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Overview

• Sandwich monotone graphs

implies that minimal completion problems are poly-time solvable

• Strongly Chordal graphs

subclass of chordal graphs

• Strongly Chordal graphs are sandwich monotone

constructive proof

• Minimal Strongly Chordal completions (characterizations)

• Chordal Bipartite graphs

close related to Strongly Chordal graphs

I Chordal Bipartite graphs are sandwich monotone

• Minimal Chordal Bipartite completions (characterizations)
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Sandwich monotone

• A graph class C is sandwich monotone:

Given two graphs G0 = (V , E ) ∈ C and G|F | = (V , E ∪ F ) ∈ C,

there is an edge f ∈ F such that G|F | − f ∈ C .

• Sandwich
monotonicity C:
Given G0 = (V , E )
and
GF = (V , E ∪ F ),

G0 = (V, E) ∈ C

GF = (V, E ∪ {f1, f2, . . . , f|F |−1, f|F |}) ∈ C
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Why research on sandwich monotonicity? 1/2

• Close related to minimal completion problems:

Given any graph G = (V , E ) and a graph class C, we are looking
for a supergraph H = (V , E ∪ F ) such that H ∈ C and

for every F ′ ⊂ F : H ′ = (V , E ∪ F ′) /∈ C

B computing the minimum |F | is usually difficult (NP-complete).

• if C is sandwich monotone:
A C completion is minimal if and only if no single fill edge (an edge
of F ) can be removed without destroying C.

if C is sandwich monotone and C is recognized in poly-time:

There is a polynomial time algorithm for computing a minimal C
completion.
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Why research on sandwich monotonicity? 2/2

• Listing all graphs in C with edge constraints

COCOON 2008
Input: G = (V , E ) and H = (V , E ∪ F ) such that H ∈ C
Output: list all graphs in C between G and H

• Kijima, Kiyomi, Okamoto, and Uno (COCOON 2008)

Efficient solution for chordal graphs

B Observing the previous algorithm...

the proposed solution can be extended to
every sandwich monotone class
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Which graph classes are sandwich monotone?
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Strongly Chordal graphs 1/3

• Chordal graphs: do not contain Ck , k ≥ 4

C4 C5 C6

• Strongly Chordal graphs: chordal graphs having no k-sun

3-sun 4-sun 5-sun k-sun
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Strongly Chordal graphs 2/3

• Strongly Chordal graphs:

characterized through simple vertices

simple vertex x

N(x) (clique)

S(x) (strongly chordal graph)

• Simple elimination ordering: given an ordering v1, . . . , vn

For every i , vi is simple in Gi ≡ G [{vi , . . . , vn}], 1 ≤ i ≤ n.

Farber, 1983

G is strongly chordal ⇔ G admits a simple elimination ordering.
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Strongly Chordal graphs 3/3

• Simple vertices ⇒ simple partition

x

N(x)

S(x)

• N(N1) ⊂ N(N2) ⊂ N(N3) ⇒ S1 ≺ S2 ≺ S3
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Strongly Chordal graphs are Sandwich Monotone 1/3

• Our goal is to prove the following:

I Given: G = (V , E ) and G ′ = (V , E ∪ F )
two strongly chordal graphs,

I there is an edge f ∈ F such that G ′ − f is strongly chordal.

• For the proof we apply induction on |V |:
I For |V | ≤ 3: all graphs are strongly chordal

(the statement holds)

I Assume that the statement is true for |V | − 1.

I Prove that the statement holds for |V |.
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Strongly Chordal graphs are Sandwich Monotone 2/3

x

N(x)

S(x)

S1 S2 S3

N1 N2 N3

x

S1 S2 S3

N1 N2 N3

G = (V, E) G′ = (V, E ∪ F )

• G ′: Pick a simple vertex
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x

N(x)

S(x)

S1 S2 S3

N1 N2 N3

x

S1 S2 S3

N1 N2 N3

G = (V, E) G′ = (V, E ∪ F )⇒ H = (V, E ∪ E ′)

E ′

• Add certain type of edges E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)
E ′ : NG (x) clique and between N(x)− S(x)
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Strongly Chordal graphs are Sandwich Monotone 2/3

x

N(x)

S(x)

S1 S2 S3

N1 N2 N3

x

S1 S2 S3

N1 N2 N3

G = (V, E) G′ = (V, E ∪ F )⇒ H = (V, E ∪ E ′)

f
f

f

G′ − x− f : X

B By induction ⇒ (i) G ′ − x − f X
B By the edges E ′ ⇒ (ii) either f ∈ S(x) or f ∈ NiSi
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Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)

2.3 G ′ − x − f : by induction on H − x and G ′ − x

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X

12 / 19



Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

there is always a simple vertex

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)

2.3 G ′ − x − f : by induction on H − x and G ′ − x

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X

12 / 19



Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

there is always a simple vertex

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X
by contradiction G ′ − f has no C4 or 3-sun

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)

2.3 G ′ − x − f : by induction on H − x and G ′ − x

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X

12 / 19



Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

there is always a simple vertex

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X
by contradiction G ′ − f has no C4 or 3-sun

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)
prove that (i) F * E ′ and (ii) H is strongly chordal

2.3 G ′ − x − f : by induction on H − x and G ′ − x

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X

12 / 19



Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

there is always a simple vertex

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X
by contradiction G ′ − f has no C4 or 3-sun

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)
prove that (i) F * E ′ and (ii) H is strongly chordal

2.3 G ′ − x − f : by induction on H − x and G ′ − x
either f ∈ S(x) or f ∈ NiSi

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X

12 / 19



Strongly Chordal graphs are Sandwich Monotone 3/3

Sketch of the proof (algorithm):

1. Pick a simple vertex x in G ′

there is always a simple vertex

2. if x is incident to an added edge f ∈ F then

2.1 G ′ − f X
by contradiction G ′ − f has no C4 or 3-sun

else

2.2 Add E ′ to G = (V , E ) ⇒ H = (V , E ∪ E ′)
prove that (i) F * E ′ and (ii) H is strongly chordal

2.3 G ′ − x − f : by induction on H − x and G ′ − x
either f ∈ S(x) or f ∈ NiSi

2.4 Add x in G ′ − x − f as simple ⇒ G ′ − f X
N(x) retains the inclusion set property

12 / 19



Characterizations of minimal strongly chordal completions

• chords:
chord of a cycle: an edge between two nonconsecutive vertices
chord of a k-sun: an edge between the indep. set and the clique

Let G be strongly chordal and e be an edge

G − e is strongly chordal iff e is not the unique chord of a C4 or
the unique chord of a 3-sun.

G ′ is a minimal strongly completion of an arbitrary graph G iff

every added edge is the unique chord of a C4 or a 3-sun.
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Chordal bipartite graphs

• Chordal bipartite graphs:

Bipartite graphs that do not contain Ck for k ≥ 6

• Close related to strongly chordal graphs
I Let B = (X , Y , E ) a bipartite graph

I Make X a clique by adding edges in X ⇒ G

· · ·

· · ·

· · ·

· · ·

X

Y

B = (X, Y, E) G = (X, Y, E ∪ C)

⇒

Dahlhaus, 1991

B is chordal bipartite ⇔ G is strongly chordal
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Chordal bipartite graphs are sandwich monotone

Sandwich monotone

B = (X , Y , E ) and B ′ = (X , Y , E∪F ) two chordal bipartite graphs;
there is an f ∈ F such that B ′ − f is chordal bipartite.

Proof:

· · ·

· · ·

· · ·

· · ·

X

Y

B = (X, Y, E) B′ = (X, Y, E ∪ F )

X

Y

I G and G ′ are both strongly chordal

I By sandwich monotonicity of strongly chordal ⇒
there is an f ∈ F such that G ′ − f strongly chordal

I Remove all edges in X ⇒ B ′ − f is chordal bipartite
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Characterizations of minimal chordal bipartite completions

• Characterizing:

I edge removal from a chordal bipartite graph

I minimal chordal bipartite completions

Let B be chordal bipartite and e be an edge

B − e is chordal bipartite iff e is not the unique chord of a C6.

B ′ is a minimal chordal bipartite completion of a bipartite B iff

every added edge is the unique chord of a C6.
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Conclusions and Open problems

• Strongly chordal graphs and chordal bipartite graphs
are sandwich monotone.

I recognition problem ⇒ O(min{m log n, n2})
Paige and Tarjan 1987, Spinrad 1993

I computing a minimal completion ⇒ O(n4(min{m log n, n2}))
by applying a straightforward algorithm; any improvement?

• Other graph classes

I weakly chordal: neither G nor Ḡ contain C5, C6, . . .

I chordal bipartite ≡ weakly chordal ∩ bipartite

I minimum weakly chordal completion: NP-hard

B minimal weakly chordal completion: unknown

B minimum chordal bipartite completion: unknown
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I chordal bipartite ≡ weakly chordal ∩ bipartite

I minimum weakly chordal completion: NP-hard

B minimal weakly chordal completion: unknown

B minimum chordal bipartite completion: unknown

18 / 19



...

Thank you!!
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