
A simple linear-time recognition algorithm

for weakly quasi-threshold graphs∗

Stavros D. Nikolopoulos and Charis Papadopoulos

Department of Computer Science, University of Ioannina
P.O.Box 1186, GR-45110 Ioannina, Greece

{stavros, charis}@cs.uoi.gr

Abstract: Weakly quasi-threshold graphs form a proper subclass of the well-known
class of cographs by restricting the join operation. In this paper we characterize weakly
quasi-threshold graphs by a finite set of forbidden subgraphs: the class of weakly quasi-
threshold graphs coincides with the class of {P4, co-(2P3)}-free graphs. Moreover we give
the first linear-time algorithm to decide whether a given graph belongs to the class of
weakly quasi-threshold graphs, improving the previously known running time. Based on
the simplicity of our recognition algorithm, we can provide certificates of membership (a
structure that characterizes weakly quasi-threshold graphs) or non-membership (forbidden
induced subgraphs) in additional O(n) time. Furthermore we give a linear-time algorithm
for finding the largest induced weakly quasi-threshold subgraph in a cograph.

Keywords: weakly quasi-threshold graphs, cographs, forbidden induced subgraphs, recog-
nition, linear-time algorithms.

1 Introduction

The well-known class of cographs is recursively defined by using the graph operations of ‘union’ and
‘join’ [4]. Bapat et al. [1], introduced a proper subclass of cographs, namely the class of weakly quasi-
threshold graphs, by restricting the join operation and studied their Laplacian spectrum . In the same
work they proposed a quadratic-time algorithm for recognizing such graphs. Here we characterize
the class of weakly quasi-threshold graphs by the class of graphs having no P4 (chordless path on
four vertices) or co-(2P3) (the complement of two disjoint P3’s). This characterization also shows
that the complement of a weakly quasi-threshold graph is not necessarily weakly quasi-threshold
graph. Moreover we give a tree representation for such graphs, similar to the cotrees for cographs,
and propose a linear-time recognition algorithm.

The class of cographs coincides with the class of graphs having no induced P4 [5]. There are
several subclasses of cographs. Trivially-perfect graphs, also known as quasi-threshold graphs, are
characterized as the subclass of cographs having no induced C4 (chordless cycle on four vertices),
that is, such graphs are {P4, C4}-free graphs, and are recognized in linear time [3, 6]. Another
interesting subclass of cographs are the {P4, C4, 2K2}-free graphs known as threshold graphs, for
which there are several linear-time recognition algorithms [3, 6]. Clearly every threshold graph is
trivially-perfect but the converse is not true. Gurski introduced the class of {P4, co-(2P3), 2K2}-free
graphs in his study of characterizing graphs of certain restricted clique-width [7]. Together with the
class of weakly quasi-threshold graphs (that are exactly the class of {P4, co-(2P3)}-free graphs as

∗This research work is co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-

GSRT (25%).

1

cographsP4-freeco-qt-graphs {P4, 2K2}-free wqt-graphs{P4, co-(2P3)}-freesimple cographs {P4, co-(2P3), 2K2}-free qt-graphs{P4, C4}-freethreshold{P4, C4, 2K2}-free
Figure 1: Subclasses of cographs.

we show in this paper), we obtain the inclusion properties for the above families of graphs that we
depict in Figure 1.

Firstly, we characterize weakly quasi-threshold graphs by a finite set of forbidden subgraphs.
We exhibit properties of the cotree of a weakly quasi-threshold graph similar to those of a cograph.
Based on those structural properties we design a simple linear-time recognition algorithm for such
graphs. We also show how our algorithm can be extended to support certificates within the same
time bound. In case of membership in the weakly quasi-threshold graph class our algorithm provides
as certificate a structure for the input graph that characterizes the class. In case where the input
graph G is not weakly quasi-threshold graph we show that our algorithm can support an evidence
of non-membership by reporting a forbidden subgraph of G. In addition we describe a linear-time
algorithm for finding an induced weakly quasi-threshold subgraph of maximum number of vertices
in a given cograph using our characterizations.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G, we denote
its vertex and edge set by V (G) and E(G), respectively, with n = |V (G)| and m = |E(G)|. For a
vertex subset S ⊆ E(G), the subgraph of G induced by S is denoted by G[S]. Moreover, we denote
by G − S the graph G[V (G) − S] and by G − v the graph G[V (G) − {v}]. The complement of a
graph G is denoted by G.

The neighborhood NG(x) of a vertex x of the graph G is the set of all the vertices of G which
are adjacent to x. The closed neighborhood of x is defined as NG[x] = NG(x) ∪ {x}. If S ⊆ V (G),
then the neighbors of S, denoted by NG(S), are given by

⋃
x∈S NG(x)− S.

A vertex x of G is universal if NG[x] = V (G) and is isolated if it has no neighbors in G. Two
vertices x, y of G are called false twins if NG(x) = NG(y). A clique is a set of pairwise adjacent
vertices while an independent set is a set of pairwise non-adjacent vertices. A chordless cycle on k

vertices is denoted by Ck and a chordless path on k vertices is denoted by Pk. The complement of
the graph consisting of two disjoint P3’s is denoted by co-(2P3).

A graph is connected if there is a path between any pair of vertices. A connected component of
a disconnected graph is a maximal connected subgraph of it. The largest induced subgraph refers
to the induced subgraph having the maximum number of vertices.

Given two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), their union is G1 ∪ G2 =
(V1 ∪ V2, E1 ∪E2). Their join G1 + G2 is the graph obtained from G1 ∪G2 by adding all the edges
between the vertices of V1 and V2.

For a given fixed graph H, any graph is called H-free if it does not contain an induced subgraph
isomorphic to H. For a set of graphs H, a graph that is H-free for all H ∈ H is called H-free.

2

Cographs and cotrees: The class of cographs, also known as complement reducible graphs, is
defined recursively as follows:

(c1) a single vertex is a cograph;

(c2) if G1 and G2 are cographs, then G1 ∪G2 is also a cograph;

(c3) if G1 and G2 are cographs, then G1 + G2 is also a cograph.

The class of cographs coincides with the class of P4-free graphs [5].
Along with other properties, it is known that cographs admit a unique tree representation, called

a cotree [4]. For a cograph G its cotree, denoted by T (G), is a rooted tree having O(n) nodes. The
vertices of G are precisely the leaves of T (G) and every internal node of T (G) is labelled by either 0
(0-node) or 1 (1-node). Two vertices are adjacent in G if and only if their least common ancestor in
T (G) is a 1-node. Moreover, if G has at least two vertices then each internal node of the tree has at
least two children and any path from the root to any node of the tree consists of alternating 0- and
1-nodes. The complement of any cograph G is a cograph and the cotree of the complement of G is
obtained from T (G) with inverted labeling on the internal nodes of T (G). Note that we distinguish
between vertices of a graph and nodes of a tree. Cographs can be recognized and their cotrees can
be computed in linear time [5, 8, 2].

3 A characterization of weakly quasi-threshold graphs

Bapat et al., introduced in [1] the class of weakly quasi-threshold graphs (or wqt graphs for short)
and defined the given class as follows:

(w1) a single vertex is a wqt graph;

(w2) if G1 and G2 are wqt graphs then G1 ∪G2 is a wqt graph;

(w3) if G is a wqt graph then adding a universal vertex in G results in a wqt graph;

(w4) if G is a wqt graph then adding a vertex in G having the same neighborhood with a vertex of
G results in a wqt graph.

By definition the class of cographs and wqt graphs have certain similarities. Clearly every wqt
graph is a cograph but the converse is not true. Properties c1,c2 and w1,w2 completely coincide,
whereas properties w3–w4 correspond to a restricted version of c3. Moreover it follows that in a
connected wqt graph there is either a universal vertex or a false twin. Then it is not difficult to
see that the class of wqt graphs is closed under taking induced subgraphs, that is, the class of wqt
graphs is hereditary.

In the next lemma we prove an alternative definition of wqt graphs.

Lemma 3.1. The class of wqt graphs can be defined recursively as follows:

(a1) an edgeless graph is a wqt graph;

(a2) if G1 and G2 are wqt graphs then G1 ∪G2 is a wqt graph;

(a3) if G is a wqt graph and H is an edgeless graph then G + H is a wqt graph.

Proof. Properties w2 and a2 are exactly the same. By properties w1 and w2 we have that edgeless
graphs are wqt graphs. We need to show that property a3 can substitute both properties w3–w4.
If G is a wqt graph and H is an edgeless graph then the graph G + H is obtained by first adding a
universal vertex in G and then by the addition of false twins. Hence G + H is a wqt graph.

3

c

d a

f

e b

1

0x 0
y

c
1z

f
1 w

a b d e

Figure 2: A co-(2P3) and its cotree.

For the converse let G be a connected wqt graph. First observe that G can be reduced to a
disconnected wqt graph G[A] by repeatedly removing a universal vertex or a false twin vertex. Let
S be a set of the removal vertices. Let xn, . . . , xk be an order of S where xi is either universal
or false twin in Gi = G[{xi, . . . , xk} ∪ A], n ≤ i ≤ k. We show that there is such an order of
{xn, . . . , xk} where all the false twin vertices appear consecutive. If there is a universal vertex xj

between two false twin vertices xi and xk then swapping the positions of xj and xk keeps the same
property for the resulting order. We apply this operation for every universal vertex between two
false twin vertices and obtain an order of the vertices of S where the false twin vertices appear
consecutive. Observe that the set of the false twin vertices induces an edgeless graph in G. Thus
the join operation between a wqt graph and an edgeless graph is sufficient to construct a connected
wqt graph.

Next we give a characterization of weakly quasi-threshold graphs through forbidden subgraphs.

Theorem 3.2. A graph G is weakly quasi-threshold if and only if G does not contain any P4 or
co-(2P3) as induced subgraphs.

Proof. First observe that a P4 or a co-(2P3) do not have a universal vertex or a false twin. Thus
every graph containing a P4 or a co-(2P3) as an induced subgraph is not wqt graph, since the class
of wqt graphs is hereditary. Therefore every {P4, co-(2P3)}-free graph is wqt graph.

For the converse we need to show that every graph that is not wqt contains either a P4 or a
co-(2P3) as induced subgraph. It is not difficult to see that any graph on three vertices is a wqt
graph. Let G be a non-wqt graph on at least four vertices that does not have a universal or false
twin vertex but every connected proper induced subgraph of G has such a vertex. We distinguish
two cases: (i) G is not a cograph, and (ii) G is a cograph. For the first case G contains a P4 by the
results of [5].

Now we consider the second case. Since G is a cograph, it admits a cotree T (G). By properties
a2 and c2, G must be connected and, thus, the root of T (G) is a 1-node. If the 1-node root of T (G)
has at least one leaf-child then G contains a universal vertex. We thus assume that the root of T (G)
has no leaf-children. By the properties of the cotree, the root of T (G) has at least two children, say
x and y, both being 0-nodes. Note that both x and y have at least two children in T (G). If one of
x or y has only leaves as children in T (G) then those vertices are false twin and induce an edgeless
graph. Thus both x and y have at least one non-leaf child, say z and w, respectively. Observe
that z and w are 1-nodes, since 0- and 1-nodes alternate in each path in T (G). Now there exist
three vertices a, b, c in G corresponding to the subtree rooted at x such that: a and b are adjacent
corresponding to the subtree rooted at z and vertex c non-adjacent to both a and b corresponding
to the subtree rooted at x; see Figure 2 for a schematic illustration. It suffices to consider three
more vertices corresponding to the subtree rooted at y with similar properties. Those six vertices
induce a co-(2P3) in G and thus it completes the proof.

4

4 A linear-time recognition algorithm

In this section we give a linear-time algorithm for deciding whether an arbitrary graph is wqt. Our
basic idea relies on the linear-time construction of the cotree [5] and then test the characterization
of Theorem 3.2 translated into the structural properties of the cotree.

Let G be the input graph. We first apply the linear-time recognition algorithm for checking
whether G is a cograph [5]. If G is not a cograph then we know that G is not a wqt graph as it
contains a P4. Otherwise G admits a cotree T (G) that can be constructed in linear time [5, 8]. Now
it suffices to efficiently check an induced co-(2P3) on G by using the cotree T (G). For that purpose,
we modify T (G) and obtain T ∗ from T (G) by applying the following two operations:

(i) delete the subtree rooted at a 0-node having only leaves as children;

(ii) remove a leaf that has 1-node as parent.

Next we check if every 1-node in T ∗ has at most one child. In case of an affirmative answer we
output that G is a wqt graph; otherwise, we output that G is not a wqt graph.

Correctness of the algorithm is based on the following lemma.

Lemma 4.1. Let G be a cograph and let T ∗ be its modified cotree. Then G is wqt graph if and only
if every 1-node of T ∗ has at most one child.

Proof. By Theorem 3.2 we need to prove that a 1-node of T ∗ has at least two children if and only
if G has an induced co-(2P3). If there exists such a 1-node in T ∗ then it has at least two 0-nodes,
say x and y, as children in T (G) since we only remove leaves from a 1-node. By operation (i) both
nodes x and y have at least one non-leaf child. Such a child is a 1-node in T (G), since x and y are
0-nodes. This then shows an induced co-(2P3) in G because every internal node of T (G) has at least
two children.

For the converse, let T ∗ be the modified tree for which every internal 1-node has at most one child.
We need to prove that in that case G is a wqt graph. We doing so by showing that adding vertices
corresponding to each of the two modified operations results in a wqt graph. Notice that if there
exists a 1-node in T ∗ then its possible child corresponds to a non-edgeless graph. If operation (i) is
applied then adding a set of vertices that induces an edgeless graph or being false twins results in a
wqt graph by properties (w2)–(w3). If operation (ii) applies then adding a universal vertex results
in a wqt graph by property (w3). Therefore G is a wqt graph and we conclude the proof.

Next we show the running time of the above algorithm.

Theorem 4.2. Weakly quasi-threshold graphs can be recognized in O(n + m) time.

Proof. A wqt-graph recognition algorithm is described above; its correctness follows by Theorem 3.2
and Lemma 4.1. We next show that the algorithm can be implemented in time linear in the size of
the input graph G. Cographs can be recognized and their cotrees can be computed in linear time
[5]. Since the number of nodes in the cotree T (G) is O(n), it follows that the modified tree T ∗ can
be obtained in O(n) time by traversing T (G) from the leaves to the root. Moreover checking the
number of children for every internal node of T ∗ takes O(n) time, since the number of nodes in T ∗

may only decrease. Therefore the overall running time of the aforementioned algorithm is bounded
by the running time of the cograph recognition and the cotree construction, that is, O(n + m).

Let us now show that if the input graph G is not wqt graph then we can provide in the same
running time a set of vertices that induces either a P4 or a co-(2P3) in G. In case G is not a cograph
an induced P4 is given as an output by the results of [5]. So we next proceed by assuming that G

is a cograph.
After constructing the cotree T (G) of G, we assign pointers to the vertices of G corresponding

to the leaves of T (G). For every internal node u of T (G) we assign pointers to the leaves of

5

the subtree rooted at u. The latter assignment can be done in O(n) as there are O(n) nodes in
T (G). Constructing T ∗ from T (G) can be done as follows. Every time we remove a subtree we do
not actually remove it from the data structure but we maintain it as a single tree rooted at the
node/vertex that is removed from T (G). Thus after constructing T ∗ we maintain a forest of disjoint
cotrees where each root of a cotree points to the node of T ∗ that used to be its parent in T (G).

Since G is not wqt graph, there must be a 1-node in T ∗ having at least two children by Lemma 4.1.
Let u and v be two of its children in T ∗. By the construction of T ∗ both u and v are 0-nodes having
at least two children in T ∗; for otherwise, they would have been deleted from T (G). Moreover in
T ∗ there is at least one child of x that is a non-leaf and, thus, a 1-node. Let tu be a 1-node child of
u and let tv be a 1-node child of v. In T ∗ nodes tu and tv may have no child but by definition in
T (G) they have at least two children. Thus looking at the children of tu and using their pointers to
the other cotrees we find two vertices that belong in two different subtrees rooted as children of tu.
Let a, b and d, e be such vertices of the subtrees rooted at tu and tv, respectively. Furthermore let c

and f be two vertices of the subtrees of u and v not belonging to the subtrees rooted at tu and tv,
respectively (note that both c and f exist by the properties of a cotree). Then the set {a, b, c, d, e, f}
induces a co-(2P3) in G. By keeping a simple data structure for T ∗ we need O(n) time for finding
the required set. Therefore in the same running time of our algorithm for recognizing wqt graph we
either output the modified tree T ∗ for G having the property described in Lemma 4.1 or report an
induced P4 or co-(2P3) of G.

Theorem 4.3. Given a graph G there is an O(n + m) algorithm that reports “yes” if G is weakly
quasi-threshold graph or either an induced P4 or co-(2P3) of G otherwise.

Largest weakly quasi-threshold graphs in cographs: As already mentioned every wqt graph
is a cograph but the converse is not necessarily true. With the following theorem we show that the
problem of removing the minimum number of vertices from a cograph so that the resulting graph
is wqt can be done in linear time. Note that the proposed algorithm can serve as a recognition
algorithm as well.

Theorem 4.4. Given a cograph G there is an O(n + m) algorithm that finds a largest induced
weakly quasi-threshold subgraph of G.

Proof. We first describe such an algorithm. Let T (G) be the cotree of G and let T ∗ be the modified
cotree. For a node u of T (G) we define the following parameters with respect to the induced
subgraph Hu of G corresponding to the leaves of the subtree rooted at u: (i) the number of vertices
of Hu, denoted by n(u), (ii) the maximum clique of Hu, denoted by MC(u), and (iii) the maximum
independent set of Hu, denoted by MI(u). For every node u those values are denoted by a triple
(n(u), MC(u), MI(u)).

Our algorithm starts by traversing both T (G) and T ∗ from the leaves to the root and computes
for each node of T (G) a largest induced wqt subgraph; the one computed at the root of T (G)
provides the largest induced wqt subgraph of G. The computed graph is represented by a cotree
T ′ that we construct during the traversal of T (G). Furthermore every time the algorithm visits
a node u of T (G) it computes the triple (n(u),MC(u), MI(u)). As an initialization step we let
(1, {v}, {v}) be the triple of each leaf v in T (G). Let u be an internal node of T (G) and let
u1, u2, . . . , uk be the children of u in T (G). If u is a 0-node then the algorithm assigns to u the
triple (

∑
n(ui),MC(u′i),

⋃
MI(ui)) where u′i is the child having the maximum |MC(ui)|, and copies

node u in T ′. If u is a 1-node and u has at most one child in T ∗ then according to Lemma 4.1 we
do not modify its subtree which means that we assign to u the triple (

∑
n(ui),

⋃
MC(ui), MI(u′i))

where u′i is the child having the maximum |MI(ui)|, and we copy u in T ′. We are left with the
case that u is a 1-node and u has at least two children in T ∗. In such a case we need to modify
the subtree rooted at u. Let u∗1, u

∗
2, . . . , u

∗
` be the children of u in T ∗; note that each child u∗1 is a

0-node, 1 ≤ i ≤ `. Based on Lemma 4.1 we modify every subtree in T (G) rooted at u∗i except that

6

u∗p having the maximum value among min{n(u∗i) − |MC(u∗i)|, n(u∗i) − |MI(u∗i)|}. For every other
node u∗j 6= u∗p we do the following operations: if |MC(u∗j)| > |MI(u∗j)| then we delete the subtree
rooted at u∗j and add the vertices of MC(u∗j) as children of u; otherwise we remove the nodes of the
subtree rooted at u∗j and add the vertices of MI(u∗j) as children of u∗j . In the last case we assign
to u∗j the triple (|MI(u∗j)|, {v}, MI(u∗j)), where v ∈ MI(u∗j). The modifications are applied in T ′ by
copying u with its new children and the assigned triple for u is exactly the same as in the previous
case for the 1-node with respect to the triples of its new children.

For the correctness of the algorithm we use Lemma 4.1. Observe first that each triple (n(u),
MC(u), MI(u)) of a node u is corrected computed according to the results in [4]. Clearly the
computed tree T ′ is by definition a cotree. Note also that in the modified tree of T ′ every 1-
node has at most one child by construction since every modified subtree in T (G) corresponds to an
independent set or a clique meaning that such nodes are deleted in the modified tree of T ′. Hence the
computed subgraph is a wqt graph by Lemma 4.1. Furthermore notice that the algorithm removes
vertices only if there is a 1-node u having at least two children in T ′. By Lemma 4.1 at most one
child must remain in T ′. Let u∗p be such a child. For every child u∗j 6= u∗p of u we need to make the
corresponding subgraph either an independent set or a clique since by property (a3) of Lemma 3.1
only edgeless subgraphs or universal vertices can be added to the subgraph corresponding to u∗p.
Thus the maximum independent set or clique minimizes the number of the removal vertices in every
subgraph corresponding to a node u∗j . For every child u∗i of u in T ∗ let ki = max{|MC(u∗i)|, |MI(u∗i)|}.
The minimum number of vertices that needs to be removed from each subgraph corresponding to a
node u∗i is given by n(u∗i)− ki. Observe that the algorithm chooses the node u∗p with the maximum
value n(u∗i)−ki. Assume that a node u∗q 6= u∗p gives a largest subgraph, that is,

∑
i 6=q(n(u∗i)−ki) <∑

i 6=p(n(u∗i)− ki). But then we obtain that n(u∗p)− kp < n(u∗q)− kq which is contradiction since we
pick node u∗p having the maximum such value. Therefore the computed graph for T ′ is the largest
induced wqt subgraph of G.

Regarding the running time of the described algorithm, note that the number of nodes of T (G)
and T ∗ is O(n) meaning that all steps can be executed in O(n) time. Constructing the cotree T (G)
and the modified tree T ∗ takes O(n + m) time which concludes the proof.

5 Concluding remarks

We characterized weakly quasi-threshold graphs by two forbidden induced subgraphs, namely P4 and
co-(2P3). Based on this characterization we proposed a simple linear-time recognition algorithm for
such graphs. We also showed that the proposed algorithm can be extended to provide certificates of
non-membership in linear time. As an open question we state an efficient fully dynamic recognition
algorithm for the class of weakly quasi-threshold graphs (especially for edge modifications since
vertex additions have the property that a vertex v can be added in a wqt graph G if and only if v

is either universal or v has a false twin in a connected component of G).

References

[1] R.B. Bapat, A.K. Lal, and S. Pati. Laplacian spectrum of weakly quasi-threshold graphs. Graphs and

Combinatorics, 24:273–290, 2008.

[2] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear time LexBFS cograph recognition

algorithm. SIAM Journal on Discrete Mathematics, 22:1277–1296, 2008.

[3] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete

Mathematics and Applications, 1999.

[4] D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Discrete Applied Mathe-

matics, 3:163–174, 1981.

7

[5] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM Journal

on Computing, 14:926–934, 1985.

[6] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second edition. Annals of Discrete

Mathematics 57. Elsevier, 2004.

[7] F. Gurski. Characterizations for co-graphs defined by restricted NLC-width or clique-width operations.

Discrete Mathematics, 306:271–277, 2006.

[8] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition. Discrete Applied

Mathematics, 145:183–197, 2005.

8

