Counting Spanning Trees in Graphs
using Modular Decomposition

Stavros D. Nikolopoulos', Leonidas Palios!, and Charis Papadopoulos?

! Department of Computer Science, University of Ioannina, GR-45110, Greece,
{stavros,palios}@cs.uoi.gr,
2 Department of Mathematics, University of Joannina, GR-45110, Greece,
charis@cs.uoi.gr

Abstract. In this paper we present an algorithm for determining the
number of spanning trees of a graph G which takes advantage of the
structure of the modular decomposition tree of G. Specifically, our al-
gorithm works by contracting the modular decomposition tree of the
input graph G in a bottom-up fashion until it becomes a single node;
then, the number of spanning trees of (G is computed as the product of
a collection of values which are associated with the vertices of G and
are updated during the contraction process. In particular, when applied
on a (q,q — 4)-graph for fixed ¢, a Ps-tidy graph, or a tree-cograph, our
algorithm computes the number of its spanning trees in time linear in
the size of the graph, where the complexity of arithmetic operations is
measured under the uniform-cost criterion. Therefore we give the first
linear-time algorithm for the counting problem in the considered graph
classes.

1 Introduction

A spanning tree of a connected undirected graph G on n vertices is a connected
(n — 1)-edge subgraph of GG. The number of spanning trees of a graph G, also
called the complezity of G [5], is an important, well-studied quantity in graph
theory, and appears in a number of applications. Most notable application fields
are network reliability [19], enumerating certain chemical isomers [7], and count-
ing the number of Eulerian circuits in a graph [5]. In particular, counting span-
ning trees is an essential step in many methods for computing, bounding, and
approximating network reliability [8]; in a network modeled by a graph, inter-
communication between all nodes of the network implies that the graph must
contain a spanning tree and, thus, maximizing the number of spanning trees is
a way of maximizing reliability.

Thus, both for theoretical and for practical purposes, we are interested in
deriving a formula for or computing the number of spanning trees of a graph G,
and also of the K,-complement of G (for any subgraph H of the complete graph
K,, the K, -complement of H, denoted by K, — H, is defined as the graph
obtained from K, by removing the edges of H; note that, if H has n vertices,
then K,, — H coincides with the complement H of H). Many cases have been

examined depending on the choice of G, such as when G is a labeled molecular
graph [7], a circulant graph [2,27], a multi-star related graph [22], and a quasi-
threshold graph [3, 20].

The purpose of this paper is to study the general problem of finding the num-
ber of spanning trees of an input graph. Traditionally, the number of spanning
trees of a graph is computed by means of the classic Kirchhoff matriz tree theo-
rem [5], which expresses the number of spanning trees of a graph G in terms of
the determinant of a cofactor of the so-called Kirchhoff Matrix that can be easily
constructed from the adjacency relation (adjacency matrix, adjacency lists, etc)
of G. Thus, counting spanning trees reduces to evaluating the determinant of an
((n = 1) x (n — 1))-size matrix, where n is the number of vertices of the input
graph. This approach has been used for computing the number of spanning trees
of families of graphs (see [3,15,22]), but it requires ©(n?-37%) arithmetic opera-
tions on matrix entries and ©(n?) space [10]; in fact, the algorithm that achieves
this time and space complexity appears to have so large a constant factor that
for practical combinatorial computations the naive O(n?®)-time algorithm turns
out to be the sensible choice. We also mention that in some special classes of
graphs, the determinant can be computed in O(n'®) time, using the planar sep-
arator theorem [16]. In a few cases, the number of spanning trees of a graph has
been computed without the evaluation of a determinant. Colbourn et al. in [9]
have proposed an algorithm which runs in O(n?) time for an n-vertex planar
graph. Their algorithm is based on some particular transformations (known as
delta-wye technique) that can be applied on planar graphs; unfortunately, it is
hard to study such or other kinds of transformations on general graphs (besides
planar graphs).

In order to obtain an efficient solution for this problem, we take advantage
of the modular decomposition (a form of graph decomposition which associates
the graph with its maximal homogeneous sets) of the input graph G and espe-
cially the properties of its modular decomposition tree. The usage of modular
decomposition has been proposed for solving several optimization problems. To
name a few of them we refer to the problem of computing the treewidth and the
minimum fill-in [6]. Also, it has been proposed to obtain efficient algorithms by
expressing optimization problems in monadic second-order logic [11,12]. Other
application areas of modular decomposition arise in graph drawing [24] and in
biological strategies of proteins [13].

Our algorithm uses the modular decomposition and relies on tree contraction
operations which are applied in a systematic fashion from bottom to top in order
to shrink the modular decomposition tree of the graph G into a single node, while
at the same time certain parameters are appropriately updated; the updating
essentially implements transformations on the cofactor of the Kirchhoff Matrix
towards evaluating its determinant, yet the fact that we are dealing with modules
(that is, any vertex outside the module is adjacent to either all or none of the
vertices in the module) allows us to beat the O(n?-376) time complexity for many
classes of graphs. In the end, the number of spanning trees of G is obtained as the
product of n numbers, where n is the number of vertices of G; this multiplication

takes O(n) time under the uniform-cost criterion [1, 23]. Our algorithm is easy to
implement; its correctness is established by means of the Kirchhoff matrix tree
theorem along with standard techniques from linear algebra and matrix theory.

In particular, for certain classes of graphs, the structure of their modular
decomposition trees (and in fact their prime graphs) ensures that each tree node
can be processed in time linear in the size of the contracted part of the tree;
thus, since the modular decomposition tree of a graph can be constructed in
time and space linear in the size of the graph [18], the processing of the entire
modular decomposition tree and consequently the number of its spanning trees
takes time and space linear in the size of the input graph. Such classes are
the classes of tree-cographs, (q,q — 4)-graphs for fixed ¢, and Ps-tidy graphs,
along with their numerous subclasses, such as, the cographs, the Pj-reducible,
the extended P4-reducible, the Py-sparse, the Py-lite, the Py-extendible, and the
extended Pj-sparse graphs.

2 Preliminaries

We consider finite undirected graphs with no self-loops or multiple edges. For
a graph G, we denote by V(G) and E(G) the vertex set and edge set of G,
respectively. Let S be a subset of the vertex set of a graph G. Then, the subgraph
of G induced by S is denoted by G[S]. Moreover, we denote by G—.S the subgraph
G[V(G)— S] and by G — v the graph G[V(G) — {v}]. A clique is a set of pairwise
adjacent vertices; a stable set is a set of pairwise non-adjacent vertices.

The neighborhood N(z) of a vertex x of the graph G is the set of all the
vertices of G which are adjacent to z. The degree of a vertex z in the graph G,
denoted d(x), is the number of edges incident on z; thus, d(x) = |N(z)|. If
two vertices x and y are adjacent in G, we say that x sees y; otherwise we say
that @ misses y. We extend this notion to vertex sets: V; C V(G) sees (misses)
V; CV(QG) if and only if every vertex x € V; sees (misses) every vertex y € V.

A subset M of vertices of a graph G is said to be a module of G, if every
vertex outside M is either adjacent to all the vertices in M or to none of them.
The empty set, the singletons, and the vertex set V are trivial modules and
whenever G has only trivial modules it is called a prime graph. A non-trivial
module is also called a homogeneous set. A prime spider is a prime graph, since
it does not contain any non-trivial module. We note that a chordless path on n >
4 vertices and a chordless cycle on n > 5 vertices are prime graphs. Furthermore,
a module M of G is called strong, if for any module M’ # M of G, either
MNM=0or M C M.

The modular decomposition of a graph G is represented by a tree T'(G) which
we call the modular decomposition tree of G; the leaves of T(G) are the vertices
of GG, whereas each internal node ¢ corresponds to a strong module, denoted
M, which is induced by the set of vertices/leaves of the subtree rooted at t.
Thus, T(G) represents all the strong modules of G. The module corresponding
to a P-node induces a disconnected subgraph of G, that of an S-node induces
a connected subgraph of G whose complement is a disconnected subgraph and

that of an N-node induces a connected subgraph of G whose complement is also
a connected subgraph.

In particular, let ¢ be an internal node of the modular decomposition tree T'(G).
If ¢ has children uy,ug, ..., up, then we define the representative graph G of the
module M; as follows: V(G¢) = {u1,ue,...,up}, and E(Gy) = {wu; | viv; €
E(G), v; € My, and v; € My, }. Note that by the definition of a module, if a
vertex of M,, is adjacent to a vertex of M,,; then every vertex of M,, is adjacent
to every vertex of M,,,. Thus G is isomorphic to the graph induced by a subset
of M, consisting of a single vertex from each maximal submodule of M; in T'(G).

The modular decomposition tree T'(G) of a graph G is constructed recur-
sively as follows: modules corresponding to P-nodes are decomposed into their
connected components, modules corresponding to S-nodes are decomposed into
their co-connected components, and modules corresponding to N-nodes are de-
composed into their strong submodules. The efficient construction of the modular
decomposition tree of a graph has received a great deal of attention. It is well
known that for any graph G the tree T(G) is unique up to isomorphism and it
can be constructed in linear time [18].

Definition 1. Let T be a tree. A subtree rooted at an internal node t of T is a
contractible subtree iff all the children of t are leaves of T .

Let T'(G) be the modular decomposition of a graph G and let ¢ be an N-node.
We can show that if the prime graph G; belongs to a certain family F of graphs
to be described later then its processing takes time linear in the size of Gy; this
implies that if all the prime graphs of a graph G belong to F then the number
of spanning trees of G can be computed in time linear in the size of G.

A path in a graph G is a sequence of vertices vguy - - - v such that v;_qv; €
E(G) for i = 1,2,...,k. A path is called simple if none of its vertices occurs
more than once. A path (simple path) vovy--- vy is a cycle (simple cycle) if
vovg € E(G). A simple path (cycle) vovy - - vy is chordless if v;v; ¢ E(G) for
any two non-consecutive vertices v;, v; in the path (cycle). Throughout the paper,
the chordless path (cycle) on k vertices is denoted by Py (respectively Cy). Let
T be a rooted tree. The parent of a node x of T is denoted by p(zx), whereas the
node set containing the children of x in T is denoted by ch(z). We denote by L;
the node set containing the nodes of the i-th level of T', for each value of ¢ from
0 to the height of the tree T'.

A graph is called a spider if its vertex set admits a partition into sets S, K,
and R such that: (S1) |S| = |K| > 2, S is a stable set, and K is a clique; (S2) the
vertex set R sees K and misses S; (S3) there exists a bijection f : S — K such
that either for each vertex v € S, N(v) N K = {f(v)} or for each vertex v € S,
N@w)NK = K — {f(v)}. The triple (S, K, R) is called the spider partition. A
graph G is a prime spider if G is a spider with vertex partition (5, K, R) and
|R| < 1. For the prime spiders, in order to distinguish the two different bijections
of (S3), they are referred to as the thin spider and the thick spider, respectively.
Note that, the complement of a thin spider is a thick spider and vice versa.

Definition 2. The family F contains thin spiders, prime trees, chordless cycles
of length greater than four, and their complements; we call these graphs basic
graphs. A prime graph which is not in F is called non-basic graph.

Next, we introduce the definitions of the non-basic cost of a graph and of a
contractible subtree of the modular decomposition tree which we will need in our
algorithm. We recall that evaluating the determinant of an n X n matrix (and
subsequently the number of spanning trees of a graph on n vertices) requires

O(n?37) time [10].

Definition 3. Let F be the family of basic graphs, G be a graph, T(G) be its
modular decomposition tree, and let a(G) = {t1,ta,...,ts} be the set of the N-
nodes of T'(G) such that the representative graphs Gy, ,Gy,, ..., Gy, are notin F.
We define the non-basic cost of G as the value ¢(G) =3 ;) [V(Gy)|?376 =

Y tea(@) |ch(t)|?376, where ch(t) denotes the set of children of node t in T(G).

For an nxn matrix M, the (n—1)-st order minor } is the determinant of the
(n—1) x (n—1) matrix obtained from M after having deleted row ¢ and column j.
The i-th cofactor equals pi. For an undirected graph G on n vertices, let A be
its adjacency matrix and D be its degree matrix, i.e., the diagonal matrix with
the degrees of the vertices of G in its main diagonal. The Kirchhoff matrizx K
for the graph G is the matrix D — A. The Kirchhoff matrix tree theorem is one
of the most famous results in graph theory; it provides a formula for the number
of spanning trees of a graph G in terms of the cofactors of G’s Kirchhoff matrix.

Theorem 1 (Kirchhoff Matrix Tree Theorem [5]). For any graph G with
matriz K defined as above, the cofactors of K have the same value, and this
value equals the number of spanning trees of G.

3 The Main Idea and the Contraction Process

Let a graph G on n vertices and let the p vertices vq, v2, ... v, define a module of
G. In other words the vertices vy, v, ... v, form the set of children of an internal
node t of T(G) and thus the subtree rooted at t is a contractible subtree. The
Kirchhoff matrix tree theorem (Theorem 1) implies that the number of spanning
trees of a graph G on n vertices is equal to any of the cofactors of the Kirchhoff
matrix K, and thus, to the determinant of the (n — 1) x (n — 1) submatrix M
of K formed by the first n — 1 rows and the first n — 1 columns. In terms of the
module vy, va, ... vp, the form of matrix M is as follows:

[d(v1) (=1)i; T

where d(v;), 1 < i < mn—1, is the degree of vertex v; in graph G. The notation
(—1);,; for the off-diagonal (7, j)-elements means that the element is equal to —1
if the vertices v; and v; are adjacent in G' and are 0 otherwise, for 1 <1i,j < p.
Similarly, the entries (¢,j') and (j’,4) (resp. the entries (i',j) and (j,4')) are
both —1 if the vertices v; and v, (resp. vy and v;) are adjacent in G and are
equal to 0 otherwise, 1 < i < p (resp. p+ 1 < 5/ < n —1). We note that, the
off-diagonal elements in the first p rows and p columns of matrix M depend on
the type of module formed by the vertices vi,vs,...,v, (whether it is formed
by a P-node, an S-node or an N-node). Additionally, since the first p vertices
induce a module of G, the rows of M’s submatrix formed by rows 1,2,...,p
and columns p+ 1,p+ 2,...,n — 1 are identical and similarly, the columns of
M’s submatrix formed by rows p+1,p+2,...,n—1 and columns 1,2,... p are
identical.

It is clear by Theorem 1 that 7(G) = det (M); recall that 7(G) denotes the
number of spanning trees of G. We associate each of the n — 1 vertices with an
s-value which is equal to the vertex’s degree in G, i.e, s(v;) = d(v;), where d(v;),
1 < i< n-—1,is the degree of vertex v; in graph G. In order to compute the
determinant of matrix M we zero the off-diagonal elements formed by the p x p
submatrix of the first p rows and p columns. Note that, the form of this submatrix
depends on the structure of the graph G; (i.e., on the type of the internal node ¢
of T(G)). This task is accomplished by standard techniques from linear algebra.
Thus we transform the matrix M into another matrix M;, by making the p x p
submatrix a diagonal matrix, such that det (M) = det (M;). For example, these
transformations can be applied by a well-known Gauss-Jordan elimination on the
p X p submatrix. We call this process elimination of the s-values of the vertices
V1,V2,...0p of Gy. It is important to note that the elimination of the s-values
applied on the rows and columns of the p X p submatrix effects the diagonal
elements of the positions (4,7) and the off-diagonal elements of the positions
(i,7") and (j’,7) of the matrix M, 1 < i < p < j' < n — 1. Let s1(v;) be the
values of the elements of the positions (i,) and (c1);,;» and (¢1),7; be the values
of the elements of the positions (7,;') and (j/,4) after applying the elimination
on the p vertices. Then matrix M is of size (n — 1) x (n — 1), similar to the
matrix M, and has the following form:

B 81(1}1) 0]

T S —— o —_—C

L (—1)3",1" S(Unfl) i
Lemma 1. There exists a series of manipulations on matriz M of Eq. (1) which
transforms it into matriz My of Eq. (2) such that det (M) = det (My).

The difference of matrix M; from matrix M is that of having all the off-
diagonal elements of the first p rows and p columns equal to zero. The val-

ues of ¢y of the corresponding rows and columns of matrix M; depend on the
type of transformations that we apply on M. Due to the fact that the vertices
V1,2, ..., U, form a module in G, it follows that in row 7 all the elements (c1); j,
for p < j° < n—1, have the same value, denoted by ¢; (i), and similarly in column
i all the elements (c1),7 4, for p < j* <n — 1, have the same value which is equal
to ¢1(7), since the initial values where both equal to —1. The following lemma
proves the essential step of contracting a subtree into its highest indexed vertex
vp, which is applied after the elimination function.

Lemma 2. For the determinant of matriz My of Eq. (2) we have that

p—2
det (M) = <H sl(vi)> -s1(vp_1) - 51(vp) - 6 - det (M),
i=1
p 2/ .
where 0 = Z 801((2)) and M' is a (n — p) X (n — p) matriz of the form
i=1 "1\
) S
s(vp+1) (=D 50
M = ‘ , where s'(vy) = 5.
(_1)3",1)?
P (=D $(Un—1)

We call this process contraction of the module formed by the vertices vy, va, . .. vp.
We observe that the matrix M’ is an (n—p) x (n—p) matrix similar to the original
matrix M; in fact, it is identical to the submatrix of the original matrix M formed
by rows p,p+1,...,n—1 and columns p,p+1,...,n—1, with the only exception
that the value §'(v,) is different from s(v,). Thus, if we assume (in an inductive
fashion) that the determinant of the matrix M’ can be expressed as the product
of appropriate values s'(vp), s’ (Up+1), - .., 8 (vn—1), then the determinant of the
original matrix M is equal to the product of these values multiplied by the
product of s(v1),s(v2),...,s(vp—1). The recursive application of an elimination
process of the s-values (see Eq. (2)) and the contraction process of the module
(see Lemma 2) will be our main tools for presenting the following algorithm in
the next section which computes the desired product of the s-values, i.e., the
number of spanning trees.

3.1 The Algorithm

In order to compute the number of spanning trees of a graph G on vertices
V1, V2, ..., U,, we make use of Theorem 1 and Lemma 2: we delete an arbitrary
vertex v, € V(G) and all the edges incident on v,, we associate each of the
remaining vertices with an s-value which is initialized to the vertex’s degree in
G, and we construct the modular decomposition tree of the graph G — v,,. Next,
in a bottom-up fashion, we process each of the contractible subtrees of the tree
and we update the s-values of its vertices/leaves by applying the following two
processes:

8

Spanning_Trees-Number

Input: A connected graph G on n vertices vi,v2,...,v, and m edges.

Output: The number of spanning trees 7(G) of the graph G.

1. s(v;) —d(v), 1 <i<n—1,;
2. T +— the modular decomposition tree T" of the graph G — vy;
3. Compute the node sets Lo, L1,..., Ly of the levels 0,1,...,h of T
4. for i=h—1downto0 do {the subtree rooted att is contractible}
for every internal node t € L; do {let vi,...,v, be the children of t}

4.1 if the representative graph G € F
then 7T < Handle-Basic(t,T); {elimination}
else T «— Handle-NonBasic(t,T);

p -\ 2
: c(i)”
4.2 Compute the value: 6 «— ; ()
4.3 Update the s-values of v,_1, v, as follows:
$(tp1) = s(tp1) () 05 5(vy) — 53 {contraction)

4.4 Replace the subtree rooted at node ¢ by
the leaf-node associated with vertex vy;

5 7(G) « 1:[s(vs);

Figure 1: Algorithm Spanning_Trees-Number.

> Elimination process: we eliminate the s-values in order to make diagonal the
corresponding submatrix of Eq. (1). During that process we compute the
values s1(v;) and ¢1(i) of Eq. (2).

> Contraction process: we contract the subtree into the leaf-node correspond-
ing to its highest-index vertex/leaf by updating the desired values according
to Lemma 2.

Eventually, the entire tree becomes a single vertex/leaf, and the number of span-
ning trees of GG is then equal to the product of the final values of the s-values of
all the vertices in V(G) — {v,}.

We note that the elimination process can be achieved by executing an ap-
propriate Gauss-Jordan elimination. We will prove later that if the representa-
tive graph G, of the subtree belongs to the family of basic graphs F then the
elimination can be executed in a more efficient way than the straight forward
Gauss-Jordan elimination. Thus before applying the elimination process we need
to identify if Gy belongs to F or not. The algorithm for computing the number
of spanning trees of a graph G is given in detail in Fig. 1; the input graph G is
assumed to be connected (otherwise it has no spanning trees).

The elimination is applied on a contractible node ¢ and is done by means of
two functions, namely, Handle-Basic, in the case where G; belongs to one of the
graph classes of the family of basic graphs, and Handle-NonBasic, otherwise.

The first function handles basic graphs and is described in Section 4. The sec-
ond function is basically a well-known Gauss-Jordan elimination applied on the
Kirchhoff matrix of a graph that is not basic.

3.2 Processing Basic Graphs

As described in the previous section, in order to compute the determinant of
matrix M we zero the off-diagonal elements formed by the p x p submatrix of
the first p rows and p columns. This task is accomplished by the elimination
process of the s-values of vy,vs,...,v,. Note that, the structure of the given
submatrix depends on the type of the graph G;. Due to space restrictions we
briefly explain each of the corresponding case.

o Let G; be an edgeless graph on p vertices (induced by the P-node t). Then
the p x p submatrix is diagonal since there are no edges in G;. We call such
a function Eliminate_Edgeless which is responsible for assigning the p values
of ¢(i) equal to —1; note that the s-values do not need to be changed. The
case of Gy associated with an S-node (complete graph) is handled in the case
of a complement of a P-node.

o Let G; be a tree graph. In [20], a determinant-based formula was shown in
order to compute the number of spanning trees of the graph K,, — G, where
G is a tree graph. Function Eliminate_Tree is based on a similar approach;
for a detailed proof, see [20].

o Let G be a chordless cycle graph. In this case, the form of the p x p submatrix
is similar to a tridiagonal symmetric matrix. It is easy to see that inversion
of a symmetric tridiagonal matrix requires only O(n) transformations which
are performed by a function which we call Eliminate-Cycle.

o Let G¢ be a thin spider. This case is rather complicated, even though it is
based on standard matrix operations. We establish these transformations
through function Eliminate-Spider.

o Let G be the complement of a basic graph. By applying standard matrix
operations and using one of the above functions on its complement, we trans-
form the given matrix into the desired form. In this case we use a function
that we call Eliminate-Complement. For technical reasons, throughout the
transformation we add a dummy vertex that preserves a certain value that
corresponds to the addition of a row and column in the given matrix.

Let ¢t be an internal node of T(G) and G; € F. First, we need to recognize, in
which of the classes of the family F the graph G belongs. Function Handle-
Basic settles this case and is responsible to apply the corresponding elimination
process. More formally,

if G; is an edgeless graph then T «— Eliminate-Edgeless(t, T, —1);
if Gy is a thin spider then T « Eliminate-Spider(t, T, —1);

if Gy is a prime tree then T «— Eliminate-Tree(t, T, —1);

if Gy is a chordless cycle then T «— Eliminate-Cycle(t, T, —1);

10

— if Gy is the complement of an edgeless graph, a thin spider, a prime tree, or
a chordless cycle then T« Eliminate-Complement(t,T).

Note that the parameter —1 of the functions for the elimination of an edgeless
graph, a thin spider, a prime tree, or a chordless cycle is to signal that the input
graph is edgeless, a thin spider, a prime tree, or a chordless cycle and not their
complements. If these functions are applied on the complements of an edgeless
graph, a thin spider, a prime tree, or a chordless cycle, then this parameter is 1
(see function Eliminate-Complement).

4 Counting Spanning Trees in Linear Time

We first describe the running time of our algorithm and next we investigate
classes of graphs which have linear or constant non-basic cost.

Lemma 3. The algorithm Spanning-Trees-Number runs in O(n + m + ¢(G))
time, where n is the number of vertices, m is the number of edges, and ¢(G) is
the non-basic cost of the input graph G.

Let G be a graph on n vertices and m edges and let ¢(G) be its non-basic
cost. From Lemma 3, it is clear that if ¢(G) is linear in the size of G, then the
algorithm Spanning_Trees-Number runs in linear time. More precisely, followed
by the functions applied in each internal N-node u of T'(G), we have the following
theorem.

Theorem 2. Let G be a graph on n vertices and m edges, and let T(G) be
its modular decomposition tree. If every prime graph in T(G) is (i) a spider
graph, or (ii) a tree, or (iii) a cycle, or (iv) their complements, or (v) a graph of
restricted (fixed) size, then the number of spanning trees of G can be computed
in O(n +m) time and space.

Recently, many researchers have devoted their work on generalizing cographs.
Tinhofer in [26] introduced the tree-cographs where the recursion, instead with
a single vertex, starts with any tree. It follows that tree-cographs contain all
trees and forests. Thus, every prime graph on the modular decomposition tree
of a tree-cograph induces a tree graph. Therefore by Theorem 2 the non-basic
cost of a tree-cograph G is ¢(G) = 0.

Babel and Olariu in [4] proposed the generalizing concept of (g, t)-graphs.
In such a graph, no set of at most ¢ vertices contains more than ¢ distinct
Pys. In our terminology, the structure of (g,q — 4)-graphs can be described as
follows: Let G be a (q,q — 4)-graph. Then, every prime graph in the modular
decomposition of G is either a prime spider or a graph with fewer than ¢ vertices
[4]. Since computing the number of spanning trees of a graph on a fixed number
of vertices takes constant time, Theorem 2 implies that the non-basic cost of a
(q,q — 4)-graph G on n vertices is ¢(G) = O(n), for every fixed g > 4.

As mentioned in [14], the class of Ps-tidy graphs was introduced by Rusu
in order to illustrate the notion of Py-domination in perfect graphs. A graph G

11

is Py-tidy if for any induced Py, say abcd, there exists at most one vertex v €
V(G) — {a,b,c,d} such that the subgraph G[{a,b,c,d,v}] has at least two Pjs
(i.e., the Py has at most one partner). Let G be a Py-tidy graph. Then, every
prime graph in the modular decomposition of G is a Ps, a Ps, a Cs, a thin
spider, or a thick spider [14]. Thus in connection to our work, the previous result
implies that the non-basic cost ¢(G) of a Py-tidy graph G is linear in the number
of vertices of G. Therefore the non-basic cost of a Ps-tidy graph G on n vertices
is ¢(G) = 0.

Concluding, it is not difficult to see that for the mentioned graph classes
the space needed by the algorithm Spanning_Trees-Number is O(n + m); recall
that the modular decomposition tree of a graph and its construction require
space linear in the size of the graph [18]. Thus, the results of this section are
summarized in the following theorem.

Theorem 3. The number of spanning trees of a tree-cograph, or of a (q,q —4)-
graph for any fized ¢ > 4, or of a Py-tidy graph can be computed in O(n + m)
time and space, where n and m are the number of vertices and edges of the input
graph.

5 Concluding Remarks

Other interesting problems involve counting other structures as well, e.g., the
number of perfect matchings, Hamiltonian cycles and Euler cycles. More pre-
cisely, it is known [17] that the number of perfect matchings can be computed
efficiently for graphs having a Pfaffian orientation. As in the Kirchhoff matrix
tree theorem, this method involves the computation of a determinant followed
by a square root calculation. Thus, given such an orientation, an algorithm im-
plementing our contraction approach may lead to efficient solutions for other
combinatorial enumeration problems. Further, as mentioned in the introduc-
tion, a uniformly-most reliable network (defined in [8,19]) must maximize the
number of spanning trees. Thus, it is interesting to determine the types of graphs
which have the maximum number of spanning trees for fixed numbers of vertices
and edges (see [21,25]). The problem may be approached as an optimization
question on the s-values of the vertices, which are calculated by the algorithm
Spanning_Trees-Number.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman: The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. T. Atajan, X. Yong, and H. Inaba: An efficient approach for counting the number
of spanning trees in circulant and related graphs. Discrete Math. 310, 1210-1221
(2010)

3. R. B. Bapat, A. K. Lal, and S. Pati: Laplacian spectrum of weakly quasi-threshold
graphs. Graphs and Combinatorics 24, 273-290 (2008)

12

o

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

L. Babel and S. Olariu: On the structure of graphs with few P4’s. Discrete Appl.
Math. 84, 1-13 (1998)

N. Biggs: Algebraic Graph Theory. Cambridge University Press, London, 1974
H.L. Bodlaender and U. Rotics: Computing the treewidth and the minimum fill-In
with the modular decomposition. Algorithmica 36, 375-408 (2003)

T.J.N. Brown, R.B. Mallion, P. Pollak, and A. Roth: Some methods for counting
the spanning trees in labeled molecular graphs, examined in relation to certain
fullerenes. Discrete Appl. Math. 67, 51-66 (1996)

C.J. Colbourn: The Combinatorics of Network Reliability. Oxford University Press,
Oxford, 1974

C.J. Colbourn, J.S. Provan, and D. Vertigan: A new approach to solving three
combinatorial enumeration problems on planar graphs. Discrete Appl. Math. 60,
119-129 (1995)

D. Coppersmith and S. Winograd: Matrix multiplication via arithmetic progres-
sions. Proc. 19th ACM Symposium on the Theory of Computing, 1-6 (1987)

B. Courcelle and C. Delhomme: The modular decomposition of countable graphs:
constructions in monadic second-order logic. 19th Int’l Workshop of Computer
Science Logic, LNCS 3634, 325-338 (2005)

B. Courcelle, J.A. Makowsky, and U. Rotics: Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125-150
2000

f]. Ga)gneur, R. Krause, T. Bouwmeester, and G. Casari: Modular decomposition
of protein-protein interaction networks. Genome Biology 5, R57 (2004)

V. Giakoumakis, F. Roussel, and H. Thuillier: On Ps-tidy graphs. Discrete Math.
and Theoret. Comput. Science 1, 17-41 (1997)

M.J. Golin, X. Yong and Y. Zhang: Chebyshev polynomials and spanning tree
formulas for circulant and related graphs. Discrete Math. 298, 334-364 (2005)
R.J. Lipton, D. Rose, and R.E. Tarjan: Generalized nested dissection. STAM J.
Numerical Anal. 16, 346-358 (1979)

L. Lovasz and M.D. Plummer: Matching Theory. North-Holland, Amsterdam, 1986
R.M. McConnell and J. Spinrad: Modular decomposition and transitive orienta-
tion. Discrete Math. 201, 189-241 (1999)

W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry: Uniformly-most reliable
networks do not always exist. Networks 21, 417-419 (1991)

S.D. Nikolopoulos and C. Papadopoulos: The number of spanning trees in K-
complements of quasi-threshold graphs. Graphs and Combinatorics 20, 383-397
(2004)

S.D. Nikolopoulos, L. Palios, and C. Papadopoulos: Maximizing the number of
spanning trees in K,-complements of asteroidal graphs. Discrete Math. 309, 3049—
3060 (2009)

S.D. Nikolopoulos and P. Rondogiannis: On the number of spanning trees of multi-
star related graphs. Inform. Process. Lett. 65, 183-188 (1998)

C. Papadimitriou: Computational Complexity. Addison-Wesley, 1994.

C. Papadopoulos and C. Voglis: Drawing graphs using modular decomposition.
Journal of Graph Algorithms and Applications 11, 481-511 (2007)

L. Petingi and J. Rodriguez: A new technique for the characterization of graphs
with a maximum number of spanning trees. Discrete Math. 244, 351-373 (2002)
G. Tinhofer: Strong tree-cographs are Birkhoff graphs. Discrete Appl. Math. 22,
275-288 (1988)

Y. Zhang, X. Yong, and M.J. Golin: The number of spanning trees in circulant
graphs. Discrete Math. 223, 337-350 (2000)

