Strongly chordal and chordal bipartite graphs are sandwich monotone

Pinar Heggernes1 Federico Mancini1
Charis Papadopoulos2 R. Sritharan3

1Dept. of Informatics, University of Bergen, Norway
2Dept. of Mathematics, University of Ioannina, Greece
3Dept. of Computer Science, University of Dayton, USA

The 15th Int'l Computing and Combinatorics Conference COCOON 2009
Strongly chordal and chordal bipartite graphs are sandwich monotone

Pinar Heggernes1 Federico Mancini1 Charis Papadopoulos2 R. Sritharan3

1Dept. of Informatics, University of Bergen, Norway
2Dept. of Mathematics, University of Ioannina, Greece
3Dept. of Computer Science, University of Dayton, USA

The 15th Int'l Computing and Combinatorics Conference COCOON 2009
Overview

- *Sandwich monotone* graphs
 implies that minimal completion problems are poly-time solvable
Overview

- **Sandwich monotone graphs** implies that minimal completion problems are poly-time solvable
- **Strongly Chordal graphs**
 subclass of chordal graphs
- **Strongly Chordal graphs are sandwich monotone**
 constructive proof
- **Minimal Strongly Chordal completions (characterizations)**
Overview

- *Sandwich monotone* graphs
 implies that minimal completion problems are poly-time solvable

- *Strongly Chordal* graphs
 subclass of chordal graphs

- *Strongly Chordal* graphs are *sandwich monotone*
 constructive proof

- *Minimal* *Strongly Chordal* completions (characterizations)

- *Chordal Bipartite* graphs
 close related to *Strongly Chordal* graphs
 - *Chordal Bipartite* graphs are *sandwich monotone*

- *Minimal Chordal Bipartite* completions (characterizations)
• A graph class \mathcal{C} is sandwich monotone:

Given two graphs $G_0 = (V, E) \in \mathcal{C}$ and $G_{|F|} = (V, E \cup F) \in \mathcal{C}$, there is an edge $f \in F$ such that $G_{|F|} - f \in \mathcal{C}$.
Sandwich monotone

• A graph class \mathcal{C} is sandwich monotone:

Given two graphs $G_0 = (V, E) \in \mathcal{C}$ and $G_{|F|} = (V, E \cup F) \in \mathcal{C}$, there is an edge $f \in F$ such that $G_{|F|} - f \in \mathcal{C}$.

\[G_0 = (V, E) \in \mathcal{C} \]
\[G_F = (V, E \cup \{f_1, f_2, \ldots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C} \]

• Sandwich monotonicity \mathcal{C}:

Given $G_0 = (V, E)$ and $G_F = (V, E \cup F)$,
A graph class \mathcal{C} is sandwich monotone:
Given two graphs $G_0 = (V, E) \in \mathcal{C}$ and $G_{|F|} = (V, E \cup F) \in \mathcal{C}$, there is an edge $f \in F$ such that $G_{|F|} - f \in \mathcal{C}$.

Sandwich monotonicity \mathcal{C}:
Given $G_0 = (V, E)$ and $G_F = (V, E \cup F)$,

$G_F = (V, E \cup \{f_1, f_2, \ldots, f_{|F|-1}, f_{|F|}\}) \in \mathcal{C}$

$G_0 = (V, E) \in \mathcal{C}$

$G_1 = (V, E \cup \{f_1\}) \in \mathcal{C}$
A graph class \mathcal{C} is sandwich monotone:

Given two graphs $G_0 = (V, E) \in \mathcal{C}$ and $G_{|\mathcal{F}|} = (V, E \cup \mathcal{F}) \in \mathcal{C}$, there is an edge $f \in \mathcal{F}$ such that $G_{|\mathcal{F}|} - f \in \mathcal{C}$.

Sandwich monotonicity \mathcal{C}:

Given $G_0 = (V, E)$ and $G_F = (V, E \cup \mathcal{F})$, there exist

- $G_1 = (V, E \cup \{f_1\}) \in \mathcal{C}$
- $G_2 = (V, E \cup \{f_1, f_2\}) \in \mathcal{C}$
- $G_F = (V, E \cup \{f_1, f_2, \ldots, f_{|\mathcal{F}|-1}, f_{|\mathcal{F}|}\}) \in \mathcal{C}$
- $G_0 = (V, E) \in \mathcal{C}$
Sandwich monotone

- A graph class \mathcal{C} is sandwich monotone:

 Given two graphs $G_0 = (V, E) \in \mathcal{C}$ and $G_{|F|} = (V, E \cup F) \in \mathcal{C}$, there is an edge $f \in F$ such that $G_{|F|} - f \in \mathcal{C}$.

- Sandwich monotonicity \mathcal{C}:

 Given $G_0 = (V, E)$ and $G_F = (V, E \cup F)$,
Why research on sandwich monotonicity?

- Close related to *minimal completion problems*:

Given any graph \(G = (V, E) \) and a graph class \(C \), we are looking for a supergraph \(H = (V, E \cup F) \) such that \(H \in C \) and for every \(F' \subset F: H' = (V, E \cup F') \notin C \)

\(\triangleright \) computing the minimum \(|F| \) is usually difficult (NP-complete).
Why research on sandwich monotonicity?

- Close related to *minimal completion problems:*

 Given any graph $G = (V, E)$ and a graph class C, we are looking for a supergraph $H = (V, E \cup F)$ such that $H \in C$ and for every $F' \subset F$: $H' = (V, E \cup F') \notin C$

 ▶ computing the **minimum** $|F|$ is usually difficult (NP-complete).

- if C is sandwich monotone:

 A C completion is minimal if and only if no single *fill edge* (an edge of F) can be removed without destroying C.
Why research on sandwich monotonicity? 1/2

- Close related to **minimal completion problems**: Given any graph $G = (V, E)$ and a graph class C, we are looking for a supergraph $H = (V, E \cup F)$ such that $H \in C$ and for every $F' \subset F$: $H' = (V, E \cup F') \notin C$

 ▶ computing the **minimum** $|F|$ is usually difficult (NP-complete).

- if C is sandwich monotone:
 A C completion is minimal if and only if no single **fill edge** (an edge of F) can be removed without destroying C.

 if C is sandwich monotone and C is recognized in poly-time:
 There is a polynomial time algorithm for computing a minimal C completion.
Listing all graphs in \mathcal{C} with edge constraints

COCOON 2008

Input: $G = (V, E)$ and $H = (V, E \cup F)$ such that $H \in \mathcal{C}$

Output: list all graphs in \mathcal{C} between G and H
Why research on sandwich monotonicity?

- Listing all graphs in \mathcal{C} with edge constraints

COCOON 2008

Input: $G = (V, E)$ and $H = (V, E \cup F)$ such that $H \in \mathcal{C}$

Output: list all graphs in \mathcal{C} between G and H

- Kijima, Kiyomi, Okamoto, and Uno (COCOON 2008)

Efficient solution for chordal graphs
Why research on sandwich monotonicity?

- Listing all graphs in C with edge constraints

COCOON 2008

Input: $G = (V, E)$ and $H = (V, E \cup F)$ such that $H \in C$

Output: list all graphs in C between G and H

- Kijima, Kiyomi, Okamoto, and Uno (COCOON 2008)

Efficient solution for chordal graphs

▷ Observing the previous algorithm...

the proposed solution can be extended to every sandwich monotone class
Which graph classes are sandwich monotone?

- Chordal graphs
- Strongly chordal graphs
- Interval graphs
- Split graphs
- Threshold graphs
- Bipartite graphs
- Chain graphs
- Chordal bipartite graphs

✓: sandwich monotone
×: not sandwich monotone
?: unknown
Which graph classes are sandwich monotone?

- Chordal graphs
- Strongly chordal graphs
- Interval graphs
- Split graphs
- Threshold graphs
- Bipartite graphs
- Chain graphs
- Chordal bipartite graphs

✓: sandwich monotone
×: not sandwich monotone
?: unknown

Today:

✓ (1977)
✓ (2006)
✓ (2007)
✓ (2007)
✓ (2006)
✓ (2007)
Strongly Chordal graphs

- Chordal graphs: do not contain C_k, $k \geq 4$
• Chordal graphs: do not contain C_k, $k \geq 4$

• Strongly Chordal graphs: chordal graphs having no k-sun

C_4 C_5 C_6

3-sun 4-sun 5-sun k-sun
Strongly Chordal graphs

- **Strongly Chordal graphs:** characterized through simple vertices

![Diagram of a strongly chordal graph]

- Simple elimination ordering: given an ordering v_1, \ldots, v_n

 For every i, v_i is simple in $G_i \equiv G\{v_i, \ldots, v_n\}$, $1 \leq i \leq n$.

Farber, 1983

G is strongly chordal \iff G admits a simple elimination ordering.
Strongly Chordal graphs

- Strongly Chordal graphs: characterized through simple vertices

 - Simple vertex x
 - $N(x)$ (clique)
 - $S(x)$ (strongly chordal graph)

- Simple elimination ordering: given an ordering v_1, \ldots, v_n
 For every i, v_i is simple in $G_i \equiv G[v_i, \ldots, v_n]$, $1 \leq i \leq n$.

• **Strongly Chordal graphs:**
 characterized through **simple** vertices

\[
\text{simple vertex } x
\]

\[
N(x) \text{ (clique)}
\]

\[
S(x) \text{ (strongly chordal graph)}
\]

• **Simple elimination ordering:** given an ordering \(v_1, \ldots, v_n\)
 For every \(i\), \(v_i\) is simple in \(G_i \equiv G[v_i, \ldots, v_n]\), \(1 \leq i \leq n\).

Farber, 1983

\(G\) is strongly chordal \(\iff\) \(G\) admits a simple elimination ordering.
- Simple vertices \Rightarrow simple partition

\[
\begin{align*}
N(x) &\subset N(N(x)) & S(x) &\subset N(N(x)) \\
S(x) &\subset N(N(x))
\end{align*}
\]
Strongly Chordal graphs

- Simple vertices \Rightarrow simple partition

- $N(N_1) \subset N(N_2) \subset N(N_3) \Rightarrow S_1 \prec S_2 \prec S_3$
Our goal is to prove the following:

Given: \(G = (V, E) \) and \(G' = (V, E \cup F) \) two strongly chordal graphs,

there is an edge \(f \in F \) such that \(G' - f \) is strongly chordal.
Our goal is to prove the following:

- Given: $G = (V, E)$ and $G' = (V, E \cup F)$ two strongly chordal graphs,
- there is an edge $f \in F$ such that $G' - f$ is strongly chordal.

For the proof we apply induction on $|V|:

- For $|V| \leq 3$: all graphs are strongly chordal (the statement holds)
- Assume that the statement is true for $|V| - 1$.
- Prove that the statement holds for $|V|$.
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \]

\[G' = (V, E \cup F) \]

- \(G' \): Pick a simple vertex
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \]
\[G' = (V, E \cup F) \]

- if \(x \) is incident to an added edge \(f \in F \)
Strongly Chordal graphs are Sandwich Monotone

$G = (V, E)$

$G' = (V, E \cup F)$

- then $G' - f$ has no C_4 or 3-sun $\Rightarrow G' - f \checkmark$
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \]
\[G' = (V, E \cup F) \]

- otherwise, \(F \subset N(x) \cup S(x) \)
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- Add certain type of edges \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

\(E' : N_G(x) \) clique and between \(N(x) - S(x) \)
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- Remove \(x \) from both graphs \(H \) and \(G' \)
Strongly Chordal graphs are Sandwich Monotone

- Both graphs are on $|V| - 1$ vertices
- Both graphs are strongly chordal

 $G = (V, E) \Rightarrow H = (V, E \cup E')$
 $G' = (V, E \cup F)$

 \Rightarrow apply induction
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- By induction \(\Rightarrow \) (i) \(G' - x - f \) ✓
- By the edges \(E' \) \(\Rightarrow \) (ii) either \(f \in S(x) \) or \(f \in N_i S_i \)
Strongly Chordal graphs are Sandwich Monotone

\[G' - x - f: \checkmark \]

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- Construct \(G' - x - f \) from \(H - x \) and \(G' - x \)
Strongly Chordal graphs are Sandwich Monotone

\[G' - x - f: \checkmark \]

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- Add \(x \) to \(G' - x - f \)
Strongly Chordal graphs are Sandwich Monotone

\[\begin{align*}
G & = (V, E) \\
G' & = (V, E \cup F) \\
H & = (V, E \cup E') \\
G' - x - f & : \checkmark
\end{align*} \]

- Add \(x \) to \(G' - x - f \) \(\Rightarrow \) \(x \) is simple in \(G' - f \)

 (either \(f \in S(x) \) or \(f \in N_i S_i \))
Strongly Chordal graphs are Sandwich Monotone

\[G = (V, E) \Rightarrow H = (V, E \cup E') \quad G' = (V, E \cup F) \]

- Add \(x \) to \(G' - x - f \) \(\Rightarrow \) \(x \) is simple in \(G' - f \) \(\Rightarrow \) \(G' - f \) \(\checkmark \)
 (either \(f \in S(x) \) or \(f \in N_i S_i \))
Sketch of the proof (algorithm):

1. **Pick** a simple vertex \(x \) in \(G' \)

2. **if** \(x \) is incident to an added edge \(f \in F \) **then**

 2.1 \(G' - f \) ✓

 else

 2.2 **Add** \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

 2.3 \(G' - x - f \): by induction on \(H - x \) and \(G' - x \)

 2.4 **Add** \(x \) in \(G' - x - f \) as simple \(\Rightarrow G' - f \) ✓
Sketch of the proof (algorithm):

1. Pick a simple vertex \(x \) in \(G' \)

 there is always a simple vertex

2. if \(x \) is incident to an added edge \(f \in F \) then
 2.1 \(G' - f \) ✓

 else

 2.2 Add \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

 2.3 \(G' - x - f \): by induction on \(H - x \) and \(G' - x \)

 2.4 Add \(x \) in \(G' - x - f \) as simple \(\Rightarrow G' - f \) ✓
Sketch of the proof (algorithm):

1. Pick a simple vertex \(x \) in \(G' \)

 there is always a simple vertex

2. if \(x \) is incident to an added edge \(f \in F \) then

 2.1 \(G' - f \checkmark \)

 by contradiction \(G' - f \) has no \(C_4 \) or 3-sun

 else

 2.2 Add \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

 2.3 \(G' - x - f \): by induction on \(H - x \) and \(G' - x \)

 2.4 Add \(x \) in \(G' - x - f \) as simple \(\Rightarrow G' - f \checkmark \)
Sketch of the proof (algorithm):

1. Pick a simple vertex \(x \) in \(G' \)

 there is always a simple vertex

2. if \(x \) is incident to an added edge \(f \in F \) then

 2.1 \(G' - f \sqrt{✓} \)

 by contradiction \(G' - f \) has no \(C_4 \) or 3-sun

 else

 2.2 Add \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

 prove that (i) \(F \not\subseteq E' \) and (ii) \(H \) is strongly chordal

 2.3 \(G' - x - f \): by induction on \(H - x \) and \(G' - x \)

 2.4 Add \(x \) in \(G' - x - f \) as simple \(\Rightarrow G' - f \sqrt{✓} \)
Sketch of the proof (algorithm):

1. **Pick a simple vertex** \(x\) in \(G'\)
 there is always a simple vertex

2. **if** \(x\) is incident to an added edge \(f \in F\) **then**

 2.1 \(G' - f \checkmark\)
 by contradiction \(G' - f\) has no \(C_4\) or 3-sun

 else

 2.2 **Add** \(E'\) to \(G = (V, E) \Rightarrow H = (V, E \cup E')\)
 prove that (i) \(F \notin E'\) and (ii) \(H\) is strongly chordal

2.3 \(G' - x - f\): **by induction on** \(H - x\) and \(G' - x\)
 either \(f \in S(x)\) or \(f \in N_iS_i\)

2.4 **Add** \(x\) in \(G' - x - f\) **as simple** \(\Rightarrow G' - f \checkmark\)
Sketch of the proof (algorithm):

1. Pick a simple vertex \(x \) in \(G' \)

 there is always a simple vertex

2. if \(x \) is incident to an added edge \(f \in F \) then

 2.1 \(G' - f \checkmark \)

 by contradiction \(G' - f \) has no \(C_4 \) or 3-sun

 else

 2.2 Add \(E' \) to \(G = (V, E) \Rightarrow H = (V, E \cup E') \)

 prove that (i) \(F \not\subset E' \) and (ii) \(H \) is strongly chordal

2.3 \(G' - x - f \): by induction on \(H - x \) and \(G' - x \)

 either \(f \in S(x) \) or \(f \in N_i S_i \)

2.4 Add \(x \) in \(G' - x - f \) as simple \(\Rightarrow G' - f \checkmark \)

 \(N(x) \) retains the inclusion set property
chords:
- chord of a cycle: an edge between two nonconsecutive vertices
- chord of a k-sun: an edge between the indep. set and the clique
Characterizations of minimal strongly chordal completions

- **chords:**
 - chord of a cycle: an edge between two nonconsecutive vertices
 - chord of a k-sun: an edge between the indep. set and the clique

Let G be strongly chordal and e be an edge.
$G - e$ is strongly chordal iff e is not the unique chord of a C_4 or the unique chord of a 3-sun.

G' is a minimal strongly completion of an arbitrary graph G iff every added edge is the unique chord of a C_4 or a 3-sun.
Characterizations of minimal strongly chordal completions

- **chords:**
 - chord of a cycle: an edge between two nonconsecutive vertices
 - chord of a k-sun: an edge between the indep. set and the clique

Let G be strongly chordal and e be an edge

$G - e$ is strongly chordal iff e is not the unique chord of a C_4 or the unique chord of a 3-sun.
Characterizations of minimal strongly chordal completions

- **chords:**
 - chord of a cycle: an edge between two nonconsecutive vertices
 - chord of a k-sun: an edge between the indep. set and the clique

Let G be strongly chordal and e be an edge

$G - e$ is strongly chordal iff e is not the unique chord of a C_4 or the unique chord of a 3-sun.

G' is a minimal strongly completion of an arbitrary graph G iff

every added edge is the unique chord of a C_4 or a 3-sun.
Overview

- *Sandwich monotone* graphs implies that minimal completion problems are poly-time solvable
- *Strongly Chordal* graphs subclass of chordal graphs
- *Strongly Chordal* graphs are sandwich monotone constructive proof
- Minimal Strongly Chordal completions (characterizations)
Overview

- *Sandwich monotone* graphs implies that minimal completion problems are poly-time solvable
- *Strongly Chordal* graphs subclass of chordal graphs
- *Strongly Chordal* graphs are sandwich monotone constructive proof
- Minimal *Strongly Chordal* completions (characterizations)
- *Chordal Bipartite* graphs close related to Strongly Chordal graphs
 - Chordal Bipartite graphs are sandwich monotone
- Minimal *Chordal Bipartite* completions (characterizations)
Chordal bipartite graphs

- **Chordal bipartite graphs:**
 Bipartite graphs that do not contain C_k for $k \geq 6$

Dahlhaus, 1991

$B = (X, Y, E)$

$G = (X, Y, E \cup C)$

B is chordal bipartite $\iff G$ is strongly chordal
Chordal bipartite graphs

- **Chordal bipartite graphs:**
 Bipartite graphs that do not contain C_k for $k \geq 6$

- **Close related to strongly chordal graphs**
 - Let $B = (X, Y, E)$ a bipartite graph
 - Make X a clique by adding edges in X \Rightarrow G

\[B = (X, Y, E) \quad \Rightarrow \quad G = (X, Y, E \cup C) \]
Chordal bipartite graphs

- **Chordal bipartite graphs:**
 Bipartite graphs that do not contain C_k for $k \geq 6$

- **Close related to strongly chordal graphs**
 - Let $B = (X, Y, E)$ a bipartite graph
 - Make X a clique by adding edges in $X \Rightarrow G$

\[B = (X, Y, E) \Rightarrow G = (X, Y, E \cup C) \]

Dahlhaus, 1991

B is chordal bipartite \iff G is strongly chordal
Chordal bipartite graphs are sandwich monotone

Sandwich monotone

\[B = (X, Y, E) \text{ and } B' = (X, Y, E \cup F) \] two chordal bipartite graphs; there is an \(f \in F \) such that \(B' - f \) is chordal bipartite.
Sandwich monotone

\[B = (X, Y, E) \text{ and } B' = (X, Y, E \cup F) \text{ two chordal bipartite graphs;} \]
\[\text{there is an } f \in F \text{ such that } B' - f \text{ is chordal bipartite.} \]

Proof:

\[B = (X, Y, E) \quad B' = (X, Y, E \cup F) \]

\[X \quad \circ \quad \circ \quad \ldots \quad \circ \quad \circ \]
\[Y \quad \circ \quad \circ \quad \ldots \quad \circ \quad \circ \]

\[B = (X, Y, E) \]
\[B' = (X, Y, E \cup F) \]
Chordal bipartite graphs are sandwich monotone

Sandwich monotone

\[B = (X, Y, E) \text{ and } B' = (X, Y, E \cup F) \] two chordal bipartite graphs; there is an \(f \in F \) such that \(B' - f \) is chordal bipartite.

Proof:

![Graph diagrams](Diagram)

- \(G = (X, Y, E \cup C) \)
- \(G' = (X, Y, E \cup F \cup C) \)

\(G \) and \(G' \) are both strongly chordal.
Chordal bipartite graphs are sandwich monotone

Sandwich monotone

\[B = (X, Y, E) \text{ and } B' = (X, Y, E \cup F) \] two chordal bipartite graphs; there is an \(f \in F \) such that \(B' - f \) is chordal bipartite.

Proof:

\[G = (X, Y, E \cup C) \]

\[G' = (X, Y, E \cup F \cup C) \]

- \(G \) and \(G' \) are both strongly chordal
- By sandwich monotonicity of strongly chordal \(\Rightarrow \)
 there is an \(f \in F \) such that \(G' - f \) strongly chordal
Chordal bipartite graphs are sandwich monotone

Sandwich monotone

\[B = (X, Y, E) \text{ and } B' = (X, Y, E \cup F) \text{ two chordal bipartite graphs; there is an } f \in F \text{ such that } B' - f \text{ is chordal bipartite.} \]

Proof:

\[B = (X, Y, E) \]
\[B' = (X, Y, E \cup F) \]

\[B' - f \]

- \(G \) and \(G' \) are both strongly chordal
- By sandwich monotonicity of strongly chordal \(\Rightarrow \) there is an \(f \in F \) such that \(G' - f \) strongly chordal
- Remove all edges in \(X \) \(\Rightarrow \) \(B' - f \) is chordal bipartite
Characterizations of minimal chordal bipartite completions

- Characterizing:
 - edge removal from a chordal bipartite graph
 - minimal chordal bipartite completions
Characterizations of minimal chordal bipartite completions

- Characterizing:
 - edge removal from a chordal bipartite graph
 - minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

$B - e$ is chordal bipartite iff e is not the unique chord of a C_6.

![Graph Diagram]
Characterizations of minimal chordal bipartite completions

- Characterizing:
 - edge removal from a chordal bipartite graph
 - minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

$B - e$ is chordal bipartite iff e is not the unique chord of a C_6.
Characterizations of minimal chordal bipartite completions

- Characterizing:
 - edge removal from a chordal bipartite graph
 - minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

$B - e$ is chordal bipartite iff e is not the unique chord of a C_6.

B' is a minimal chordal bipartite completion of a bipartite B iff

every added edge is the unique chord of a C_6.
Conclusions and Open problems

• Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 ▶ recognition problem ⇒ \(O(\min\{m \log n, n^2\}) \)
 Paige and Tarjan 1987, Spinrad 1993
 ▶ computing a minimal completion ⇒ \(O(n^4(\min\{m \log n, n^2\})) \)
 by applying a straightforward algorithm; any improvement?

• Other graph classes
 ▶ weakly chordal: neither \(G \) nor \(\bar{G} \) contain \(C_5, C_6, \ldots \)
 ▶ chordal bipartite \(\equiv \) weakly chordal \(\cap \) bipartite
 ▶ minimum weakly chordal completion: NP-hard
 ▶ minimal weakly chordal completion: unknown
 ▶ minimum chordal bipartite completion: unknown

Conclusions and Open problems

- **Strongly chordal graphs and chordal bipartite graphs** are sandwich monotone.
 - recognition problem ⇒ $O(\min\{m \log n, n^2\})$
 - Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ $O(n^4(\min\{m \log n, n^2\}))$
 - by applying a straightforward algorithm; any improvement?

- **Other graph classes**
 - weakly chordal: neither G nor \bar{G} contain C_5, C_6, \ldots
 - chordal bipartite ⇔ weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - minimal weakly chordal completion: unknown
 - minimum chordal bipartite completion: unknown
Conclusions and Open problems

- **Strongly chordal graphs and chordal bipartite graphs** are sandwich monotone.
 - recognition problem $\Rightarrow \mathcal{O}(\min\{m \log n, n^2\})$
 - Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion $\Rightarrow \mathcal{O}(n^4(\min\{m \log n, n^2\}))$
 - by applying a straightforward algorithm; any improvement?

- **Other graph classes**
 - weakly chordal: neither G nor \bar{G} contain C_5, C_6, ...
 - chordal bipartite \equiv weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - minimal weakly chordal completion: unknown
 - minimum chordal bipartite completion: unknown
Conclusions and Open problems

- Strongly chordal graphs and chordal bipartite graphs are sandwich monotone.
 - recognition problem ⇒ $O(\min\{m \log n, n^2\})$
 Paige and Tarjan 1987, Spinrad 1993
 - computing a minimal completion ⇒ $O(n^4(\min\{m \log n, n^2\}))$
 by applying a straightforward algorithm; any improvement?

- Other graph classes
 - weakly chordal: neither G nor \bar{G} contain C_5, C_6, …
 - chordal bipartite \equiv weakly chordal \cap bipartite
 - minimum weakly chordal completion: NP-hard
 - minimal weakly chordal completion: unknown
 - minimum chordal bipartite completion: unknown
Conclusions and Open problems

- **Strongly chordal graphs and chordal bipartite graphs** are sandwich monotone.
 - **recognition problem** $\Rightarrow \mathcal{O}(\min\{m \log n, n^2\})$
 - Paige and Tarjan 1987, Spinrad 1993
 - **computing a minimal completion** $\Rightarrow \mathcal{O}(n^4(\min\{m \log n, n^2\}))$
 - by applying a straightforward algorithm; **any improvement?**

- **Other graph classes**
 - **weakly chordal**: neither G nor \bar{G} contain C_5, C_6, \ldots
 - **chordal bipartite** \equiv weakly chordal \cap bipartite
 - **minimum weakly chordal completion**: NP-hard
 - **minimal weakly chordal completion**: **unknown**
 - **minimum chordal bipartite completion**: **unknown**
Thank you!!