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Abstract. Let G be a strongly connected directed graph. We consider
the problem of computing the smallest strongly connected spanning sub-
graph of G that maintains the pairwise 2-vertex-connectivity of G, i.e.,
the 2-vertex-connected blocks of G (2VC-B). We provide linear-time ap-
proximation algorithms for this problem that achieve an approximation
ratio of 6. Based on these algorithms, we show how to approximate, in
linear time, within a factor of 6 the smallest strongly connected spanning
subgraph of G that maintains respectively: both the 2-vertex-connected
blocks and the 2-vertex-connected components of G (2VC-B-C); all the
2-connectivity relations of G (2C), i.e., both the 2-vertex- and the 2-edge-
connected components and blocks. Moreover, we provide heuristics that
improve the size of the computed subgraphs in practice, and conduct a
thorough experimental study to assess their merits in practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
G is strongly connected if there is a directed path from each vertex to every
other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. A vertex (resp., an edge) of G is a strong articulation
point (resp., a strong bridge) if its removal increases the number of strongly
connected components. A digraph G is 2-vertex-connected if it has at least three
vertices and no strong articulation points; G is 2-edge-connected if it has no
strong bridges. The 2-vertex- (resp., 2-edge-) connected components of G are
its maximal 2-vertex- (resp., 2-edge-) connected subgraphs. Let v and w be
two distinct vertices: v and w are 2-vertex-connected (resp., 2-edge-connected),
denoted by v ↔2v w (resp., v ↔2e w), if there are two internally vertex-disjoint
(resp., two edge-disjoint) directed paths from v to w and two internally vertex-
disjoint (resp., two edge-disjoint) directed paths from w to v (a path from v
to w and a path from w to v need not be either vertex- or edge- disjoint). A
2-vertex-connected block (resp., 2-edge-connected block) of a digraph G = (V,E)
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Fig. 1. A strongly connected digraph G with a strong bridge (c, f) and a strong articu-
lation point c shown in red (better viewed in color), the 2-vertex-connected components
and blocks of G, and the 2-edge-connected components and blocks of G. Vertex f forms
a trivial 2-edge-connected and 2-vertex-connected block.

is a maximal subset B ⊆ V such that u↔2v v (resp., u↔2e v) for all u, v ∈ B.
Note that, as a (degenerate) special case, a 2-vertex- (resp., 2-edge-) connected
block might consist of a singleton vertex only: we denote this as a trivial 2-
vertex- (resp., 2-edge-) connected block. In the following, we will consider only
non-trivial 2-vertex- and 2-edge- connected blocks. Since there is no danger of
ambiguity, we will call them simply 2-vertex- and 2-edge-connected blocks.

Differently from undirected graphs, in digraphs 2-vertex and 2-edge con-
nectivity have a much richer and more complicated structure, and indeed 2-
connectivity problems on directed graphs appear to be more difficult than their
undirected counterparts. In particular, in digraphs 2-vertex- (resp., 2-edge-) con-
nected blocks can be different from the 2-vertex- (resp., 2-edge-) connected com-
ponents, i.e., two vertices may be 2-vertex- (resp., 2-edge-) connected but lie in
different 2-vertex- (resp., 2-edge-) connected components (see Figure 1). This
is not the case for undirected graphs. Moreover, for undirected graphs it has
been known for over 40 years how to compute the 2-edge- and 2-vertex- con-
nected components in linear time [25]. In the case of digraphs, however, it was
shown only recently how to compute the 2-edge- and 2-vertex- connected blocks
in linear time [11, 12], and the best current bound for computing the 2-edge-
and the 2-vertex- connected components in digraphs is not even linear, but it is
O(n2) [16].

In this paper we investigate problems where we wish to find a smallest span-
ning subgraph of G (i.e., with minimum number of edges) that maintains cer-
tain 2-connectivity requirements in addition to strong connectivity. Problems
of this nature are fundamental in network design, and have several practical
applications [24]. Specifically, we consider computing a smallest strongly con-
nected spanning subgraph of a digraph G that maintains the following proper-
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ties: the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected blocks
of G (2VC-B); the 2-vertex-connected components of G (2VC-C); both the 2-
vertex-connected blocks and components of G (2VC-B-C). This complements
our previous study of the edge-connectivity versions of these problems [13], that
we refer to as 2EC-C (maintaining 2-edge-connected components), 2EC-B (main-
taining 2-edge-connected blocks), and 2EC-B-C (maintaining 2-edge-connected
blocks and components). Finally, we also consider computing a smallest span-
ning subgraph of G that maintains all the 2-connectivity relations of G (2C),
that is, simultaneously the 2-vertex-connected and the 2-edge-connected com-
ponents and blocks. Note that all these problems are NP-hard [9, 13], so one
can only settle for efficient approximation algorithms. Computing small span-
ning subgraphs is of particular importance when dealing with large-scale graphs,
say graphs having hundreds of million to billion edges. In this framework, one
big challenge is to design linear-time algorithms, since algorithms with higher
running times might be practically infeasible on today’s architectures.

Related Work. Computing a smallest k-vertex-(resp., k-edge-) connected span-
ning subgraph of a given k-vertex- (resp. k-edge-) connected digraph is NP-hard
for any k ≥ 1 (and for k ≥ 2 for undirected graphs) [9]. The case for k = 1 is
to compute a smallest strongly connected spanning subgraph (SCSS) of a given
digraph. This problem was originally studied by Khuller et al. [20], who provided
a polynomial-time algorithm with an approximation guarantee of 1.64. This was
improved to 1.61 by the same authors [21]. Later on, Vetta announced a further
improvement to 3/2 [27], and Zhao et al. [28] presented a faster linear-time al-
gorithm at the expense of a larger 5/3-approximation factor. For the smallest
k-edge-connected spanning subgraph (kECSS), Laehanukit et al. [23] gave a ran-
domized (1+1/k)-approximation algorithm. For the smallest k-vertex-connected
spanning subgraph (kVCSS), Cheriyan and Thurimella [4], gave a (1 + 1/k)-
approximation algorithm that runs in O(km2) time. For k = 2, the running
time of Cheriyan and Thurimella’s algorithm was improved to O(m

√
n + n2),

based on a linear-time 3-approximation for 2VCSS [10]. We also note that there
has been extensive work on more general settings where one wishes to approx-
imate minimum-cost subgraphs that satisfy certain connectivity requirements.
See, e.g., [6], and the survey [22]. The previous results on kECSS and kVCSS
immediately imply an approximation ratio smaller than 2 for 2EC-C and 2VC-C
[13, 19]. While there has been substantial progress for 2EC-C and 2VC-C, prob-
lems 2EC-B and 2VC-B (i.e., computing sparse subgraphs with the same pairwise
2-edge or 2-vertex connectivity) seem substantially harder. Jaberi [18] was the
first to consider several optimization problems related to 2EC-B and 2VC-B and
proposed approximation algorithms. The approximation ratio in his algorithms,
however, is linear in the number of strong bridges for 2EC-B and in the number
of strong articulation points for 2VC-B, and hence O(n) in the worst case. In [13],
linear-time 4-approximation algorithms for 2EC-B and 2EC-B-C were presented.
It seems thus natural to ask whether one can design linear-time algorithms which
achieve small approximation guarantees for 2VC-B, 2VC-B-C and 2C.
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Our Results. In this paper we address this question by presenting practical
approximation algorithms for the 2VC-B, 2VC-B-C and 2C problems. We stress
that the approach in this paper is substantially different from [13], since vertex
connectivity is typically more involved than edge connectivity and requires sev-
eral novel ideas and non-trivial techniques. In particular, differently from [13],
our starting point in this paper is the recent framework for strong connectivity
and 2-connectivity problems in digraphs [14], combined with the notions of di-
vergent spanning trees and low-high orders [15] (defined below). Building on this
new framework, we can obtain sparse certificates also for the 2-vertex-connected
blocks. In our context, a sparse certificate of a strongly connected digraph G is
a strongly connected spanning subgraph C(G) of G with O(n) edges that main-
tains the 2-vertex-connected blocks of G. We show that our constructions achieve
a 6-approximation for 2VC-B in linear time. Then, we extend our algorithms so
that they compute a 6-approximation for 2VC-B-C and 2C. These algorithms
also run in linear time once the 2-vertex and the 2-edge-connected components
of G are available; if not, the current best running time for computing them is
O(n2) [16]. Then we provide efficient implementations of these algorithms that
run very fast in practice. We also present several heuristics that improve the
quality (i.e., the number of edges) of the computed spanning subgraphs. Finally,
we assess how all these algorithms perform in practical scenarios by conducting
a thorough experimental study, and report its main findings.

2 Preliminaries

A flow graph is a digraph such that every vertex is reachable from a distinguished
start vertex. Let G = (V,E) be a strongly connected digraph. For any vertex
s ∈ V , we denote by G(s) = (V,E, s) the corresponding flow graph with start
vertex s; all vertices in V are reachable from s since G is strongly connected.
The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u; u is a proper
dominator of w if u dominates w and u 6= w. The dominator relation in G(s) can
be represented by a rooted tree, the dominator tree D(s), such that u dominates
w if and only if u is an ancestor of w in D(s). If w 6= s, we denote by d(w) the
parent of w in D(s). The dominator tree of a flow graph can be computed in
linear time, see, e.g., [2, 3]. An edge (u,w) is a bridge in G(s) if all paths from s to
w include (u,w).1 Italiano et al. [17] gave linear-time algorithms for computing
all the strong bridges and all the strong articulation points of a digraph G. Their
algorithms use the dominators and the bridges of flow graphs G(s) and GR(s),
where s is an arbitrary start vertex and GR is the digraph that results from G
after reversing edge directions. A spanning tree T of a flow graph G(s) is a tree
with root s that contains a path from s to v for all vertices v. Two spanning
trees T1 and T2 rooted at s are edge-disjoint if they have no edge in common. A
flow graph G(s) has two such spanning trees if and only if it has no bridges [26].

1 Throughout, we use consistently the term bridge to refer to a bridge of a flow graph
G(s) and the term strong bridge to refer to a strong bridge in the original graph G.
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Two spanning trees are maximally edge-disjoint if the only edges they have in
common are the bridges of G(s). Two (maximally) edge-disjoint spanning trees
can be computed in linear-time by an algorithm of Tarjan [26], using the disjoint
set union data structure of Gabow and Tarjan [8]. Two spanning trees T1 and
T2 rooted at s are divergent if for all vertices v, the paths from s to v in T1

and T2 share only the dominators of v. A low-high order δ on G(s) is a preorder
of the dominator tree D(s) such for all v 6= s, (d(v), v) ∈ E or there are two
edges (u, v) ∈ E, (w, v) ∈ E such that u is less than v (u <δ v), v is less than w
(v <δ w), and w is not a descendant of v in D(s). Every flow graph G(s) has a
pair of maximally edge-disjoint divergent spanning trees and a low-high order,
both computable in linear-time [15].

Let T be a dfs tree of a digraph G rooted at s. For a vertex u, we denote
by loop(u) the set of all descendants x of u in T such that there is a path from
x to u in G containing only descendants of u in T . Since any two vertices in
loop(u) reach each other, loop(u) induces a strongly connected subgraph of G.
Furthermore, loops define a laminar family (i.e., for any two vertices u and v,
we have loop(u) ∩ loop(v) = ∅, or loop(v) ⊆ loop(u), or loop(u) ⊆ loop(v)). The
loop nesting tree L of a strongly connected digraph G with respect to T , is the
tree in which the parent of any vertex v 6= s is the nearest proper ancestor u of
v such that v ∈ loop(u). The loop nesting tree can be computed in linear time
[3, 26].

3 Approximation algorithms and heuristics for 2VC-B

Let G = (V,E) be the input strongly connected digraph. In problem 2VC-B, we
wish to compute a strongly connected spanning subgraph G′ of G that has the
same 2-vertex-connected blocks of G, with as few edges as possible. We consider
the following approach. Start with the empty graph G′ = (V, ∅), and add as few
edges as possible until G′ is guaranteed to have the same 2-vertex-connected
blocks as G. We consider three linear-time algorithms that apply this approach.
The first two are based on the sparse certificates for 2-vertex-connected blocks
from [12, 14], which use divergent spanning trees. The third is a new algorithm
that selects the edges of G′ with the help of low-high orders.

Divergent Spanning Trees. We can compute a sparse certificate C(G) for the
2-vertex-connected blocks of a strongly connected digraph G using the algorithm
of [12], which is based on a linear-time construction of two divergent spanning
trees of a flow graph [15]. We refer to this algorithm as DST-B. Let s be an
arbitrarily chosen start vertex in G. Recall that we denote by G(s) the flow
graph with start vertex s, by GR(s) the flow graph obtained from G(s) after
reversing edge directions, and by D(s) and DR(s) the dominator trees of G(s)
and GR(s) respectively. Also, let C(v) and CR(v) be the set of children of v
in D(s) and DR(s) respectively. For each vertex r, let Ck(r) denote the level k
descendants of r, where C0(r) = {r}, C1(r) = C(r), and so on. For each vertex
r 6= s that is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of
r as follows. The vertex set of Gr is Vr = ∪3

k=0C
k(r) and it is partitioned into
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a set of ordinary vertices V or = C1(r) ∪ C2(r) and a set of auxiliary vertices
V ar = C0(r) ∪ C3(r). The auxiliary graph Gr results from G by contracting the
vertices in V \Vr as follows. All vertices that are not descendants of r in D(s) are
contracted into r. For each vertex w ∈ C3(r), we contract all descendants of w in
D(s) into w. We use the same definition for the auxiliary graph Gs of s, with the
only difference that we let s be an ordinary vertex. In order to bound the size of
all auxiliary graphs, we eliminate parallel edges during those contractions. We
call an edge e ∈ Er \E a shortcut edge of Gr. That is, a shortcut edge is formed
by the contraction of a part of G into an auxiliary vertex of Gr. Thus, a shortcut
edge is not an original edge of G but corresponds to at least one original edge,
and is adjacent to at least one auxiliary vertex.

Algorithm DST-B selects the edges that are inserted into C(G) in three
phases. During the construction, the algorithm may choose a shortcut edge or
a reverse edge to be inserted into C(G). In this case we insert the associated
original edge instead. Also, an edge may be selected multiple times, so we re-
move multiple occurrences of such edges in a postprocessing step. In the first
phase, we insert into C(G) the edges of two maximally edge-disjoint divergent
spanning trees, T1(G(s)) and T2(G(s)) of G(s). In the second phase we process
the auxiliary graphs of G(s) that we refer to as the first-level auxiliary graphs.
For each such auxiliary graph H = Gr, we compute two maximally edge-disjoint
divergent spanning trees T1(HR(r)) and T2(HR(r)) of the corresponding reverse
flow graph HR(r) with start vertex r. We insert into C(G) the edges of these two
spanning trees. It can be proved that, at the end of this phase, C(G) induces a
strongly connected spanning subgraph of G. Finally, in the last phase we process
the second-level auxiliary graphs, which are the auxiliary graphs of HR for all
first-level auxiliary graphs H. Let HR

q be a second-level auxiliary graph of HR.

For every strongly connected component S of HR
q \ q, we choose an arbitrary

vertex v ∈ S and compute a spanning tree of S and a spanning tree of SR, and
insert their edges into C(G).

This construction inserts O(n) edges into C(G), and therefore achieves a
constant approximation ratio for 2VC-B. However, due to the use of auxiliary
vertices and two levels of auxiliary graphs, we do not have a good bound for this
constant. (The first-level auxiliary graphs have at most 4n vertices and 4m+ n
edges in total [12].) We propose a modification of DST-B, that we call DST-B
modified: For each auxiliary graph, we do not select in C(G) the edges of its two
divergent spanning trees that have only auxiliary descendants. Also, for every
second-level auxiliary graph, during the computation of its strongly connected
components we include the chosen edges that already form a strongly connected
component.

More precisely, algorithm DST-B modified works as follows. In the first two
phases, we try reuse as many edges as possible when we build the divergent
spanning trees of G(s) and of its auxiliary graphs. In the third phase of the con-
struction we need to solve the smallest SCSS problem for each strongly connected
component S in the second-level auxiliary graphs Hq after the deletion of the
root vertex q. We do this by running a modified version of the linear-time 5/3-
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approximation algorithm of Zhao et al. [28]. The algorithm of Zhao et al. a SCSS
of a strongly connected graph by performing a depth-first search traversal of the
input graph. During the dfs traversal, any cycle that is detected is contracted
into a single vertex. We modify this approach so that we can avoid inserting
new edges into the sparse certificate as follows. Since we only care about the
ordinary vertices in S, we can construct a subgraph of S that contains edges
already added in C(G). We compute the strongly connected components of this
subgraph and contract them. Then we apply the algorithm of Zhao et al. on the
contracted graph of S. Furthermore, during the dfs traversal we give priority to
edges already added in C(G). We can apply a similar idea in the second phase of
the construction as follows. The algorithms of [15] for computing two divergent
spanning trees of a flow graph use the edges of a dfs spanning tree, together with
at most n − 1 other edges. Hence, we can modify the dfs traversal so that we
give priority to edges already added in C(G).

Divergent Spanning Trees and Loop Nesting Trees. An alternative linear-
time algorithm to compute a sparse certificate C(G) for the 2-vertex-connected
blocks can be obtained via loop nesting trees, as described in [14]. As in algorithm
DST-B, we compute two maximally edge-disjoint divergent spanning trees T1 and
T2 of G(s), and insert their edges into C(G). But instead of computing auxiliary
graphs, we compute a loop nesting tree L of G(s) and insert into C(G) the edges
that define L. These are the edges of a dfs tree of G(s), and at most n − 1
additional edges that are required to define the loops of G(s). (See [15, 26] for
the details.) Then, we repeat the same process in the reverse direction, i.e., for
GR(s). As shown in [14], a spanning subgraph having the same dominator trees
and loop nesting trees (in both directions) as the digraph G, has the same 2-edge-
and 2-vertex-connected blocks as G. We refer to this algorithm as DLN-B.

Theorem 1. Algorithm DLN-B achieves an approximation ratio of 6, in linear
time, for problem 2VC-B.

Proof. Consider first the “forward” pass of the algorithm. It adds at most 2(n−1)
edges for the two divergent spanning trees, and at most 2(n−1) edges that define
a loop nesting tree of G(s). By [15, 26], both these constructions use the edges of
a dfs tree of G(s) and some additional edges. Hence, we can use the same dfs tree
to compute the divergent spanning trees and the loop nesting tree. This gives a
total of at most 3(n− 1) edges. Similarly, the “reverse” pass computes at most
3(n − 1) edges, so algorithm DLN-B selects at most 6(n − 1) edges. Since the
resulting subgraph must be strongly connected, any valid solution to problem
2VC-B has at least n edges, so DLN-B achieves a 6-approximation. By [15, 26],
both the computation of a pair of divergent spanning trees and of a loop nesting
tree can be done in linear time, hence DLN-B also runs in linear time. ut

Low-High Orders and Loop Nesting Trees. Now we introduce a new linear-
time construction of a sparse certificate, via low-high orders, that we refer to as
LHL-B. The algorithm consists of two phases. In the first phase, we insert into
C(G) the edges that define the loop nesting trees L and LR of G(s) and GR(s),
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respectively, as in algorithm DLN-B. In the second phase, we insert enough edges
so that C(G) (resp., CR(G)) maintains a low-high order of G(s) (resp., GR((s)).
Let δ be a low-high order on G(s). Subgraph C(G) satisfies the low-high order
δ if, for each vertex v 6= s, one of the following holds: (a) there are two edges
(u, v) and (w, v) in C(G) such that u <δ v, v <δ w, and w is not a descendant
of v in D(s); (b) (d(v), v) is a strong bridge of G and is contained in C(G); or
(c) (d(v), v) is an edge of G that is contained in C(G), and there is another edge
(u, v) in C(G) such that u <δ v and u 6= d(v).

Theorem 2. Algorithm LHL-B is correct and achieves an approximation ratio
of 6 for problem 2VC-B, in linear time.

Proof. By construction, the sparse certificate C(G) computed by LHL-B satisfies
a low-high order δ of G(s). This implies that C(G) contains two divergent span-
ning trees T1 and T2 of G(s) [15]. Moreover, cases (b) and (c) of the construction
ensure that T1 and T2 are maximally edge-disjoint. This is because when case
(a) does not apply for a vertex v, then C(G) contains (d(v), v). Also, d(v) is
the only vertex u that satisfies u <δ v if and only if (d(v), v) is a strong bridge.
Hence, C(G) indeed contains two maximally edge-disjoint divergent spanning
trees of G(s). Similarly, C(G) also contains two maximally edge-disjoint diver-
gent spanning trees of GR(s). So the correctness of LHL-B follows from the fact
that DLN-B is correct.

Next we bound the approximation ratio of LHL-B. The edges selected to
maintain a loop nesting tree L of G(s) contain at least one entering edge for
each vertex v 6= s. This means that it remains to include at most one edge for
each vertex v 6= s in order to satisfy a low-high order of G(s). The symmetric
arguments holds for the reverse direction as well, so C(G) contains at most
6(n− 1) edges, which gives an approximation ratio of 6. ut

We note that both DLN-B and LHN-B also maintain the 2-edge-connected
blocks of the input digraph. We use this fact in Section 4, where we compute a
sparse subgraph that maintains all 2-connectivity relations. We can improve the
solution computed by the above algorithms by using the following filter.

Two Vertex-Disjoint Paths Test. We test if G′ \ (x, y) contains two vertex-
disjoint paths from x to y. If this is the case, then we remove edge (x, y); other-
wise, we keep the edge (x, y) in G′ and proceed with the next edge. For doing so,
we define the modified graph G′′ of G′ after vertex-splitting (see, e.g., [1]): for
each vertex v, replace v by two vertices v+ and v−, and add the edge (v−, v+).
Then, we replace each edge (u,w) in G′ by (u+, v−) in G′′, so v− has the edges
entering v and v+ has the edges leaving v. Now we can test if G′ still has two
vertex-disjoint paths from x to y after deleting (x, y) by running two iterations of
the Ford-Fulkerson augmenting paths algorithm [7] for finding two edge-disjoint
paths on G′′ by treating x+ as the source and y− as the sink. Note that we need
to compute G′′ once for all such tests. If an edge (x, y) is deleted from G′, then
we also delete (x+, y−) from G′′. Since G′ has O(n) edges, this test takes O(n)
time per edge, so the total running time is O(n2). We refer to this filter as 2VDP.
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In our implementations we applied 2VDP on the outcome of DLN-B in order to
assess our algorithms with a solution close to minimum. For the 2VC-B problem
the algorithm obtained after applying such a filter is called 2VDP-B. In order to
improve the running time of 2VDP in practice, we apply a speed-up heuristic for
trivial edges (x, y): if x belongs to a 2-vertex-connected block and has outdegree
two or y belongs to a 2-vertex-connected block and has indegree two, then (x, y)
must be included in the solution.

4 Approximation algorithms and heuristics for 2C

To get an approximate solution for problem 2C, we combine our algorithms for
2VC-B with algorithms that approximate 2VCSS [4, 10]. We also take advantage
of the fact that every 2-vertex-connected component is contained in a 2-edge-
connected component. This property suggests the following approach for 2C.
First, we compute the 2-vertex-connected components of G and solve the 2VCSS
problem independently for each such component. Then, we apply one of the
algorithms DLN-B or LHL-B for 2VC-B on G. Since the sparse certificate from
DLN-B or LHL-B also maintain the 2-edge-connected blocks, it remains to include
edges that maintain the 2-edge-connected components of G. We can find these
edges in a condensed graph Ğ defined as follows. Digraph Ğ is formed from G by
contracting each 2-vertex-connected component of G into a single supervertex.
Note that any two 2-vertex-connected components may have at most one vertex
in common: if two such components share a vertex, they are contracted into the
same supervertex. The resulting digraph Ğ is a multigraph since the contractions
can create loops and parallel edges. For any vertex v of G, we denote by v̆ the
supervertex of Ğ that contains v. Every edge (ŭ, v̆) of Ğ is associated with the
corresponding original edge (u, v) of G. Now we describe the main steps of our
algorithm for 2C:

1. Compute the 2-vertex-connected components. Solve independently the 2VCSS
problem for each such component, using the linear-time algorithm of [10].

2. Form the condensed multigraph Ğ, and compute its 2-edge-connected com-
ponents. Solve independently the 2ECSS problem for each such component,
using edge-disjoint spanning trees [13].

3. Execute the DNL-B or LHL-B algorithms on the original graph G and com-
pute a sparse certificate for the 2-edge- and the 2-vertex-connected blocks.

The solution to the 2C problem consists of the edges selected in each step of
the algorithm. Note that in Step 2, we should allow 2-edge-connected compo-
nents of size two because such a component may correspond to the union of
2-vertex-connected components of the original graph. We consider two versions
of our algorithm, DLN-2C and LHL-2C, depending on the algorithm for the 2VC-B
problem used in Step 3.

Theorem 3. Algorithms DLN-2C and LHL-2C compute a 6-approximation for
problem 2C. Moreover, if the 2-edge- and the 2-vertex- connected components of
G are available, then the algorithms run in linear time.
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Proof. Let nv be the number of vertices of G that belong to some 2-vertex-
connected component of G. Also, let n̆ be the number of vertices in Ğ, and
let n̆e be the number of vertices of Ğ that belong to some 2-edge-connected
component of Ğ. By the analysis in the proof of Theorem 4, the algorithm for
2VC-B-C selects less than 6(n + nv) edges. For the 2ECSS problems, we can
compute a 2-approximate solution in linear-time as in [13], using edge-disjoint
spanning trees [5, 26]. Let C̆ be a 2-edge-connected component of Ğ. We select
an arbitrary vertex v̆ ∈ C̆ as a root and compute two edge-disjoint spanning
trees in the flow graph C̆(v̆) and two edge-disjoint spanning trees in the reverse
flow graph C̆R(v̆). Thus, we select less than 4n̆e edges. Hence, the subgraph
computed by the algorithm has less than 6(n+ nc + n̆e) edges.

Now consider any solution to 2C. It has to include 2nc + 2n̆e edges in order
to maintain the 2-vertex and the 2-edge-connected components of G. Moreover,
since the resulting subgraph must be strongly connected, there must be at least
one edge entering each of the n̆− n̆e vertices of Ğ that do not belong in a 2-edge-
connected component of Ğ. Thus, the optimal solution has at least 2nc + n̆e + n̆
edges. Note that n̆c + n̆ ≥ n, so the the optimal solution has at least n+nc + n̆e
edges and the approximation ratio of 6 follows.

Finally, we show that all three steps of the algorithms DLN-2C and LHL-2C
run in linear time given the 2-edge- and the 2-vertex- connected components of
G. This is immediate for Steps 1 and 3. In Step 2, we do not need to compute
the 2-edge-connected components of Ğ from scratch, but we can form them from
the 2-edge-connected components of G using contractions. Let C be a 2-edge-
connected component of G. We contract each 2-vertex-connected component of
G contained in C into a single supervertex. Then, the resulting digraph C̆ is a
2-edge-connected component of Ğ. ut

If we wish to improve the quality of the computed solution G′, we can apply
the 2VDP filter, and the analogous 2-edge-disjoint paths filter 2EDP, as follows.
In Step 1, we run the 2VDP filter for the edges computed by the linear-time
algorithm of [10]. This produces a minimal solution for 2VCSS in each 2-vertex-
connected component of G. Similarly, in Step 2, we run the 2EDP filter for the
edges of the edge-disjoint spanning trees computed in each 2-edge-connected
component of Ğ. This produces a minimal solution for 2ECSS in each 2-edge-
connected component of Ğ. Finally, we run the 2VDP filter on the whole G′, but
only consider the edges added in Step 3 of our algorithm, since the edges from
Steps 1 and 2 are needed to maintain the 2-vertex- and the 2-edge-connected
components. We implemented this algorithm, using DLN-B for Step 3, and refer
to it as 2VDP-2C.

Approximation algorithms and heuristics for 2VC-B-C. Executing Steps 1
and 3 of the above algorithm described for 2C, is enough to produce a certificate
for the 2VC-B-C problem. If we use DLN-B or LHL-B for Step 3, then we obtain
a 6-approximate solution for 2VC-B-C. We call the corresponding algorithms
DLN-B-C and LHL-B-C, respectively.
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Theorem 4. There is a polynomial-time algorithm for 2VC-B-C that achieves
an approximation ratio of 6. Moreover, if the 2-vertex-connected components of
G are available, then the algorithm runs in linear time.

Proof. A result in [10] shows that, given a 2-vertex-connected digraph with ν
vertices, we can compute in linear time a 2-vertex-connected spanning subgraph
that has less than 6ν edges. Hence, if nc is the number of vertices that belong
in a 2-vertex-connected component of G, then applying this algorithm to each
2-vertex-connected component selects less than 6nc edges. Finally, we apply the
construction of a sparse certificate for the 2-vertex-connected blocks which selects
at most 6(n − 1) edges by Theorems 1 or 2. Hence, the subgraph computed by
the algorithm has less than 6(n+nc). One the other hand, any solution to 2VC-
B-C has to include at least 2nc edges for the 2-vertex-connected components of
G, and at least n− nc edges in order to obtain a strongly connected subgraph.
Thus, the optimal solution has at least n+nc edges, so the approximation ratio
of 6 follows. ut

As in the 2VC-B and 2C problems, we can improve the quality of the com-
puted solution by applying the 2VDP filter for the edges that connect different
2-vertex-connected components. We implemented this algorithm, using DLN-B
for Step 3, and refer to it as 2VDP-B-C.

5 Experimental Analysis

We implemented the algorithms previously described: 5 for 2VC-B, 3 for 2VC-
B-C, and 3 for 2C, as summarized in Table 1. All implementations were written
in C++ and compiled with g++ v.4.4.7 with flag -O3. We performed our ex-
periments on a GNU/Linux machine, with Red Hat Enterprise Server v6.6: a
PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430 v2 proces-
sors and 16GB of RAM RDIMM memory. Each processor has 6 cores sharing a
15MB L3 cache, and each core has a 2MB private L2 cache and 2.50GHz speed.
In our experiments we did not use any parallelization, and each algorithm ran
on a single core. We report CPU times measured with the getrusage function.
All our running times were averaged over ten different runs.

For the experimental evaluation we use the datasets shown in Table 2. We
measure the quality of the solution computed by algorithm A on problem P
by a quality ratio defined as q(A,P) = δAavg/δ

P
avg , where δAavg is the average

vertex indegree of the subgraph computed by A and δPavg is a lower bound on
the average vertex indegree of the optimal solution for P. Specifically, for 2VC-B
and 2VC-B-C we define δBavg = (n+k)/n, where n is the total number of vertices
of the input digraph and k is the number of vertices that belong in (nontrivial)
2-vertex-connected blocks 2. We set a similar lower bound δCavg for 2C, with

2 This follows from the fact that in the sparse subgraph the k vertices in blocks must
have indegree at least two, while the remaining n− k vertices must have indegree at
least one, since we seek for a strongly connected spanning subgraph.
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Algorithm Problem Technique Time

DST-B 2VC-B Original sparse certificate from [12] based on divergent span-
ning trees

O(m+ n)

DST-B modified 2VC-B Modified sparse certificate from [12] O(m+ n)

DLN-B 2VC-B Sparse certificate from [14] based on divergent spanning trees
and loop nesting trees

O(m+ n)

LHL-B 2VC-B New sparse certificate based on low-high orders and loop
nesting trees

O(m+ n)

2VDP-B 2VC-B 2VDP filter applied on the digraph produced by DLN-B O(n2)

DLN-B-C 2VC-B-C DST-B combined with the linear-time 2VCSS algorithm of [10] O(m+n)†

LHL-B-C 2VC-B-C LHL-B combined with the linear-time 2VCSS algorithm of [10] O(m+n)†

2VDP-B-C 2VC-B-C 2VDP filter applied on the digraph produced by DLN-B-C O(n2)

DLN-2C 2C DLN-B-C combined with the linear-time 2ECSS algorithm us-
ing edge-disjoint spanning trees

O(m+n)‡

LHL-2C 2C LHL-B-C combined with the linear-time 2ECSS algorithm us-
ing edge-disjoint spanning trees

O(m+n)‡

2VDP-2C 2C 2VDP and 2EDP filters applied on the digraph produced by
DLN-2C

O(n2)

Table 1. The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. Running times indicated by † assume
that the 2-vertex-connected components of the input digraph are available; running
times indicated by ‡ assume that also the 2-edge-connected components are available.

Dataset n m file size δavg s∗ δBavg δ
C
avg type

Rome99 3353 8859 100KB 2.64 789 1.76 1.76 road network
P2p-Gnutella25 5153 17695 203KB 3.43 1840 1.60 1.60 peer2peer
P2p-Gnutella31 14149 50916 621KB 3.59 5357 1.56 1.56 peer2peer
Web-NotreDame 53968 296228 3,9MB 5.48 9629 1.50 1.50 web graph
Soc-Epinions1 32223 443506 5,3MB 13.76 8194 1.56 1.56 social network
USA-road-NY 264346 733846 11MB 2.77 46476 1.80 1.80 road network
USA-road-BAY 321270 800172 12MB 2.49 84627 1.69 1.69 road network
USA-road-COL 435666 1057066 16MB 2.42 120142 1.68 1.68 road network
Amazon0302 241761 1131217 16MB 4.67 69616 1.74 1.74 prod. co-purchase
WikiTalk 111881 1477893 18MB 13.20 14801 1.45 1.45 social network
Web-Stanford 150532 1576314 22MB 10.47 14801 1.62 1.58 web graph
Amazon0601 395234 3301092 49MB 8.35 69387 1.82 1.82 prod. co-purchase
Web-Google 434818 3419124 50MB 7.86 89838 1.59 1.58 web graph
Web-Berkstan 334857 4523232 68MB 13.50 53666 1.56 1.51 web graph

Table 2. Real-world graphs sorted by file size of their largest SCC; n is the number
of vertices, m the number of edges, and δavg is the average vertex indegree; s∗ is the
number of strong articulation points; δBavg and δCavg are lower bounds on the average
vertex indegree of an optimal solution to 2VC-B and 2C, respectively.

the only difference that k is the number of vertices that belong in (nontrivial)
2-edge-connected blocks, since every 2-vertex-connected component or block is
contained in a 2-edge-connected block. Note that the quality ratio is an upper
bound of the actual approximation ratio. The smaller the values of q(A,P) (i.e.,
the closer to 1), the better is the approximation obtained by algorithm A for
problem P.

We now report the results of our experiments with all the algorithms consid-
ered for problems 2VC-B and 2C. For the 2VC-B problem, the quality ratio of the
spanning subgraphs computed by the different algorithms is shown in Table 3
(left) and Figure 2 (top), while their running times are given and plotted in
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Dataset DST-B
DST-B

DLN-B LHL-B 2VDP-B DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C
modified

Rome99 1.384 1.363 1.432 1.388 1.170 1.462 1.459 1.199 1.462 1.459 1.198
P2p-Gnutella25 1.726 1.602 1.713 1.568 1.234 1.712 1.568 1.234 1.712 1.568 1.234
P2p-Gnutella31 1.717 1.647 1.732 1.602 1.273 1.732 1.573 1.273 1.732 1.573 1.273
Web-NotreDame 2.072 2.067 2.108 2.085 1.588 2.232 2.149 1.628 2.250 2.180 1.638
Soc-Epinions1 2.082 1.964 2.213 2.027 1.475 2.474 2.411 1.572 2.474 2.411 1.573
USA-road-NY 1.255 1.251 1.371 1.357 1.168 1.376 1.374 1.175 1.376 1.374 1.175
USA-road-BAY 1.315 1.311 1.374 1.365 1.242 1.375 1.379 1.246 1.375 1.379 1.246
USA-road-COL 1.308 1.307 1.354 1.348 1.249 1.357 1.357 1.252 1.357 1.357 1.252
Amazon0302 1.918 1.791 1.849 1.719 1.245 2.020 1.928 1.386 2.032 1.944 1.399
WikiTalk 2.145 2.126 2.281 2.190 1.796 2.454 2.441 1.863 2.454 2.441 1.863
Web-Stanford 2.115 2.019 2.130 2.078 1.572 2.287 2.257 1.622 2.238 2.209 1.584
Amazon0601 1.926 1.793 1.959 1.747 1.196 2.241 2.155 1.278 2.242 2.157 1.279
Web-Google 2.052 2.004 2.083 2.051 1.485 2.306 2.335 1.585 2.338 2.372 1.602
Web-Berkstan 2.302 2.233 2.290 2.275 1.692 2.472 2.492 1.767 2.410 2.431 1.717

Table 3. Quality ratio q(A,P) of the solutions computed for 2VC-B, 2VC-B-C and 2C.

Dataset DST-B
DST-B

DLN-B LHL-B 2VDP-B DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C
modified

Rome99 0.014 0.018 0.004 0.005 0.264 0.032 0.034 0.122 0.034 0.036 0.122
P2p-Gnutella25 0.027 0.032 0.008 0.007 1.587 0.042 0.042 0.729 0.051 0.053 0.725
P2p-Gnutella31 0.070 0.094 0.024 0.027 13.325 0.119 0.119 5.613 0.143 0.149 5.422
Web-NotreDame 0.335 0.486 0.059 0.080 97.355 0.491 0.521 27.091 0.573 0.600 27.746
Soc-Epinions1 0.258 0.309 0.089 0.110 92.812 0.606 0.621 54.559 0.602 0.664 54.548
USA-road-NY 1.095 1.402 0.261 0.360 2546.484 2.227 2.337 991.092 2.153 2.415 995.913
USA-road-BAY 1.659 2.152 0.316 0.435 4089.389 2.153 2.298 1429.443 2.296 2.476 1447.318
USA-road-COL 2.439 3.050 0.438 0.603 7739.256 3.770 3.969 3093.258 3.938 4.228 3064.297
Amazon0302 2.101 2.410 0.517 0.675 3503.910 4.708 5.017 2244.856 5.135 5.509 2094.263
WikiTalk 1.777 2.125 0.355 0.473 1158.855 2.179 2.133 943.690 2.203 2.513 924.810
Web-Stanford 1.756 2.395 0.429 0.564 1174.984 2.037 2.313 279.236 2.561 2.487 317.115
Amazon0601 3.532 3.924 1.363 1.605 15349.126 9.793 10.038 8065.680 11.669 11.397 8696.212
Web-Google 4.837 5.467 1.533 1.968 26299.714 9.789 10.172 5095.600 11.535 12.979 5128.337
Web-Berkstan 3.239 5.261 0.690 0.869 6301.410 4.670 4.872 1595.033 5.178 5.601 1546.041

Table 4. Running times in seconds of the algorithms for 2VC-B, 2VC-B-C and 2C.

Table 4 (left) and Figure 3 (left), respectively. Similarly, for the 2VC-B-C and 2C
problems, the quality ratio of the spanning subgraphs computed by the different
algorithms is shown in Table 3 (right) and Figure 2 (bottom), while their running
times are given and plotted in Table 4 (right) and Figure 3 (right), respectively.

We observe that all our algorithms perform well in terms of the quality of the
solution they compute. Indeed, the quality ratio is less than 2.5 for all algorithms
and inputs. Our modified version of DST-B performs consistently better than
the original version. Also in all cases, LHL-B computed a higher quality solution
than DLN-B. For most inputs, DST-B modified computes a sparser graph than
LHL-B, which is somewhat surprising given the fact that we do not have a good
bound for the (constant) approximation ratio of DST-B modified. On the other
hand, LHL-B is faster than DST-B modified by a factor of 4.15 on average and has
the additional benefit of maintaining both the 2-vertex and the 2-edge-connected
blocks. The 2VDP filter provides substantial improvements of the solution, since
all algorithms that apply this heuristic have consistently better quality ratios
(1.38 on average and always less than 1.87). However, this is paid with much
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Fig. 2. The plotted quality ratios taken by Table 3.

higher running times, as those algorithms can be even 5 orders of magnitude
slower than the other algorithms.

From the analysis of our experimental data, all algorithms achieve consis-
tently better approximations for road networks than for most of the other graphs
in our data set. This can be explained by taking into account the macroscopic
structure of road networks, which is rather different from other networks. Indeed,
road networks are very close to be “undirected”: i.e., whenever there is an edge
(x, y), there is also the reverse edge (y, x) (except for one-way roads). Roughly
speaking, road networks mainly consist of the union of 2-vertex-connected com-
ponents, joined together by strong bridges, and their 2-vertex-connected blocks
coincide with their 2-vertex-connected components. In this setting, a sparse
strongly connected subgraph of the condensed graph will preserve both blocks
and components. On the other hand, such a gain on the solution for the road
networks is balanced at the cost of their additional running time.
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Fig. 3. Running times in seconds with respect to the number of edges (in log-log scale)
taken by Table 4. The upper plots get a close-up view of the fastest algorithms by not
considering 2VDP-B, 2VDP-B-C and 2VDP-2C.

In addition, our experiments highlight interesting tradeoffs between practical
performance and quality of the obtained solutions. In particular, the fastest
algorithms for the 2VC-B problem are the ones based on loop-nesting trees (DLN-
B and LHL-B), with LHL-B achieving consistently better solutions than DLN-B.
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