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Abstract. Let G be a strongly connected directed graph. We consider
the following three problems, where we wish to compute the smallest
strongly connected spanning subgraph of G that maintains respectively:
the 2-edge-connected blocks of G (2EC-B); the 2-edge-connected com-
ponents of G (2EC-C); both the 2-edge-connected blocks and the 2-
edge-connected components of G (2EC-B-C). All three problems are NP-
hard, and thus we are interested in efficient approximation algorithms.
For 2EC-C we can obtain a 3/2-approximation by combining previously
known results. For 2EC-B and 2EC-B-C, we present new 4-approximation
algorithms that run in linear time. We also propose various heuristics to
improve the size of the computed subgraphs in practice, and conduct a
thorough experimental study to assess their merits in practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
An edge of G is a strong bridge if its removal increases the number of strongly
connected components of G. A digraph G is 2-edge-connected if it has no strong
bridges. The 2-edge-connected components ofG are its maximal 2-edge-connected
subgraphs. Let v and w be two distinct vertices: v and w are 2-edge-connected,
denoted by v ↔2e w, if there are two edge-disjoint directed paths from v to w
and two edge-disjoint directed paths from w to v. (Note that a path from v to
w and a path from w to v need not be edge-disjoint.) A 2-edge-connected block
of G = (V,E) is a maximal subset B ⊆ V such that u ↔2e v for all u, v ∈ B.
Differently from undirected graphs, in digraphs 2-edge-connected blocks can be
different from the 2-edge-connected components, i.e., two vertices may be 2-
edge-connected but lie in different 2-edge-connected components. See Figure 1.

Computing a smallest spanning subgraph that maintains the same edge or
vertex connectivity properties of the original graph is a fundamental problem in
network design, with many practical applications [15]. In this paper we consider
the problem of finding the smallest spanning subgraph of G that maintains cer-
tain 2-edge-connectivity requirements in addition to strong connectivity. Specif-
ically, we distinguish three problems that we refer to as 2EC-B, 2EC-C and 2EC-
B-C. In particular, we wish to compute the smallest strongly connected spanning
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Fig. 1. From left-to-right we show: a strongly connected digraph G with a strong bridge
(c, e), the 2-edge-connected components of G, and the 2-edge-connected blocks of G.

subgraph of a digraph G that maintains the following properties: the pairwise
2-edge-connectivity of G, i.e., the 2-edge-connected blocks of G (2EC-B); the 2-
edge-connected components of G (2EC-C); both the 2-edge-connected blocks and
the 2-edge-connected components of G (2EC-B-C). Since all those problems are
NP-hard [7], we are interested in designing efficient approximation algorithms.

Related Work. Finding a smallest k-edge-connected (resp. k-vertex-connected)
spanning subgraph of a given k-edge-connected (resp. k-vertex-connected) di-
graph is NP-hard for k ≥ 2 for undirected graphs, and for k ≥ 1 for digraphs [7].
Problems of this type, together with more general variants of approximating
minimum-cost subgraphs that satisfy certain connectivity requirements, have
received a lot of attention, and several important results have been obtained.
See, e.g., the survey [13]. Currently, the best approximation ratio for comput-
ing the smallest strongly connected spanning subgraph (SCSS) is 3/2 achieved
by Vetta [17]. A linear-time algorithm that achieves a 5/3-approximation was
given by Zhao et al. [18]. For the smallest k-edge-connected spanning subgraph
(kECSS), Laehanukit et al. [14] gave a randomized (1+1/k)-approximation algo-
rithm. Regarding hardness of approximation, Gabow et al. [5] showed that there
exists an absolute constant c > 0 such that for any integer k ≥ 1, approximating
the smallest kECSS on directed multigraphs to within a factor 1+c/k in polyno-
mial time implies P = NP. Jaberi [12] considered various optimization problems
related to 2EC-B and proposed corresponding approximation algorithms. The
approximation ratio in Jaberi’s algorithms, however, is linear in the number of
strong bridges, and hence O(n) in the worst case.

Our Results. In this paper we provide both theoretical and experimental con-
tributions to the 2EC-B, 2EC-C and 2EC-B-C problems. A 3/2-approximation for
2EC-C can be obtained by carefully combining the 2ECSS randomized algorithm
of Laehanukit et al. [14] and the SCSS algorithm of Vetta [17]. A faster and de-
terministic 2-approximation algorithm for 2EC-C can be obtained by combining
techniques based on edge-disjoint spanning trees [4, 16] with the SCSS algorithm
of Zhao et al. [18]. We remark that the other two problems considered here,
2EC-B and 2EC-B-C, seem harder to approximate. The only known result is the
sparse certificate for 2-edge-connected blocks of [8], which implies a linear-time
O(1)-approximation algorithm for 2EC-B. Unfortunately, no good bound for the
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approximation constant was previously known, and indeed achieving a small
constant seemed to be non-trivial. In this paper, we make a substantial progress
in this direction by presenting new 4-approximation algorithms for 2EC-B and
2EC-B-C that run in linear time (the algorithm for 2EC-B-C runs in linear time
once the 2-edge-connected components of G are available; if not, they can be
computed in O(n2) time [10]).

From the practical viewpoint, we provide efficient implementations of our
algorithms that are very fast in practice. We further propose and implement
several heuristics that improve the size (i.e., the number of edges) of the com-
puted spanning subgraphs in practice. Some of our algorithms require O(mn)
time in the worst case, so we also present several techniques to achieve significant
speedups in their running times. With all these implementations, we conduct a
thorough experimental study and report its main findings. We believe that this
is crucial to assess the merits of all the algorithms considered in practical sce-
narios. For lack of space, proofs and some details are omitted and will be given
in the full paper.

2 Preliminaries

A flow graph is a digraph such that every vertex is reachable from a distinguished
start vertex. Let G = (V,E) be a strongly connected digraph. For any vertex
s ∈ V , we denote by G(s) = (V,E, s) the corresponding flow graph with start
vertex s; all vertices in V are reachable from s since G is strongly connected.
The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u; u is a proper
dominator of w if u dominates w and u 6= w. The dominator relation is reflexive
and transitive. Its transitive reduction is a rooted tree, the dominator tree D(s):
u dominates w if and only if u is an ancestor of w in D(s). If w 6= s, d(w), the
parent of w in D(s), is the immediate dominator of w: it is the unique proper
dominator of w that is dominated by all proper dominators of w. The dominator
tree of a flow graph can be computed in linear time, see, e.g., [1, 2]. An edge
(u,w) is a bridge in G(s) if all paths from s to w include (u,w).1 Italiano et al.
[11] showed that the strong bridges of G can be computed from the bridges of
the flow graphs G(s) and GR(s), where s is an arbitrary start vertex and GR is
the digraph that results from G after reversing edge directions. A spanning tree
T of a flow graph G(s) is a tree with root s that contains a path from s to v for
all vertices v. Two spanning trees B and R rooted at s are edge-disjoint if they
have no edge in common. A flow graph G(s) has two such spanning trees if and
only if it has no bridges [16]. The two spanning trees are maximally edge-disjoint
if the only edges they have in common are the bridges of G(s). Two (maximally)
edge-disjoint spanning trees can be computed in linear-time by an algorithm of
Tarjan [16], using the disjoint set union data structure of Gabow and Tarjan [6].
Two spanning trees B and R rooted at s are independent if for all vertices v,

1 Throughout, we use consistently the term bridge to refer to a bridge of a flow graph
G(s) and the term strong bridge to refer to a strong bridge in the original graph G.
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the paths from s to v in B and R share only the dominators of v. Every flow
graph G(s) has two such spanning trees, computable in linear time [9] which are
maximally edge-disjoint.

3 Approximation algorithms and heuristics

We describe our main approaches for solving problem 2EC-B. Let G = (V,E)
be the input directed graph. The first two algorithms process one edge (x, y) of
the current subgraph G′ of G at a time, and test if it is safe to remove (x, y).
Initially G′ = G, and the order in which the edges are processed is arbitrary. The
third algorithm starts with the empty graph G′ = (V, ∅), and adds the edges of
spanning trees of certain subgraphs of G until the resulting digraph is strongly
connected and has the same 2-edge-connected blocks as G.

Two Edge-Disjoint Paths Test. We test if G′ \ (x, y) contains two edge-
disjoint paths from x to y. If this is the case, then we remove edge (x, y). This
test takes O(m) time per edge, so the total running time is O(m2). We refer
to this algorithm as Test2EDP-B. Note that Test2EDP-B computes a minimal 2-
approximate solution for the 2ECSS problem [3], which is not necessarily minimal
for the 2EC-B problem.

2-Edge-Connected Blocks Test. If (x, y) is not a strong bridge in G′, we test
if G′ \ (x, y) has the same 2-edge-connected blocks as G′. If this is the case then
we remove edge (x, y). We refer to this algorithm as Test2ECB-B. Since the 2-
edge-connected blocks of a graph can be computed in linear time [8], Test2ECB-B
runs in O(m2) time. Test2ECB-B computes a minimal solution for 2EC-B and
achieves an approximation ratio of 4.

Independent Spanning Trees. We can compute a sparse certificate for 2-edge-
connected blocks as in [8], based on a linear-time construction of two independent
spanning trees of a flow graph [9]. We refer to this algorithm as IST-B original.
We will show later that a suitably modified construction, which we refer to as
IST-B, yields a linear-time 4-approximation algorithm.

Test2EDP-B and Test2ECB-B can be combined into a hybrid algorithm (Hybrid-
B), as follows: if the tested edge (x, y) connects vertices in the same block (i.e.,
x↔2e y), then apply Test2EDP-B; otherwise, apply Test2ECB-B. One can show
that Hybrid-B returns the same sparse subgraph as Test2ECB-B.

In algorithm Hybrid-B we also apply an additional speed-up heuristic for
trivial edges (x, y): if x belongs to a nontrivial block (i.e., a block of size ≥ 2)
and has outdegree two or y belongs to a nontrivial block and has indegree two,
then (x, y) must be included in the solution. As we show later in our experiments,
such a simple test can yield significant performance gains.

Note that Test2EDP-B, Test2ECB-B and Hybrid-B produce a 4-approximation
for 2EC-B in O(n2) time if they are run on the sparse subgraph computed by
IST-B instead of the original digraph. We observed experimentally that this also
improves the quality of the computed solutions in practice. Therefore, we applied
this idea in all our implementations. See Table 1 in Section 4.
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Although all the above algorithms do not maintain the 2-edge-connected com-
ponents of the original graph, we can still apply them to get an approximation
for 2EC-B-C, as follows. First, we compute the 2-edge-connected components of
G and solve the 2ECSS problem independently for each such component. Then,
we can apply any of the algorithms for 2EC-B (Test2EDP-B, Test2ECB-B, Hybrid-
B or IST-B) for the edges that connect different components. To speed them up,
we apply them to a condensed graph H that is formed from G by contracting
each 2-edge-connected component of G into a single supervertex. Note that H is
a multigraph since the contractions can create loops and parallel edges. For any
vertex v of G, we denote by h(v) the supervertex of H that contains v. Every
edge (h(u), h(v)) of H is associated with the corresponding original edge (u, v) of
G. Algorithms Test2EDP-BC, Test2ECB-BC, Hybrid-BC or IST-BC are obtained
by applying to graph H the corresponding algorithm for 2EC-B. Let H ′ be the
obtained subgraph of H, and let G′ be the digraph that is obtained after we
expand back each supervertex of H with its 2-edge-connected sparse subgraph
computed before. Then, G′ is a valid solution to the 2EC-B-C problem.

As a special case of applying Test2EDP-B to H, we can immediately remove
loops and parallel edges (h(u), h(v)) if H has more than two edges directed from
h(u) to h(v). To obtain faster implementations, we solve the 2ECSS problems in
linear-time using edge-disjoint spanning trees [4, 16]. Let C be a 2-edge-connected
component of G. We select an arbitrary vertex v ∈ C as a root and compute two
edge-disjoint spanning trees in the flow graph C(v) and two edge-disjoint span-
ning trees in the reverse flow graph CR(v). The edges of these spanning trees
give a 2-approximate solution C ′ for 2ECSS on C. Moreover, as in 2EC-B, we can
apply algorithms Test2EDP-BC, Test2ECB-BC and Hybrid-BC on the sparse sub-
graph computed by IST-BC. Then, these algorithms produce a 4-approximation
for 2EC-B-C in O(n2) time. Furthermore, for these O(n2)-time algorithms, we
can improve the approximate solution C ′ for 2ECSS on each 2-edge-connected
component C of G, by applying the two edge-disjoint paths test on the edges of
C ′. We incorporate all these ideas in all our implementations.

We can also use the condensed graph in order to obtain an efficient approx-
imation algorithm for 2EC-C. To that end, we can apply the algorithm of Lae-
hanukit et al. [14] and get a 3/2-approximation of the 2ECSS problem indepen-
dently for each 2-edge-connected component of G. Then, since we only need to
preserve the strong connectivity of H, we can run the algorithm of Vetta [17] on
a digraph H̃ that results from H after removing all loops and parallel edges. This
computes a spanning subgraph H ′ of H̃ that is a 3/2-approximation for SCSS in
H. The corresponding expanded graph G′, where we substitute each superver-
tex h(v) of H with the approximate smallest 2ECSS, gives a 3/2-approximation
for 2EC-C. A faster and deterministic 2-approximation algorithm for 2EC-C can
be obtained as follows. For the 2ECSS problems we use the edge-disjoint span-
ning trees 2-approximation algorithm described above. Then, we solve SCSS
on H̃ by applying the linear-time algorithm of Zhao et al. [18]. This yields a
2-approximation algorithm for 2EC-C that runs in linear time once the 2-edge-
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connected components of G are available (if not, they can be computed in O(n2)
time [10]). We refer to this algorithm as ZNI-C.

Theorem 1. There is a polynomial-time algorithm for 2EC-C that achieves an
approximation ratio of 3/2. Moreover, if the 2-edge-connected components of G
are available, then we can compute a 2-approximate 2EC-C in linear time.

3.1 Independent Spanning Trees

Here we present our new algorithm IST-B and prove that it gives a linear-time
4-approximation for 2EC-B and 2EC-B-C. Since IST-B is a modified version of
the sparse certificate C(G) for the 2-edge-connected blocks of a digraph G [8]
(IST-B original), let us review IST-B original first.

Let s be an arbitrarily chosen start vertex of the strongly connected digraph
G. The canonical decomposition of the dominator tree D(s) is the forest of rooted
trees that results from D(s) after the deletion of all the bridges of G(s). Let T (v)
denote the tree containing vertex v in this decomposition. We refer to the subtree
roots in the canonical decomposition as marked vertices. For each marked vertex
r we define the auxiliary graph Gr = (Vr, Er) of r as follows. The vertex set Vr
of Gr consists of all the vertices in T (r), referred to as ordinary vertices, and a
set of auxiliary vertices, which are obtained by contracting vertices in V \ T (r),
as follows. Let v be a vertex in T (r). We say that v is a boundary vertex in
T (r) if v has a marked child in D(s). Let w be a marked child of a boundary
vertex v: all the vertices that are descendants of w in D(s) are contracted into
w. All vertices in V \ T (r) that are not descendants of r are contracted into
d(r) (r 6= s if any such vertex exists). During those contractions, parallel edges
are eliminated. We call an edge in Er \ E shortcut edge. Such an edge has an
auxiliary vertex as an endpoint. We associate each shortcut edge (u, v) ∈ Er
with a corresponding original edge (x, y) ∈ E, i.e. x was contracted into u or
y was contracted into v (or both). If G(s) has b bridges then all the auxiliary
graphs Gr have at most n + 2b vertices and m + 2b edges in total and can be
computed in O(m) time. As shown in [8], two ordinary vertices of an auxiliary
graph Gr are 2-edge-connected in G if and only if they are 2-edge-connected
in Gr. Thus the 2-edge-connected blocks of G are a refinement of the vertex
sets in the trees of the canonical decomposition. The sparse certificate of [8] is
constructed in three phases. We maintain a list (multiset) L of the edges to be
added in C(G); initially L = ∅. The same edge may be inserted into L multiple
times, but the total number of insertions will be O(n). So the edges of C(G) can
be obtained from L after we remove duplicates, e.g. by using radix sort. Also,
during the construction, the algorithm may choose a shortcut edge or a reverse
edge to be inserted into L. In this case we insert the associated original edge
instead.

Phase 1. We insert into L the edges of two independent spanning trees, B(G(s))
and R(G(s)) of G(s).

Phase 2. For each auxiliary graph H = Gr of G(s), that we refer to as the first-
level auxiliary graphs, we compute two independent spanning trees B(HR(r))
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and R(HR(r)) for the corresponding reverse flow graph HR(r) with start vertex
r. We insert into L the edges of these two spanning trees. We note that L induces
a strongly connected spanning subgraph of G at the end of this phase.

Phase 3. Finally, in the third phase we process the second-level auxiliary graphs,
which are the auxiliary graphs of HR for all first-level auxiliary graphs H. Let
(p, q) be a bridge of HR(r), and let HR

q be the corresponding second-level auxil-

iary graph. For every strongly connected component S of HR
q \ (p, q), we choose

an arbitrary vertex v ∈ S and compute a spanning tree of S(v) and a spanning
tree of SR(v), and insert their edges into L.

The above construction inserts O(n) edges into C(G), and therefore achieves
a constant approximation ratio for 2EC-B. It is not straightforward, however, to
give a good bound for this constant, since the spanning trees that are used in this
construction contain auxiliary vertices that are created by applying two levels of
the canonical decomposition. In the next section we analyze a modified version of
the sparse certificate construction, and show that it achieves a 4-approximation
for 2EC-B. Then we show that we also achieve a 4-approximation for 2EC-B-C
by applying this sparse certificate on the condensed graph H.

The new algorithm IST-B. The main idea behind IST-B is to limit the number
of edges added to the sparse certificate C(G) because of auxiliary vertices. In
particular, we show that in Phase 2 of the construction it suffices to add at most
one new edge for each first-level auxiliary vertex, while in Phase 3 at most 2b
additional edges are necessary for all second-level auxiliary vertices, where b is
the number of bridges in G(s).

Consider Phase 2. Let H = Gr be a first-level auxiliary graph. In the sparse
certificate we include two independent spanning trees, B(HR(r)) and R(HR(r)),
of the reverse flow graph HR(r) with start vertex r. In our new construction,
each auxiliary vertex x in HR will contribute at most one new edge in C(G).
Suppose first that x = d(r), which exists if r 6= s. The only edge entering d(r) in
HR is (r, d(r)) which is the reverse edge of the bridge (d(r), r) of G(s). So d(r)
does not add a new edge in C(G), since all the bridges of G(s) were added in the
first phase of the construction. Next we consider an auxiliary vertex x 6= d(r).
In HR there is a unique edge (x, z) leaving x, where z = d(x). This edge is
the reverse of the bridge (d(x), x) of G(s). Suppose that x has no children in
B(HR(r)) and R(HR(r)). Deleting x and its two entering edges in both spanning
trees does not affect the existence of two edge-disjoint paths from v to r in H,
for any ordinary vertex v. However, the resulting graph C(G) at the end may
not be strongly connected. To fix this, it suffices to include in C(G) the reverse
of an edge entering x from only one spanning tree. Finally, suppose that x has
children, say in B(HR(r)). Then z = d(x) is the unique child of x in B(HR(r)),
and the reverse of the edge (x, z) of B(HR(r)) is already included in C(G) by
Phase 1. Therefore, in all cases, we can charge to x at most one new edge.

Now we consider Phase 3. Let HR
q be a second-level auxiliary graph of HR.

Let e be the strong bridge entering q in HR, and let S be a strongly connected
component in HR

q \ e. In our sparse certificate we include the edges of a strongly
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connected subgraph of S, so we have spanning trees T and TR of S(v) and SR(v),
respectively, rooted at an arbitrary ordinary vertex v. Let x be an auxiliary
vertex of S. If x is a first-level auxiliary vertex in H then it has a unique entering
edge (w, x) which is a bridge in G(s) already included in C(G). If x is ordinary
in H but a second-level auxiliary vertex in Hq then it has a unique leaving edge
(x, z), which is a bridge in HR(r) and C(G) already contains a corresponding
original edge. Consider the first case. If x is a leaf in TR then we can delete the
edge entering x in TR. Otherwise, w is the unique child of x in TR, and the
corresponding edge (w, x) entering x in H has already been inserted in C(G).
The symmetric arguments hold if x is ordinary in H. This analysis implies that
we can associate each second-level auxiliary vertex with one edge in each of T
and TR that is either not needed in C(G) or has already been inserted. If all such
auxiliary vertices are associated with distinct edges then they do not contribute
any new edges in C(G). Suppose now that there are two second-level auxiliary
vertices x and y that are associated with a common edge e. This can happen only
if one of these vertices, say y, is a first-level auxiliary vertex, and x is ordinary
in H. Then y has a unique entering edge in H, which means that e = (x, y) is
a strong bridge, and thus already in C(G). Also e ∈ T and eR = (y, x) ∈ TR.
In this case, we can treat x and y as a single auxiliary vertex that results from
the contraction of e, which contributes at most two new edges in C(G). Since
y is a first-level auxiliary vertex, this can happen at most b times in all second-
level auxiliary graphs, so the 2b bound follows. Using the above construction we
obtain the following result (see the full paper for the complete proof):

Theorem 2. There is a linear-time approximation algorithm for the 2EC-B
problem that achieves an approximation ratio of 4. Moreover, if the 2-edge-
connected components of the input digraph are known in advance, we can compute
a 4-approximation for the 2EC-B-C problem in linear time.

Heuristics applied on auxiliary graphs. To speed up algorithms from the
Test2EDP and Hybrid families, we applied them to the first-level and second-
level auxiliary graphs. Our experiments indicated that applying this heuristic
to second-level auxiliary graphs yields better results than the ones obtained
on first-level auxiliary graphs. We refer to those variants as Test2EDP-B-Aux,
Hybrid-B-Aux, Test2EDP-BC-Aux, Hybrid-BC-Aux, depending on the algorithm
(Test2EDP or Hybrid) and problem (2EC-B or 2EC-B-C) considered.

4 Experimental Analysis

We implemented the algorithms previously described: 7 for 2EC-B, 6 for 2EC-
B-C, and one for 2EC-C, as summarized in Table 1. All implementations were
written in C++ and compiled with g++ v.4.4.7 with flag -O3. We performed our
experiments on a GNU/Linux machine, with Red Hat Enterprise Server v6.6: a
PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430 v2 processors
and 16GB of RAM RDIMM memory. Each processor has 6 cores sharing a 15MB
L3 cache, and each core has a 2MB private L2 cache and 2.50GHz speed. In our
experiments we did not use any parallelization, and each algorithm ran on a
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Algorithm Problem Technique Time

ZNI-C 2EC-C Zhao et al. [18] applied on the condensed graph O(m+n)†

IST-B original 2EC-B Original sparse certificate from [8] O(m+ n)

IST-B 2EC-B Modified sparse certificate O(m+ n)

Test2EDP-B 2EC-B Two edge-disjoint paths test on sparse certificate of input
graph

O(n2)

Test2ECB-B 2EC-B 2-edge-connected blocks test on sparse certificate of input
graph

O(n2)

Hybrid-B 2EC-B Hybrid of two edge-disjoint paths and 2-edge-connected
blocks test on sparse certificate of input graph

O(n2)

Test2EDP-B-Aux 2EC-B Test2EDP-B applied on second-level auxiliary graphs O(n2)

Hybrid-B-Aux 2EC-B Hybrid-B applied on second-level auxiliary graphs O(n2)

IST-BC 2EC-B-C Modified sparse certificate preserving 2-edge-connected
components (applied on the condensed graph)

O(m+n)†

Test2EDP-BC 2EC-B-C Two edge-disjoint paths test on sparse certificate of con-
densed graph

O(n2)

Test2ECB-BC 2EC-B-C 2-edge-connected blocks test on sparse certificate of con-
densed graph

O(n2)

Hybrid-BC 2EC-B-C Hybrid of two edge-disjoint paths and 2-edge-connected
blocks test on sparse certificate of condensed graph

O(n2)

Test2EDP-BC-Aux 2EC-B-C Test2EDP-BC applied on second-level auxiliary graphs O(n2)

Hybrid-BC-Aux 2EC-B-C Hybrid-BC applied on second-level auxiliary graphs O(n2)

Table 1. The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. †These linear running times assume
that the 2-edge-connected components of the input digraph are available.

Dataset n m file size δavg b∗ δBavg δ
C
avg type

Rome99 3353 8859 100KB 2.64 1474 1.75 1.67 road network
P2p-Gnutella25 5153 17695 203KB 3.43 2181 1.60 1.00 peer2peer
P2p-Gnutella31 14149 50916 621KB 3.59 6673 1.56 1.00 peer2peer
Web-NotreDame 53968 296228 3,9MB 5.48 34879 1.50 1.36 web graph
Soc-Epinions1 32223 443506 5,3MB 13.76 20975 1.56 1.55 social network
USA-road-NY 264346 733846 11MB 2.77 104618 1.80 1.80 road network
USA-road-BAY 321270 800172 12MB 2.49 196474 1.69 1.69 road network
USA-road-COL 435666 1057066 16MB 2.42 276602 1.68 1.68 road network
Amazon0302 241761 1131217 16MB 4.67 73361 1.74 1.64 prod. co-purchase
WikiTalk 111881 1477893 18MB 13.20 85503 1.45 1.44 social network
Web-Stanford 150532 1576314 22MB 10.47 64723 1.62 1.33 web graph
Amazon0601 395234 3301092 49MB 8.35 83995 1.82 1.82 prod. co-purchase
Web-Google 434818 3419124 50MB 7.86 211544 1.59 1.48 web graph
Web-Berkstan 334857 4523232 68MB 13.50 164779 1.56 1.39 web graph

Table 2. Real-world graphs sorted by file size of their largest SCC; n is the number
of vertices, m the number of edges, and δavg is the average vertex indegree; b∗ is the
number of strong bridges; δBavg and δCavg are lower bounds on the average vertex indegree
of an optimal solution to 2EC-B and 2EC-C, respectively.

single core. We report CPU times measured with the getrusage function. All
our running times were averaged over ten different runs.

For the experimental evaluation we use the datasets shown in Table 2. We
measure the quality of the solution computed by algorithm A on problem P
by a quality ratio defined as q(A,P) = δAavg/δ

P
avg , where δAavg is the average

vertex indegree of the subgraph computed by A and δPavg is a lower bound on
the average vertex indegree of the optimal solution for P. Specifically, for 2EC-B
and 2EC-B-C we define δBavg = (n+k)/n, where n is the total number of vertices
of the input digraph and k is the number of vertices that belong in nontrivial
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2-edge-connected blocks.2 We set a similar lower bound δCavg for 2EC-C, with
the only difference that k is the number of vertices that belong in nontrivial
2-edge-connected components. Note that the quality ratio is an upper bound of
the actual approximation ratio. The smaller the values of q(A,P) (i.e., the closer
to 1), the better is the approximation obtained by algorithm A for problem P.

We now report the results of our experiments with all the algorithms con-
sidered for problems 2EC-B, 2EC-B-C and 2EC-C. As previously mentioned, for
the sake of efficiency, all variants of Test2EDP, Test2ECB and Hybrid were run
on the sparse certificate computed by either IST-B or IST-BC (depending on the
problem at hand) instead of the original digraph. For the 2EC-B problem, the
quality ratio of the spanning subgraphs computed by the different algorithms is
shown in Table 3, while their running times are plotted in Figure 2 (top). Sim-
ilarly, for the 2EC-C and 2EC-B-C problems, the quality ratio of the spanning
subgraphs computed by the different algorithms is shown in Table 4, while their
running times are plotted in Figure 2 (bottom).

There are two peculiarities related to road networks that emerge immediately
from the analysis of our experimental data. First, all algorithms achieve consis-
tently better approximations for road networks than for most of the other graphs
in our data set. Second, for the 2EC-B problem the Hybrid algorithms (Hybrid-B
and Hybrid-B-Aux) seem to achieve substantial speedups on road networks; for
the 2EC-B-C problem, this is even true for Test2ECB-BC. The first phenomenon
can be explained by taking into account the macroscopic structure of road net-
works, which is rather different from other networks. Indeed, road networks are
very close to be “undirected”: i.e., whenever there is an edge (x, y), there is
also the reverse edge (y, x) (expect for one-way roads). Roughly speaking, road
networks mainly consist of the union of 2-edge-connected components, joined to-
gether by strong bridges, and their 2-edge-connected blocks coincide with their
2-edge-connected components. In this setting, a sparse strongly connected sub-
graph of the condensed graph will preserve both blocks and components. The
second phenomenon is mainly due to the trivial edge heuristic described in Sec-
tion 3.

Apart from the peculiarities of road networks, ZNI-C behaves as expected for
2EC-C through its linear-time 2-approximation algorithm. Note that for both
problems 2EC-B and 2EC-B-C, all algorithms achieve quality ratio significantly
smaller than our theoretical bound of 4. Regarding running times, we observe
that the 2EC-B-C algorithms are faster than the 2EC-B algorithms, sometimes
significantly, as they take advantage of the condensed graph that seems to ad-
mit small size in real-world applications. In addition, our experiments highlight
interesting tradeoffs between practical performance and quality of the obtained
solutions. Indeed, the fastest (IST-B and IST-B original for problem 2EC-B; IST-
BC for 2EC-B-C) and the slowest algorithms (Test2ECB-B and Hybrid-B for 2EC-
B; Test2ECB-BC and Hybrid-BC for 2EC-B-C) tend to produce respectively the

2 This follows from the fact that in the sparse subgraph the k vertices in nontrivial
blocks must have indegree at least two, while the remaining n−k vertices must have
indegree at least one, since we seek for a strongly connected spanning subgraph.

10



Dataset
IST-B

IST-B Test2EDP-B
Test2ECB-B

Test2EDP-B-Aux Hybrid-B-Aux
original & Hybrid-B

Rome99 1.389 1.363 1.171 1.167 1.177 1.174
P2p-Gnutella25 1.656 1.512 1.220 1.143 1.251 1.234
P2p-Gnutella31 1.682 1.541 1.251 1.169 1.291 1.274
Web-NotreDame 1.964 1.807 1.489 1.417 1.500 1.471
Soc-Epinions1 2.047 1.837 1.435 1.379 1.441 1.406
USA-road-NY 1.343 1.245 1.174 1.174 1.175 1.175
USA-road-BAY 1.361 1.307 1.245 1.246 1.246 1.246
USA-road-COL 1.354 1.304 1.251 1.252 1.252 1.252
Amazon0302 1.762 1.570 1.186 1.134 1.206 1.196
WikiTalk 2.181 2.050 1.788 1.588 1.792 1.615
Web-Stanford 1.907 1.688 1.409 1.365 1.418 1.406
Amazon0601 1.866 1.649 1.163 1.146 1.170 1.166
Web-Google 1.921 1.728 1.389 1.322 1.401 1.377
Web-Berkstan 2.048 1.775 1.480 1.427 1.489 1.469

Table 3. Quality ratio q(A,P) of the solutions computed for 2EC-B.

Dataset ZNI-C IST-BC Test2EDP-BC
Test2ECB-BC

Test2EDP-BC-Aux Hybrid-BC-Aux
& Hybrid-BC

Rome99 1.360 1.371 1.197 1.187 1.197 1.195
P2p-Gnutella25 1.276 1.517 1.218 1.141 1.249 1.232
P2p-Gnutella31 1.312 1.537 1.251 1.170 1.290 1.273
Web-NotreDame 1.620 1.747 1.500 1.426 1.510 1.484
Soc-Epinions1 1.790 1.847 1.488 1.435 1.489 1.476
USA-road-NY 1.343 1.341 1.163 1.163 1.163 1.163
USA-road-BAY 1.360 1.357 1.237 1.237 1.237 1.237
USA-road-COL 1.343 1.339 1.242 1.242 1.242 1.242
Amazon0302 1.464 1.580 1.279 1.228 1.292 1.284
WikiTalk 1.891 2.099 1.837 1.630 1.838 1.827
Web-Stanford 1.560 1.679 1.430 1.390 1.436 1.427
Amazon0601 1.709 1.727 1.200 1.186 1.202 1.200
Web-Google 1.637 1.728 1.437 1.381 1.446 1.431
Web-Berkstan 1.637 1.753 1.516 1.472 1.523 1.511

Table 4. Quality ratio q(A,P) of the solutions computed for 2EC-C and 2EC-B-C.

worst and the best approximations. Note that IST-B improves the quality of
the solution of IST-B original at the price of slightly higher running times, while
Hybrid-B (resp., Hybrid-BC) produces the same solutions as Test2ECB-B (resp.,
Test2ECB-BC) with rather impressive speedups. Running an algorithm on the
second-level auxiliary graphs seems to produce substantial performance benefits
at the price of a slightly worse approximation (Test2EDP-B-Aux, Hybrid-B-Aux,
Test2EDP-BC-Aux and Hybrid-BC-Aux versus Test2EDP-B, Hybrid-B, Test2EDP-
BC and Hybrid-BC). Overall, in our experiments Test2EDP-B-Aux and Test2EDP-
BC-Aux seem to provide good quality solutions for the problems considered with-
out being penalized too much by a substantial performance degradation.
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