)| ≥ k, we have that |E(Ĥ)| ≥ k − 3|P| = k̂.

Suppose now that Ĥ is a solution for (Ĝ, k̂) such that Ĥ −X is a disjoint union of edges
and isolated vertices. Now we construct H by modifying Ĥ. For every edge uv of Ĥ such that
u and v are vertices of the original graph G, we include uv in H. Assume that uv ∈ E(Ĥ)
is such that v ∈ V (G) and u was obtained from a pair {T1, T2} ∈ P. Then v is adjacent in
G to a vertex x that belongs to exactly one of the triangles, say T1. We include xv and T2
in H. Suppose that uv ∈ E(Ĥ) is such that u was obtained from a pair {T1, T2} ∈ P and v
was obtained from a pair {T ′1, T ′2} ∈ P. Then G has an edge xy such that x that belongs to
exactly one of the triangles T1, T2, say T1, and y belongs to exactly one of the triangles T ′1, T

′
2,

say T ′1. We include xy, T2 and T ′2 in H. Finally, if there is a pair {T1, T2} ∈ P such that for
the vertex u ∈ V (Ĝ) constructed from this pair, Ĥ has no edge incident to u, we include T1
in H. With this way we obtain H such that H − X is a disjoint union of triangles, edges
and isolated vertices. It remains to note that because |E(Ĥ)| ≥ k̂, we have that |E(H)| ≥ k,
that is, H is a regular solution. y

By Claim 3.7, we have to find a solution for the instance (Ĝ, k̂) such that Ĥ − X is a
disjoint union of edges and isolated vertices. We do it by branching on all possible choices of
edges in a solution that are incident to the vertices of X. Since |X| ≤ 4 and ∆(G) ≤ 4, there
are at most 16r edges that are incident to the vertices of X and, therefore, we branch on at
most 216r choices of a set of edges S. Then for each choice of S, we are trying to extend it
to a solution. If we can do it for one of the choices, we return the corresponding solution,
and the algorithm returns NO otherwise.

Assume that S is given. First, we verify whether the spanning subgraph of G with the
set of edges S satisfies the P3-closure. If it is not so, we discard the current choice of S
since, trivially, S cannot be extended to a solution. Assume that this is not the case. Let
R = Ĝ−X. We modify R by the exhaustive application of the following rule.

Rule 3.5. If there are vertices x, y, z such that xy ∈ E(R), z ∈ X, xz ∈ S, and yz /∈ E(Ĝ),
then delete xy from R.

Let R′ be the graph obtained from R by the rule. Observe that the edges deleted by
Rule 3.5 cannot belong to a solution. Hence, to extend S, we have to complement it by
some edges of R′ that form a matching. Moreover, every matching of R′ could be used to
complement S. To see this, observe that every matching of R′ and the edges of S satisfy
the P3-closure. By Rule 3.5, we ensure that the edges of S ∪M in Ĝ satisfy the P3-closure.
Respectively, we find a maximum matching M in R′ in polynomial time [24]. We obtain
that the spanning subgraph Ĥ of Ĝ with E(Ĥ) = S ∪M satisfies the P3-closure. We verify
whether |S| + |M | ≥ k̂. If it holds, we return Ĥ. Otherwise, we discard the current choice
of S.

The correctness of the algorithm follows from the properties of Rules 3.1–3.5 and Claim 3.7.
To evaluate the running time, observe that Steps 1 and 2 that are used to construct X and
A can be done in polynomial time. Then we branch on at most 216r choices of T1. For each
choice, we apply Rules 3.1–3.4 in polynomial time. Then we consider at most 216r choices of
a set of edges S. For each choice, we apply Rule 3.5 in polynomial time and then compute a
maximum matching in R′ [24]. Summarizing, we obtain the running time 2O(r) · nO(1).

5 Concluding remarks

To complement our results so far, we give here the parameterized complexity results when our
problem is parameterized by the number of weak edges. The following result is not difficult

19

to deduce using similar ideas to those used in proving that F -free Edge Deletion is FPT
by the number of deleted edges [6].

Theorem 4. For every fixed graph F , Strong F -closure can be solved in time 2O(`) ·nO(1),
where ` = |E(G)| − k.

Proof. We basically use the main idea given in [6]. Since F is of fixed size, we can list all
induced subgraphs of G isomorphic to F in polynomial time. For each induced subgraph F ′

we check whether G[F ′] ' F . If G[F ′] ' F , then we must remove at least one of the edges
of F ′. We branch at all such possible |E(F)| edges and on each resulting graph we apply the
same procedure for at most ` steps. If at some intermediate graph we have G[F ′] 6' F for
all of its induced subgraphs then we have found the desired subgraph within at most ` edge
deletions. Otherwise, we can safely output that there is no such subgraph with at most `
edge removals. As the depth of the search tree is bounded by `, the overall running time is
2O(`) · nO(1).

Next we show that Strong F -closure has a generalized polynomial kernel with this
parameterization whenever F is a fixed graph. We obtain this result by constructing general-
ized kernelization that reduces Strong F -closure to the d-Hitting Set problem that is
the variant of Hitting Set with all the sets in C having d elements. Notice that this result
comes in contrast to the F -free Edge Deletion problem, as it is known that there are
fixed graphs F for which there is no polynomial compression [7] unless NP ⊆ coNP/ poly.

Theorem 5. For every fixed graph F , Strong F -closure has a generalized polynomial
kernel, when parameterized by ` = |E(G)| − k.

Proof. Let d be the number of edges of F . We enumerate all the induced subgraphs of G
isomorphic to F in polynomial time. Let FG = {F1, . . . , Fq} be the produced subgraphs
isomorphic to F such that V (Fi) 6= V (Fj). For each Fi ∈ FG, we construct the set Ei =
E(Fi). Notice that |E1| = · · · = |Eq| = d. Now our task is to select at most ` edges E′ from
G such that E′ ∩ Ei 6= ∅ for every Ei. We claim that such a subset of edges is enough to
produce a solution for the Strong F -closure. To see this, consider an F -graph Fi of G
and denote by G′ the graph obtained from G by removing an edge e = xy of Fi. Assume
for contradiction that at least one new F -graph F ′ is created in G′ so that F ′ /∈ FG and
F ′ ∈ FG′ . Then both x and y must belong to F ′ which implies that x and y are non-adjacent
in G′[F ′]. This, however, contradicts the fact that G[F ′] induces a graph isomorphic to F ,
because x and y are adjacent in G. Thus FG′ ⊂ FG which implies that the described set of
edges E′ constitutes a solution. This actually corresponds to the d-Hitting Set problem:
given a collection of sets Ci = Ei each of size d from a universe U = E(G), select at most `
elements from U such that every set Ci contains a selected element. Then we use the result
of Abu-Khzam [1] (see also [10]) that d-Hitting Set admits a polynomial kernel with the
universe size O(`d) and with O(`d) sets.

Observe that whenever Strong F -closure is polynomially solvable or NP-complete
for a given F , Theorem 5 implies that Strong F -closure admits a polynomial kernel.
If the problem can be solved in polynomial time, then it has a trivial kernel. If Strong
F -closure is NP-complete, then there is a polynomial reduction of d-Hitting Set to
Strong F -closure. Combining the generalized kernelization and this reduction, we obtain
a polynomial kernel.

We would like to underline that Theorems 4 and 5 are fulfilled for the case when F is
a fixed graph of constant size, as the degree of the polynomial in the running time of our
algorithm depends on the size of F and, similarly, the size of F is in the exponent of the
function defining the size of our generalized kernel. We can hardly avoid this dependence as

20

t

x y z

tx ty tz

ax ay azbx by bz

x y z

Figure 2: The planar configuration used in the proof of Theorem 6.

it can be observed that for ` = 0, Strong F -closure is equivalent to asking whether the
input graph G is F -free, that is, we have to solve the Induced Subgraph Isomorphism
problem. It is well known that Induced Subgraph Isomorphism parameterized by the
size of F is W[1]-hard when F is a complete graph or graph without edges [13], and the
problem is W[1]-hard when F belongs to other restricted families of graphs [19].

We conclude with a few open problems. An interesting question is whether Strong
Triadic Closure is FPT when parameterized by r = k−µ(G). We proved that this holds
on graphs of maximum degree at most 4, and we believe that this question is interesting not
only on general graph but also on various other graph classes. In particular, what can be
said about planar graphs? To set the background, we show that Strong Triadic Closure
is NP-hard on planar graphs and (3K1, 2K2)-free graphs. The following lemma is needed for
the proofs of Theorems 6 and 7.

Lemma 5. [22, Lemma 6] Let x and y be true twins in G. Then, there is an optimal solution
H for Strong P3-closure such that xy ∈ E(H) and for every vertex u ∈ N(x), xu ∈ E(H)
if and only if yu ∈ E(H).

Theorem 6. Strong Triadic Closure is NP-hard on planar graphs.

Proof. We show the theorem by a reduction from PlanarX3C. In X3C we are given a set
X with |X| = 3q elements and a collection C of triplets of X and the problem asks for a
subcollection C ′ ⊆ C such that every element of X occurs in exactly one member of C ′. If
such a subcollection C ′ exists, then it is called an exact cover of X. For the PlanarX3C
we associate a bipartite graph G with this instance as follows: we have a vertex for every
element of X and a vertex for every triplet of C and there is an edge between an element
and a triplet if and only if the element belongs to the triplet. The problem is known to
be NP-complete even restricted to instances whose associated graph is planar [14]. Let
G = (X ∪ C,E) be an instance of PlanarX3C with |C| = m ≥ q. We construct another
graph G′ by replacing the three edges incident to each triplet with the configuration shown
in Figure 2. More precisely, we replace each triplet vertex t by a triangle {tx, ty, tz} (middle
triangle) and for each original edge tx we introduce two triangles {tx, ax, bx} (inner triangle)
and {ax, bx, x} (outer triangle). Thus for every triplet we associate seven triangles in which
four of them are vertex-disjoint (the middle and the outer triangles) and the other three
triangles (inner triangles) share all their vertices with two vertex-disjoint triangles. Such a
subgraph corresponding to the triplet (x, y, z) ∈ C is simply called triplet subgraph. Observe
that any two triplet subgraphs have in common only a subset of the vertices x, y, z of their
outer triangles. Notice also that G′ remains a planar graph. We prove that PlanarX3C
has an exact cover if and only if G′ has a spanning subgraph with at least 9m + 3q strong
edges that satisfies the P3-closure.

21

tx ty tz

ax ay azbx by bz

x y z

(a)

tx ty tz

ax ay azbx by bz

x y z

(b)

tx ty tz

ax ay azbx by bz

x y z

(c)

Figure 3: A solid edge corresponds to a strong edge, whereas a dashed edge corresponds to
a weak edge. Form (a) has 12 strong edges and corresponds to a triplet that is a member
of an exact cover. Form (b) has 9 strong edges and corresponds to a triplet that does not
belong to an exact cover. Form (c) contains all other cases; we depict only one of them.

Assume C ′ is an exact cover for PlanarX3C with |C ′| = q. If a triplet belongs to C ′

then we make the edges of all four vertex-disjoint triangles strong (see Figure 3 (a)). If
a triplet does not belong to C ′ then we make the edges of all inner triangles strong (see
Figure 3 (b)). This labeling satisfies the P3-closure as there is no P3 spanned by strong edges
and the total number of strong edges is 12q + 9(m− q) which gives the claimed bound.

For the opposite direction, assume that G′ has a spanning subgraph H with at least 9m+
3q strong edges. Consider the graph induced by the vertices {tx, ax, bx, x} that corresponds
to an original edge between an element x and a triplet t. Since ax, bx are true twins in G,
by Lemma 5, E(H) contains the edge axbx and ax, bx are also true twins in H. The latter
implies that either one of the two triangles {x, ax, bx}, {tx, ax, bx} belongs to H, or no such
triangle belongs to H. The same observation carries along the vertices ay, by and az, bz. Thus
for every triplet subgraph, E(H) contains all its outer triangles, or all its inner triangles, or
a combination of some inner and outer triangles. These cases correspond to the three forms
given in Figure 3. We show that there exists an optimal solution H only with the first two
forms of Figure 3, which particularly means that every triplet subgraph of H contains either
all its outer triangles or all its inner triangles.

To prove this, we first show that every middle triangle in a triplet subgraph has either all
its edges strong or none of its edges is strong. We refer to the former case as strong middle
triangle and the later as weak middle triangle. Assume that the middle triangle contains
at least one strong edge txtz. Then there is no other strong edge incident to tx or tz. If
the inner triangle of ty is not strong, then we can safely make the edges tytx, tytz strong.
Otherwise, the inner triangle of ty is strong and we remove both edges tyay and tyby from H
and add the edges tytx, tytz. Thus if there is a strong edge in the middle triangle then there
is a solution with a strong middle triangle.

Next we consider a (strong or weak) middle triangle. If a middle triangle is weak then
E(H) contains at most 9 edges from its triplet subgraph. In such a case we replace all its
edges from E(H) by the 9 edges of its inner triangles by keeping the same size for E(H).
The replacement is safe with respect to the P3-closure because the inner triangles of each
triplet subgraph are vertex-disjoint with any other triplet subgraph. For every strong middle
triangle notice that all the edges of its inner triangles are weak. If there is at most one outer
triangle that is strong then we make the middle triangle weak and we replace its edges of
E(H) by the edges of its inner triangles. Thus for every strong middle triangle we know
that either two or three outer triangles are strong. Also recall that for every weak middle
triangle, all its outer triangles are weak.

For i ∈ {0, 2, 3}, let `i be the number of triplet subgraphs in which there are i outer
triangles strong. We will show that, since H contains at least 9m + 3q edges, there are
no triplet subgraphs with exactly two outer triangles strong, i.e., `2 = 0. Observe that
`0 + `2 + `3 = m. Also notice that each of the subgraphs corresponding to `0 contains 9

22

strong edges, `2 contains 10 strong edges, and `3 contains 12 strong edges. Therefore the
total number of strong edges is 9`0 + 10`2 + 12`3. As H contains at least 9m + 3q edges,
we get `2 + 3`3 ≥ 3q. Now notice that every vertex of X is incident to at most one strong
triangle. Thus for each of the `2 subgraphs there are 2 vertices in X that are incident to
strong edges, whereas for each of the `3 subgraphs there are 3 such vertices in X. This
implies that 2`2 + 3`3 ≤ |X| = 3q. Therefore |E(H)| ≥ 9m + 3q holds only if `2 = 0 and
`3 = q, so that all triplet subgraphs with strong middle triangles correspond to an exact
cover for the elements of X.

We next proceed with the (3K1, 2K2)-free graphs. The reduction comes from the Clique
problem which is known to be NP-complete on such graphs [17].

Theorem 7. Strong P3-closure restricted on (3K1, 2K2)-free graphs remains NP-hard.

Proof. Let (G, k) be an instance of Clique with G being a (3K1, 2K2)-free graph. From G
we construct G′ by adding a clique X of size x = nk such that every vertex of X is adjacent
to every vertex of G. Clearly G′ remains (3K1, 2K2)-free graph. We show that G has a
solution for Clique of size at least k if and only if G′ has a spanning subgraph that satisfies
the P3-closure with at least q = x(x−1)

2 + k(k−1)
2 + kx strong edges.

Assume that C ⊆ V (G) is a solution for Clique on G of size at least k. Then C ∪X is
a clique in G′. Maintaining only the edges of C ∪X in a spanning subgraph of G′ does not
create any P3. Thus there is a spanning subgraph of G′ that satisfies the P3-closure and the
number of edges in G′[C ∪X] gives the desired bound.

For the opposite direction, assume that H is such a solution for Strong P3-closure
on G′. Observe that the vertices of X have the same closed neighborhood in G′, so they
are true twins. By Lemma 5 we know that all vertices of X have the same neighborhood in
H and all edges inside X are strong. If there is a vertex of X with k strong neighbors in
G′[V] then there is a k-clique in G. Moreover if there is a vertex of G′[V] with k − 1 strong
neighbors then those vertices induce a clique of size k. We show that at least one of the
two conditions holds in H. Assume for contradiction, that there is no such vertex: all the
vertices of X have the same k − 1 strong neighbors in G′[V], and every vertex of G′[V] has
at most k − 2 strong neighbors. This means that the claimed solution has at most p strong
edges where p = x(x−1)

2 + x(k − 1) + n(k − 2). Since p < q, we get a contradiction to the
number of strong edges in H. Thus there is at least one vertex v of the following type: either
v ∈ X with at least k strong neighbors in G or v ∈ V (G) with at least k−1 strong neighbors
in G. Therefore in both cases we get a k-clique in G.

The proof of Theorem 7 can be generalized to any graph class Π for which the following
two conditions hold: (i) Clique is NP-hard on Π and (ii) Π is closed under addition of a
universal vertex.

Regarding the parameterization by r = k−µ(G), it is still interesting to extend Strong
F -closure when F 6= P3 has a connected component with at least three vertices. As a first
step, we give an FPT result when F is a star.

Theorem 8. For every t ≥ 3, Strong K1,t-closure can be solved in time 2O(r2) · nO(1),
where r = k − µ(G) .

Proof. We prove the theorem by constructing a kernel for the problem.
Let G be a graph and M be a maximum matching of G. We assume without loss of

generality that G has no isolated vertices. Otherwise, we just delete such vertices and,
trivially, obtain an equivalent instance of the problem. Let VM be the set of vertices of G
that are covered by M . Let X be a subset of vertices of V (G) and A be a subset of edges

23

of G[X], both initially set to be empty. We add elements to X and A by performing the
following steps in a greedy way:

1. If there is v ∈ V (G) \ VM and xy ∈ M such that vx ∈ E(G) or vy ∈ E(G), then we
add v, x and y to X and add all the edges between {v, x, y} to A.

2. If there is xy,wz ∈ M such that G[{x, y, w, z}] 6' 2K2, then we add x, y, w and z to
X and add all the edges between {x, y, w, z} to A.

Note that since the set {v, x, y} does not induce a K1,t, and since xy,wz ∈ E(G), the set
{x, y, w, z} does not induce a K1,t either, the edges added to A in each step can be part of
a solution. Moreover, after each application of step 1 or step 2, the size of the set A ∪M
is increased by at least one. As a consequence, if the steps can be applied at least r times,
then |A ∪M | ≥ |M | + r and therefore we have a yes instance. Assume that this is not the
case. This implies that |X| < 4r.

After the exhaustive application of steps 1 and 2 in a greedy way, we consider the matching
obtained from M by the deletion of the edges included in A. For simplicity, we call this
matching M again and use VM to denote the set of vertices of V (G) \ X that are covered
by M . Observe that M is a maximum matching of G−X. Since step 1 cannot be applied,
we have that the vertices of the set W = V (G) \ (X ∪ VM) are not adjacent to the vertices
of VM . By the maximality of M , the vertices of W are pairwise nonadjacent. Because step
2 can no longer be applied, M is actually an induced matching of G. That is, G−X is the
disjoint union of the edges of M and the isolated vertices of W .

In what follows, we show that the sizes of W and M can be reduced to bound them by
a function of r.

Recall that G has no isolated vertices. Hence, each vertex of W is adjacent to a vertex
of X. We partition the vertices of W according to their neighborhood in X, that is, two
vertices x, y ∈ W are in the same class if and only if NG(x) = NG(y). Clearly, we obtain at
most 2|X| ≤ 24r classes. We exhaustively apply the following rule.

Rule 8.1. If there exists a class of vertices of W that has size at least (t− 1) · 4r + 1, then
delete one vertex of the class from the graph.

To see that Rule 8.1 is safe, assume that one given class contains at least (t− 1) · 4r + 1
vertices and we applied the rule for this class. Denote by G′ the obtained graph. Observe that
every vertex of X can be adjacent to at most t− 1 vertices of G−X in a solution, otherwise
the solution would contain a set of strong edges inducing a K1,t in G. This, together with
the fact that |X| < 4r, gives us that at most (t−1) ·4r vertices of W are adjacent to vertices
of X in a solution. Since the class contains at least (t−1) ·4r+1 vertices, at least one vertex
of the class has no incident edges in the solution. Notice that µ(G′) = µ(G). Therefore, if
(G, k) is a yes instance, then (G′, k) is a yes instance as well. For the opposite direction, it
is sufficient to observe that every solution to (G′, k) is a solution for (G, k).

We use similar approach to reduce the size of M . We partition M to classes according
to their neighborhood in X. More precisely, two edges x1y1, x2y2 ∈ M are in the same
class if and only if either NG(x1) ∩ X = NG(x2) ∩ X and NG(y1) ∩ X = NG(y2) ∩ X or,
symmetrically, NG(x1)∩X = NG(y2)∩X and NG(y1)∩X = NG(x2)∩X. There are at most
24r possible subsets of X that can be the neighborhood of a given vertex of G −X. Then,
we can partition the edges of M into at most 28r classes, according to the neighborhoods of
the two endpoints of the edge. We exhaustively apply the following rule.

Rule 8.2. If there exists a class of edges of M that has size at least (t − 1) · 4r + 1, then
delete the end-vertices of one edge of the class from the graph and reduce the parameter k by
one.

24

To show safeness, suppose that one given class contains at least (2t − 2) · 4r + 1 edges.
Assume that Rule 8.2 is applied for this class and denote by G′ the graph obtained by
the application of the rule. Since M is an induced matching in G, every vertex of X can be
adjacent to end-vertices of at most t−1 edges of M in a solution, otherwise the solution would
contain a set of strong edges inducing a K1,t in G. Together with the fact that |X| < 4r, we
obtain that at most (t− 1) · 4r edges of M have end-vertices that are adjacent to vertices of
X in a solution. Since the class contains at least (t−1) ·4r+1 edges, at least one edge of the
class is such that both of its end-vertices are not adjacent to any vertex of X in the solution.
This edge can therefore be part of every solution H. Note that µ(G′) = µ(G) − 1. This
implies that if (G, k) is a yes instance, then (G′, k − 1) is a yes instance. For the opposite
direction, consider any solution for (G′, k−1). Clearly, we can construct a solution for (G, k)
by adding the edge that was deleted by the rule. Hence, if (G′, k− 1) is a yes instance, then
(G, k) is a yes instance.

Once Rules 8.1 and 8.2 have been exhaustively applied, the number of vertices of the
graph is bounded by 4r+ 24r · (t− 1) · 4r+ 28r · (t− 1) · 4r · 2 = g(r). It is now possible to use
brute force to solve the problem in the following way. First, we guess which edges inside X
go into the solution. Since |X| < 4r, this guessing takes 2O(r2) time. Since every vertex of
X can have at most 2t− 2 neighbors in G−X in a solution, we can again guess which edges
from X to G − X go into the solution. This takes 2O(r2) time. Finally, for each of these
guesses made for the edges in E(G) \M , we test which edges of M can be added into the
solution without forming an induced K1,t in H that also induce a K1,t in G. This takes time

2O(r). The total running time of the brute force algorithm is therefore 2O(r2) · nO(1).

Acknowledgements

We thank the reviewers for their valuable comments that helped improve the presentation
of the paper.

References

[1] F. N. Abu-Khzam, A kernelization algorithm for d-Hitting set, J. Comput. Syst. Sci.,
76 (2010), pp. 524–531.

[2] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT
above a tight lower bound, Algorithmica, 61 (2011), pp. 638–655.

[3] L. Backstrom and J. Kleinberg, Romantic partnerships and the dispersion of social
ties: a network analysis of relationship status on facebook, in CSCW 2014, 2014, pp. 831–
841.

[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On
problems without polynomial kernels, J. Comput. Syst. Sci., 75 (2009), pp. 423–434.

[5] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, Kernelization lower bounds
by cross-composition, SIAM J. Discrete Math., 28 (2014), pp. 277–305.

[6] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary prop-
erties, Information Processing Letters, 58 (1996), pp. 171–176.

[7] L. Cai and Y. Cai, Incompressibility of H-free edge modification problems, Algorith-
mica, 71 (2015), pp. 731–757.

25

[8] L. Cai, S. Chan, and S. Chan, Random separation: a new method for solving fixed-
cardinality optimization problems, in IWPEC 2006, 2006, pp. 239–250.

[9] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, Design-
ing FPT algorithms for cut problems using randomized contractions, SIAM J. Comput.,
45 (2016), pp. 1171–1229.

[10] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[11] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate Texts in Mathematics,
Springer, 2012.

[12] M. Dom, D. Lokshtanov, and S. Saurabh, Kernelization lower bounds through
colors and ids, ACM Trans. Algorithms, 11 (2014), pp. 13:1–13:20.

[13] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity,
Texts in Computer Science, Springer, 2013.

[14] M. E. Dyer and A. M. Frieze, Planar 3DM is NP-complete, Journal of Algorithms,
7 (1986), pp. 174–184.

[15] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a
Highly Connected World, Cambridge University Press, 2010.

[16] P. A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Pa-
padopoulos, Parameterized aspects of strong subgraph closure, in SWAT 2018, 2018,
pp. 23:1–23:13.

[17] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete
Mathematics, Elsevier, 2004.

[18] N. Grüttemeier and C. Komusiewicz, On the relation of strong triadic closure and
cluster deletion, in WG 2018, vol. 11159 of Lecture Notes in Computer Science, Springer,
2018, pp. 239–251.

[19] S. Khot and V. Raman, Parameterized complexity of finding subgraphs with hereditary
properties, Theor. Comput. Sci., 289 (2002), pp. 997–1008.

[20] J. M. Kleinberg and É. Tardos, Algorithm design, Addison-Wesley, 2006.

[21] A. L. Konstantinidis, S. D. Nikolopoulos, and C. Papadopoulos, Strong tri-
adic closure in cographs and graphs of low maximum degree, in COCOON 2017, 2017,
pp. 346–358.

[22] A. L. Konstantinidis and C. Papadopoulos, Maximizing the strong triadic closure
in split graphs and proper interval graphs, in ISAAC 2017, 2017, pp. 53:1–53:12.

[23] S. Kratsch and M. Wahlstrom, Two edge modification problems without polynomial
kernels, Discrete Optimization, 10 (2013), pp. 193–199.

[24] S. Micali and V. V. Vazirani, An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs, in FOCS 1980, 1980, pp. 17–27.

[25] S. Sintos and P. Tsaparas, Using strong triadic closure to characterize ties in social
networks, in KDD 2014, 2014, pp. 1466–1475.

26

[26] M. Yannakakis, Edge-deletion problems, SIAM Journal on Computing, 10 (1981),
pp. 297–309.

27

	Introduction
	Preliminaries
	Parameterized complexity of Strong F-closure
	Parameterized complexity of Strong Triadic Closure
	Concluding remarks

