
Sparse Certificates for 2-Connectivity

in Directed Graphs∗

Loukas Georgiadis� Giuseppe F. Italiano� Aikaterini Karanasiou�

Charis Papadopoulos� Nikos Parotsidis�

Abstract

Motivated by the emergence of large-scale networks in today’s applications, we show how
to compute efficiently smaller subgraphs that maintain some properties of an input graph. In
particular, let G be a strongly connected directed graph. We consider the problem of computing
the smallest strongly connected spanning subgraph of G that maintains certain connectivity
relations of G. Specifically, for 2-edge-connectivity, we consider how to maintain the maximal 2-
edge-connected subgraphs (2ECS) or the 2-edge-connected components (2ECC) of G, or both the
maximal 2-edge-connected subgraphs and the 2-edge-connected components (2EC). Similarly, for
2-vertex-connectivity, we consider how to maintain the maximal 2-vertex-connected subgraphs
(2VCS) or the 2-vertex-connected components (2VCC) of G, or both the maximal 2-vertex-
connected subgraphs and the 2-vertex-connected components (2VC). All those problems are
NP-hard, and thus we are interested in approximation algorithms. Additionally, we aim at
designing algorithms with a good practical performance, so that they are able to scale effectively
to very large graphs.

While for 2ECS and 2VCS one can obtain an approximation ratio smaller than 2 by combin-
ing previously known results, providing good approximations for the 2-edge and the 2-vertex-
components case seems more challenging. Here, we present linear-time approximation algorithms
that achieve the following approximation guarantees:

� 4-approximation for 2ECC and 2EC, and

� 6-approximation for 2VCC and 2VC.

Also, augmented versions of our 2VCC algorithm computes a 6-approximation for maintaining
both the 2-edge and the 2-vertex-connected components (2CC), and for maintaining all the 2-
connectivity relations of G (2C), i.e., both the 2-edge and the 2-vertex-connected subgraphs and
components. Moreover, we provide heuristics that improve the size of the computed subgraphs in
practice, and conduct a thorough experimental study to assess their merits in practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices. Digraph G is strongly
connected if there is a directed path from each vertex to every other vertex. The strongly connected
components of G are its maximal strongly connected subgraphs. An edge (resp., a vertex) of G is
a strong bridge (resp., a strong articulation point) if its removal increases the number of strongly

∗This work is a rewritten and expanded combination of two conference papers [14, 17].
�University of Ioannina, Greece. E-mails: {loukas,charis}@cs.uoi.gr.
�Università di Roma “Tor Vergata”, Italy. E-mails: giuseppe.italiano@uniroma2.it, aikaranasiou@gmail.com,

and nikos.parotsidis@uniroma2.it. Partially supported by MIUR under Project AMANDA.

1

connected components. A digraph G is 2-edge-connected if it has no strong bridges; G is 2-vertex-
connected if it has at least three vertices and no strong articulation points. Let C ⊆ V . The
induced subgraph of C, denoted by G[C], is the subgraph of G with vertex set C and edge set
E ∩ (C×C). If G[C] is 2-edge-connected (resp., 2-vertex-connected), and there is no set of vertices
C ′ with C (C ′ ⊆ V such that G[C ′] is also 2-edge-connected (resp., 2-vertex-connected), then
G[C] is a maximal 2-edge-connected (resp., 2-vertex-connected) subgraph of G. Let v and w be two
distinct vertices: v and w are 2-edge-connected (resp., 2-vertex-connected), denoted by v ↔2e w
(resp., v ↔2v w), if there are two edge-disjoint (resp., two internally vertex-disjoint) directed paths
from v to w and two edge-disjoint (resp., two internally vertex-disjoint) directed paths from w
to v (a path from v to w and a path from w to v need not be either vertex- or edge- disjoint).
A 2-edge-connected component (resp., 2-vertex-connected component) of a digraph G = (V,E) is
a maximal subset C ⊆ V such that u ↔2e v (resp., u ↔2v v) for all u, v ∈ C. Note that, as
a (degenerate) special case, a 2-edge-connected component (resp., 2-vertex-connected component)
might consist of a singleton vertex only: we denote this as a trivial 2-edge-connected component
(resp., 2-vertex-connected component). In the following, we will consider only non-trivial 2-edge
and 2-vertex-connected components. Since there is no danger of ambiguity, we will call them simply
2-edge and 2-vertex-connected components.

Differently from undirected graphs, in digraphs 2-edge and 2-vertex connectivity have a much
richer and more complicated structure, and indeed 2-connectivity problems on directed graphs
appear to be more difficult than their undirected counterparts. In particular, in digraphs the 2-
edge- (resp., 2-vertex-) connected components can be different from the maximal 2-edge- (resp.,
2-vertex-) connected subgraphs, i.e., two vertices may be 2-edge- (resp., 2-vertex-) connected but
lie in different maximal 2-edge- (resp., 2-vertex-) connected subgraphs (see Figure 1). This is not
the case for undirected graphs. Moreover, for undirected graphs it has been known for over 40 years
how to compute the 2-edge- and 2-vertex- connected components in linear time [30]. In the case of
digraphs, however, it was shown only recently how to compute the 2-edge- and 2-vertex- connected
components in linear time [15, 16], and the best current bound for computing the maximal 2-edge-
and 2-vertex- connected subgraphs in digraphs is not even linear, but it is O(min{m3/2, n2}) [4, 20].

A spanning subgraph G′ of G has the same vertices as G and contains a subset of the edges
of G. Computing a smallest spanning subgraph (i.e., one with minimum number of edges) that
maintains the same edge or vertex connectivity properties of the original graph is a fundamental
problem in network design, with many practical applications [29]. These involve the constructions
of low-cost (smallest spanning subgraph) and highly connected networks so that the networks are
fault tolerant to potential failures of nodes or edges. To name only few of them, telecommunication
and traffic networks, and VLSI chip design are just two examples (see for e.g., [1, 29]). We also
note that the type of sparse certificates that we consider allow to speed up computations, such as
finding edge-disjoint or vertex-disjoint paths that connect a pair of vertices, or finding edges and
vertices that separate a pair of vertices: indeed, these computations can be carried out in the sparse
certificate instead of the input digraph, thus replacing m (the number of edges) by n (the number
of vertices) in the complexity of the executed algorithm (see also [28].) Another important benefit
is that a sparse certificate may occupy much less storage space than the original graph, which also
makes it faster to transmit.

In this paper we consider the problem of finding the smallest spanning subgraph of G that
maintains certain 2-connectivity requirements in addition to strong connectivity. In particular, for
2-edge-connectivity, we wish to compute the smallest strongly connected spanning subgraph of a
digraph G that maintains the following properties:

� the pairwise 2-edge-connectivity of G, i.e., the 2-edge-connected components of G (2ECC);

2

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝐺

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

2𝑉𝐶𝑆(𝐺)

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

2𝑉𝐶𝐶(𝐺)

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

2𝐸𝐶𝐶(𝐺)

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

2𝐸𝐶𝑆(𝐺)

Figure 1: A strongly connected digraph G with a strong bridge (c, f) and a strong articulation point
c shown in red (better viewed in color), the maximal 2-edge-connected subgraphs (2ECS (G)) and
the 2-edge-connected components (2ECC (G)) of G, and the maximal 2-vertex-connected subgraphs
(2VCS (G)) and the 2-vertex-connected components (2VCC (G)) of G. Vertex f forms a trivial 2-
edge-connected and 2-vertex-connected component.

� the maximal 2-edge-connected subgraphs of G (2ECS);

� both the 2-edge-connected components and the maximal 2-edge-connected subgraphs of G
(2EC).

Analogously, for 2-vertex-connectivity, we wish to compute the smallest strongly connected span-
ning subgraph G that maintains:

� the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected components of G (2VCC);

� the maximal 2-vertex-connected subgraphs of G (2VCS);

� both the 2-vertex-connected components and the maximal 2-vertex-connected subgraphs of
G (2VC).

Finally, we also consider computing a smallest spanning subgraph of G that maintains:

� the pairwise 2-connectivity of G (2CC), that is, simultaneously the 2-edge- and 2-vertex-
connected components;

� all the 2-connectivity relations of G (2C), that is, simultaneously the 2-edge- and 2-vertex-
connected components and the maximal 2-edge- and 2-vertex- connected subgraphs.

Note that all these problems are NP-hard [12], so one can only settle for efficient approximation
algorithms. Computing small spanning subgraphs is of particular importance when dealing with

3

large-scale graphs, say graphs having hundreds of million to billion edges. In this framework, one big
challenge is to design linear-time algorithms (or close to linear-time algorithms), since algorithms
with higher running times might be practically infeasible on today’s architectures for such large-
scale graphs. While for 2ECS and 2VCS one can achieve an approximation ratio less than 2 using
known results, for the other problems no efficient approximation algorithms were previously known.

1.1 Related work

Computing a smallest k-vertex-(resp., k-edge-) connected spanning subgraph of a given k-vertex-
(resp. k-edge-) connected digraph is NP-hard for any k ≥ 1 (and for k ≥ 2 for undirected
graphs) [12]. The case for k = 1 is to compute a smallest strongly connected spanning subgraph
(SCSS) of a given digraph. This problem was originally studied by Khuller et al. [23], who provided
a polynomial-time algorithm with an approximation guarantee of 1.64. This was improved to 1.61
by the same authors [24]. Later on, Vetta announced a further improvement to 3/2 [32], and Zhao
et al. [33] presented a faster linear-time algorithm at the expense of a larger 5/3-approximation
factor. For the smallest k-edge-connected spanning subgraph (kECSS), Laehanukit et al. [26] gave a
randomized (1+1/k)-approximation algorithm. For the smallest k-vertex-connected spanning sub-
graph (kVCSS), Cheriyan and Thurimella [5], gave a (1 + 1/k)-approximation algorithm that runs
in O(km2) time. For k = 2, the running time of Cheriyan and Thurimella’s algorithm was improved
to O(m

√
n+ n2), based on a linear-time 3-approximation for 2VCSS [13]. We also note that there

has been extensive work on more general settings where one wishes to approximate minimum-cost
subgraphs that satisfy certain connectivity requirements. See, e.g., [8], and the survey [25].

The previous results on kECSS and kVCSS immediately imply an approximation ratio smaller
than 2 for 2ECSS and 2VCSS. A faster and deterministic 2-approximation algorithm for 2ECS
can be obtained by combining techniques based on edge-disjoint spanning trees [7, 31] with the
SCSS algorithm of Zhao et al. [33]. On the other hand, computing sparse subgraphs with the same
pairwise 2-edge or 2-vertex connectivity seems substantially harder. Consider 2ECC, for instance. If
the input graph consists of a single 2-edge-connected block then the problem asks for the smallest 2-
edge-connected subgraph, whereas if the input graph consists of n singleton 2-edge-connected blocks
then the problem coincides with SCSS. Jaberi [22] was the first to consider several optimization
problems related to 2ECC and 2VCC and proposed approximation algorithms. The approximation
ratio in his algorithms, however, is linear in the number of strong bridges for 2ECC and in the
number of strong articulation points for 2VCC, and hence O(n) in the worst case.

1.2 Our results

In this paper we provide both theoretical and experimental contributions to the 2ECC and 2VCC
problems, and their generalizations 2EC, 2VC, 2CC, and 2C. Our goal is to provide practical algo-
rithms that achieve good approximations with fast running times. Our starting point is the recent
framework on strong connectivity and 2-connectivity problems in digraphs [15, 16, 18], combined
with the notions of divergent spanning trees and low-high orders [19] (defined below). Building on
this new framework, we can obtain sparse certificates also for the 2-edge- and 2-vertex- connected
components of a digraph. In our context, a sparse certificate of a strongly connected digraph G
is a strongly connected spanning subgraph C(G) of G with O(n) edges that maintains the 2-edge-
or the 2-vertex- connected components of G. Sparse spanning subgraphs of this kind imply O(1)-
approximation algorithms for 2ECC and 2VCC. Such sparse certificates have been provided in [16]
and [15] for the 2-edge-connected components and the 2-vertex-connected components, respectively,
but unfortunately, no good bound for the approximation constant was previously known, and indeed

4

achieving a small constant seemed to be non-trivial. In this paper, we make a substantial progress
in this direction by presenting new 4-approximation algorithms for 2ECC and 6-approximation al-
gorithms for 2VCC that run in linear time. Then, we extend our algorithms so that they compute a
4-approximation for 2EC, and a 6-approximation for 2VC, 2CC and 2C. These algorithms also run
in linear time once the maximal 2-vertex and 2-edge-connected subgraphs of G are available; if not,
the current best running time for computing them is O(min{m3/2, n2}) [4, 20].

From the practical viewpoint, we provide efficient implementations of our algorithms that are
very fast in practice. We further propose and implement several heuristics that improve the size
(i.e., the number of edges) of the computed spanning subgraphs in practice. Some of these heuristics
require O(mn) time in the worst case, so we also present several techniques to achieve significant
speedups in their running times. With all these implementations, we conduct a thorough experi-
mental study and report its main findings. We believe that this is crucial to assess the merits of
all the algorithms considered in practical scenarios.

The remainder of this paper is organized as follows. We introduce some preliminary definitions
and graph-theoretical terminology in Section 2. Then, in Section 3 we describe our main algorithms
that achieve a 4-approximation for 2ECC and a 6-approximation for 2VCC. In Sections 4 and 5 we
extend these algorithms in order to obtain a 4-approximation for 2EC and a 6-approximation for
2VC and 2C. Our empirical study is presented in Section 6. Finally, in Section 7 we discuss some
open problems and directions for future work.

2 Preliminaries

In this section, we introduce some basic terminology and results that will be useful throughout the
paper.

2.1 Flow graphs, dominators, bridges, and edge-disjoint spanning trees.

A flow graph is a digraph such that every vertex is reachable from a distinguished start vertex. Let
G = (V,E) be a strongly connected digraph. For any vertex s ∈ V , we denote by G(s) = (V,E, s)
the corresponding flow graph with start vertex s; all vertices in V are reachable from s since G is
strongly connected. The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u. The dominator relation in
G(s) can be represented by a rooted tree, the dominator tree D(s), such that u dominates w if and
only if u is an ancestor of w in D(s). See Figure 2. If w 6= s, we denote by d(w) the parent of w in
D(s). The dominator tree of a flow graph can be computed in linear time, see, e.g., [2, 3].

An edge (u,w) is a bridge in G(s) if all paths from s to w include (u,w).1 Italiano et al. [21]
gave linear-time algorithms for computing all the strong bridges and all the strong articulation
points of a digraph G. Their algorithms use the dominators and the bridges of flow graphs G(s)
and GR(s), where s is an arbitrary start vertex and GR is the digraph that results from G after
reversing edge directions. A spanning tree T of a flow graph G(s) is a tree with root s that contains
a path from s to v for all vertices v. Two spanning trees T1 and T2 rooted at s are edge-disjoint
if they have no edge in common. A flow graph G(s) has two such spanning trees if and only if it
has no bridges [31]. Two spanning trees are maximally edge-disjoint if the only edges they have in
common are the bridges of G(s). Two (maximally) edge-disjoint spanning trees can be computed

1Throughout, we use consistently the term bridge to refer to a bridge of a flow graph G(s) and the term strong
bridge to refer to a strong bridge in the original graph G.

5

𝑎

𝑏 𝑑𝑐

𝑔 ℎ

𝑖

𝑒 𝑓

𝐷(𝑎)𝐺

𝑎

𝑏 𝑑𝑐

𝑔 𝑖

𝑗

𝑒 𝑓

𝑎

𝑏 𝑑𝑐

𝑔 ℎ

𝑖

𝑒 𝑓

𝑎

𝑏 𝑑 𝑓

42 3

𝑐

𝑔 ℎ𝑖

𝑒

5

1

6

7 8 9

𝑇1 𝑇2

Figure 2: A strongly connected digraph G, with a strong bridge shown in red (better viewed
in color). The dominator tree D(a) of flow graph G(a); the numbers correspond to a preorder
numbering of D(a) that is a low-high order of G(a). Also, two divergent spanning trees T1 and T2
of G(a) that are maximally edge-disjoint.

in linear-time by an algorithm of Tarjan [31], using the disjoint set union data structure of Gabow
and Tarjan [11].

2.2 Divergent spanning trees and low-high orders

Two spanning trees T1 and T2 rooted at s are divergent if for all vertices v, the paths from s to v in
T1 and T2 share only the dominators of v. A low-high order δ on G(s) is a preorder of the dominator
tree D(s) such for all v 6= s, (d(v), v) ∈ E or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u
is less than v in δ (u <δ v), v is less than w in δ (v <δ w), and w is not a descendant of v in D(s).
See Figure 2. Every flow graph G(s) has a pair of maximally edge-disjoint divergent spanning trees
and a low-high order, both computable in linear-time [19]. Moreover, given a low-high order of G,
it is straightforward to compute two strongly divergent spanning trees of G in O(m) time [19].

Next, we state two useful properties of divergent spanning trees and low-high orders that follow
from [19].

Property 2.1. Let T1 = (V,E1) and T2 = (V,E2) be two divergent spanning trees of G(s). Then,
the flow graph G′(s) = (V,E1 ∪ E2, s) has the same dominator tree as G(s).

Fix a low-high order δ of G(s) and let E′ ⊆ E be a subset of edges. We say that E′ satisfies δ
if for any vertex v 6= s we have (d(v), v) ∈ E′ or there are two edges (u, v) ∈ E′, (w, v) ∈ E′ such
that u <δ v and v <δ w, and w is not a descendant of v in D(s).

Property 2.2. Let δ be a low-high order of G(s) = (V,E, s) and let E′ ⊆ E be a subset of edges
that satisfies δ. Then, the flow graph G′(s) = (V,E′, s) has the same dominator tree as G(s).

2.3 Loop-nesting trees

Let G = (V,E) be a strongly connected digraph. A loop nesting tree represents a hierarchy of
strongly connected subgraphs of G [31], and is defined with respect to a dfs tree T of G as follows.
Let T be a dfs tree of flow graph G(s), rooted at some arbitrary vertex s. For a vertex u, we

6

denote by loop(u) the set of all descendants x of u in T such that there is a path from x to u in G
containing only descendants of u in T . Since any two vertices in loop(u) reach each other, loop(u)
induces a strongly connected subgraph of G. Furthermore, loops define a laminar family (i.e., for
any two vertices u and v, we have loop(u)∩ loop(v) = ∅, or loop(v) ⊆ loop(u), or loop(u) ⊆ loop(v)).
The above property allows us to define the loop nesting tree L(s) of G(s), with respect to T , as the
rooted tree in which the parent of any vertex v, denoted by `(v), is the nearest proper ancestor u of
v in T such that v ∈ loop(u). Since G is strongly connected and T is a dfs tree, `(v) is well-defined.
Moreover, every cycle contains a back edge with respect to T [30], and hence every cycle of G is
contained in a loop [31]. Thus, loop(u) is the set of all descendants of vertex u in L(s).

The loop-nesting tree with respect to the dfs tree T of G(a), is defined by at most n−1 additional
edges (which are back-edges or cross-edges w.r.t. T) that specify the loops. See Figure 3. (We refer
the interested reader to [19, 31] for the details.) A loop nesting tree can be computed in linear
time [3, 31].

𝑎

𝑏 𝑑𝑐

𝑔 ℎ

𝑖

𝑒 𝑓

𝐿(𝑎)𝐺(𝑎)

𝑎

𝑏

𝑑

𝑖

𝑐

𝑒 𝑔

ℎ

𝑓

Figure 3: The flow graph G(a) of Figure 2, where the edges of a dfs tree T rooted at vertex a are
shown with thick lines (left); the blue edges together with the edges of T define the loop-nesting
tree L(a) of G(a) (right).

2.4 Condensed graphs

We define two notions of condensed graphs, formed by contracting maximal 2-edge- or 2-vertex-
connected subgraphs.

The 2ECS-condensed graph is the digraph KE(G) obtained from G by contracting each maximal
2-edge-connected subgraph of G into a single supervertex. Note that KE(G) is a multigraph since
the contractions can create loops and parallel edges; see Figure 4. For any vertex v of G, we
denote by κ(v) the supervertex of KE(G) that contains v. Every edge (κ(u), κ(v)) of KE(G) is
associated with the corresponding original edge (u, v) of G. Given the condensed graph KE(G),
we can obtain the expanded graph by reversing the contractions; each supervertex κ(v) is replaced
by the subgraph induced by the original vertices u with κ(u) = κ(v), and each edge (κ(u), κ(v)) of
KE(G) is replaced with the corresponding original edge (u, v). See Figure 4.

The 2ECS-condensed graph can be used to compute spanning subgraphs that maintain the

7

𝑎

𝑏 𝑑𝑐

𝑔 ℎ

𝑖

𝑒 𝑓

2𝐸𝐶𝑆(𝐺)

𝑎

𝑏 𝑑𝑐

𝑔 ℎ

𝑖

𝑒 𝑓

2𝐸𝐶𝐶(𝐺)

𝜅(𝑎)

𝜅(𝑒)

𝜅(𝑔)

(𝑒, 𝑔)

(𝑔, 𝑐)

(𝑒, ℎ)

(𝑐, 𝑒)

𝜅(𝑓)
(𝑒, 𝑓)

(𝑓, 𝑐)

(𝑓, 𝑑)

(𝑑, 𝑓)

(ℎ, 𝑓)

𝐾𝐸(𝐺)

Figure 4: The maximal 2-edge-connected subgraphs (left) and the 2-edge-connected components
(middle) of the digraph G of Figure 2. Also, the 2ECS-condensed graph KE(G) of G (right), where
each edge of KE(G) is labeled with the corresponding original edge of G. Note that in KE(G) there
are two edge-disjoint paths from κ(a) to κ(f) and two edge-disjoint paths from κ(f) to κ(a), hence
the vertices {a, b, c, d} contracted into κ(a) and the vertices in {f} contracted into κ(f) are in the
same 2-edge-connected component.

maximal 2-edge-connected subgraphs of G (problem 2ECS), as follows. First, we can apply an
approximation algorithm for the 2ECSS problem independently for each 2-edge-connected subgraph
of G. Then, it remains to preserve the strong connectivity of G. We can do that by solving the
SCSS problem on the graph that results from the 2ECS-condensed graph K = KE(G) of G after
removing loops and parallel edges. Let K ′ be the computed solution to SCSS. We obtain a solution
G′ to 2ECS by expanding the supervertices of K ′, i.e., we substitute each supervertex κ(v) with
the previously computed approximate solution to the corresponding 2ECSS problem.

For instance, we can obtain an approximation ratio less than 2 by applying the algorithm of
Laehanukit et al. [26] for 2ECSS, combined with an efficient approximation algorithm for SCSS [23,
24, 32]. A faster (and more practical) deterministic 2-approximation algorithm for 2ECS can be
obtained as follows. For the 2ECS problems we use edge-disjoint spanning trees to obtain a 2-
approximation algorithm [7, 31]. Let C be a 2-edge-connected subgraph of G. We select an
arbitrary vertex v ∈ C as a root and compute two edge-disjoint spanning trees in the flow graph
C(v) and two edge-disjoint spanning trees in the reverse flow graph CR(v). The edges of these
spanning trees give a 2-approximate solution C ′ for 2ECS on C. Then, we solve SCSS on K by
applying the linear-time algorithm of Zhao et al. [33]. This yields a 2-approximation algorithm for
2ECS that runs in linear time once the 2-edge-connected subgraphs of G are available (if not, they
can be computed in O(min{m3/2, n2}) time [4, 20]). We refer to this algorithm as ZNI.

We will use 2ECS-condensed graphs in Section 4, where we show that they maintain the 2-edge-
connected components of the original graph. This fact enables us to use condensed graphs in order
to provide efficient approximation algorithms for 2EC.

We define similarly the 2VCS-condensed graph of G, which is the digraph KV (G) obtained
from G by contracting each maximal 2-vertex-connected subgraph of G into a single supervertex.
See Figure 5. Note that any two 2-vertex-connected subgraphs may have at most one vertex in
common: if two such subgraphs share a vertex, they are contracted into the same supervertex. It
is not difficult to see that, differently from the 2ECS-condensed graph, the 2VCS-condensed graph

8

𝑎

𝑏 𝑑 𝑐

𝑒 𝑓 𝑔

2𝑉𝐶𝑆(𝐺)

𝜅(𝑎)

𝜅(𝑒)

(𝑒, 𝑏)

(𝑒, 𝑐)

𝜅(𝑓)
(𝑒, 𝑓)

(𝑏, 𝑒)
(𝑐, 𝑓)

𝐾𝑉(𝐺)

(𝑓, 𝑔)

𝑎

𝑏 𝑑 𝑐

𝑒 𝑓 𝑔

2𝑉𝐶𝐶(𝐺)

Figure 5: The maximal 2-vertex-connected subgraphs (left) of the digraph G of Figure 1, and the
2VCS-condensed graph KV (G) of G (right). Note that in KV (G) there are two vertex-disjoint
paths from κ(a) to κ(e) and two vertex-disjoint paths from κ(e) to κ(a). However vertex e of κ(e)
is not in the same 2-vertex-connected component (middle) with any of d, g that are contracted into
κ(a). Thus KV (G) does not maintain the 2-vertex-connected components of G.

does not maintain the 2-vertex-connected components of the original graph. Still, we will be able
to use the 2VCS-condensed graph in our approximation algorithm for 2C in Section 5.1.

3 Approximation algorithms for 2ECC and 2VCC

Let G = (V,E) be the input strongly connected digraph. In problems 2ECC and 2VCC, we wish
to compute a strongly connected spanning subgraph G′ of G that has the same 2-edge-connected
components and 2-vertex-connected components of G, respectively, with as few edges as possible.
We consider the following approach for both problems. Start with the empty graph G′ = (V, ∅), and
add as few edges as possible until G′ is guaranteed to have the same 2-edge-connected components
or 2-vertex-connected components as G. We present four new linear-time algorithms that apply
this approach, one for each of the 2ECC and 2VCC problems, and two for 2CC, i.e., that solve
both 2ECC and 2VCC simultaneously. The first two algorithms, that we refer to as DST-2ECC and
DST-2VCC, use divergent spanning trees and are based on the sparse certificates for 2-edge- and
2-vertex-connected components from [15, 16]. The third algorithm, DLN, uses divergent spanning
trees and loop-nesting trees, and is based on the sparse certificate from [18]. Finally, our fourth
algorithm, LHL, combines low-high orders and loop-nesting trees.

3.1 Approximating 2ECC via Divergent Spanning Trees

Here we show how to achieve a 4-approximation for 2ECC by using divergent spanning trees. Our
algorithm DST-2ECC is based on the sparse certificate C(G) for the 2-edge-connected components
of a digraph G [16] that we review first.

3.1.1 Sparse certificate for 2-edge-connected components

Let s be an arbitrarily chosen start vertex of the strongly connected digraph G. The bridge decom-
position of the dominator tree D(s) is the forest of rooted trees that results from D(s) after the
deletion of all the bridges of G(s). Let Dv denote the tree containing vertex v in this decomposition.
We refer to the subtree roots in the bridge decomposition as marked vertices. For each marked
vertex r we define the auxiliary graph Gr = (Vr, Er) of r as follows. The vertex set Vr of Gr consists

9

𝑎

𝑏 𝑑𝑐

𝑒 𝑓

𝑐

𝑔 ℎ

𝑖

𝑒

𝑔 ℎ𝑖

𝑒

𝑎

𝑏 𝑑 𝑓 𝑐

𝑔 ℎ𝑖

𝑒

𝑎

𝑏 𝑑 𝑓 𝑐

(a) (b) (c)

Figure 6: (a) The dominator tree D(a) of the flow graph of Figure 2 with start vertex a. The strong
bridge (c, e), shown in red (better viewed in color), appears as an edge of the dominator tree. (b)
The subtrees Da and De of the bridge decomposition of D(a) after the deletion of (c, e), and (c)
their corresponding first-level auxiliary graphs Ga and Ge. Auxiliary vertices are shown grey.

of all the vertices in Dr, referred to as ordinary vertices, and a set of auxiliary vertices, which are
obtained by contracting vertices in V \Dr:

� Let v be a vertex in Dr. We say that v is a boundary vertex in Dr if v has a marked child in
D(s). Let w be a marked child of a boundary vertex v: all the vertices that are descendants
of w in D(s) are contracted into w.

� All vertices in V \Dr that are not descendants of r are contracted into d(r) (r 6= s if any such
vertex exists).

Figures 6 and 7 illustrate the bridge decomposition of a dominator tree and the corresponding
auxiliary graphs.

During those contractions, parallel edges are eliminated. We call an edge in Er\E shortcut edge.
Such an edge has an auxiliary vertex as an endpoint. We associate each shortcut edge (u, v) ∈ Er
with a corresponding original edge (x, y) ∈ E, i.e., x was contracted into u or y was contracted into
v (or both). If G(s) has b bridges then all the auxiliary graphs Gr have at most n+ 2b vertices and
m+ 2b edges in total and can be computed in O(m) time. As shown in [16], two ordinary vertices
of an auxiliary graph Gr are 2-edge-connected in G if and only if they are 2-edge-connected in Gr.
Thus the 2-edge-connected components of G are a refinement of the vertex sets in the trees of the
bridge decomposition. The sparse certificate of [16] is constructed in three phases. We maintain a
list (multiset) Λ of the edges to be added in C(G); initially Λ = ∅. The same edge may be inserted
into Λ multiple times, but the total number of insertions will be O(n). So the edges of C(G) can be
obtained from Λ after we remove duplicates, e.g. by using radix sort. Also, during the construction,
the algorithm may choose a shortcut edge or a reverse edge to be inserted into L. In either case
we insert the associated original edge instead.

10

𝑒

𝑐

𝑔 ℎ𝑖

𝑐

𝑔 ℎ

𝑖

𝑒 𝑐

𝑔 ℎ

𝑖

𝑒

𝑐

𝑔 ℎ

𝑖

𝑒

(a) (b) (c) (d)

Figure 7: (a) The reverse graph HR of the auxiliary graph H = Ge of Figure 6. The strong bridge
(c, e) of the original digraph, shown in red (better viewed in color), appears as the strong bridge
(e, c) in HR. (b) The dominator tree of HR(e) with start vertex e. (c) The second-level auxiliary
graph HR

c . Auxiliary vertices are shown grey. (d) The strongly connected components of HR
c \(e, c).

The strongly connected component {i, j, g} is a 2-edge-connected block of the original digraph.

Phase 1. We insert into Λ the edges of two divergent spanning trees, T1 and T2 of G(s).

Phase 2. For each auxiliary graph H = Gr of G(s), that we refer to as the first-level auxiliary
graphs, we compute two divergent spanning trees T ′1 and T ′2 for the corresponding reverse flow
graph HR(r) with start vertex r. We insert into Λ the edges of these two spanning trees. We
note that Λ induces a strongly connected spanning subgraph of G at the end of this phase.

Phase 3. Finally, in the third phase we process the second-level auxiliary graphs, which are the
auxiliary graphs of HR for all first-level auxiliary graphs H. Let (p, q) be a bridge of HR(r),
and let HR

q be the corresponding second-level auxiliary graph. For every strongly connected

component S of HR
q \ (p, q), we choose an arbitrary vertex v ∈ S and compute a spanning

tree of S(v) and a spanning tree of SR(v), and insert their edges into Λ; see Figure 7.

The above construction inserts O(n) edges into C(G), and therefore achieves a constant approx-
imation ratio for 2ECC. It is not straightforward, however, to give a good bound for this constant,
since the spanning trees that are used in this construction contain auxiliary vertices that are cre-
ated by computing twice a bridge decomposition and the corresponding auxiliary graphs, that is,
once in the original graph and once in the reverse of each auxiliary graph. In the next section we
introduce and analyze an improved version of the sparse certificate construction, and show that it
achieves a 4-approximation for 2ECC.

3.1.2 Improved algorithm DST-2ECC

We now describe how to improve the sparse certificate of [16]. The main idea behind our improved
version of DST-2ECC is to limit the number of edges added to the sparse certificate C(G) because
of auxiliary vertices. In particular, we show that in Phase 2 of the construction it suffices to add
at most one new edge for each first-level auxiliary vertex, while in Phase 3 at most 2b additional
edges are necessary for all second-level auxiliary vertices, where b is the number of bridges in G(s).

11

We will use the following lemma about the strong bridges in auxiliary graphs, which implies that
for any second-level auxiliary vertex x that was not an auxiliary vertex in the first level, subgraph
C(G) contains the unique edge leaving x in the first-level auxiliary graph.

Lemma 3.1. Let (u, v) be a strong bridge of a first-level auxiliary graph H = Gr that is not a
bridge in G(s). Then (v, u) is a bridge in the flow graph HR(r).

Proof. Consider the dominator tree DH(r) of the flow graph H(r). Let D′ be the tree that results
from DH(r) after the deletion of the auxiliary vertices. Then we have D′ = Dr. Moreover, for
each auxiliary vertex x 6= d(r), (d(x), x) is the unique edge entering x in H, which implies that
(d(x), x) is a bridge in both G(s) and H(r). Also, (d(r), r) is the unique edge leaving d(r) in H,
hence (d(r), r) is also a bridge in both G(s) and H(r). Thus, by construction, an edge of H is a
bridge in H(r) if and only if it is a bridge in G(s). By [21] we have that a strong bridge of H must
appear as a bridge of H(r) or as the reverse of a bridge in HR(r), so the lemma follows.

First we will describe our improved construction and apply a charging scheme for the edges
added to C(G) that are adjacent to auxiliary vertices. Then, we use this scheme to prove that
the improved algorithm achieves the desired 4-approximation. Phase 1 remains the same and we
explain the necessary modifications for Phases 2 and 3.

Improved Phase 2. Let H = Gr be a first-level auxiliary graph. In the sparse certificate we
include two divergent spanning trees, T ′1 and T ′2, of the reverse flow graph HR(r) with start
vertex r. In our new construction, each auxiliary vertex x in HR will contribute at most one
new edge in C(G). Suppose first that x = d(r), which exists if r 6= s. The only edge entering
d(r) in HR is (r, d(r)) which is the reverse edge of the bridge (d(r), r) of G(s). So d(r) does
not add a new edge in C(G), since all the bridges of G(s) were added in the first phase of
the construction. Next we consider an auxiliary vertex x 6= d(r). In HR there is a unique
edge (x, z) leaving x, where z = d(x). This edge is the reverse of the bridge (d(x), x) of G(s).
Suppose that x has no children in T ′1 and T ′2. Deleting x and its two entering edges in both
spanning trees does not affect the existence of two edge-disjoint paths from v to r in H, for
any ordinary vertex v. However, the resulting graph C(G) at the end may not be strongly
connected, since it may not have a path from x to r. To fix this, it suffices to include in
C(G) the reverse of an edge entering x from only one spanning tree. Finally, suppose that x
has children, say in T ′1. Then z = d(x) is the unique child of x in T ′1, and the reverse of the
edge (x, z) of T ′1, i.e., edge (d(x), x), is already included in C(G) by Phase 1. Therefore, in
all cases, we can charge to x at most one new edge.

Improved Phase 3. Let HR
q be a second-level auxiliary graph of HR. Let e be the strong bridge

entering q in HR, and let S be a strongly connected component in HR
q \ e. In our sparse

certificate we include the edges of a strongly connected subgraph of S, so we have spanning
trees T and TR of S(v) and SR(v), respectively, rooted at an arbitrary ordinary vertex v. Let
x be an auxiliary vertex of S. We distinguish two cases:

(i) If x is a first-level auxiliary vertex in H then it has a unique entering edge (w, x) which
is a bridge in G(s) already included in C(G).

(ii) If x is ordinary in H but a second-level auxiliary vertex in Hq then it has a unique
leaving edge ex = (x, z). By Lemma 3.1, eRx is a bridge in HR(r), so by (the improved)
Phase 2 we have that C(G) already contains a corresponding original edge leaving x.

12

Consider the first case. If x is a leaf in TR then we can delete the edge entering x in TR.
Otherwise, w is the unique child of x in TR, and the corresponding edge (w, x) entering x in
H has already been inserted in C(G). The symmetric arguments hold if x is ordinary in H.

This analysis implies that we can associate each second-level auxiliary vertex with one edge
in each of T and TR that is either not needed in C(G) or has already been inserted. If all
such auxiliary vertices are associated with distinct edges then they do not contribute any new
edges in C(G). Suppose now that there are two second-level auxiliary vertices x and y that
are associated with a common edge e. This can happen only if one of these vertices, say y,
is a first-level auxiliary vertex, and x is ordinary in H. Then y has a unique entering edge
in H, which means that e = (x, y) is a strong bridge, and thus already in C(G). Also e ∈ T
and eR = (y, x) ∈ TR. In this case, we can treat x and y as a single auxiliary vertex that
results from the contraction of e, which contributes at most two new edges in C(G). Since y
is a first-level auxiliary vertex, this can happen at most b times in all second-level auxiliary
graphs, so a bound of 2b such edges follows.

Using the above construction we can now prove the following theorem.

Theorem 3.2. Algorithm DST-2ECC runs in linear time and achieves an approximation ratio of
4 for the 2ECC problem.

Proof. The running-time of DST-2ECC follows from the fact that the original sparse certificate of
[16] can be computed in linear time. It is not difficult to verify that the improvements in Phases 2
and 3 require O(n) additional time.

Let b denote (as above) the number of bridges in the flow graph G(s). Note that b ≤ n − 1.
We consider the three phases of the construction of C(G) separately and account for the new edges
that are added in each phase. Consider the two divergent spanning trees T1 and T2 of G(s) that are
computed in the first phase. If an edge (u, v) is a bridge in G(s) then it is the unique edge entering
v in T1∪T2. Thus these two divergent spanning trees add into Λ exactly 2(n−b−1)+b = 2n−b−2
edges.

Now we consider the Improved Phase 2. Let H = Gr be a first-level auxiliary graph. Let or and
ar be, respectively, the number of ordinary and auxiliary vertices in Gr. In the sparse certificate we
include two divergent spanning trees, T ′1 and T ′2, of the reverse flow graph HR(r) with start vertex
r. As already explained in the analysis of this phase, each auxiliary vertex x in HR may contribute
at most one new edge in C(G). Since r and d(r) do not contribute any new edges, the total number
of edges added for H is at most 2(or−1)+(ar−1). Hence, the total number of edges added during
the second phase is at most

∑
r(2or +ar− 3), where the sum is taken over all b+ 1 marked vertices

r. Observe that
∑

r or = n and
∑

r ar = 2b, so we have
∑

r(2or + ar − 3) ≤ 2n+ 2b− 3b = 2n− b.
We note that, as in the original construction, C(G) is strongly connected at the end of this phase.
Moreover, in this phase we include in Λ the strong bridges of G that are not bridges in G(s).

It remains to account for the edges added during the third phase. Here we consider the strongly
connected components for each auxiliary graph HR

q of HR after removing the strong bridge entering

q in HR. By the argument in the description of the Improved Phase 3, the second-level auxiliary
vertices contribute at most 2b new edges in total.

We note that the 2-edge-connected components of G are formed by the ordinary vertices in
each strongly connected component computed for the second-level auxiliary graphs. Consider such
a strongly connected component S. Let oS be the number of ordinary vertices in S. If oS ≤ 1 then
we do not include any edges for S. So suppose that oS ≥ 2. Excluding at most 2b additional edges,
the auxiliary vertices in S do not contribute any new edges. So the number of edges added by S

13

is bounded by 2oS . Then, the third phase adds 2n′ + 2b edges in total, where n′ =
∑

S oS and the
sum is taken over all strongly connected components with oS ≥ 2.

Overall, the number of edges added in C(G) is at most (2n−b−2)+(2n−b)+(2n′+2b) = 4n−2+
2n′ ≤ 4(n+ n′). Next, we observe that these n′ vertices must have indegree and outdegree at least
equal to 2 in any solution to the 2ECC problem. The remaining n− n′ vertices must have indegree
and outdegree at least equal to one, since the spanning subgraph must be strongly connected.
Therefore, the smallest 2ECC has at least (n− n′) + 2n′ = n+ n′ edges. The approximation ratio
of 4 follows.

Implementation details. In order to obtain an even more efficient implementation of DST-2ECC
that achieves better solution quality in practice, we try to reuse as many edges as possible when we
build the spanning trees in the three phases of the algorithm. In the third phase of the construction
we need to solve the smallest SCSS problem for each subgraph HS induced by a strongly connected
component S in the second-level auxiliary graphs after the deletion of a strong bridge. To that
end, we apply a modified version of the linear-time 5/3-approximation algorithm of Zhao et al. [33].
This algorithm computes a SCSS of a strongly connected digraph by performing a depth-first search
(DFS) traversal. During the DFS traversal, any cycle that is detected is contracted into a single
vertex. We modify this approach so that we can avoid inserting new edges into the sparse certificate
as follows. Since we only care about the ordinary vertices in S, we can construct a subgraph of S
that contains edges already added in C(G). We compute the strongly connected components of this
subgraph and contract them. Then we apply the algorithm of Zhao et al. on the contracted graph
of S. Furthermore, during the DFS traversal we give priority to edges already added in C(G). We
can apply a similar idea in the second phase of the construction as well. The algorithm of [19] for
computing two divergent spanning trees of a flow graph uses the edges of a DFS spanning tree,
together with at most n− 1 other edges. Hence, we can modify the DFS traversal so that we give
priority to edges already added in C(G).

3.2 Approximating 2VCC via Divergent Spanning Trees

A sparse certificate C(G) for the 2-vertex-connected components of a strongly connected digraph
G was provided in [15]. Similarly to the 2-edge-connected components case, this sparse certificate
is also based on divergent spanning trees and auxiliary graphs, but here the definition of auxiliary
graphs is substantially different. As above, we review the construction of [15] first, and then describe
our new improved algorithm DST-2VCC. Unfortunately, unlike the 2-edge-connected components
case, we are not able to bound the approximation ratio of this algorithm by a small constant. We
remedy this in the next sections, where we provide 6-approximations by constructions based on loop-
nesting trees. These have the additional benefit of maintaining the 2-edge-connected components
as well. Although our improved algorithm DST-2VCC does not achieve a very good approximation
factor, our experimental study reveals that it produces certificates of good quality, and in several
cases better than all the rest linear-time algorithms that we consider.

3.2.1 Sparse certificate for 2-vertex-connected components

Let s be an arbitrarily chosen start vertex in G. Recall that we denote by G(s) the flow graph with
start vertex s, by GR(s) the flow graph obtained from G(s) after reversing edge directions, and by
D(s) and DR(s) the dominator trees of G(s) and GR(s) respectively. Also, let C(v) and CR(v) be
the set of children of v in D(s) and DR(s) respectively. For each vertex r, let Ck(r) denote the
level k descendants of r, where C0(r) = {r}, C1(r) = C(r), and so on. For each vertex r 6= s that

14

is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of r as follows. The vertex set
of Gr is Vr = ∪3k=0C

k(r) and it is partitioned into a set of ordinary vertices V o
r = C1(r) ∪ C2(r)

and a set of auxiliary vertices V a
r = C0(r) ∪ C3(r). The auxiliary graph Gr results from G by

contracting the vertices in V \ Vr as follows. All vertices that are not descendants of r in D(s) are
contracted into r. For each vertex w ∈ C3(r), we contract all descendants of w in D(s) into w. We
use the same definition for the auxiliary graph Gs of s, with the only difference that we let s be
an ordinary vertex. In order to bound the size of all auxiliary graphs, we eliminate parallel edges
during those contractions. We call an edge e ∈ Er \ E a shortcut edge of Gr. That is, a shortcut
edge is formed by the contraction of a part of G into an auxiliary vertex of Gr. Thus, a shortcut
edge is not an original edge of G but corresponds to at least one original edge, and is adjacent to
at least one auxiliary vertex.

The algorithm of [15] selects the edges that are inserted into C(G) in three phases. During the
construction, the algorithm may choose a shortcut edge or a reverse edge to be inserted into C(G).
In this case we insert the associated original edge instead. Also, an edge may be selected multiple
times, so we remove multiple occurrences of such edges in a postprocessing step.

Phase 1. In the first phase, we insert into C(G) the edges of two maximally edge-disjoint divergent
spanning trees, T1 and T2 of G(s).

Phase 2. In the second phase we process the auxiliary graphs of G(s) that we refer to as the first-
level auxiliary graphs. For each such auxiliary graph H = Gr, we compute two maximally
edge-disjoint divergent spanning trees T ′1 and T ′2 of the corresponding reverse flow graph
HR(r) with start vertex r. We insert into C(G) the edges of these two spanning trees. It
can be proved that, at the end of this phase, C(G) induces a strongly connected spanning
subgraph of G.

Phase 3. Finally, in the last phase we process the second-level auxiliary graphs, which are the
auxiliary graphs of HR for all first-level auxiliary graphs H. Let HR

q be a second-level

auxiliary graph of HR. For every strongly connected component S of HR
q \ q, we choose an

arbitrary vertex v ∈ S and compute a spanning tree of S and a spanning tree of SR, and
insert their edges into C(G).

This construction inserts O(n) edges into C(G), and therefore achieves a constant approximation
ratio for 2VCC. However, due to the use of auxiliary vertices and two levels of auxiliary graphs,
we do not have a good bound for this constant. (The first-level auxiliary graphs have at most 4n
vertices and 4m+ n edges in total [15].)

3.2.2 Improved algorithm DST-2VCC

We can obtain a more efficient version of algorithm DST-2VCC by applying analogous optimizations
to the ones mentioned for DST-2ECC at the end of Section 3.1.2. That is, we try to reuse as many
edges as possible when we build the divergent spanning trees of G(s) and of its auxiliary graphs
(Phases 1 and 2), and when we solve the SCSS instances in the second-level auxiliary graphs (Phase
3).

As for the original version of DST-2VCC, we are not able to bound the approximation ratio of
the improved algorithm by a small constant. In the next section, however, we provide algorithms
that achieve a 6-approximation with the help of loop-nesting trees.

15

3.3 Approximating 2CC via Loop Nesting Trees

In this section we present two new linear-time algorithms that achieve a 6-approximation for the
problem of computing a smallest spanning subgraph that maintains both the 2-edge-connected and
the 2-vertex-connected components of the input digraph.

3.3.1 Divergent Spanning Trees and Loop Nesting Trees

A linear-time algorithm to compute a sparse certificate C(G) for both the 2-edge- and 2-vertex-
connected components can be obtained via divergent spanning trees and loop nesting trees [18].
We refer to this algorithm as DLN. As in algorithm DST-2VCC, in DLN we compute two maximally
edge-disjoint divergent spanning trees T1 and T2 of G(s), and insert their edges into C(G). But
instead of computing auxiliary graphs, we compute a loop nesting tree L of G(s) and insert into
C(G) the edges that define L. These are the edges of the dfs tree of G(s) that defines L, and at
most n− 1 additional edges that are required to maintain the loops of G(s). (See Figure 3.) These
additional edges can be selected while the algorithm discovers the loops during a dfs of G(s). (We
refer the interested reader to [19, 31] for the details.) Notice that by adding the edges of the dfs
tree and the edges that define L, we inserted into C(G) the same loop nesting tree as in G (L is
defined with respect to a dfs tree, but it is sufficient that the same dfs tree can be also produced
in C(G)). Then, we repeat the same process in the reverse direction, i.e., for GR(s). By Property
2.1, C(G) has the same dominator trees (one in the forward graph and one in the reverse graph)
as G(s). During this construction, DLN tries to reuse as many edges as possible. As shown in [18],
a spanning subgraph having the same dominator trees and loop nesting trees (in both directions)
as the digraph G, has the same 2-edge- and 2-vertex-connected components as G.

Theorem 3.3. Algorithm DLN runs in linear time and achieves an approximation ratio of 6 for
problem 2CC.

Proof. Consider first the “forward” pass of the algorithm. It adds at most 2(n − 1) edges for the
two divergent spanning trees, and at most 2(n − 1) edges that define a loop nesting tree of G(s).
By [19, 31], both these constructions use the edges of a dfs tree of G(s) and some additional edges.
Hence, we can use the same dfs tree to compute the divergent spanning trees and the loop nesting
tree. This gives a total of at most 3(n− 1) edges. Similarly, the “reverse” pass computes at most
3(n−1) edges, so algorithm DLN selects at most 6(n−1) edges. Since the resulting subgraph must
be strongly connected, any valid solution to problem 2CC has at least n edges, so DLN achieves a
6-approximation. By [19, 31], both the computation of a pair of divergent spanning trees and of a
loop nesting tree can be done in linear time. Hence, DLN also runs in linear time.

3.3.2 Low-High Orders and Loop Nesting Trees

Now we introduce a new linear-time construction of a sparse certificate for 2CC, via low-high orders,
that we refer to as LHL. The algorithm consists of two phases. In the first phase, we insert into
C(G) the edges that define the loop nesting trees L and LR of G(s) and GR(s), respectively, as in
algorithm DLN. In the second phase, we insert enough edges so that C(G) (resp., CR(G)) maintains
a low-high order of G(s) (resp., GR((s)). Let δ be a low-high order on G(s). Subgraph C(G) satisfies
the low-high order δ if, for each vertex v 6= s, one of the following holds:

(a) there are two edges (u, v) and (w, v) in C(G) such that u <δ v, v <δ w, and w is not a
descendant of v in D(s);

(b) (d(v), v) is a strong bridge of G and is contained in C(G); or

16

(c) (d(v), v) is an edge of G that is contained in C(G), and there is another edge (u, v) in C(G)
such that u <δ v and u 6= d(v).

We note that the output of LHL, i.e., the sparse certificate C(G), also maintains the 2-edge- and
2-vertex-connected components of the input digraph. This follows from the fact that C(G) has the
same loop nesting trees and, by Property 2.2, the same dominator trees as G(s) (in both directions).

Theorem 3.4. Algorithm LHL is correct and achieves an approximation ratio of 6 for problem 2CC
in linear time.

Proof. By construction, the sparse certificate C(G) computed by LHL satisfies a low-high order δ
of G(s). This implies that C(G) contains two divergent spanning trees T1 and T2 of G(s) [19].
Moreover, cases (b) and (c) of the construction ensure that T1 and T2 are maximally edge-disjoint.
This is because when case (a) does not apply for a vertex v, then C(G) contains (d(v), v). Also,
d(v) is the only vertex u that satisfies u <δ v if and only if (d(v), v) is a strong bridge. Hence, C(G)
indeed contains two maximally edge-disjoint divergent spanning trees of G(s). Similarly, C(G) also
contains two maximally edge-disjoint divergent spanning trees of GR(s). So the correctness of LHL
follows from the fact that DLN is correct.

Next we bound the approximation ratio of LHL. The edges selected to maintain a loop nesting
tree L of G(s) contain at least one entering edge for each vertex v 6= s. This means that it remains
to include at most one edge for each vertex v 6= s in order to satisfy a low-high order of G(s). The
symmetric arguments holds for the reverse direction as well, so C(G) contains at most 6(n − 1)
edges, which gives an approximation ratio of 6.

3.4 Speed-up techniques and heuristics

In this section we describe some heuristics that are able to improve the quality of the solutions
computed by our previous algorithms. These improvements come at the expense of the running
times, as some of these heuristics require quadratic time in the worst case. Consequently, we also
present several techniques to achieve significant speedups in their running times. The main idea
is to use a simple filter that decides whether a specific edge of the current subgraph G′ is really
needed or can be discarded. Specifically, we consider two main techniques that process one edge
(x, y) of the current subgraph G′ of G at a time, and test if it is safe to remove (x, y). Initially
G′ = C(G), where C(G) is an appropriate sparse certificate depending on the problem we wish to
solve, and the order in which the edges are processed is arbitrary.

Disjoint Paths Test. We test if G′ \ (x, y) contains two disjoint paths from x to y. If this is the
case, then we remove the edge (x, y); otherwise, we keep the edge (x, y) in G′ and proceed
with the next edge. More precisely, for the 2-edge-connectivity problems, the disjoint paths
from x to y need only be edge-disjoint, while for the 2-vertex-connectivity problems we require
vertex-disjoint paths. Both cases can be tested by running two iterations of the Ford-Fulkerson
augmenting paths algorithm [9].

For the vertex-disjoint paths test we define a modified graph G′′ of G′ after vertex-splitting
(see, e.g., [1]): for each vertex v, replace v by two vertices v+ and v−, and add the edge
(v−, v+). Then, we replace each edge (u, v) in G′ by (u+, v−) in G′′, so v− has the edges
entering v and v+ has the edges leaving v. By this construction, G′ has two vertex-disjoint
paths from x to y if and only if G′′ has two edge-disjoint paths from x+ to y−. Note that we
need to compute G′′ once for all such tests. If an edge (x, y) is deleted from G′, then we also
delete (x+, y−) from G′′.

17

Also note that both G′ and G′′ have O(n) edges. Hence, both the two edge-disjoint paths
test (Test2EDP) and the two vertex-disjoint paths test (Test2VDP) take O(n) time per edge,
so their total running time is O(n2).

2-Connected Components Test. If (x, y) is not a strong bridge in G′, we test if G′ \ (x, y) has
the same 2-connected components as G′. If this is the case then we remove the edge (x, y).
Specifically, for the 2-edge-connectivity problems, we test the 2-edge connected components
of G′, while for the 2-vertex-connectivity problems we test the 2-vertex connected components
of G′. We refer to these filters as Test2ECC and Test2VCC, respectively. Since the 2-edge-
connected components and the 2-vertex-connected components of a graph can be computed
in linear time [15, 16], both filters run in O(n) time per edge, and so O(n2) time overall.

We note that Test2EDP (resp., Test2VDP) computes a minimal 2-approximate solution for the
2ECSS (resp., 2VCSS) problem [5], which is not necessarily minimal for the 2ECC (resp., 2VCC)
problem. On the other had, Test2ECC and Test2VCC produce minimal solutions of the problems
2ECC and 2VCC, respectively. Also, we remark that one may apply the above filters directly on
the input graph G, i.e., initialize G′ = G rather than G′ = C(G), but then their total running time
becomes O(m2) which is impractical for large graphs.

The two approaches above can be combined into a hybrid algorithm:

Hybrid 2-Edge Connected Components Test. If the tested edge (x, y) connects vertices in the
same 2-edge-connected component (i.e., x↔2e y), then apply the Test2EDP filter; otherwise,
apply the Test2ECC filter.

Hybrid 2-Vertex Connected Components Test. If the tested edge (x, y) connects vertices in the
same 2-vertex-connected component (i.e., x↔2v y), then apply the Test2VDP filter; otherwise,
apply the Test2VCC filter.

One can show that for the same order of edges, the hybrid 2-edge connected components test
returns the same minimal sparse subgraph as Test2ECC.

Lemma 3.5. Let (x, y) be an edge of G. Algorithm Test2EDP deletes (x, y) only if Test2ECC does
as well. Moreover, if x and y belong to the same 2-edge-connected component of G, then algorithms
Test2EDP and Test2ECC are equivalent for (x, y), i.e., edge (x, y) is deleted by Test2ECC if and
only if it is deleted by Test2EDP.

Proof. To prove the first part of the lemma, suppose that (x, y) is deleted by Test2EDP. We show
that the 2-edge-connected components of G are not affected by this deletion. Consider any pair of
2-edge-connected vertices u and w that was affected by the deletion of (x, y), that is, the number
of edge-disjoint paths from u to w was reduced. Let (U,W) be a minimum u-w cut in G \ (x, y),
i.e., U,W ⊆ V , U ∩W = ∅, u ∈ U and w ∈ W . Then we also have x ∈ U and y ∈ W . Since
G\ (x, y) has at least two edge-disjoint paths from x to y, Menger’s theorem [27] implies that there
are at least two edges directed from U to W (see also, e.g., [1]). Thus, Menger’s theorem implies
G \ (x, y) has at least two edge-disjoint paths from u to w.

We now prove the second part of the lemma. Suppose that x and y lie in the same 2-edge-
connected component of G, and edge (x, y) is deleted by algorithm Test2ECC. This implies that
G\(x, y) has two edge-disjoint paths from x to y, so algorithm Test2EDP would also delete (x, y).

The proof for the 2-vertex-connectivity case is analogous. In our experiments, Test2VCC and
the corresponding hybrid filter were not competitive with the other algorithms in terms of running
times, so we exclude them from further consideration. Therefore, we refer to the hybrid 2-edge
connected components test simply as Hybrid.

18

Trivial Edges. In order to improve the running time of the above filters, we can apply an
additional speed-up heuristic in order to avoid testing edges that trivially belong to the computed
solution. In the 2-edge-connectivity case, we say that (x, y) is a trivial edge of the current graph
G′ if it satisfies one of the following conditions:

� x belongs to a 2-edge-connected component of size at least two (nontrivial component) and has
outdegree two, or y belongs to a 2-edge-connected component of size at least two (nontrivial
component) and has indegree two;

� x has outdegree one, or y has indegree one. This is necessary to preserve strong connectivity.

Clearly, the removal of a trivial edge will result in a digraph that either has different 2-edge-
connected components or is not strongly connected. Therefore these edges should remain in G′. As
we show later in our experiments, such a simple test can yield significant performance gains. We
apply the analogous heuristic in the 2-vertex-connectivity case.

3.5 Additional heuristics applied on auxiliary graphs for 2ECC

To speed up the Test2EDP and Hybrid algorithms, we applied them to the first-level and second-
level auxiliary graphs. Since auxiliary graphs are supposed to be smaller than the original graph,
one could expect to obtain some performance gain at the price of a slightly worse approximation.
However, this performance gain cannot be taken completely for granted, as auxiliary vertices and
shortcut edges may be repeated in several auxiliary graphs. Our experiments indicated that apply-
ing this heuristic to second-level auxiliary graphs yields better results than the ones obtained on
first-level auxiliary graphs. We refer to those algorithms as Test2EDP-Aux and Hybrid-Aux

We also applied the corresponding heuristics for the 2VCC algorithms but they did not per-
form so well due to the more complicated structure of the auxiliary graph that maintain 2-vertex-
connectivity.

3.6 Tightness of approximation

We do not know if the approximation ratio of 4 (resp., 6) that we provided for algorithms DST-
2ECC (resp., DLN and LHL) are tight. Figure 8(a) shows a digraph G such that a sparse certificate
constructible by algorithm DST-2ECC has 6n + O(1) edges. This digraph has a single nontrivial
2-edge-connected component consisting of the vertices x1, x2, . . . , xk, which also form a 2-edge-
connected subgraph. An optimal solution for 2ECC on this instance, shown in Figure 8(b), has
2n + O(1) edges, where each vertex xi has indegree and outdegree equal to two, while the other
four vertices have indegree and oudegree equal to one. Figure 8(c) shows a minimal solution with
3n+O(1) edges, where again each vertex xi has indegree and outdegree equal to two but vertex y
has indegree equal to k and vertex z has outdegree equal to k; removing any edge of this minimal
solution either destroys the strong connectivity of the subgraph or partitions the nontrivial 2-edge-
connected component.

Thus, for the graph family of Figure 8(a), DST-2ECC achieves a 3-approximation. The three
phases of the sparse certificate construction by DST-2ECC are given in Figures 9, 10 and 11.
Algorithms Test2ECC and Hybrid, on the other hand, achieve a 3/2-approximation for this instance.
We also note that this example is not a worst-case instance for Test2ECC and Hybrid. If the input
digraph is 2-edge-connected then we seek for a smallest 2-edge-connected spanning subgraph, and
Lemma 3.5 implies that Test2ECC and Hybrid produce the same output as Test2EDP. So, in this
case Test2ECC and Hybrid achieve an approximation ratio of 2, which is known to be tight [5].

19

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

(a)

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

(b) (c)

Figure 8: (a) A digraph G with n = k + 4 vertices and m = 6n − 21 edges (in this instance
k = 4). Strong bridges are shown in red (better viewed in color). Digraph G has a single nontrivial
2-edge-connected component consisting of the vertices x1, x2, . . . , xk. (b) A minimum solution for
the 2ECC problem with 2n − 4 edges. (c) A minimal solution for the 2ECC problem with 3n − 9
edges.

4 Approximation algorithms and heuristics for 2EC

Although all the above algorithms do not maintain the 2-edge-connected subgraphs of the original
graph, we can still apply them to get an approximation for 2EC, as follows. First, we compute

20

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4 𝑧 𝑦

(a)

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

(b) (c)

Figure 9: (a) The dominator tree of the flow graph G(s) that corresponds to digraph G of Figure
8. (b) and (c) Two divergent spanning trees of G(s) that may be selected by Phase 1 of the sparse
certificate construction.

the maximal 2-edge-connected subgraphs of G and solve the 2ECS problem independently for each
such subgraph. Then, we can apply any of the algorithms for 2ECC (Test2EDP, Test2ECC, Hybrid
or DST-2ECC) for the edges that connect different subgraphs. To speed them up, we apply them
to the 2ECS-condensed graph K = KE(G) of G. Let K ′ be the subgraph of K computed by any of
the above heuristics, and let G′ be the expanded graph of K ′, where we replace each supervertex

21

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

𝑟

𝑠

𝑥1 𝑥2 𝑥3 𝑥4 𝑧 𝑦

(a) (b)

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

(c) (d)

Figure 10: (a) The reverse graph HR of the auxiliary graph H = Gr of Figure 9. Auxiliary vertices
are shown in grey. (b) The dominator tree of HR(r) with start vertex r. (c) and (d) Two divergent
spanning trees of HR(r) that may be selected by Phase 2 of the sparse certificate construction.

of K with the corresponding 2-edge-connected sparse subgraph computed before. We refer to
the corresponding algorithms obtained this way as Test2EDP-2EC, Test2ECC-2EC, Hybrid-2EC, and
DST-2EC. The next lemma shows that indeed G′ is a valid solution to the 2EC problem.

Lemma 4.1. Digraph G′ is strongly connected and has the same 2-edge-connected subgraphs and
components as G.

Proof. Digraph G′ is strongly connected by construction, since K ′ and the spanning subgraphs
computed for each supervertex of K are strongly connected. It is also clear that G′ and G have
the same 2-edge-connected subgraphs. So it remains to consider the 2-edge-connected components.
Let u and w be two arbitrary vertices of G. We show that u and w are 2-edge-connected in G′ if

22

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

𝑠

𝑟

𝑥1 𝑥2 𝑥3 𝑥4

𝑦 𝑧

(a) (b)

Figure 11: (a) The strongly connected components of HR
s \ (r, s), where HR

s is the second-level
auxiliary graph of HR of Figure 10. The only nontrivial component is induced by the vertices
x1, x2, . . . , xk. The edges shown may be selected by Phase 3 of the sparse certificate construction.
(b) The final sparse certificate with 6n− 23 edges.

and only if they are 2-edge-connected in G. The “only if” direction follows from the fact that G′

is a subgraph of G. We now prove the “if” direction. Suppose u and w are 2-edge-connected in
G. If u and w are located in the same 2-edge-connected subgraph then obviously they are 2-edge-
connected in G′. Suppose now that u and w are located in different subgraphs, so κ(u) 6= κ(w). By
construction, for any (S, T) cut in K such that κ(u) ∈ S and κ(v) ∈ T there are at least two edges
directed from S to T and at least two edges directed from T to S. This property is maintained by
all algorithms, so it also holds in K ′. Then, for any (U,W) cut in the expanded graph G′ such that
u ∈ U and w ∈W there are at least two edges directed from U to W and at least two edges directed
from W to U (see [1, 27]). So u and w are 2-edge-connected in G′ by Menger’s theorem.

As a special case of applying Test2EDP to K = KE(G), we can immediately remove loops and
parallel edges (κ(u), κ(v)) if K has more than two edges directed from κ(u) to κ(v). To obtain faster
implementations, we solve the 2ECS problems in linear-time using edge-disjoint spanning trees [7,
31], as specified in Section 2.4. The edges of these spanning trees give a 2-approximate solution
C ′ for 2ECS on C. Moreover, as in 2ECC, we can apply algorithms Test2EDP-2EC, Test2ECC-2EC
and Hybrid-2EC on the sparse subgraph computed by DST-2EC. Then, these algorithms produce
a 4-approximation for 2EC in O(n2) time. Furthermore, for these O(n2)-time algorithms, we can
improve the approximate solution C ′ for 2ECS on each 2-edge-connected subgraph C of G, by
applying the two edge-disjoint paths test on the edges of C ′. We incorporate all these ideas in all
our implementations.

Theorem 4.2. There is a polynomial-time 4-approximation algorithm for the 2EC. Moreover, if
the 2-edge-connected subgraphs of the input digraph are known in advance, we can compute a 4-
approximation for the 2EC problem in linear time.

23

Proof. Suppose that we apply algorithm DST-2ECC on the 2ECS-condensed graph K = KE(G)
of G to obtain a sparse subgraph K ′. By the analysis in Theorem 3.2, we have that K ′ has less
than 4(N +N ′) edges, where N is the number of vertices of K and N ′ is number of vertices in the
nontrivial 2-edge-connected components of K. Also, let k be the total number of edges computed
by the 2-approximation 2ECSS algorithm for all maximal 2-edge-connected subgraphs of G. Let
k∗ be the total number of edges in the optimal solutions for all these 2ECSS problems. Then
k ≤ 2k∗. So, our algorithm computes a sparse certificate for G with less than 4(N + N ′) + k ≤
4(N + N ′) + 2k∗ < 4(N + N ′ + k∗) edges. The smallest 2EC solution has at least N + N ′ + k∗

edges, so the approximation ratio of 4 follows. Finally, it is easy to verify that our algorithm runs
in linear time if the 2-edge-connected subgraphs of G are known in advance.

For completeness, we note that Theorem 3.2 implies that the Test2ECC algorithms also achieve
a 4-approximation even when they are run on the original digraphs instead of the sparse certificates.

Corollary 4.3. Algorithm Test2ECC (resp., Test2ECC-2EC) applied on the original input (resp.,
condensed) graph gives a 4-approximate solution for 2ECC (resp., 2EC).

Proof. We consider first the algorithm Test2ECC for the 2ECC problem. Let G be a strongly
connected digraph with n vertices, and let n′ be the number of vertices in nontrivial components
(i.e., 2-edge-connected components of size at least 2). Let G′ be the spanning subgraph of G
produced by running Test2ECC on G. It suffices to argue that G′ contains less than 4(n+n′) edges.
Suppose that we run DST on G′. Let G′′ be the resulting subgraph of G′. Then, G′′ is also a
solution to 2ECC for G, and by the proof of Theorem 3.2 it has at most 4(n+ n′) edges. But since
G′ is a minimal solution to 2ECC for G, we must have G′ = G′′.

For the 2EC problem, assume that the edge-disjoint spanning trees construction produces k
edges. Then k ≤ 2k∗, where k∗ is the number of edges in an optimal solution. Let K be the
condensed graph of G, and let N be the number of its vertices. Let K ′ be the spanning subgraph of
K produced by running Test2ECC-2EC on K. By the proof of Theorem 4.2 and the same argument
as for the 2ECC problem, we have that K ′ contains at most 4(N +N ′) edges, where N ′ is the total
number of vertices in nontrivial components of K ′. So the corresponding expanded graph has at
most 4(N+N ′)+k < 4(N+N ′+k∗) edges. Since the smallest 2EC solution has at least N+N ′+k∗

edges, the 4-approximation follows.

5 Approximation algorithms and heuristics for 2VC and 2C

Now we consider how to extend our algorithms in order to solve problems 2VC and 2C efficiently.

5.1 Approximation algorithms and heuristics for 2C

To get an approximate solution for problem 2C, we combine our algorithms for 2VCC with algorithms
that approximate 2VCSS [5, 13]. We also take advantage of the fact that every 2-vertex-connected
subgraph is contained in a 2-edge-connected subgraph [16]. This property suggests the following
approach for 2C. First, we compute the 2-vertex-connected subgraphs of G and solve the 2VCSS
problem independently for each such subgraph. Then, we apply one of the algorithms DLN or LHL
for 2VCC on G. Since the sparse certificate from DLN or LHL also maintains the 2-edge-connected
components, it remains to include edges that maintain the 2-edge-connected subgraphs of G. We
can find these edges in the 2VCS-condensed graph K = KV (G) of G, where we contract each
maximal 2-vertex-connected subgraph of G into a single supervertex. See Section 2.4. For any
vertex v of G, we denote by κ(v) the supervertex of K that contains v. Every edge (κ(u), κ(v)) of

24

K is associated with the corresponding original edge (u, v) of G. Now we describe the main steps
of our algorithm for 2C:

1. Compute the maximal 2-vertex-connected subgraphs. Solve independently the 2VCSS prob-
lem for each such subgraph, using the linear-time algorithm of [13].

2. Form the 2VCS-condensed multigraph K = KV (G), and compute its 2-edge-connected sub-
graphs. Solve independently the 2ECSS problem for each such subgraph, using edge-disjoint
spanning trees [31].

3. Execute the DLN or LHL algorithms on the original graph G and compute a sparse certificate
for the 2-edge- and the 2-vertex-connected components.

The solution to the 2C problem consists of the edges selected in each step of the algorithm. Note
that in Step 2, we should allow 2-edge-connected subgraphs of size two because such a subgraph
may correspond to the union of 2-vertex-connected subgraphs of the original graph. We consider
two versions of our algorithm, DLN-2C and LHL-2C, depending on the algorithm for the 2VCC
problem used in Step 3.

Theorem 5.1. Algorithms DLN-2C and LHL-2C compute a 6-approximation for problem 2C. More-
over, if the 2-edge- and the 2-vertex- connected subgraphs of G are available, then the algorithms
run in linear time.

Proof. Let nv be the number of vertices of G that belong to some 2-vertex-connected subgraph of
G. Also, let n̆ be the number of vertices in K, and let n̆e be the number of vertices of K that
belong to some 2-edge-connected subgraph of K.

A result in [13] shows that, given a 2-vertex-connected digraph with ν vertices, we can compute
in linear time a 2-vertex-connected spanning subgraph that has less than 6ν edges. Hence, by
applying this algorithm to each maximal 2-vertex-connected subgraph of G in Step 1, we select
less than 6nc edges in total. Also, in Step 3, we apply one of the sparse certificates for 2CC that
maintain both the 2-edge- and the 2-vertex-connected components of G. By Theorems 3.3 and 3.4,
such a certificate contains at most 6(n− 1) edges. Hence, Steps 1 and 3 select less than 6(n+ nc)
edges in total.

It remains to consider the contribution of Step 2. For the 2ECSS problems, we can compute
a 2-approximate solution in linear-time using edge-disjoint spanning trees [7, 31]. Let C̆ be a 2-
edge-connected subgraph of K. We select an arbitrary vertex κ(v) ∈ C̆ as a root and compute two
edge-disjoint spanning trees in the flow graph C̆(κ(v)) and two edge-disjoint spanning trees in the
reverse flow graph C̆R(κ(v)). Thus, we select less than 4n̆e edges. Hence, the subgraph computed
by the algorithm has less than 6(n+ nc + n̆e) edges.

Now consider any solution to 2C. It has to include 2nc + 2n̆e edges in order to maintain the
2-vertex and the maximal 2-edge-connected subgraphs of G. Moreover, since the resulting subgraph
must be strongly connected, there must be at least one edge entering each of the n̆ − n̆e vertices
of K that do not belong in a 2-edge-connected subgraph of K. Thus, the optimal solution has at
least 2nc + n̆e + n̆ edges. Note that n̆c + n̆ ≥ n, so the optimal solution has at least n + nc + n̆e
edges and the approximation ratio of 6 follows.

Finally, we show that all three steps of the algorithms DLN-2C and LHL-2C run in linear time
given the maximal 2-edge- and 2-vertex- connected subgraphs of G. This is immediate for Steps 1
and 3. In Step 2, we do not need to compute the 2-edge-connected subgraphs of K from scratch,
but we can form them from the 2-edge-connected subgraphs of G using contractions. Let C be a
2-edge-connected subgraph of G. We contract each 2-vertex-connected subgraph of G contained

25

in C into a single supervertex. Then, the resulting digraph C̆ is a 2-edge-connected subgraph of
K.

If we wish to improve the quality of the computed solution G′, we can apply the Test2VDP
filter, and the analogous 2-edge-disjoint paths filter Test2EDP, as follows. In Step 1, we run the
Test2VDP filter for the edges computed by the linear-time algorithm of [13]. This produces a
minimal solution for 2VCSS in each 2-vertex-connected subgraph of G. Similarly, in Step 2, we
run the Test2EDP filter for the edges of the edge-disjoint spanning trees computed in each 2-edge-
connected subgraph of K. This produces a minimal solution for 2ECSS in each 2-edge-connected
subgraph of K. Finally, we run the Test2VDP filter on the whole G′, but only consider the edges
added in Step 3 of our algorithm, since the edges from Steps 1 and 2 are needed to maintain the
2-vertex- and the 2-edge-connected subgraphs. We implemented this algorithm, using DLN for Step
3, and refer to it as Test2VDP-2C.

5.2 Approximation algorithms and heuristics for 2VC

Executing Steps 1 and 3 of the algorithm of Section 5.1 is enough to produce a certificate for the
2VC problem. If we use DLN or LHL for Step 3, then we obtain a 6-approximate solution for 2VC.
We call the corresponding algorithms DLN-2VC and LHL-2VC, respectively.

Theorem 5.2. There is a polynomial-time algorithm for 2VC that achieves an approximation ratio
of 6. Moreover, if the 2-vertex-connected subgraphs of G are available, then the algorithm runs in
linear time.

Proof. Let nc be the number of vertices that belong in a maximal 2-vertex-connected subgraph of
G. From the analysis in Theorem 5.1, we have that Steps 1 and 3 of the algorithm of Section 5.1
select less than 6(n + nc) edges. One the other hand, any solution to 2VC has to include at least
2nc edges for the maximal 2-vertex-connected subgraphs of G, and at least n − nc edges in order
to obtain a strongly connected subgraph. Thus, the optimal solution has at least n+ nc edges, so
the approximation ratio of 6 follows.

As in the 2VCC problem, we can improve the quality of the computed solution by applying the
Test2VDP filter for the edges that connect different 2-vertex-connected subgraphs. We implemented
this algorithm, using DLN, and refer to it as Test2VDP-2VC.

6 Experimental analysis

In order to assess the practical value of the algorithms previously described, we implemented them
as summarized in Tables 1 and 2. All implementations were written in C++ and compiled with
g++ v.4.4.7 with flag -O3. We performed our experiments on a GNU/Linux machine, with Red
Hat Enterprise Server v6.6: a PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430
v2 processors and 16GB of RAM RDIMM memory. Each processor has 6 cores sharing a 15MB
L3 cache, and each core has a 2MB private L2 cache and 2.50GHz speed. In our experiments we
did not use any parallelization, and each algorithm ran on a single core. We report CPU times
measured with the getrusage function. All our running times were averaged over ten different
runs.

For the experimental evaluation we use the datasets shown in Table 3. We note that one can
compute an optimal solution of our datasets by using an ILP solver after formulating the problem
appropriately [10]. However such an approach is hopeless to produce a solution in reasonable

26

Algorithm Problem Technique Ratio Ref. Time

ZNI 2ECS Zhao et al. [33] applied on the condensed
graph

2 §2.4 O(m+ n)�

DST-2ECC original 2ECC Original sparse certificate from [16] O(1) §3.1.1 O(m+ n)

DST-2ECC 2ECC Improved sparse certificate 4 §3.1.2 O(m+ n)

Test2EDP 2ECC Two edge-disjoint paths test on sparse certifi-
cate of input graph

4 §3.4 O(n2)

Test2ECC 2ECC 2-edge-connected components test on sparse
certificate of input graph

4 §3.4 O(n2)

Hybrid 2ECC Hybrid of two edge-disjoint paths and 2-edge-
connected components test on sparse certifi-
cate of input graph

4 §3.4 O(n2)

Test2EDP-Aux 2ECC Test2EDP applied on second-level auxiliary
graphs

4 §3.5 O(n2)

Hybrid-Aux 2ECC Hybrid applied on second-level auxiliary
graphs

4 §3.5 O(n2)

DST-2EC 2EC Improved sparse certificate preserving 2-edge-
connected subgraphs (applied on condensed
graph)

4 §4 O(m+ n)�

Test2EDP-2EC 2EC Two edge-disjoint paths test on sparse certifi-
cate of condensed graph

4 §4 O(n2)

Test2ECC-2EC 2EC 2-edge-connected components test on sparse
certificate of condensed graph

4 §4 O(n2)

Hybrid-2EC 2EC Hybrid of two edge-disjoint paths and 2-edge-
connected components test on sparse certifi-
cate of condensed graph

4 §4 O(n2)

Test2EDP-2EC-Aux 2EC Test2EDP-2EC applied on second-level auxil-
iary graphs

4 §4 O(n2)

Hybrid-2EC-Aux 2EC Hybrid-2EC applied on second-level auxiliary
graphs

4 §4 O(n2)

Table 1: The algorithms considered in our experimental study for preserving 2-edge-connectivity
relations. The worst-case bounds refer to a digraph with n vertices and m edges. Running times
indicated by � assume that the maximal 2-edge-connected subgraphs of the input digraph are
available.

time for large graphs. Instead we use an indirect measurement of the quality of the produced
solutions as follows. We measure the quality of the solution computed by algorithm A on problem
P by a quality ratio defined as q(A,P) = δAavg/δ

P
avg , where δAavg is the average vertex indegree of

the spanning subgraph computed by A and δPavg is a lower bound on the average vertex indegree
of the optimal solution for P. Specifically, for 2ECC and 2EC (resp., 2VCC and 2VC) we define
δ2ECCavg = (n+ k)/n, (resp., δ2VCCavg) where n is the total number of vertices of the input digraph and
k is the number of vertices that belong in nontrivial 2-edge-connected components (resp., 2-vertex-
connected components). This follows from the fact that in the sparse subgraph the k vertices in
nontrivial components must have indegree at least two, while the remaining n − k vertices must
have indegree at least one, since we seek for a strongly connected spanning subgraph. We use the
lower bound δ2ECCavg also for 2C, since every 2-vertex-connected subgraph or component is contained

in a 2-edge-connected component. We set a similar lower bound δ2ECSavg = (n + k + c)/n for 2ECS,

27

Algorithm Problem Technique Ratio Ref. Time

DST-2VCC original 2VCC Original sparse certificate from [15] based on
divergent spanning trees

O(1) §3.2.1 O(m+ n)

DST-2VCC 2VCC Improved sparse certificate O(1) §3.2.2 O(m+ n)

DLN 2CC Sparse certificate from [18] based on divergent
spanning trees and loop-nesting trees

6 §3.3.1 O(m+ n)

LHL 2CC New sparse certificate based on low-high or-
ders and loop-nesting trees

6 §3.3.2 O(m+ n)

Test2VDP 2CC Two vertex-disjoint paths test applied on the
digraph produced by DLN

6 §3.4 O(n2)

DLN-2VC 2VC DLN combined with the linear-time 2VCSS al-
gorithm of [13]

6 §5.2 O(m+ n)�

LHL-2VC 2VC LHL combined with the linear-time 2VCSS al-
gorithm of [13]

6 §5.2 O(m+ n)�

Test2VDP-2VC 2VC Two vertex-disjoint paths test applied on the
digraph produced by DLN-2VC

6 §5.2 O(n2)

DLN-2C 2C DLN-2VC combined with the linear-time
2ECSS algorithm using edge-disjoint spanning
trees

6 §5.1 O(m+ n)�

LHL-2C 2C LHL-2VC combined with the linear-time
2ECSS algorithm using edge-disjoint spanning
trees

6 §5.1 O(m+ n)�

Test2VDP-2C 2C Test2VDP and Test2EDP applied on the di-
graph produced by DLN-2C

6 §5.1 O(n2)

Table 2: The algorithms considered in our experimental study for preserving 2-connectivity re-
lations. The worst-case bounds refer to a digraph with n vertices and m edges. Running times
indicated by � assume that the maximal 2-vertex-connected subgraphs of the input digraph are
available; running times indicated by � assume that both the 2-edge- and the 2-vertex-connected
subgraphs are available.

Dataset n m file size δavg b∗ a∗ δ2ECCavg δ2ECSavg δ2VCCavg type

Rome99 3353 8859 100KB 2.64 1474 789 1.76 1.68 1.76 road network
P2p-Gnutella25 5153 17695 203KB 3.43 2181 1840 1.60 1.00 1.60 peer2peer
P2p-Gnutella31 14149 50916 621KB 3.60 6673 5357 1.56 1.00 1.56 peer2peer
Web-NotreDame 53968 296228 3.9MB 5.49 34879 9629 1.50 1.38 1.50 web graph
Soc-Epinions1 32223 443506 5.3MB 13.76 20975 8194 1.56 1.55 1.56 social network
USA-road-NY 264346 733846 11MB 2.78 104618 46476 1.80 1.80 1.80 road network
USA-road-BAY 321270 800172 12MB 2.49 196474 84627 1.69 1.70 1.69 road network
USA-road-COL 435666 1057066 16MB 2.43 276602 120142 1.68 1.68 1.68 road network
Amazon0302 241761 1131217 16MB 4.68 73361 69616 1.74 1.69 1.74 prod. co-purchase
WikiTalk 111881 1477893 18MB 13.21 85503 14801 1.45 1.44 1.45 social network
Web-Stanford 150532 1576314 22MB 10.47 64723 14801 1.62 1.34 1.58 web graph
Amazon0601 395234 3301092 49MB 8.35 83995 69387 1.82 1.82 1.82 prod. co-purchase
Web-Google 434818 3419124 50MB 7.86 211544 89838 1.59 1.49 1.58 web graph
Web-Berkstan 334857 4523232 68MB 13.51 164779 53666 1.56 1.40 1.51 web graph

Table 3: Real-world graphs sorted by file size of their largest SCC; n is the number of vertices, m
the number of edges, and δavg is the average vertex indegree; b∗ is the number of strong bridges;
a∗ is the number of strong articulation points; δ2ECCavg , δ2ECSavg , and δ2VCCavg are lower bounds on the
average vertex indegree of an optimal solution to 2ECC, 2ECS, and 2VCC, respectively.

28

where k is the number of vertices that belong in nontrivial 2-edge-connected subgraphs, and c is the
number of nontrivial 2-edge-connected subgraphs (the 2-connected subgraphs need to be strongly
connected to the rest of the graph). Note that the quality ratio is an upper bound of the actual
approximation ratio of the specific input. The smaller the values of q(A,P) (i.e., the closer to 1),
the better is the approximation obtained by algorithm A for problem P.

6.1 Experimental results for 2-edge-connectivity

We now report the results of our experiments with all the algorithms considered for problems
2ECS, 2ECC and 2EC. As previously mentioned, for the sake of efficiency, all variants of Test2EDP,
Test2ECC and Hybrid were run on the sparse certificate computed by either DST-2ECC or DST-2EC
(depending on the problem at hand) instead of the original digraph.

We group the experimental results into two categories: results on the 2ECC problem and results
on both 2ECS and 2EC problems. In all cases we are interested in the quality ratio of the computed
solutions and the corresponding running times. Specifically, we report the following experimental
results:

� For the 2ECC problem:

– the quality ratios of the spanning subgraphs computed by the different algorithms are
shown in Table 4 and Figure 12 (top);

– their running times are given in Table 6, while the corresponding plotted values are
shown in Figure 13 (top).

� For the 2ECS and 2EC problems:

– the quality ratios of the spanning subgraphs computed by the different algorithms are
shown in Table 5 and Figure 12 (bottom);

– their running times are given in Table 7, while the corresponding plotted values are
shown in Figure 13 (bottom). We note that the running times include the time to
compute the 2-edge-connected subgraphs of the input digraph. To that end, we use the
algorithm from [6], which is fast in practice despite the fact that its worst-case running
time is O(mn).

6.2 Experimental results for 2-vertex-connectivity and 2-connectivity

We now report the results of our experiments with all the algorithms considered for problems 2VCC
and 2C.

� For the 2VCC problem:

– the quality ratios of the spanning subgraphs computed by the different algorithms are
shown in Table 8 and Figure 14 (top);

– their running times are given in Table 10, while the corresponding plotted values are
shown in Figure 15 (top).

� For the 2VC and 2C problems:

– the quality ratios of the spanning subgraphs computed by the different algorithms are
shown in Table 9 and Figure 14 (bottom);

29

Dataset
DST-2ECC DST-2ECC Test2EDP Test2ECC Test2EDP-Aux Hybrid-Aux

original (%) (%) (%) & Hybrid (%) (%) (%)
Rome99 1.389 (92.5) 1.363 (90.7) 1.171 (78.0) 1.167 (77.7) 1.177 (78.3) 1.174 (78.2)
P2p-Gnutella25 1.656 (77.4) 1.512 (70.7) 1.220 (57.0) 1.143 (53.4) 1.251 (58.5) 1.234 (57.6)
P2p-Gnutella31 1.682 (73.0) 1.541 (66.9) 1.251 (54.3) 1.169 (50.7) 1.291 (56.0) 1.274 (55.3)
Web-NotreDame 1.964 (53.7) 1.807 (49.4) 1.489 (40.7) 1.417 (38.7) 1.500 (41.0) 1.471 (40.2)
Soc-Epinions1 2.047 (23.3) 1.837 (20.9) 1.435 (16.3) 1.379 (15.7) 1.441 (16.4) 1.406 (16.0)
USA-road-NY 1.343 (87.3) 1.245 (80.9) 1.174 (76.3) 1.174 (76.3) 1.175 (76.3) 1.175 (76.3)
USA-road-BAY 1.361 (92.7) 1.307 (89.0) 1.245 (84.9) 1.246 (84.9) 1.246 (84.9) 1.246 (84.9)
USA-road-COL 1.354 (94.0) 1.304 (90.5) 1.251 (86.9) 1.252 (86.9) 1.252 (86.9) 1.252 (86.9)
Amazon0302 1.762 (65.5) 1.570 (58.3) 1.186 (44.1) 1.134 (42.2) 1.206 (44.9) 1.196 (44.5)
WikiTalk 2.181 (23.9) 2.050 (22.5) 1.788 (19.6) 1.588 (17.4) 1.792 (19.7) 1.615 (17.7)
Web-Stanford 1.907 (29.6) 1.688 (26.2) 1.409 (21.9) 1.365 (21.2) 1.418 (22.0) 1.406 (21.9)
Amazon0601 1.866 (40.8) 1.649 (36.1) 1.163 (25.4) 1.146 (25.1) 1.170 (25.6) 1.166 (25.5)
Web-Google 1.921 (38.8) 1.728 (34.9) 1.389 (28.1) 1.322 (26.7) 1.401 (28.3) 1.377 (27.8)
Web-Berkstan 2.048 (23.7) 1.775 (20.5) 1.480 (17.1) 1.427 (16.5) 1.489 (17.2) 1.469 (17.0)

Table 4: Quality ratio q(A,P) of the solutions computed for 2ECC. Within the parentheses we
report the size (number of edges) of the computed solutions as a percentage of the size of the
original input graphs.

Dataset ZNI (%) DST-2EC (%)
Test2EDP-2EC Test2ECC-2EC Test2EDP-2EC-Aux Hybrid-2EC-Aux

(%) & Hybrid-2EC (%) (%) (%)
Rome99 1.360 (90.5) 1.371 (91.3) 1.197 (79.7) 1.187 (79.0) 1.197 (79.7) 1.195 (79.6)
P2p-Gnutella25 1.276 (59.6) 1.517 (70.9) 1.218 (56.9) 1.141 (53.3) 1.249 (58.4) 1.232 (57.6)
P2p-Gnutella31 1.312 (57.0) 1.537 (66.7) 1.251 (54.3) 1.170 (50.8) 1.290 (56.0) 1.273 (55.3)
Web-NotreDame 1.620 (44.3) 1.747 (47.8) 1.500 (41.0) 1.426 (39.0) 1.510 (41.3) 1.484 (40.6)
Soc-Epinions1 1.790 (20.4) 1.847 (21.0) 1.488 (16.9) 1.435 (16.3) 1.489 (17.0) 1.476 (16.8)
USA-road-NY 1.343 (87.2) 1.341 (87.1) 1.163 (75.5) 1.163 (75.5) 1.163 (75.5) 1.163 (75.5)
USA-road-BAY 1.360 (92.7) 1.357 (92.5) 1.237 (84.3) 1.237 (84.3) 1.237 (84.3) 1.237 (84.3)
USA-road-COL 1.343 (93.2) 1.339 (93.0) 1.242 (86.2) 1.242 (86.2) 1.242 (86.2) 1.242 (86.2)
Amazon0302 1.464 (54.5) 1.580 (58.8) 1.279 (47.6) 1.228 (45.7) 1.292 (48.1) 1.284 (47.8)
WikiTalk 1.891 (20.8) 2.099 (23.0) 1.837 (20.2) 1.630 (17.9) 1.838 (20.2) 1.827 (20.1)
Web-Stanford 1.560 (24.2) 1.679 (26.1) 1.430 (22.2) 1.390 (21.6) 1.436 (22.3) 1.427 (22.1)
Amazon0601 1.709 (37.4) 1.727 (37.8) 1.200 (26.3) 1.186 (26.0) 1.202 (26.3) 1.200 (26.3)
Web-Google 1.637 (33.1) 1.728 (35.0) 1.437 (29.1) 1.381 (27.9) 1.446 (29.2) 1.431 (28.9)
Web-Berkstan 1.637 (18.9) 1.753 (20.3) 1.516 (17.5) 1.472 (17.0) 1.523 (17.6) 1.511 (17.5)

Table 5: Quality ratio q(A,P) of the solutions computed for 2ECS and 2EC. Within the parentheses
we report the size (number of edges) of the computed solutions as a percentage of the size of the
original input graphs.

– their running times are given in Table 11, while the corresponding plotted values are
shown in Figure 15 (bottom).

As in the 2ECS and 2EC problems, the running times for 2VC include the time to compute
the maximal 2-vertex-connected subgraphs of the input digraph, and the running times for
2C include the time to compute both the maximal 2-edge-connected subgraphs and the max-
imal 2-vertex-connected subgraphs. (Again, the computation of those maximal subgraphs is
performed by the algorithms of [6].)

30

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2
R

om
e9

9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2ECC algorithmsDST-2ECC original
DST-2ECC
Test2EDP

Test2ECC / Hybrid
Test2EDP-Aux

Hybrid-Aux

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1+e4 1+e5 1+e6

2ECS and 2EC algorithms
ZNI

DST-2EC
Test2EDP-2EC

Test2ECC-2EC / Hybrid-2EC
Test2EDP-2EC-Aux

Hybrid-2EC-Aux

Figure 12: The plotted quality ratios taken from Tables 4 and 5, respectively.

6.3 Evaluation of the experimental results for 2EC

From the analysis of our experimental data, there are two peculiarities related to road networks
that emerge immediately. First, all algorithms achieve consistently better approximations for road
networks than for most of the other graphs in our data set. Second, for the 2ECC problem the
Hybrid algorithms (Hybrid-2EC and Hybrid-2EC-Aux) seem to achieve substantial speedups on road
networks; for the 2EC problem, this is even true for Test2ECC-2EC. The first phenomenon can
be explained by taking into account the macroscopic structure of road networks, which is rather

31

Dataset
DST-2ECC

DST-2ECC Test2EDP Test2ECC Hybrid Test2EDP-Aux Hybrid-Aux
original

Rome99 0.008 0.010 0.160 14.297 0.224 0.056 0.183
P2p-Gnutella25 0.017 0.019 0.848 44.377 3.767 0.295 2.595
P2p-Gnutella31 0.052 0.064 6.716 352.871 31.935 2.467 20.923
Web-NotreDame 0.211 0.281 46.937 4723.904 352.834 3.192 215.492
Soc-Epinions1 0.194 0.224 47.869 2073.662 135.098 16.387 234.066
USA-road-NY 0.648 0.788 750.874 81990.402 206.055 110.616 108.463
USA-road-BAY 0.979 1.212 1002.689 132171.251 475.378 186.816 187.277
USA-road-COL 1.333 1.681 1794.103 231785.495 976.019 217.215 214.586
Amazon0302 1.068 1.253 1398.438 164047.057 8499.349 331.569 3985.706
WikiTalk 0.763 0.918 637.879 28339.485 5057.806 91.674 10877.771
Web-Stanford 0.908 1.309 607.356 49532.517 2120.636 25.184 952.585
Amazon0601 2.406 2.698 4847.592 446475.698 8408.463 968.964 8382.981
Web-Google 3.362 3.898 4801.787 612329.017 38031.588 422.058 25899.907
Web-Berkstan 1.829 3.841 2180.488 212587.201 10805.487 96.372 5641.406

Table 6: Running times in seconds of the algorithms for 2ECC.

Dataset ZNI DST-2EC Test2EDP-2EC Test2ECC-2EC Hybrid-2EC Test2EDP-Aux-2EC Hybrid-Aux-2EC
Rome99 0.012 0.019 0.051 1.013 0.126 0.054 0.154
P2p-Gnutella25 0.010 0.029 0.855 77.274 3.727 0.320 2.574
P2p-Gnutella31 0.025 0.090 6.438 664.936 31.348 2.495 20.644
Web-NotreDame 0.159 0.448 11.062 2635.104 267.482 2.036 165.532
Soc-Epinions1 0.177 0.442 10.778 203.688 61.531 10.022 36.404
USA-road-NY 0.339 2.000 208.987 244.003 214.563 209.334 209.309
USA-road-BAY 0.437 4.539 151.786 289.465 178.197 152.488 152.407
USA-road-COL 0.547 5.275 198.795 526.362 305.525 199.768 199.711
Amazon0302 1.687 3.671 237.584 38201.229 3184.360 148.871 1909.122
WikiTalk 0.923 6.182 131.766 3538.042 2620.733 66.261 407.962
Web-Stanford 1.290 2.499 226.669 50153.480 1250.210 20.134 636.641
Amazon0601 4.768 7.659 1732.197 13067.429 2791.030 1725.333 2390.567
Web-Google 6.275 18.988 892.954 204990.718 15783.304 345.384 11714.605
Web-Berkstan 1.911 9.744 456.082 186129.463 5792.903 70.600 2552.911

Table 7: Running times in seconds of the algorithms for 2ECS and 2EC.

different from other networks. Indeed, road networks are very close to be “undirected”: i.e.,
whenever there is an edge (x, y), there is also the reverse edge (y, x) (except for one-way roads).
Roughly speaking, road networks mainly consist of the union of 2-edge-connected subgraphs, joined
together by strong bridges, and their 2-edge-connected components coincide with their 2-edge-
connected subgraphs. In this setting, a sparse strongly connected subgraph of the condensed graph
will preserve both components and subgraphs. The second phenomenon is mainly due to the trivial
edge heuristic described in Section 3.4.

Apart from the peculiarities of road networks, ZNI behaves as expected for 2ECS through its
linear-time 2-approximation algorithm. Note that for both problems 2ECC and 2EC, all algorithms
achieve quality ratio significantly smaller than our theoretical bound of 4. Regarding running times,
we observe that the 2EC algorithms are faster than the 2ECC algorithms, sometimes significantly,
as they take advantage of the condensed graph that seems to admit small size in real-world appli-
cations. In addition, our experiments highlight interesting tradeoffs between practical performance
and quality of the obtained solutions. Indeed, the fastest (DST-2ECC and DST–2ECC original for
problem 2ECC; DST-2EC for 2EC) and the slowest algorithms (Test2ECC and Hybrid for 2ECC;
Test2ECC-2EC and Hybrid-2EC for 2EC) tend to produce respectively the worst and the best ap-
proximations. Note that DST-2ECC improves the quality of the solution of DST-2ECC original at the
price of slightly higher running times, while Hybrid (resp., Hybrid-2EC) produces the same solutions

32

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

R
om

e9
9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2ECC algorithmsDST-2ECC original
DST-2ECC
Test2EDP
Test2ECC

Hybrid
Test2EDP-Aux

Hybrid-Aux

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

1+e4 1+e5 1+e6

2ECS and 2EC algorithms
ZNI

DST-2EC
Test2EDP-2EC
Test2ECC-2EC

Hybrid-2EC
Test2EDP-2EC-Aux

Hybrid-2EC-Aux

Figure 13: Running times in seconds with respect to the number of edges (in log-log scale) taken
by Tables 6 and 7 for 2ECC, 2ECS, and 2EC.

as Test2ECC (resp., Test2ECC-2EC) with rather impressive speedups. Running an algorithm on the
second-level auxiliary graphs seems to produce substantial performance benefits at the price of a
slightly worse approximation (Test2EDP-Aux, Hybrid-Aux, Test2EDP-2EC-Aux and Hybrid-2EC-Aux
versus Test2EDP, Hybrid, Test2EDP-2EC and Hybrid-2EC). Overall, in our experiments Test2EDP-
Aux and Test2EDP-2EC-Aux seem to provide good quality solutions for the problems considered
without being penalized too much by a substantial performance degradation.

33

Dataset
DST-2VCC

DST-2VCC (%) DLN (%) LHL (%) 2VDP (%)
original (%)

Rome99 1.384 (92.1) 1.363 (90.7) 1.432 (95.3) 1.347 (89.6) 1.170 (77.8)
P2p-Gnutella25 1.726 (80.7) 1.602 (74.9) 1.713 (80.0) 1.467 (68.6) 1.234 (57.7)
P2p-Gnutella31 1.717 (74.5) 1.647 (71.5) 1.732 (75.2) 1.506 (65.3) 1.273 (55.2)
Web-NotreDame 2.072 (56.6) 2.067 (56.5) 2.108 (57.6) 1.769 (48.3) 1.588 (43.4)
Soc-Epinions1 2.082 (23.7) 1.964 (22.3) 2.213 (25.2) 1.755 (20.0) 1.475 (16.8)
USA-road-NY 1.255 (81.5) 1.251 (81.3) 1.371 (89.1) 1.332 (86.6) 1.168 (75.9)
USA-road-BAY 1.315 (89.6) 1.311 (89.3) 1.374 (93.7) 1.350 (92.0) 1.242 (84.6)
USA-road-COL 1.308 (90.8) 1.307 (90.8) 1.354 (94.0) 1.336 (92.8) 1.249 (86.7)
Amazon0302 1.918 (71.3) 1.791 (66.7) 1.849 (68.8) 1.548 (57.6) 1.245 (46.3)
WikiTalk 2.145 (23.5) 2.126 (23.3) 2.281 (25.0) 1.991 (21.9) 1.796 (19.7)
Web-Stanford 2.115 (31.9) 2.019 (30.5) 2.130 (32.2) 1.764 (26.6) 1.572 (23.7)
Amazon0601 1.926 (42.2) 1.793 (39.2) 1.959 (42.9) 1.576 (34.5) 1.196 (26.2)
Web-Google 2.052 (41.5) 2.004 (40.5) 2.083 (42.1) 1.746 (35.3) 1.485 (30.0)
Web-Berkstan 2.302 (25.8) 2.233 (25.0) 2.290 (25.7) 1.934 (21.7) 1.692 (19.0)

Table 8: Quality ratio q(A,P) of the solutions computed for 2VCC. Within the parentheses we
report the size (number of edges) of the computed solutions as a percentage of the size of the
original input graphs.

Dataset DLN-2VC (%) LHL-2VC (%)
Test2VDP-2VC

DLN-2C (%) LHL-2C (%)
Test2VDP-2C

(%) (%)
Rome99 1.462 (97.3) 1.459 (97.1) 1.199 (79.8) 1.462 (97.3) 1.459 (97.1) 1.198 (79.8)
P2p-Gnutella25 1.712 (80.0) 1.560 (72.9) 1.234 (57.7) 1.712 (80.0) 1.560 (72.9) 1.234 (57.7)
P2p-Gnutella31 1.732 (75.2) 1.578 (68.5) 1.273 (55.3) 1.732 (75.2) 1.578 (68.5) 1.273 (55.3)
Web-NotreDame 2.232 (61.6) 1.995 (55.5) 1.628 (44.9) 2.250 (61.0) 2.028 (54.5) 1.638 (44.5)
Soc-Epinions1 2.474 (28.2) 2.346 (26.8) 1.572 (17.9) 2.474 (28.1) 2.351 (26.7) 1.573 (17.9)
USA-road-NY 1.376 (89.4) 1.396 (90.7) 1.175 (76.3) 1.376 (89.4) 1.396 (90.7) 1.175 (76.3)
USA-road-BAY 1.375 (93.7) 1.392 (94.8) 1.246 (84.9) 1.375 (93.7) 1.392 (94.8) 1.246 (84.9)
USA-road-COL 1.357 (94.2) 1.369 (95.0) 1.252 (86.9) 1.357 (94.2) 1.369 (95.0) 1.252 (86.9)
Amazon0302 2.020 (75.6) 1.904 (71.4) 1.386 (52.1) 2.032 (75.1) 1.920 (70.8) 1.399 (51.5)
WikiTalk 2.454 (26.9) 2.385 (26.1) 1.863 (20.4) 2.454 (26.9) 2.385 (26.2) 1.863 (20.5)
Web-Stanford 2.287 (34.7) 2.042 (31.0) 1.622 (24.6) 2.238 (34.5) 1.997 (30.8) 1.584 (24.5)
Amazon0601 2.241 (49.0) 2.174 (47.6) 1.278 (28.0) 2.242 (49.0) 2.176 (47.6) 1.279 (28.0)
Web-Google 2.306 (47.3) 2.144 (44.2) 1.585 (32.4) 2.338 (46.6) 2.183 (43.3) 1.602 (32.0)
Web-Berkstan 2.472 (27.9) 2.427 (25.7) 1.767 (19.9) 2.410 (27.7) 2.219 (26.1) 1.717 (19.8)

Table 9: Quality ratio q(A,P) of the solutions computed for 2VC and 2C. Within the parentheses
we report the size (number of edges) of the computed solutions as a percentage of the size of the
original input graphs.

6.4 Evaluation of the experimental results for 2VC

We observe that all our algorithms perform well in terms of the quality of the solution they compute.
Indeed, in contrast with the theoretical predictions (i.e., an approximation ratio of 6 in the worst
case) the quality ratio is less than 2.5 for all algorithms and inputs. Our improved version of DST-
2VCC performs consistently better than the original version. Also in all cases, LHL computed a
higher quality solution than DLN. For most inputs, DST-2VCC computes a sparser graph than LHL,
which is somewhat surprising given the fact that we do not have a good theoretical bound for the
(constant) approximation ratio of DST-2VCC. On the other hand, LHL is faster than DST-2VCC

34

Dataset
DST-2VCC

DST-2VCC DLN LHL Test2VDP
original

Rome99 0.014 0.018 0.004 0.005 0.264
P2p-Gnutella25 0.027 0.032 0.008 0.007 1.587
P2p-Gnutella31 0.070 0.094 0.024 0.027 13.325
Web-NotreDame 0.335 0.486 0.059 0.080 97.355
Soc-Epinions1 0.258 0.309 0.089 0.110 92.812
USA-road-NY 1.095 1.402 0.261 0.360 2546.484
USA-road-BAY 1.659 2.152 0.316 0.435 4089.389
USA-road-COL 2.439 3.050 0.438 0.603 7739.256
Amazon0302 2.101 2.410 0.517 0.675 3503.910
WikiTalk 1.777 2.125 0.355 0.473 1158.855
Web-Stanford 1.756 2.395 0.429 0.564 1174.984
Amazon0601 3.532 3.924 1.363 1.605 15349.126
Web-Google 4.837 5.467 1.533 1.968 26299.714
Web-Berkstan 3.239 5.261 0.690 0.869 6301.410

Table 10: Running times in seconds of the algorithms for 2VCC.

Dataset DLN-2VC LHL-2VC Test2VDP-2VC DLN-2C LHL-2C Test2VDP-2C
Rome99 0.032 0.034 0.122 0.034 0.036 0.122
P2p-Gnutella25 0.042 0.042 0.729 0.051 0.053 0.725
P2p-Gnutella31 0.119 0.119 5.613 0.143 0.149 5.422
Web-NotreDame 0.491 0.521 27.091 0.573 0.600 27.746
Soc-Epinions1 0.606 0.621 54.559 0.602 0.664 54.548
USA-road-NY 2.227 2.337 991.092 2.153 2.415 995.913
USA-road-BAY 2.153 2.298 1429.443 2.296 2.476 1447.318
USA-road-COL 3.770 3.969 3093.258 3.938 4.228 3064.297
Amazon0302 4.708 5.017 2244.856 5.135 5.509 2094.263
WikiTalk 2.179 2.133 943.690 2.203 2.513 924.810
Web-Stanford 2.037 2.313 279.236 2.561 2.487 317.115
Amazon0601 9.793 10.038 8065.680 11.669 11.397 8696.212
Web-Google 9.789 10.172 5095.600 11.535 12.979 5128.337
Web-Berkstan 4.670 4.872 1595.033 5.178 5.601 1546.041

Table 11: Running times in seconds of the algorithms for 2VC and 2C.

by a factor of 4.15 on average and has the additional benefit of maintaining both the 2-vertex and
the 2-edge-connected components. The Test2VDP filter provides substantial improvements of the
solution, since all algorithms that apply this heuristic have consistently better quality ratios (1.38
on average and always less than 1.87). However, this is paid with much higher running times, as
those algorithms can be even 5 orders of magnitude slower than the other algorithms.

In addition, our experiments highlight interesting tradeoffs between practical performance and
quality of the obtained solutions. In particular, the fastest algorithms for the 2VCC problem are the
ones based on loop-nesting trees (DLN and LHL), with LHL achieving consistently better solutions
than DLN.

Once again, all algorithms achieve consistently better approximations for road networks than
for most of the other graphs in our data set. The macroscopic structure of road networks has been
explained earlier in the 2EC evaluation which also applies here for 2VC. Notice that a gain on the
solution for the road networks is balanced at the cost of their additional running time.

35

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4
R

om
e9

9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2VCC algorithmsDST-2VCC original
DST-2VCC

DLN
LHL

Test2VDP

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1+e4 1+e5 1+e6

2VC and 2C algorithms
DLN-2VC
LHL-2VC

Test2VDP-2VC
DLN-2C
LHL-2C

Test2VDP-2C

Figure 14: The plotted quality ratios taken by Tables 8 and 9.

6.5 Experiments with very large datasets

In order to assess the practicality of our algorithms for very large graphs, we also conducted
experiments with the datasets shown in Table 12. We report only the results of our two linear-time
algorithms, DLN and LHL for problem 2CC, which are more memory efficient than the algorithms
of the DST family. Also, we note that running quadratic-time algorithms (based on the two edge-
disjoint paths test or the 2-connected components test) for such large graphs is infeasible in our
architecture.

The experimental results are given in Table 13. Again, we observe that both algorithms are

36

 0.01

 0.1

 1

 10

 100

 1000

 10000
R

om
e9

9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2CC algorithmsDST-2VCC original
DST-2VCC

DLN
LHL

Test2VDP

 0.01

 0.1

 1

 10

 100

 1000

 10000

1+e4 1+e5 1+e6

2VC and 2C algorithms
DLN-2VC
LHL-2VC

Test2VDP-2VC
DLN-2C
LHL-2C

Test2VDP-2C

Figure 15: Running times in seconds with respect to the number of edges (in log-log scale) taken
by Tables 10 and 11 for 2VCC, 2VC, and 2C.

able to compute good approximate solutions reasonably fast, with LHL performing consistently
better with a slight increase in its running time. Notice that for all graphs the solutions that are
computed by our algorithms reduce considerably their size. In real-world applications that deal
with large-scale networks such a considerable reduction is highly appreciated.

37

Dataset n m file size δavg b∗ a∗ δ2ECCavg

Flickr 1605184 30338513 539MB 18.90 1689976 311611 1.41
LiveJournal 4846609 65349587 1,2GB 13.48 1385512 649125 1.40
UK-2002 12090163 227480826 4,2GB 18.81 6334990 1885677 1.52
Webbase-2001 53891939 612895365 12,1GB 11.37 32153024 8636383 1.51
UK-2005 25711307 692875781 13,4GB 26.95 12645456 3254786 1.54
It-2004 29855421 925643838 18,8GB 31.00 15780944 4570241 1.53
Twitter 33479734 1394440635 27,7GB 41.65 7834054 3175909 1.79

Table 12: Real-world large graphs sorted by file size of their largest SCC.

Dataset
quality ratio running times size of solution

DLN (q(A,P)) LHL (q(A,P)) DLN (sec.) LHL (sec.) DLN (%) LHL (%)
Flickr 2.00 1.78 4.48 5.31 14.97 13.32
LiveJournal 2.06 1.77 19.71 22.26 21.41 18.36
UK-2002 2.28 2.02 13.19 16.94 18.41 16.31
Webbase-2001 2.13 1.91 58.04 77.03 28.23 25.26
UK-2005 2.34 2.00 44.29 55.58 13.40 11.46
It-2004 2.27 1.98 48.17 54.20 11.19 9.75
Twitter 2.36 1.84 542.46 680.39 10.15 7.91

Table 13: The quality ratio and the running times for problem 2CC of algorithms DLN and LHL
on the large dataset. The last two columns indicate the actual size of the computed solution with
respect to the size of the original considered graph.

7 Concluding remarks

In this paper we have conducted both theoretical and experimental study to the 2ECC and 2VCC
problems, and their generalizations 2EC, 2VC, and 2C. We have provided new practical algorithms
that achieve good approximations with fast running times.

Our work raises some new and perhaps intriguing questions. As already mentioned earlier,
we do not know if the approximation ratios of 4 or 6 that we provided are tight. In light of our
experimental results, it seems possible that the Hybrid algorithms always achieve a 2-approximation,
but we have no proof. Moreover the concept of 2-edge-connected components or 2-vertex-connected
components may well be generalized to k-edge disjoint paths or k-vertex disjoint paths, for k ≥ 2.
Keeping in mind that the underlying graph should remain strongly connected, it is natural to ask
whether computing the smallest such spanning subgraph is able to achieve a better approximation
ratio for k > 2. Such a phenomenon occurs in approximating the smallest spanning k-edge or
k-vertex connected subgraph [5, 10].

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–32, 1999.

38

[3] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal on
Computing, 38(4):1533–1573, 2008.

[4] S. Chechik, T. D. Hansen, G. F. Italiano, V. Loitzenbauer, and N. Parotsidis. Faster algorithms
for computing maximal 2-connected subgraphs in sparse directed graphs. In Proc. 28th ACM-
SIAM Symp. on Discrete Algorithms, (SODA 2017), pages 1900–1918, 2017.

[5] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs
via matching. SIAM Journal on Computing, 30(2):528–560, 2000.

[6] W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-connectivity in di-
rected graphs: An experimental study. In Proc. 17th Algorithm Engineering and Experiments,
(ALENEX 2015), pages 173–187, 2015.

[7] J. Edmonds. Edge-disjoint branchings. Combinat. Algorithms, pages 91–96, 1972.

[8] J. Fakcharoenphol and B. Laekhanukit. An O(log2 k)-approximation algorithm for the k-vertex
connected spanning subgraph problem. In Proc. 40th ACM Symp. on Theory of Computing,
(STOC 2008), pages 153–158, New York, NY, USA, 2008. ACM.

[9] L. R. Ford; D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathe-
matics, 8:399–404, 1956.

[10] H. N. Gabow, M. X. Goemans, E. Tardos, and D. P. Williamson. Approximating the smallest
k-edge connected spanning subgraph by LP-rounding. Networks, 53(4):345–357, 2009.

[11] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209–21, 1985.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[13] L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a directed
graph. In Proc. 19th European Symposium on Algorithms, (ESA 2011), pages 13–24, 2011.

[14] L. Georgiadis, G. F. Italiano, A. Karanasiou, C. Papadopoulos, and N. Parotsidis. Sparse
subgraphs for 2-connectivity in directed graphs. In Proc. 15th Int’l. Symp. on Experimental
Algorithms, (SEA 2016), pages 150–166, 2016.

[15] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in directed
graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming, (ICALP 2015),
pages 605–616, 2015.

[16] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. ACM Transactions on Algorithms, 13(1):9:1–9:24, 2016. Announced at SODA 2015.

[17] L. Georgiadis, G. F. Italiano, C. Papadopoulos, and N. Parotsidis. Approximating the small-
est spanning subgraph for 2-edge-connectivity in directed graphs. In Proc. 23rd European
Symposium on Algorithms, (ESA 2015), pages 582–594, 2015.

[18] L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong connectivity in directed graphs under
failures, with applications. In Proc. 28th ACM-SIAM Symp. on Discrete Algorithms, (SODA
2017), pages 1880–1899, 2017.

39

[19] L. Georgiadis and R. E. Tarjan. Dominator tree certification and divergent spanning trees.
ACM Transactions on Algorithms, 12(1):11:1–11:42, November 2015.

[20] M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. 42nd Int’l. Coll. on Automata, Languages,
and Programming, (ICALP 2015), pages 713–724, 2015.

[21] G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theor. Comput. Sci., 447(0):74–84, 2012.

[22] R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl., 49(2):93–119,
2015.

[23] S. Khuller, B. Raghavachari, and N. E. Young. Approximating the minimum equivalent di-
graph. SIAM Journal on Computing, 24(4):859–872, 1995. Announced at SODA 1994, 177-186.

[24] S. Khuller, B. Raghavachari, and N. E. Young. On strongly connected digraphs with bounded
cycle length. Discrete Applied Mathematics, 69(3):281–289, 1996.

[25] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems. Approxima-
tion Algorithms and Metaheuristics, 2007.

[26] B. Laekhanukit, S. O. Gharan, and M. Singh. A rounding by sampling approach to the
minimum size k-arc connected subgraph problem. In Proc. 39th Int’l. Coll. on Automata,
Languages, and Programming, (ICALP 2012), pages 606–616, 2012.

[27] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.

[28] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected span-
ning subgraph of a k-connected graph. Algorithmica, 7:583–596, 1992.

[29] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge Uni-
versity Press, 2008. 1st edition.

[30] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[31] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):171–
85, 1976.

[32] A. Vetta. Approximating the minimum strongly connected subgraph via a matching lower
bound. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, (SODA 2001), pages 417–
426, 2001.

[33] L. Zhao, H. Nagamochi, and T. Ibaraki. A linear time 5/3-approximation for the minimum
strongly-connected spanning subgraph problem. Information Processing Letters, 86(2):63–70,
2003.

40

