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ABSTRACT
Representing relational data, modeled as a graph, provides
visual insight into several application areas. In practice,
however, data may contain small but significant errors mainly
due to human interaction. Here we address the problem
of correcting misplaced edges of a given graph based on
straight-line drawings in a plane. In such terms seeking for a
solution on graphs that have no repeated pattern nor regular
structure seems inapplicable. Therefore we focus on struc-
tured graphs representing spatial relationships, that arise in
a wide range of applications, and we consider the quality of a
drawing as a measure of a graph’s correctness. To define an
ordering among the modified graphs, we formalize the evalu-
ation of a drawing with respect to certain aesthetic criteria.
We give a polynomial-time algorithm that computes a modi-
fied graph with a better layout than the original graph when
only single-edge replacements are allowed. We study the be-
havior of the algorithm and illustrate its results on several
test sets taken from a sparse matrix collection. In all cases
the proposed algorithm manages to identify and correct the
misplaced edges within a small number of modifications.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations, Pattern matching

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
graph drawing, data correction, edge modifications, drawing
aesthetics, force directed placement
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Automated graph drawing appears in many application
areas with an increasing interest on its theoretical and al-
gorithmic aspects [3, 23]. The main goal is to represent
relational data, modeled as a graph, in a meaningful way
that reveals an underlying structure. Relational data that
need this kind of visualization arise from several applica-
tion areas such as, database design, data mining, structural
and software engineering, and social networks (see [3, 23]).
One recent exposition is the usage of visualization techniques
through concentric drawings that aim to detect user activi-
ties that appear at regular time intervals [2]. Another impor-
tant application is to visualize graphs created from sparse
matrices which represent spatial relationships [12]. In this
framework graph drawing is successfully applied in order
to expose several characteristics of the underlying matrices
(e.g., correspondence with a 2D or 3D geometry), since non-
zero elements of a sparse matrix correspond to edges of a
graph. For graphs coming from the application area men-
tioned above, there may be misplaced edges due to lacking
data or human misinterpretation so that the graph fails to
be drawn as expected. In fact high-quality and large scaled
data are often not available due to legal, economic, tech-
nological or other obstacle [8]. Then one is interested in
computing a modified graph with an improved readability.
More precisely if a graph is used to model experimental data
then edge modifications correspond to correcting errors in
the data: adding an edge corrects a false negative error and
deleting an edge corrects a false positive error. Therefore in
the context of graph drawing, edge modifications may assist
to reveal and correct “false” edges.

Graph modification problems related to graph drawing
have been studied from the complexity point of view. Close
related to graph drawing is the detection of an axial or ro-
tational symmetry. If three graph modification operations
are allowed (vertex deletion, edge removal, and edge contrac-
tion) then computing the minimum number of modifications
that result in a symmetric graph is NP-complete [9]. Based
on the latter result, Chuang and Yen [10] considered sym-
metry as the underlying aesthetic criterion and proposed an
algorithm that given the modification operations, a better
drawing is output than the conventional spring algorithms.
Notice that the three mentioned operations always result in
a subgraph of the original graph. Allowing only edge modifi-
cations (edge removals and edge additions) has been consid-
ered through an integer linear programming technique that
minimizes the number of edge modifications [6]. It is impor-
tant to notice that the running time of the later algorithm
is exponential in the size of the input graph.



More generally, if the objective of the graph property for
the modification problem is restricted to most of the inter-
esting graph classes (e.g., bipartite, chordal, interval, perfect
graphs), then computing the modified graph is NP-hard [16,
24]. Close related to graph drawing is the class of planar
graphs that admit layouts with no edge crossings. With re-
spect to edge modifications it is meaningful to minimize the
number of edge removals of an arbitrary graph that results
in a planar graph (minimum planar deletion); such a com-
putation is again NP-complete [27]. However planar graphs
are closed under edge removals. This gives rise to a linear-
time algorithm for computing a minimal set of edges whose
removal results in a planar graph (minimal means that no
subset of the removal edge is enough to give another planar
graph): if no single edge can be removed then we reach a
maximal planar subgraph of the original graph [20]. An-
other related problem is determining the crossing number of
a single-edge modified planar graph [7, 17]. Such graphs are
called near-planar graphs and are exactly the graphs con-
taining an edge whose removal zeros the crossing number.
In terms of edge modifications we want to add an edge in a
planar graph such that the output drawing is the best pos-
sible; the latter problem even when adding a vertex can be
solved in polynomial time [17]. Apart from the modification
towards a specific graph class, the modification task that we
consider here seeks for the best layout of a graph.
More precisely, in this work we consider an edge modifi-

cation scheme based on graph layouts that encode spatial
relationships. More precisely we apply at most k edge mod-
ifications on a given graph and we seek for a modified graph
with the same number of edges that minimizes a specific
quantity depending on the layout. In fact we assume that
the input graph contains misplaced edges which we attempt
to correct guided by its layout. Thus we use the drawing of a
graph as a measure of the graph’s correctness. Notice, how-
ever, that asymmetric graphs (with irregular structures) ad-
mit tangled drawings compared to symmetric ones and thus
it is unreasonable to modify graphs towards irregular struc-
tures. We give a polynomial-time algorithm that computes
a modified graph with a better readability than the original
graph when only single-edge replacements are allowed. The
layout of a graph is achieved through a force-directed algo-
rithm by taking into account only its structural properties
(no rendering parameters are considered). Similar to the lay-
out method used in [12], we apply such a drawing technique
since it exposes symmetry and uniform vertex distribution
[3, 23].
In order to evaluate the drawing of a graph, several met-

rics have been proposed [4, 13, 19, 25, 26]. Here we in-
voke a subset of the known aesthetics and devise a new aes-
thetic metric that naturally fit in well-structured graphs.
Among the modified graphs we keep the same number of
edges for two reasons. The evaluation of a layout is es-
tablished through aesthetic metrics (e.g., crossing number,
angular resolution) that are proportional to the number of
edges and thus smaller number of edges results in a bet-
ter aesthetic measure. Further from the practical point of
view this is a quite realistic constraint since the number of
the edges (and the number of vertices) can easily be de-
tected whenever the original graph has incorrect such num-
ber. Following the same lines we restrict to several graph
invariants of the original graph (e.g., diameter, minimum
and maximum degree) so that the outcome maintains the

overall structure of the input. Surprisingly all the above
technical details need to be settled for edge modifications
within a graph drawing framework, even when applying an
algorithm that allows only single-edge replacements. We
study the behavior of the proposed algorithm by presenting
several drawing examples taken from the sparse matrix col-
lection given in [12]. The experimental results show that the
proposed approach with the adopted features achieves the
initial graph after a small number of modifications.

The paper is organized as follows. First we give graph-
theoretic notations and definitions. Then we define the
structural properties of the input graph that are maintained
throughout each modified graph. We conclude Section 2
with our proposed metrics needed to evaluate a force-directed
drawing and we formally state the considered problem. In
Section 3 we give in details our algorithm and present its
results on a data set that represents structural, computa-
tional fluid dynamics, and thermal problems. We conclude
the paper in Section 4 by presenting future directions and
potential extensions.

2. PRELIMINARIES
All graphs in this text are undirected and simple. A graph

is denoted by G = (V,E) with vertex set V and edge set E.
We use the convention that n = |V | and m = |E|. For a
vertex subset S ⊆ V , the subgraph of G induced by S is
G[S] = (S, {{u, v} ∈ E | u, v ∈ S}). The neighborhood of a
vertex x of G is NG(x) = {v | {x, v} ∈ E}. The degree of x
is degG(x) = |NG(x)|. The minimum and maximum degree
of G are denoted by δ(G) and ∆(G), respectively. If S ⊆ V ,
then NG(S) =

∪
x∈S NG(x) \S. We will omit the subscripts

when there is no misunderstanding. For two sets S1 and
S2 we write S1 △ S2 to denote their symmetric difference.
For two vertices u, v of G we call {u, v} a non-edge of G if
{u, v} /∈ E. We denote by F the set of non-edges of G. For
an edge e ∈ E we write G−e to denote the graph (V,E\{e})
and for a non-edge f ∈ F we write G+f to denote the graph
(V,E ∪ {f}).

A graph is connected if there is a path between any pair
of vertices. A connected component of G is a maximal con-
nected subgraph of G. The number of connected compo-
nents of G is denoted by cc(G). For a pair of vertices (u, v),
we write d(u, v) to denote the number of vertices in a short-
est path between u and v. The diameter d(G) of G is defined
to be maxu,v∈V d(u, v). The length of the shortest cycle in
G is called girth, denoted by g(G). If a graph has no cycles
then g(G) is undefined.

2.1 Graph invariants of the initial graph
Towards the selection of the modified graph H, one of our

main ingredients is that the overall structure of the original
graph G should not change in H. This comes from the fact
that the original graph is easily noticed if certain structural
properties are fulfilled (see also [1]). For instance it does not
make sense to modify the number of connected components.
Further we use as boundary vertices of G the ones with the
minimum and maximum degree. Those boundary vertices in
the modified graph H should not exceed the corresponding
bounds obtained from G so that regular modified graphs are
suitable candidates. It is also known that the diameter and
the girth of a graph are basic combinatorial characteristics
and have tight connections to many other graph properties
[5]. Therefore the corresponding values of both graphsG and



H should be the same. Observe that the above properties do
not depend on a drawing of G but rely only on the structure
imposed by G. In order to capture the structure of G, we
summarize in a formal way these properties in the following
definition.

Definition 1. Let G and H be two graphs both on n ver-
tices and m edges. We write that H ∈ Π(G) if the following
conditions hold:

(i) cc(H) = cc(G), (ii) δ(H) ≥ δ(G) and ∆(H) ≤ ∆(G),

(iii) d(H) = d(G), and (iv) g(H) = g(G).

Let us note that given a graph G the most time consuming
steps in order to compute all these invariants are the ones
involved the diameter and the girth. Both of these variants
can be computed in O(nm) time [11, 22] and hence testing
whether a modified graph H satisfy the property Π(G) can
be done in O(nm) time. Also note that such a restriction on
the class of graphs Π(G) improves the computational cost
for searching a modified graph H, by reducing the searching
area of graphs with similar invariants. Certainly there are
several other graph invariants (or even width parameters)
that reveal structural properties of a graph [14], but here we
focus on invariants that allow efficient computation.

2.2 Evaluating a graph layout
Graph layout algorithms usually conform explicitly or im-

plicitly to one or more aesthetic criteria (i.e., number of
edges crossings, symmetries, drawing area, etc.). In this
work we focus on classical force-directed algorithms that at-
tempt to minimize a certain energy function [3]. Although
an important feature of force-directed algorithms is that
they produce drawings with a high degree of symmetry [15],
their energy function is not directly mapped to specific aes-
thetic measure. For this reason we apply formal metrics for
evaluating the aesthetic presence of a straight-line drawing.
Here we define measures that are continuous and scaled in
range [0, 1], where 0 indicates the best score and 1 is the
worse. Following this assumption, the lowest the score of
a measure the highest the aesthetic quality. Scaling these
quantities ensures that their values are independent of the
nature (size, structure) of the underlying graph. They are
also intended to be applicable in the analysis of drawings of
any graph of any structure or size, and allow quantitative
comparisons between drawings of different graphs.
Several metrics have been proposed in order to evaluate

a drawing of a given graph [4, 13, 19, 25, 26]. Such metrics
have been successfully applied in order to estimate different
layouts of the same graph. Here we focus on evaluating
different drawings of edge modified graphs. Thus we invoke a
subset of the aesthetics that naturally fits in well-structured
graphs coming from specific applications. Our goal is to
use independent and competitive aesthetic metrics that will
contribute equally in the overall evaluation. Furthermore,
scaling of the proposed metrics is performed with a different
strategy than the ordinary methods. We consider the input
graph to be the worse in terms of aesthetic measures and we
scale all metrics of a modified graph against it. Thus our
proposed metrics will be presented in terms of the original
drawing of the input graph.
Let G0 = (V0, E0) be the input graph and let G = (V,E)

be a modified graph such that V0 = V with n = |V | and
|E0| = |E| = m. For the two graphs G0 and G we invoke an

algorithm that computes straight-line drawings in the plane
denoted by Γ(G0) and Γ(G), respectively1. Let q(G) be a
countable quantity (or a metric) on a drawing Γ(G) of graph
G. Then the scaled quantity q̃ of Γ(G) with respect to Γ(G0)
is defined as

q̃(G,G0) =


q(G)

q(G0)
, if q(G) < q(G0);

1, otherwise.

(1)

Thus all scaled metrics are real-valued and constrained to
[0, 1]. We use four different metrics to quantify the quality of
Γ(G) with respect to the drawing of an initial graph Γ(G0).
The first three metrics have already been proposed, whereas
the fourth metric to the best of our knowledge has not been
used.
edge crossings: qcross(G) is the number of edge crossings
in Γ(G) and it is fairly common that such a value must be
small in an easy-to-read drawing. It is fairly common that
an easy-to-read drawing of G must have small number of
edge crossings. Observe that this metric takes integer val-
ues and qcross(G) ≥ 0.

edge lengths: qedge(G) = qext + qstd where qext is the dif-
ference between the maximum and minimum edge lengths,
and qstd is the standard deviation of the edge lengths. In the
ideal case the edge lengths are equal to mean edge length and
that corresponds to the case where all edges have the same
length. The rationale of this measure is to penalize drawings
with long and short edges (extreme bounds) with respect to
the preferred edge length that is represented by the mean
value. This is a real valued metric and qedge(G) ≥ 0.

angular resolution: qangle(G) = min{|θi − bi|/θi} where θi
is the ideal angle and bi the minimum angle between the
deg(vi) edges incident to vi. In nice drawings every vertex
must have its minimum angle close to its ideal one [25].More
precisely the ideal angle is defined as θi = 2π

deg(vi)
for ver-

tices of deg(vi) ≥ 2. It it known that in a nice drawing
every vertex must have its minimum angle close to its ideal
one, meaning that qangle(G) ≈ 0. It is clear that qangle(G)
is already constrained in 0 ≤ qangle ≤ 1. In Figure 1 we
illustrate the minimum angle metric for vertex u1.

non-adjacent vertex proximity: qprox(G) =
∑n

i=1 κi, where
κi is the number of non-adjacent vertices that are drawn
inside the sphere centered at vi with radius equal to the
longest edge incident to vi. It is not difficult to see that non-
adjacent vertices must not be too close in an easy-to-read
drawing, since for otherwise adjacencies between vertices are
confused. Therefore for every vertex, κi should be as small
as possible and qprox(G) is an integer valued metric where
qprox(G) ≥ 0. In Figure 2 we provide an example of this
metric.

overall evaluation: Scaling on the above metrics is achieved
by Eq 1. Thus the overall aesthetic metric of a drawing of
a graph Γ(G) with respect to Γ(G0) is defined as

W (G,G0) = q̃cross(G,G0) + q̃edge(G,G0)

+ q̃angle(G,G0) + q̃prox(G,G0). (2)

1Although it is a bit ambiguous to use the same drawing
Γ on both graphs G0 and G, hereafter we write Γ(G0) and
Γ(G) to denote two different drawings of different graphs.



Figure 1: An example of minimum angle. In the
left figure we denote by b1 = 30o the minimum an-
gle whereas in the right figure the ideal angle of
120o is shown for a vertex of degree 3. For this case
qangle(G) = 0.75.

Figure 2: Example of non-adjacent vertex proximity
violations. Vertex v4 is inside the sphere centered
at v5 with radius l(e1). Analogously v5 violates the
proximity constraint regarding v4.

(a) Initial graph G0 (b) Modified graph G

Metrics Γ(G0) Γ(G) Scaled metrics Γ(G)
qcross 1 0 q̃cross 0.00

qedge

{
qext 10.02 3.98

q̃edge

{
q̃ext 0.39

qstd 2.37 0.78 q̃std 0.33
qangle 0.77 0.5 q̃angle 0.64
qprox 4 0 q̃prox 0.00

w(·) 18.16 5.26 W (G,G0) 1.36

Figure 3: An example of an edge modification be-
tween two different graphs and a table with the cor-
responding metrics. Note that W (G0, G0) = 5 which
serves also as an upper bound for W (G,G0).

Whenever we write w(G) we refer to the corresponding
quantities q(G) which are not scaled with respect to a draw-

ing of a different graph. Observe that in our implementation
the metrics are weighted equally and this reflects equivalence
among the corresponding aesthetic qualities. We are not
concerned with the distribution of the metric values since
we scale with respect to the initial graph (relative scaling)
without using absolute upper bounds. Furthermore it is not
difficult to see that computing W (G,G0) requires O(nm)
time according to the corresponding definitions. In Figure 3
we illustrate an example of the proposed scaled metric.

Notice that W (G,G0) in Equation 2 contains four metrics
that can be balanced accordingly by simple adding weights
that are associated with each metric. Then the overall met-
ric can be used to achieve other known modification tasks.
For example altering the edges of a non-planar graph in or-
der to minimize the edge crossings (i.e., planar editing) can
be accomplished by setting the weight for the edge crossings
qcross(G) to one and excluding the other three metrics by
setting the corresponding weights to zero. Thus W (G,G0)
can be seen as a more general evaluation of the drawing that
captures (equally weighted) important aesthetic metrics.

2.3 Edge modification problem driven by draw-
ing aesthetics

In general an edge modification problem with respect to a
given property P can be stated as follows. It takes as in-
put a graph G = (V,E) and a non-negative integer k, and
the question is whether there exists a graph H such that
H ∈ P and H is obtained from G by altogether at most k
edge additions and edge deletions. More formally the task is
to find a subset S ⊆ V ×V with |S| ≤ k such that the graph
H = (V,E △ S) satisfies P. If we restrict ourselves so that
|E △ S| = |E| then we are only allowed to move the original
edges of G. By moving (also known as rewiring) an edge e
we mean a modification to the endpoints of e. In such a case
both graphs G and H have the same number of vertices and
edges. This is exactly the problem we are dealing with, re-
lated to nice straight-line drawings of graphs that improve
readability. Hereafter nice drawings refer to layouts with
small measure evaluated by the proposed aesthetic metrics
given in W (H,G). Notice that a movement of an edge cor-
responds to two edge modifications, one for the addition of
a non-edge and one for the deletion of an edge. In the fol-
lowing when we refer to an edge modification we imply a
movement of an edge that typically results from two edge
modifications. We formalize the edge modification problem
in our settings:

Edge Drawing Modifications

Input: An undirected graph G = (V,E) and a non-negative
integer k.

Question: Can we apply to G at most k edge replacements
in order to attain a graph H that achieves the minimum
W (H,G)?

3. AN ALGORITHM FOR SINGLE-EDGE
MODIFICATIONS

Here we consider the modification problem under the con-
straint that only single-edge replacement is allowed at each
modification step. In this situation we will not achieve the
minimum number of edge modifications but we will study
the outcome of an algorithm that considers at each modi-
fication step the graph having the minimum aesthetic eval-
uation. Clearly there can be fewer number of single-edge



modifications that lead to the final graph.
We assume that a set S ⊆ V is given together with the ini-

tial graph G = (V,E) so that the allowed edge modifications
take place only in G[S]. The set S reflects an estimation of
the modified area taken from an initial layout of G and note
that in the worst (unbiased) case S = V . Let G = (V,E)
be a graph, let F be the set of its non-edges and let S ⊆ V .
We denote by H(G) the class of graphs that are obtained
from G by removing an edge and adding a non-edge both
incident to vertices of S. That is, for every H ∈ H(G), there
are e ∈ E and f ∈ F with their endpoints in S for which
H = G− e+ f .
Let us now describe the corresponding problem in terms of

single-edge modifications. We are given a graph G = (V,E),
an integer k > 0, and a set S ⊆ V . The task is to compute
a graph G′ = (V,E′) such that there is a sequence of graphs
G = G0, . . . , Gk′ = G′ with k′ ≤ k and for every 1 ≤ i ≤ k′,
Gi ∈ H(Gi−1), Gi ∈ Π(Gi−1), w(Gi) < w(Gi−1) and Gi

admits the minimum W (Gi, Gi−1). The graph G′ is called
single-edge modified graph within distance k from G. At each
edge modification step we seek for a graph Gi that uniformly
reduces the objective metrics.
Our algorithm tries all possible single replacements in

G[S] and chooses the one having the minimum objective
metric. If at each step there are no more allowed edge mod-
ifications or there is no graph with smaller overall evaluation
with respect to the previous graph, then we output the graph
computed at that step and the algorithm stops. In order to
compare the overall evaluations of two consecutive graphs we
require their difference to be greater than a small constant.
As explained previously before computing and evaluating a
modified drawing, the modified graph must satisfy the graph
properties of the original graph. The formal description of
the proposed algorithm, called Min Search(G, k), is given
below.

Algorithm Min Search(G, k)

Input: a graph G = (V,E), an integer k > 0, and a set S ⊆ V

Output: a single-edge modified graph G′ = (V,E′)
within distance k from G

Let minG = W (G,G)

for each edge e ∈ E and non-edge f ∈ F
with their endpoints in S do

Let G′ = G− e+ f

if G′ ∈ Π(G) then

Compute a drawing Γ(G′) and evaluate w(G′), W (G′, G)

if minG > W (G′, G) then

minG = W (G′, G) and Ĝ = G′

end-for

if W (G,G)−minG < ϵ (no minimum found) or k = 1 then

output G and halt

call Min Search(Ĝ, k − 1)

In our implementation the computed drawing Γ(G) is ach-
ieved by a force directed drawing algorithm that requires
O(n logn + m) time [18]. As already mentioned, testing
whether G′ ∈ Π(G) and computing the evaluation W (G′, G)
can be done in O(nm) time. There are O(|S|2) pairs of
vertices in G[S] that implies a total of O(|S|4) iterations
of the main for-loop. Therefore the total running time of
the algorithm at each call is polynomial in the size of G,
i.e., the algorithm runs in O(|S|4nm) time for a single-edge
modification.
It is not difficult to see that the algorithm terminates in a

finite number of iterations (recursive calls) and avoids repro-
cessing already processed graphs, since it gradually moves

towards the minimum objective metric. During the execu-
tion of the algorithm there are at most k modified graphs
that the algorithm promotes corresponding to its k recursive
calls. At each call there are at most |S|4 produced graphs
for consideration. In fact, as illustrated in the next sec-
tion, only few of these candidate graphs are promoted for
computing and evaluating their drawing. Among the pro-
duced graphs that satisfy the graph properties Π(G), the
algorithm outputs the graph G′ with the minimum w(G′).
However it is not guaranteed that the resulting graph G′

requires exactly k edge modifications since there might be
fewer edge modifications resulting to G′. We illustrate that
the algorithm Min Search(G, k) performs well in practice in
order to untangle the final drawing with small number of
modifications.

3.1 Implementation and results
We have implemented algorithm Min Search(G, k) using

the Open Graph Drawing Framework (OGDF) C++ library
which provides sophisticated algorithms and data structures
[21]. For drawing every intermediate graph we apply the fast
multipole multilevel method (FMMM) introduced in [18].
Notice that any force-directed drawing algorithm can be
adopted for producing the intermediate layouts; also in [12]
a similar drawing algorithm is applied for the same group of
tests.

The test graphs presented here are taken from the sparse
matrix collection given in [12] representing structural, com-
putational fluid dynamics, and thermal problems. In Table 1
we present a short description and the corresponding appli-
cation area for each case.

In order to illustrate the edge modifications steps of the
algorithm we give an example shown in Figure 4 that is not
contained in the sparse matrix collection [12]. The particu-
lar figure contains the overall computed sequence consisting
of three graphs. For every other example we present two
graphs, the initial graph G0 with the selection of the ver-
tices contained in S and the modified graph Gk produced
by the algorithm with input k. We use dark grey color for
the vertices of S ⊂ V except for the cases presented in Fig-
ures 4 and 5 in which we set S = V . In each example taken
from the sparse matrix collection [12], the initial graph is
artificially obtained by rewiring a small number of edges.

The rewiring is performed by a uniform random selection
of four endpoints that correspond to a removal and insertion
of an edge. During an edge modification we require the
resulting graph to preserve the initial graph invariants. A
small number of random modifications were tested for each
case and all of them resulted in the corresponding initial
graph. Furthermore the selection for S performed on G0 is
quite realistic; i.e., S corresponds to a non-symmetric and
irregular area that is easily detected in the layout.

Regarding the running time the algorithm is heavily de-
pended by the size of the input graph and the size of selected
area as already described. However in practice we achieve
acceptable running times since we allow only a subset of
the produced graphs to be drawn and evaluated through
the graph invariant criterion. We have not observed any di-
vergence from the expected theoretical computational cost
and in each example the measured running time matches
the corresponding bound. In Table 2 we report the percent-
age of the promoted graphs that match the properties of
the input graph. Notice that the girth of the input graph



(a) Initial graph G0 (b) Graph G1

(c) Modified graph G2

Figure 4: An example of 2 edge modifications where
S = V for any k ≥ 2. Observe that if we replace
the edge {10, 5} by {10, 8} in G0 then we decrease
the metric qcross(G0) and the value that contributes
to the minimum angle qangle(G0) (by increasing the
degree of vertex 8). In a similar way the algorithm
Min Search(G, k) replaces the edge {11, 5} of G1 by
{11, 9} ending up with the graph G2.

plays a crucial role for the number of promoted graphs as
depicted in the examples rdb200, grid1_dual, and pde900

since only a few of the tested graphs have shortest cycle of
length four. On the other hand, the minimum and maxi-
mum degree maintain a small amount of considered graphs
as shown in the examples lund_a and lshp_265. In general
the combination of all proposed invariants ensures that more
than half of the produced graphs are discarded, leading to a
significant speed-up of the whole process.
There are cases for which the algorithm reveals a desired

graph for any k ≥ c where c is a specific constant, meaning
that the algorithm halts after exactly c edge modifications.
Cases for which c equals the minimum number of misplaced
edges are given in Figures 6, 7, 9, 10, and 12. On the other
hand, examples of the algorithm performing more modifica-
tions than expected are depicted in Figures 5 and 11. How-
ever there are also examples that the algorithm reaches a
desired layout, though it continues to produce further modi-
fied graphs. This comes from the fact that the desired graph
might not have the smaller evaluation among its single-edge
modified graphs. Thus in such cases it is expected that the
algorithm does not always produce the desired graph within
the computed sequence of graphs. We write that the algo-
rithm halts for k = c if for k > c the algorithm performs
strictly more than c steps. An example for k = c is pre-
sented in Figure 8. In Table 2 we summarize our results on
the test graphs.

(a) Initial graph G0 (b) Modified graph G6

Figure 5: (lap_25) An example of 6 edge modifica-
tions where S = V for any k ≥ 6. Notice that G6 can
be obtained from G0 by modifying only 2 edges.

(a) Selecting S on G0 (b) Modified graph G3

Figure 6: (lund_a) An example of 3 edge modifica-
tions for any k ≥ 3.

(a) Selecting S on G0 (b) Modified graph G2

Figure 7: (can_187) An example of 2 edge modifica-
tions for any k ≥ 2.

(a) Selecting S on G0 (b) Modified graph G1

Figure 8: (rdb200) An example of a single edge mod-
ification for k = 1.

4. CONCLUDING REMARKS
We have presented a polynomial-time algorithm for single-



(a) Selecting S on G0 (b) Modified graph G2

Figure 9: (grid1_dual) An example of 2 edge modi-
fications for any k ≥ 2.

(a) Selecting S on G0 (b) Modified graph G3

Figure 10: (lshp_265) An example of 3 edge modifi-
cations for any k ≥ 3.

(a) Selecting S on G0 (b) Modified graph G5

Figure 11: (dwt_419) An example of 5 edge modifica-
tions for any k ≥ 5. Notice that G5 can be obtained
from G0 by modifying only 2 edges.

edge modifications based on the layouts of graphs that en-
code spatial relationships. We have considered the drawing
of a graph as a measure of the graph’s correctness and pro-
posed a composite metric based on aesthetic criteria. Fur-
ther investigation would include extension to other aesthetic
metrics (such as the drawing area or orthogonality [25]). As
shown in the presented figures it is natural to seek for an au-
tomatic calculation of the precomputed set S which reflects
an estimation of the area to be modified. Some prelimi-
nary results show that the proposed metrics can be used as

(a) Selecting S on G0

(b) Modified graph G2

Figure 12: (pde900) An example of 2 edge modifica-
tions for any k ≥ 2.

Name Description Application

lap_25 Laplacian on a 5
by 5 grid

finite element structural
problem

lund_a Lund eigenvalue
problem

generalized eigenvalue
problem

can_187 symmetric pat-
tern

finite element structures
in aircraft design problem

rdb200 reaction-diffusion
model

fluid dynamics problem

grid1_dual 2D/3D dual grid finite element problem

lshp_265 symmetric ma-
trix

L-shape thermal problem

dwt_419 symmetric ma-
trix

structural ship design
problem

pde900 2D/3D grid partial differential equa-
tion problem

Table 1: Description and application areas of the
test graphs taken from [12].

a vertex scoring mechanism. More specifically vertices can
be ranked according to their contribution on the constituent



Name n m |S| % ∈ Π(G) kmin output
lap_25 25 72 25 39.8% 2 ∀k ≥ 6
lund_a 147 1151 20 7.8% 3 ∀k ≥ 3
can_187 187 651 63 37.2% 3 ∀k ≥ 2
rdb200 200 460 42 8.05% 1 for k = 1

grid1_dual 224 420 45 0.7% 2 ∀k ≥ 2
lshp_265 265 744 51 1.5% 3 ∀k ≥ 3
dwt_419 419 1572 53 44.1% 2 ∀k ≥ 5
pde900 900 1740 44 1.02% 2 ∀k ≥ 2

Table 2: A summary of the experimental results
on the test graphs. The fifth column (% ∈ Π(G))
corresponds to the percentage of promoted graphs
that satisfy the invariant properties. The last two
columns correspond to the minimum number of edge
modifications and the number of edge modifications
performed by the algorithm Min Search(G, k), re-
spectively.

metrics. Initial experimentation reveal that such a ranking
scheme is quite efficient in locating edges that are candidate
for removal, though potential non-edges that are candidate
for addition need a more careful analysis. Finally the overall
computational time could be reduced by introducing a force-
directed drawing algorithm that uses the proposed metrics
as edge-weights; the weights operate relaxing factors in order
to unfold “ruined” areas.
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