Strongly chordal and chordal bipartite graphs are sandwich monotone

Pinar Heggernes¹ Federico Mancini¹ Charis Papadopoulos² R. Sritharan³

¹Dept. of Informatics, University of Bergen, Norway ²Dept. of Mathematics, University of Ioannina, Greece ³Dept. of Computer Science, University of Dayton, USA

The 15th Int'l Computing and Combinatorics Conference COCOON 2009 $\langle \Box \rangle \langle \overline{C} \rangle$

Strongly chordal and chordal bipartite graphs are sandwich monotone

Pinar Heggernes¹ Federico Mancini¹ Charis Papadopoulos² R. Sritharan³

¹Dept. of Informatics, University of Bergen, Norway

²Dept. of Mathematics, University of Ioannina, Greece ³Dept. of Computer Science, University of Dayton, USA

The 15th Int'l Computing and Combinatorics Conference COCOON 2009

(日) (四) (코) (코) (코)

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

Overview

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

- Strongly Chordal graphs subclass of chordal graphs
- Strongly Chordal graphs are sandwich monotone constructive proof
- Minimal Strongly Chordal completions (characterizations)

2/19 イロ > イ 団 > イ ミ > イ ミ > ミ の Q (や

Overview

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

- Strongly Chordal graphs subclass of chordal graphs
- Strongly Chordal graphs are sandwich monotone constructive proof
- Minimal Strongly Chordal completions (characterizations)
- Chordal Bipartite graphs

close related to Strongly Chordal graphs

- Chordal Bipartite graphs are sandwich monotone
- Minimal Chordal Bipartite completions (characterizations)

• A graph class C is sandwich monotone: Given two graphs $G_0 = (V, E) \in C$ and $G_{|F|} = (V, E \cup F) \in C$, there is an edge $f \in F$ such that $\boxed{G_{|F|} - f \in C}$.

• A graph class C is sandwich monotone: Given two graphs $G_0 = (V, E) \in C$ and $G_{|F|} = (V, E \cup F) \in C$, there is an edge $f \in F$ such that $\boxed{G_{|F|} - f \in C}$.

$$\bigcirc G_F = (V, E \cup \{f_1, f_2, \dots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C}$$

$$\bigcirc G_0 = (V, E) \in \mathcal{C}$$

• A graph class C is sandwich monotone: Given two graphs $G_0 = (V, E) \in C$ and $G_{|F|} = (V, E \cup F) \in C$, there is an edge $f \in F$ such that $\boxed{G_{|F|} - f \in C}$.

$$\bigcirc G_F = (V, E \cup \{f_1, f_2, \dots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C}$$

$$\bigcirc G_1 = (V, E \cup \{f_1\}) \in \mathcal{C}$$

$$\bigcirc G_0 = (V, E) \in \mathcal{C}$$

• A graph class C is sandwich monotone: Given two graphs $G_0 = (V, E) \in C$ and $G_{|F|} = (V, E \cup F) \in C$, there is an edge $f \in F$ such that $\boxed{G_{|F|} - f \in C}$.

$$\bigcirc G_F = (V, E \cup \{f_1, f_2, \dots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C}$$

$$G_2 = (V, E \cup \{f_1, f_2\}) \in \mathcal{C}$$

$$G_1 = (V, E \cup \{f_1\}) \in \mathcal{C}$$

$$G_0 = (V, E) \in \mathcal{C}$$

$$G_0 = (V, E) \in \mathcal{C}$$

• A graph class C is sandwich monotone: Given two graphs $G_0 = (V, E) \in C$ and $G_{|F|} = (V, E \cup F) \in C$, there is an edge $f \in F$ such that $\boxed{G_{|F|} - f \in C}$.

$$G_F = (V, E \cup \{f_1, f_2, \dots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C}$$

$$G_{F-1} = (V, E \cup \{f_1, f_2, \dots, f_{|F|-1}\}) \in \mathcal{C}$$

$$G_2 = (V, E \cup \{f_1, f_2\}) \in \mathcal{C}$$

$$G_1 = (V, E \cup \{f_1\}) \in \mathcal{C}$$

$$G_0 = (V, E) \in \mathcal{C}$$

1/2

• Close related to *minimal completion problems*:

Given any graph G = (V, E) and a graph class C, we are looking for a supergraph $H = (V, E \cup F)$ such that $H \in C$ and for every $F' \subset F$: $H' = (V, E \cup F') \notin C$

 \triangleright computing the minimum |F| is usually difficult (NP-complete).

1/2

4 / 1! イロト 4 得 ト 4 声 ト 4 声 ・ うへの

• Close related to *minimal completion problems*:

Given any graph G = (V, E) and a graph class C, we are looking for a supergraph $H = (V, E \cup F)$ such that $H \in C$ and for every $F' \subset F$: $H' = (V, E \cup F') \notin C$

 \triangleright computing the minimum |F| is usually difficult (NP-complete).

• if C is sandwich monotone:

A C completion is minimal if and only if no single *fill edge* (an edge of F) can be removed without destroying C.

1/2

• Close related to minimal completion problems:

Given any graph G = (V, E) and a graph class C, we are looking for a supergraph $H = (V, E \cup F)$ such that $H \in C$ and for every $F' \subset F$: $H' = (V, E \cup F') \notin C$

 \triangleright computing the minimum |F| is usually difficult (NP-complete).

• if C is sandwich monotone:

A C completion is minimal if and only if no single *fill edge* (an edge of F) can be removed without destroying C.

if $\mathcal C$ is sandwich monotone and $\mathcal C$ is recognized in poly-time:

There is a polynomial time algorithm for computing a minimal \mathcal{C} completion.

• Listing all graphs in C with edge constraints COCOON 2008 Input: G = (V, E) and $H = (V, E \cup F)$ such that $H \in C$ Output: list all graphs in C between G and H

2/2

5 / 19 イロト イポト イヨト イヨト ヨー シのへで • Listing all graphs in C with edge constraints COCOON 2008 Input: G = (V, E) and $H = (V, E \cup F)$ such that $H \in C$ Output: list all graphs in C between G and H

• Kijima, Kiyomi, Okamoto, and Uno (COCOON 2008) Efficient solution for chordal graphs

2/2

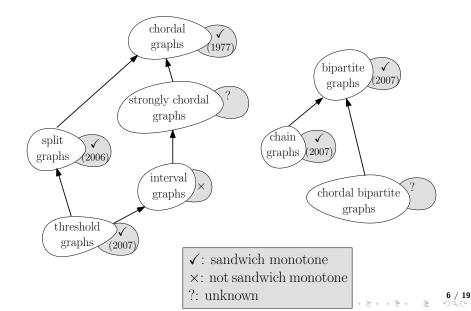
• Listing all graphs in C with edge constraints COCOON 2008 Input: G = (V, E) and $H = (V, E \cup F)$ such that $H \in C$ Output: list all graphs in C between G and H

• Kijima, Kiyomi, Okamoto, and Uno (COCOON 2008) Efficient solution for chordal graphs

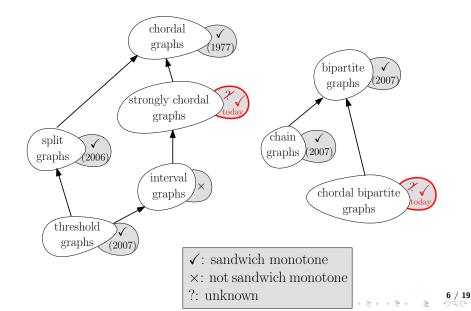
 Observing the previous algorithm...
 the proposed solution can be extended to every sandwich monotone class

5 / 19 ・ロト (同) (ヨ) (ヨ) (ヨ) (つ) (つ)

Which graph classes are sandwich monotone?

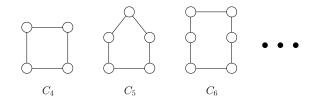


Which graph classes are sandwich monotone?



Strongly Chordal graphs

• Chordal graphs: do not contain C_k , $k \ge 4$

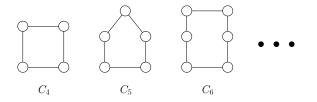


1/3

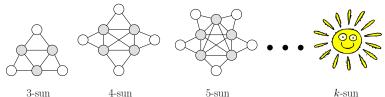
Strongly Chordal graphs

1/3

• Chordal graphs: do not contain C_k , $k \ge 4$



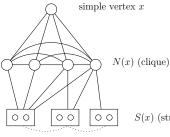
• Strongly Chordal graphs: chordal graphs having no k-sun



3-sun

• Strongly Chordal graphs:

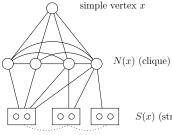
characterized through simple vertices



S(x) (strongly chordal graph)

• Strongly Chordal graphs:

characterized through simple vertices

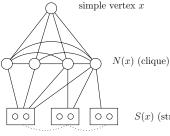


S(x) (strongly chordal graph)

• Simple elimination ordering: given an ordering v_1, \ldots, v_n For every *i*, v_i is simple in $G_i \equiv G[\{v_i, \ldots, v_n\}], 1 \le i \le n$.

• Strongly Chordal graphs:

characterized through simple vertices



S(x) (strongly chordal graph)

イロト イポト イヨト イヨト

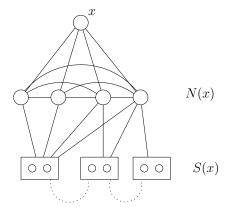
• Simple elimination ordering: given an ordering v_1, \ldots, v_n For every *i*, v_i is simple in $G_i \equiv G[\{v_i, \ldots, v_n\}], 1 \le i \le n$.

Farber, 1983

G is strongly chordal \Leftrightarrow G admits a simple elimination ordering.

Strongly Chordal graphs

• Simple vertices \Rightarrow simple partition

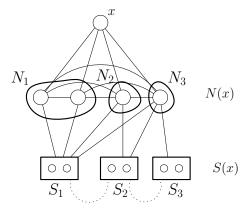


Strongly Chordal graphs

9 / 19

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

• Simple vertices \Rightarrow simple partition



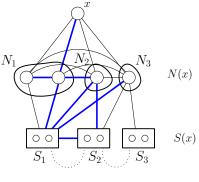
• $N(N_1) \subset N(N_2) \subset N(N_3) \Rightarrow S_1 \prec S_2 \prec S_3$

- Our goal is to prove the following:
 - Given: G = (V, E) and $G' = (V, E \cup F)$ two strongly chordal graphs,
 - there is an edge $f \in F$ such that G' f is strongly chordal.

- Our goal is to prove the following:
 - Given: G = (V, E) and $G' = (V, E \cup F)$ two strongly chordal graphs,
 - there is an edge $f \in F$ such that G' f is strongly chordal.

- For the proof we apply induction on |V|:
 - For |V| ≤ 3: all graphs are strongly chordal (the statement holds)
 - Assume that the statement is true for |V| 1.
 - Prove that the statement holds for |V|.



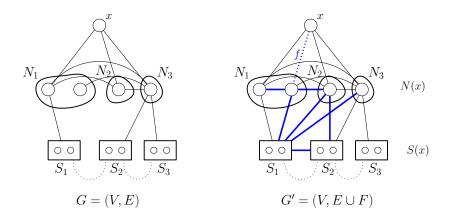


 $G' = (V, E \cup F)$

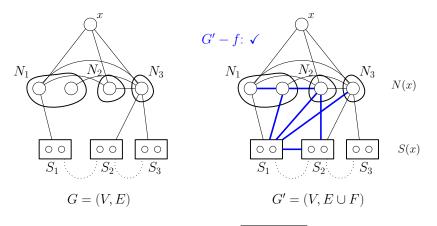
・ロト ・聞 ト ・ 聞 ト ・ 聞 ト ・ 聞

11 / 19

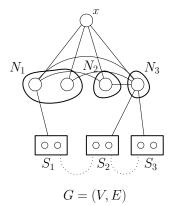
• G': Pick a simple vertex

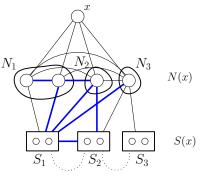


• if x is incident to an added edge $f \in F$



• then G' - f has no C_4 or 3-sun $\Rightarrow G' - f \checkmark$

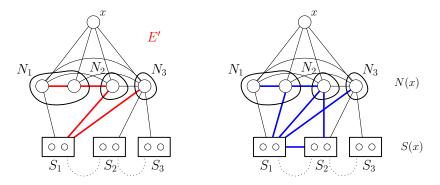




 $G' = (V, E \cup F)$

11 / 19

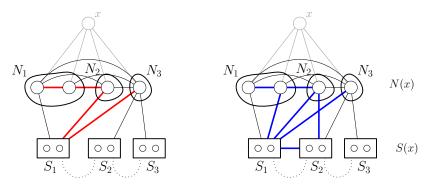
• otherwise, $F \subset N(x) \cup S(x)$



 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

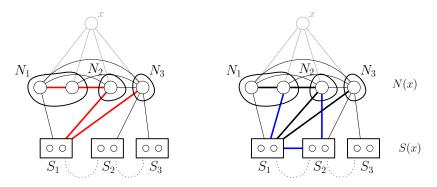
• Add certain type of edges E' to $G = (V, E) \Rightarrow H = (V, E \cup E')$ $E' : N_G(x)$ clique and between N(x) - S(x)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖



 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

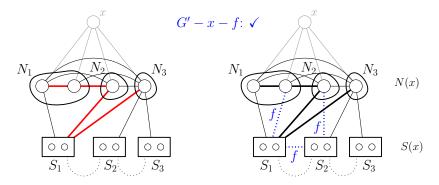
• Remove x from both graphs H and G'



 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

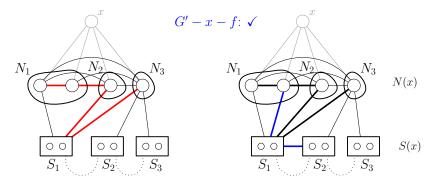
- Both graphs are on |V| 1 vertices
- Both graphs are strongly chordal

 \Rightarrow apply induction



 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

▷ By induction ⇒ (i) $G' - x - f \checkmark$ ▷ By the edges $E' \Rightarrow$ (ii) either $f \in S(x)$ or $f \in N_i S_i$

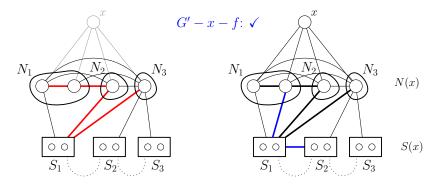


 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

11 / 19

• Construct G' - x - f from H - x and G' - x

Strongly Chordal graphs are Sandwich Monotone 2/3

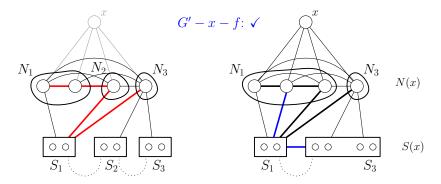


 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

11 / 19

• Add x to G' - x - f

Strongly Chordal graphs are Sandwich Monotone 2/3

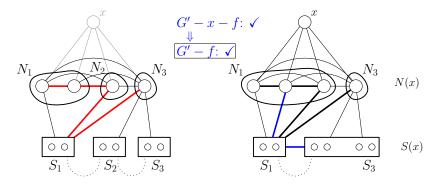


 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

・ロト ・ ア・ ・ ア・ ・ ア・ ・ ア・

• Add x to $G' - x - f \Rightarrow x$ is simple in G' - f(either $f \in S(x)$ or $f \in N_iS_i$)

Strongly Chordal graphs are Sandwich Monotone 2/3



 $G = (V, E) \Rightarrow H = (V, E \cup E') \qquad G' = (V, E \cup F)$

• Add x to $G' - x - f \Rightarrow x$ is simple in $G' - f \Rightarrow G' - f \checkmark$ (either $f \in S(x)$ or $f \in N_i S_i$)

1. Pick a simple vertex x in G'

2. if x is incident to an added edge $f \in F$ then 2.1 $G' - f \checkmark$

else

2.2 Add
$$E'$$
 to $G = (V, E) \Rightarrow H = (V, E \cup E')$

2.3 G' - x - f: by induction on H - x and G' - x

2.4 Add x in G' - x - f as simple $\Rightarrow G' - f \checkmark$

- 1. Pick a simple vertex *x* in *G'* there is always a simple vertex
- 2. if x is incident to an added edge $f \in F$ then

2.1
$$G'-f \checkmark$$

else

2.2 Add
$$E'$$
 to $G = (V, E) \Rightarrow H = (V, E \cup E')$

2.3 G' - x - f: by induction on H - x and G' - x

2.4 Add x in G' - x - f as simple $\Rightarrow G' - f \checkmark$

- 1. Pick a simple vertex *x* in *G'* there is always a simple vertex
- 2. if x is incident to an added edge $f \in F$ then

2.1
$$\boxed{G' - f}$$

by contradiction $G' - f$ has no C_4 or 3-sum

else

2.2 Add
$$E'$$
 to $G = (V, E) \Rightarrow H = (V, E \cup E')$

2.3
$$G' - x - f$$
: by induction on $H - x$ and $G' - x$

2.4 Add x in
$$G' - x - f$$
 as simple $\Rightarrow G' - f \checkmark$

ъ

- 1. Pick a simple vertex *x* in *G'* there is always a simple vertex
- 2. if x is incident to an added edge $f \in F$ then

2.1
$$\boxed{G' - f}$$
 \checkmark by contradiction $G' - f$ has no C_4 or 3-sum

else

2.2 Add E' to $G = (V, E) \Rightarrow H = (V, E \cup E')$ prove that (i) $F \nsubseteq E'$ and (ii) H is strongly chordal

2.3
$$G' - x - f$$
: by induction on $H - x$ and $G' - x$

2.4 Add x in
$$G' - x - f$$
 as simple $\Rightarrow G' - f \checkmark$

- 1. Pick a simple vertex *x* in *G'* there is always a simple vertex
- 2. if x is incident to an added edge $f \in F$ then

2.1
$$\boxed{G' - f}$$
 \checkmark by contradiction $G' - f$ has no C_4 or 3-sum

else

2.2 Add E' to $G = (V, E) \Rightarrow H = (V, E \cup E')$ prove that (i) $F \nsubseteq E'$ and (ii) H is strongly chordal

2.3 G' - x - f: by induction on H - x and G' - xeither $f \in S(x)$ or $f \in N_i S_i$

2.4 Add x in G' - x - f as simple \Rightarrow $G' - f \checkmark$

- 1. Pick a simple vertex x in G' there is always a simple vertex
- 2. if x is incident to an added edge $f \in F$ then

2.1
$$\boxed{G' - f}$$
 \checkmark by contradiction $G' - f$ has no C_4 or 3-sum

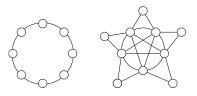
else

- 2.2 Add E' to $G = (V, E) \Rightarrow H = (V, E \cup E')$ prove that (i) $F \nsubseteq E'$ and (ii) H is strongly chordal
- 2.3 G' x f: by induction on H x and G' xeither $f \in S(x)$ or $f \in N_i S_i$

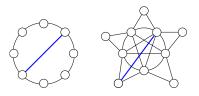
2.4 Add x in G' - x - f as simple $\Rightarrow [G' - f \checkmark]$ N(x) retains the inclusion set property

chord of a cycle: an edge between two nonconsecutive vertices chord of a k-sun: an edge between the indep. set and the clique

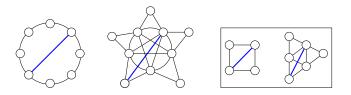
▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶



chord of a cycle: an edge between two nonconsecutive vertices chord of a k-sun: an edge between the indep. set and the clique



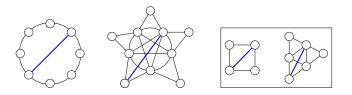
chord of a cycle: an edge between two nonconsecutive vertices chord of a k-sun: an edge between the indep. set and the clique



Let G be strongly chordal and e be an edge

G - e is strongly chordal iff e is not the unique chord of a C_4 or the unique chord of a 3-sun.

chord of a cycle: an edge between two nonconsecutive vertices chord of a k-sun: an edge between the indep. set and the clique



Let G be strongly chordal and e be an edge

G - e is strongly chordal iff e is not the unique chord of a C_4 or the unique chord of a 3-sun.

G' is a minimal strongly completion of an arbitrary graph G iff every added edge is the unique chord of a C_4 or a 3-sun.

Overview

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

- Strongly Chordal graphs subclass of chordal graphs
- Strongly Chordal graphs are sandwich monotone constructive proof
- Minimal Strongly Chordal completions (characterizations)

Overview

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

- Strongly Chordal graphs subclass of chordal graphs
- Strongly Chordal graphs are sandwich monotone constructive proof
- Minimal Strongly Chordal completions (characterizations)
- Chordal Bipartite graphs

close related to Strongly Chordal graphs

- Chordal Bipartite graphs are sandwich monotone
- Minimal Chordal Bipartite completions (characterizations)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■

Chordal bipartite graphs

• Chordal bipartite graphs:

Bipartite graphs that do not contain C_k for $k \ge 6$

 15 / 19

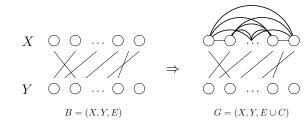
 メロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chordal bipartite graphs

• Chordal bipartite graphs:

Bipartite graphs that do not contain C_k for $k \ge 6$

- Close related to strongly chordal graphs
 - Let B = (X, Y, E) a bipartite graph
 - Make X a clique by adding edges in $X \Rightarrow G$

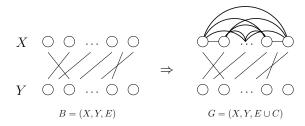


Chordal bipartite graphs

• Chordal bipartite graphs:

Bipartite graphs that do not contain C_k for $k \ge 6$

- Close related to strongly chordal graphs
 - Let B = (X, Y, E) a bipartite graph
 - Make X a clique by adding edges in $X \Rightarrow G$



Dahlhaus, 1991

B is chordal bipartite \Leftrightarrow *G* is strongly chordal

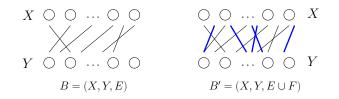
Sandwich monotone

B = (X, Y, E) and $B' = (X, Y, E \cup F)$ two chordal bipartite graphs; there is an $f \in F$ such that B' - f is chordal bipartite.

Sandwich monotone

B = (X, Y, E) and $B' = (X, Y, E \cup F)$ two chordal bipartite graphs; there is an $f \in F$ such that B' - f is chordal bipartite.

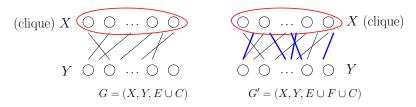
Proof:



Sandwich monotone

B = (X, Y, E) and $B' = (X, Y, E \cup F)$ two chordal bipartite graphs; there is an $f \in F$ such that B' - f is chordal bipartite.

Proof:



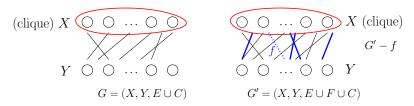
A D > A D > A D > A D >

► G and G' are both strongly chordal

Sandwich monotone

B = (X, Y, E) and $B' = (X, Y, E \cup F)$ two chordal bipartite graphs; there is an $f \in F$ such that B' - f is chordal bipartite.

Proof:

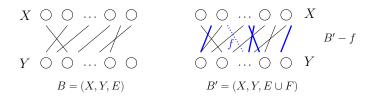


- ► *G* and *G'* are both strongly chordal
- By sandwich monotonicity of strongly chordal ⇒ there is an f ∈ F such that G' − f strongly chordal

Sandwich monotone

B = (X, Y, E) and $B' = (X, Y, E \cup F)$ two chordal bipartite graphs; there is an $f \in F$ such that B' - f is chordal bipartite.

Proof:



- ► G and G' are both strongly chordal
- By sandwich monotonicity of strongly chordal ⇒ there is an f ∈ F such that G' − f strongly chordal
- Remove all edges in $X \Rightarrow B' f$ is chordal bipartite

• Characterizing:

- edge removal from a chordal bipartite graph
- minimal chordal bipartite completions

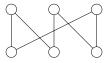
Characterizations of minimal chordal bipartite completions

• Characterizing:

- edge removal from a chordal bipartite graph
- minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

B - e is chordal bipartite iff e is not the unique chord of a C_6 .



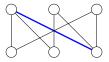
Characterizations of minimal chordal bipartite completions

• Characterizing:

- edge removal from a chordal bipartite graph
- minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

B - e is chordal bipartite iff e is not the unique chord of a C_6 .



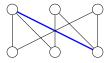
Characterizations of minimal chordal bipartite completions

• Characterizing:

- edge removal from a chordal bipartite graph
- minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

B - e is chordal bipartite iff e is not the unique chord of a C_6 .



B' is a minimal chordal bipartite completion of a bipartite B iff every added edge is the unique chord of a C_6 .

/ 19

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - ▶ recognition problem $\Rightarrow O(\min\{m \log n, n^2\})$ Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ O(n⁴(min{m log n, n²})) by applying a straightforward algorithm; any improvement?

Other graph classes

- weakly chordal: neither G nor \overline{G} contain C_5 , C_6 , ...
- minimum weakly chordal completion: NP-hard
- minimal weakly chordal completion: unknown
- minimum chordal bipartite completion: unknown

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - ▶ recognition problem $\Rightarrow O(\min\{m \log n, n^2\})$ Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ O(n⁴(min{m log n, n²})) by applying a straightforward algorithm; any improvement?

Other graph classes

- weakly chordal: neither G nor \overline{G} contain C_5 , C_6 , ...
- minimum weakly chordal completion: NP-hard
- ▷ minimal weakly chordal completion: unknown
- > minimum chordal bipartite completion: unknown

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - ▶ recognition problem $\Rightarrow O(\min\{m \log n, n^2\})$ Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ O(n⁴(min{m log n, n²})) by applying a straightforward algorithm; any improvement?

- Other graph classes
 - weakly chordal: neither G nor \overline{G} contain C_5 , C_6 , ...
 - chordal bipartite \equiv weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - minimal weakly chordal completion: unknown
 - minimum chordal bipartite completion: unknown

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - ▶ recognition problem $\Rightarrow O(\min\{m \log n, n^2\})$ Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ O(n⁴(min{m log n, n²})) by applying a straightforward algorithm; any improvement?

- Other graph classes
 - weakly chordal: neither G nor \overline{G} contain C_5 , C_6 , ...
 - chordal bipartite \equiv weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - > minimal weakly chordal completion: unknown
 - minimum chordal bipartite completion: unknown

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - ▶ recognition problem $\Rightarrow O(\min\{m \log n, n^2\})$ Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ O(n⁴(min{m log n, n²})) by applying a straightforward algorithm; any improvement?

- Other graph classes
 - weakly chordal: neither G nor \overline{G} contain C_5 , C_6 , ...
 - chordal bipartite \equiv weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - > minimal weakly chordal completion: unknown
 - > minimum chordal bipartite completion: unknown

Thank you!!

