
Counting Spanning Trees in Cographs: AnAlgorithmi
 Approa
hStavros D. NikolopoulosDepartment of Computer S
ien
e, University of IoanninaP.O.Box 1186, GR-45110 Ioannina, Gree
estavros�
s.uoi.grCharis PapadopoulosDepartment of Informati
s, University of BergenN-5020 Bergen, Norway
haris�ii.uib.noAbstra
t: In this paper we present a new simple linear-time algorithm for determiningthe number of spanning trees in the
lass of
omplement redu
ible graphs, also known as
ographs; for a
ograph G on n verti
es and m edges, our algorithm
omputes the numberof spanning trees of G in O(n + m) time and spa
e, where the
omplexity of arithmeti
operations is measured under the uniform
ost
riterion. The algorithm takes advantageof the
otree of the input
ograph G and works by
ontra
ting it in a bottom-up fashionuntil it be
omes a single node; then, the number of spanning trees of G is
omputed as theprodu
t of a
olle
tion of values whi
h are asso
iated with the verti
es of G and are updatedduring the
ontra
tion pro
ess. The
orre
tness of our algorithm is established through theKir
hho� matrix tree theorem, and also relies on stru
tural and algorithmi
 properties ofthe
lass of
ographs. We also extend our results to a proper super
lass of
ographs, namelythe P4-redu
ible graphs, and show that the problem of �nding the number of spanning treesof a P4-redu
ible graph has linear-time solution.Keywords: Cographs, P4-redu
ible graphs, number of spanning trees, modular de
ompo-sition,
ombinatorial problems, algorithms,
omplexity.1 Introdu
tionWe
onsider �nite undire
ted graphs with no loops or multiple edges. Let G be su
h a graph on nverti
es. A spanning tree of G is a
onne
ted a
y
li
 (n�1)-edge subgraph of the graph G. The numberof spanning trees of a graph (network) G, is an important, well-studied quantity in graph theory, andappears in a number of appli
ations. Most notable appli
ation �elds are network reliability (in anetwork modeled by a graph, inter
ommuni
ation between all nodes of the network implies that thegraph must
ontain a spanning tree; thus, maximizing the number of spanning trees is the key tomaximizing reliability) [18℄,
omputing the total resistan
e along an edge in an ele
tri
al network [5℄,and enumerating
ertain
hemi
al isomers [6℄.Thus, both for theoreti
al and pra
ti
al purposes, we are interested in deriving formulas for or
omputing the number of spanning trees of a graph G, and also of the Kn-
omplement of the graphG; if G is a subgraph of the
omplete graph Kn, then the Kn-
omplement of G, denoted by Kn�G, isde�ned to be the graph obtained from Kn by removing the edges of G (note that, if G has n verti
es,1

then Kn � G
oin
ides with the graph G, the
omplement of G). Many
ases have been examineddepending on the
hoi
e of G. It has been studied when G is a labeled mole
ular graph [6℄, when Gis a
ir
ulant graph [27, 28℄, when G is a
omplete multipartite graph [25℄, when G is a
ubi

y
leand quadruple
y
le graph [26℄, when G is a quasi-threshold graph [20℄, and so on (see Berge [2℄ foran exposition of the main results; also see [8, 20, 21, 22, 23, 24, 25℄).The purpose of this paper is to study the problem of �nding the number of spanning trees inthe
lass of
omplement redu
ible graphs, or so-
alled
ographs, a well-known
lass of perfe
t graphs[4, 12℄. The
ographs were introdu
ed in the early 1970s by Ler
hs [16℄ and de�ned as the
lass ofgraphs formed from a single vertex under the
losure of the operations of union and
omplement. Morepre
isely, the
lass of
ographs is de�ned re
ursively as follows: (i) a single-vertex graph is a
ograph;(ii) the disjoint union of
ographs is a
ograph; (iii) the
omplement of a
ograph is a
ograph. Ler
hs[16℄ has also shown that the
lass of
ographs
oin
ides with the
lass of graphs whi
h
ontain noindu
ed subgraph isomorphi
 to a P4 (
hordless path on four verti
es), and that a
ograph G admitsa unique tree representation, up to isomorphism,
alled a
otree T
o(G).Traditionally, the problem of �nding the number of spanning trees of a graph is solved by meansof the
lassi
 Kir
hho� matrix tree theorem [3℄. This result expresses the number of spanning treesof a graph G in terms of the determinant of a
ofa
tor of the so-
alled Kir
hho� matrix that
an beeasily
onstru
ted from the adja
en
y relation (adja
en
y matrix, adja
en
y lists, et
) of the graph G;the Kir
hho� matrix tree theorem states that the number of spanning trees of a graph is equal to anyof the
ofa
tors of the Kir
hho� matrix. An alternative way for
omputing the number of spanningtrees of a graph,
an be a
hieved through the
al
ulation of the eigenvalues of the Kir
hho� matrix[15℄. We point out that both approa
hes
an be used for
omputing the number of spanning trees ofany graph G (see [2, 8, 11, 21, 25℄), but they ne
essitate �(n3) time and �(n2) spa
e, where n is thenumber of verti
es of the graph G.For some
lasses of graphs, su
h as threshold graphs, quasi-threshold graphs,
ographs,
ir
ulantgraphs, et
, there are ni
e
hara
terizations for the eigenvalues of their Kir
hho� matrix throughtheir
onstru
tive properties whi
h hold for these
lasses of graphs [13, 26, 27, 28℄. Thus, in these
ases, one has the advantage of asso
iating the number of spanning trees through known formulasfor the eigenvalues of their Kir
hho� matrix. On the other hand, for other
lasses of graphs it is
ommon to
ompute the
ofa
tor of the Kir
hho� matrix of a given graph G by using stru
turalproperties of G along with standard te
hniques from linear algebra and matrix theory; see for example[8, 11, 18, 20, 21, 22, 24, 25℄.Based on stru
tural properties of the
lass of
ographs, Hammer and Kelmans [13℄ proposed alinear-time algorithm for the number of spanning trees of a
ographG using the approa
h of
omputingthe eigenvalues of the Kir
hho� matrix of G. In parti
ular, the
omputation of the eigenvalues of theKir
hho� matrix is a
hieved by applying, re
ursively, a polynomial whi
h
orresponds to the operationsof union and
omplement of a
ograph.In this paper we propose a di�erent approa
h for solving the problem of �nding the number ofspanning trees of a
ograph G. We use tree
ontra
tion operations and show that the stated problem
an be eÆ
iently solved by su

essively applying these operations on the
otree T
o(G) of a
ographG. Our approa
h avoids to
ompute the determinant of a
ofa
tor of the Kir
hho� matrix or theeigenvalues des
ribed in a
ertain polynomial.In parti
ular, we present a linear-time algorithm for determining the number of spanning tree of a
ograph; for an input
ograph G on n verti
es and m edges our algorithm
onstru
ts �rst the
otreeT
o(G) of the graph G, and then
omputes the number of spanning trees of G in O(n +m) time andspa
e. The algorithm relies on tree
ontra
tion operations whi
h are applied in a systemati
 fashionfrom bottom to top in order to shrink the T
o(G) into a single node, while at the same time
ertainparameters are appropriately updated; sin
e the
otree of a graph
an be
onstru
ted in time andspa
e linear in the size of the graph [7℄, and ea
h tree
ontra
tion operation takes time linear in the2

size of the
ontra
ted part of the tree, the above
omputation takes time and spa
e linear in the sizeof G. The number of spanning trees of G is obtained as the produ
t of n� 1 numbers, where n is thenumber of verti
es of G; this takes O(n) time under the uniform
ost
riterion [1℄. The
orre
tnessof our algorithm is established by means of the Kir
hho� matrix tree theorem along with standardte
hniques from linear algebra and matrix theory.The algorithmi
 approa
h we use in this paper for solving the problem of �nding the number ofspanning trees of a
ograph allows us to design a simple and eÆ
ient algorithm: it does not make useof advan
ed data stru
tures, it is easy to implement and its
omplexity analysis and its
orre
tness arestraightforward. Moreover, our approa
h
an be extended to other
lasses of graphs and, thus, allowsus to beat the O(n2:376) time
omplexity for the problem of �nding their number of spanning trees.Indeed, in this paper we extend our results to a proper super
lass of
ographs, namely the P4-redu
iblegraphs, and show that the number of spanning trees of a P4-redu
ible graph G on n verti
es and medges
an be
omputed in O(n+m) time and spa
e.The paper is organized as follows. In Se
tion 2 we establish the notation and related terminologyand we present ba
kground results. In Se
tions 3 we propose a linear-time algorithm for determiningthe number of spanning trees of a
ograph, while in Se
tion 4 we extend our results to a propersuper
lass of
ographs, namely the P4-redu
ible graphs. Finally, Se
tion 5
on
ludes the paper andpresents possible future extensions.2 De�nitions and Ba
kground ResultsLet G be a graph with vertex set V (G) and edge set E(G). The subgraph of a graph G indu
edby a subset S of the vertex set V (G) is denoted by G[S℄. For a vertex subset S of G, we de�neG � S := G[V (G) � S℄; we denote G � v the graph G[V (G) � fvg℄. The neighborhood N(v) of avertex v 2 V (G) is the set of all the verti
es of G whi
h are adja
ent to v; the
losed neighborhood ofx is de�ned as N [v℄ := fvg [N(v).2.1 CographsAs mentioned above, Ler
hs proved that
ographs are the family of graphs
onstru
ted from a single-vertex under the
losure of the operations of union and
omplement. These operations uniquely de�nea tree representation referred to as a
otree. The
otree of a
ograph G, denoted T
o(G), is a rootedtree su
h that:(i) ea
h internal node, ex
ept possibly for the root, has at least two
hildren;(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the
hildren of a 1-node(0-node resp.) are 0-nodes (1-nodes resp.), i.e., 1-nodes and 0-nodes alternate along every pathfrom the root to any node of the
otree;(iii) the leaves of the
otree are in a 1-to-1
orresponden
e with the verti
es of G, and two verti
esvi; vj are adja
ent in G if and only if the least
ommon an
estor of the leaves
orresponding tovi and vj is a 1-node.Ler
hs' de�nition required that the root of a
otree be a 1-node; if however we relax this
ondition andallow the root to be a 0-node as well, then we obtain
otrees whose internal nodes all have at least two
hildren, and whose root is a 1-node if and only if the
orresponding
ograph is
onne
ted.Let G be a
onne
ted
ograph, and let T
o(G) be its
orresponding
otree. We de�ne the followingnode/vertex sets on the
otree T
o(G): 3

 v

(a) (b)

PSfrag repla
ements

uu uu u
v vvvvvvv

vv vv
v

11
1

22
2 3

33 4
44

5
55 66 770 11

1 00 0123ab Figure 1: (a) A
ograph on 7 verti
es and (b) the
orresponding
otree.Æ Li, whi
h is the set of nodes/verti
es on the ith level of T
o(G), andÆ
h(ui), whi
h is the set of
hildren on the node ui 2 T
o(G).The parent of a node/vertex w in T
o(G) is denoted by p(w). Figure 1 features a
otree T
o(G) with the
orresponding level sets. A set S of leaves of T
o(G), or, equivalently, a subset of verti
es S � V (G),is
alledÆ strong blo
k if all the verti
es in S have the same parent u in T
o(G), and
h(u) = S.Hereafter, we use p(S) to denote the parent of the verti
es of the strong blo
k S, and we
all it strongnode; note that, p(S) is a node in T
o(G). In Figure 1, the only strong blo
ks of T
o(G) are formed bynodes u1, u2 and by u3; nodes u1 and u2 are strong 1-nodes, while u3 is strong 0-node.Based on the stru
tural properties of a
ograph G and its
orresponding
otree T
o(G), it is easyto see that the following lemma holds:Lemma 2.1. A
ograph G
ontains at least one strong blo
k.2.2 Modular De
omposition TreeA subset M of verti
es of a graph G is said to be a module of G, if every vertex outside M is eitheradja
ent to all the verti
es in M or to none of them. The empty set, the singletons, and the vertexset V are trivial modules and whenever G has only trivial modules it is
alled a prime graph (orinde
omposable). A non-trivial module is also
alled a homogeneous set. Furthermore, a module M ofG is
alled strong, if for any module M 0 6=M of G, either M 0 \M = ; or M 0 �M .The modular de
omposition of a graph G is represented by a tree T (G) whi
h we
all the modularde
omposition tree of G; the leaves of T (G) are the verti
es of G, whereas ea
h internal node u
orresponds to a strong module, denoted M(u), whi
h is indu
ed by the set of verti
es/leaves of thesubtree rooted at u. Thus, T (G) represents all the strong modules of G. Ea
h internal node is labeledby either 0 (or P) for parallel module, 1 (or S) for series module, or 2 (or N) for neighborhood module.The module
orresponding to a 0-node indu
es a dis
onne
ted subgraph of G, that of a 1-node indu
esa
onne
ted subgraph of G whose
omplement is a dis
onne
ted subgraph and that of a 2-node indu
esa
onne
ted subgraph of G whose
omplement is also a
onne
ted subgraph.In parti
ular, let u be an internal node of the modular de
omposition tree T (G). If u has
hildrenu1; u2; : : : ; up, then we de�ne the representative graph G(u) of the moduleM(u) as follows: V (G(u)) =fu1; u2; : : : ; upg, and E(G(u)) = fuiuj j vivj 2 E(G); vi 2M(ui) and vj 2M(uj)g.4

Note that by the de�nition of a module, if a vertex of M(ui) is adja
ent to a vertex of M(uj) thenevery vertex of M(ui) is adja
ent to every vertex of M(uj). Thus G(u) is isomorphi
 to the graphindu
ed by a subset of M(u)
onsisting of a single vertex from ea
h maximal submodule of M(u) inT (G). Then: (i) if u is a 0-node, G(u) is an edgeless graph, (ii) if u is a 1-node, G(u) is a
ompletegraph, and (iii) if u is a 2-node, G(u) is a prime graph.The modular de
omposition tree T (G) of a graph G is
onstru
ted re
ursively as follows: parallelmodules are de
omposed into their
onne
ted
omponents, series modules into their
o-
onne
ted
omponents, and neighborhood modules into their strong submodules. The eÆ
ient
onstru
tion ofthe modular de
omposition tree of a graph has re
eived a great deal of attention. It is well known thatfor any graph G the tree T (G) is unique up to isomorphism and it
an be
onstru
ted in linear time[9, 17℄. Note that if the tree T (G) does not
ontain any internal 2-node then G is a
ograph and T (G)is its
otree, i.e., T (G) � T
o(G).2.3 Kir
hho� MatrixFor an n�n matrix A, the (n�1)-st order minor �ij is the determinant of the (n�1)� (n�1) matrixobtained from A after having deleted row i and
olumn j. The i-th
ofa
tor equals �ii. The Kir
hho�matrix K for a graph G on n verti
es is an n� n matrix with elementski;j =8>><>>:di if i = j;�1 if i 6= j and (i; j) 2 E;0 otherwise;where di is the degree of the vertex vi in the graph G. The Kirhho� matrix tree theorem is one ofthe most famous results in graph theory. It provides a formula for the number of spanning trees of agraph G, in terms of the
ofa
tors of its Kirhho� matrix.Theorem 2.1. (Kir
hho� Matrix Tree Theorem [3℄): For any graph G with K de�ned as above, the
ofa
tors of K have the same value, and this value equals the number of spanning trees of G.3 The Number of Spanning TreesLet G be a
ograph on n verti
es and m edges and let T
o(G) be its
otree. In order to
ompute thenumber of spanning trees of the graph G we use Theorem 2.1; that is, we delete an arbitrary vertex x ofthe set V (G) and all the edges in
ident on vertex x. Now the vertex set of the resulting
ograph G�xis of size n� 1.3.1 The AlgorithmWe set s(v) := dv for every vertex v 2 V (G)�fxg, where dv is the degree of the vertex v in the inputgraph G; we
all these labels of the verti
es their s-labels.The algorithm works by
ontra
ting in a systemati
 fashion the strong nodes of the
otree of thegraph G � x and by assigning to the leaf that is produ
ed the highest-index vertex of G whi
h is a
hild of the strong node (see Figure 2). The
ontra
tions are done by means of a fun
tion, namely,Update Repla
e(), whi
h also update the s-labels of the
hildren/verti
es of the strong node. We notethat the s-labels are assumed to be global variables in our algorithm.Let u be a strong node of T
o(G), and let
h(u) = fv1; v2; : : : ; vpg. The fun
tion Update Repla
eis applied to note u, and works as follows:Æ in
rease the s-labels s(v1); s(v2); : : : ; s(vp) by 1, in the
ase where u is a 1-node;5

Æ
ompute the parameter e(u) := pXi=1 1s(vi) ;Æ update the s-labels s(vp�1) and s(vp) of the verti
es vp�1 and vp, using the parameter e(u);Æ delete the verti
es v1; v2; : : : ; vp�1 from T
o(G), and repla
e the node u with the vertex vp.

(a) (b)

PSfrag repla
ements

uuu u
uu uu u

vvvv vvvvvv vv11 222
3 3

3
3

4
4

4
4

5
5

5
56 67 70 1

1
11

1 00000123ab Figure 2: (a) A
otree T
o(G) and (b) the result of fun
tion Update Repla
e(u1; T
o(G)).Figure 2 shows the appli
ation of the fun
tion Update Repla
e on node u1 2 T
o(G). First, it
omputesthe s-labels s(v1); s(v2); s(v3) and the parameter e(u1), then re
omputes the values s(v2); s(v3), and�nally deletes the verti
es v1 and v2, and repla
es the strong node u1 with the vertex v3. The formaldes
ription of the fun
tion Update Repla
e is given in Algorithm 1.Update Repla
e(u; T)1. Compute the vertex set
h(u) = fv1; v2; : : : ; vpg;2. if u is 1-node thenfor every vertex vi 2
h(u) do s(vi) := s(vi) + 1;3. Compute e(u) := pXi=1 1s(vi) ;4. Update the s-label s(vp�1) as follows:s(vp�1) := s(vp�1) � s(vp) � e(u);5. Update the s-label s(vp) as follows:if u is 0-node then s(vp) := 1e(u)else s(vp) := 1e(u) � 1;6. Delete verti
es v1; v2; : : : ; vp�1 from T , and repla
e node u with vertex vp;7. Return the resulting tree;Algorithm 1: Update Repla
e(u; T)
6

We next des
ribe our algorithm Number Spanning Trees whi
h
omputes the number of spanning treesof a
ographG; it works as follows: First it
omputes the degree di of ea
h vertex vi 2 V (G) and assignss(vi) := di, 1 � i � n. Then, it
omputes the graph G := G � vn, where vn 2 V (G), and
onstru
tsits
otree T
o(G); re
all that, vi is a leaf of T
o(G), 1 � i � n � 1. Next, it repeatedly applies thefun
tion Update Repla
e() to ea
h strong node u, and
omputes the s-labels s(v1); s(v2); : : : ; s(vn�1)of the verti
es of T
o(G). Finally, it
omputes the number of spanning trees �(G) :=Qn�1i=1 s(vi). Theformal des
ription of the above algorithm is given in Algorithm 2.Number Spanning TreesInput: A
ograph G on n verti
es v1; v2; : : : ; vn and m edges;Output: The number of spanning trees �(G) of the
ograph G;1. Compute the degree di for ea
h vertex vi 2 V (G);2. Set s(vi) := di, for 1 � i � n;3. Compute G := G� vn, where vn 2 V (G);4. Constru
t the
otree T := T
o(G) of the
ograph G;5. Compute the sets L0; L1; : : : ; Lh�1;6. for i = h� 1 down to 0 dofor every node u 2 Li do T := Update Repla
e(u; T);7. Compute �(G) := n�1Yi=1 s(vi);Algorithm 2: Number Spanning Trees3.2 Corre
tnessThe
orre
tness of the algorithm Number Spanning Trees is established thought the Kir
hho� matrixtree theorem (Theorem 2.1), whi
h implies that the number of spanning trees of a graph G is equal toany of the
ofa
tors of the Kir
hho� matrix.Let G be a
ograph on n verti
es and m edges and let T
o(G) be the
otree of G
onsisting of nverti
es (leaves) and k nodes (internal nodes). Let L0; L1; : : : ; Lh be the level sets of T
o(G) and letS = fv1; v2; : : : ; vpg be a strong blo
k; note that v1; v2; : : : ; vp 2 Lh. We form the Kirhho� matrix Kof the
ograph G, whi
h is an n� n matrix, and then we
ompute the n-th
ofa
tor of the matrix K.Re
all that the n-th
ofa
tor of K equals the (n�1)-st order minor �nn, that is, the determinant of the(n � 1)� (n � 1) matrix Knn obtained from K after deleting its n-th row and
olumn. Substitutingthe values s(vi) = di, 1 � i � n� 1, the matrix Knn be
omes
Knn = 2666666666664

s(v1) . . . (�1)jis(vp) s(vp+1) s(vp+2)(�1)ij . . . s(vn�1)
3777777777775 ; (1)

7

where, a

ording to the de�nition of the Kir
hho� matrix, s(vi) is equal to the degree of vertex vi inG and the entries (�1)ij and (�1)ji of the o�-diagonal positions (i; j) and (j; i) are both �1 if theverti
es vi and vj are adja
ent in G and are equal to 0 otherwise, 1 � i; j � n� 1.The matrix Knn
orresponds to a
ograph G on n�1 verti
es v1; v2; : : : ; vn�1, where ea
h vertex vihas an s-label s(vi) = di, 1 � i � n�1. The �rst p rows ofKnn
orrespond to the p verti
es v1; v2; : : : ; vpof the strong blo
k S; the next (n� 1)� p rows
orrespond to the verti
es vp+1; vp+2; : : : ; vn�1. Re
allthat, all the verti
es of the strong blo
k S have the same parent p(S) and, also, the same degree ingraph G.We next fo
us on the
omputation of the determinant of the matrix Knn, as it is known from theKir
hho� matrix tree theorem (see Theorem 2.1) that�(G) = det(Knn): (2)In order to
ompute the determinant det(Knn), we start by fo
using on the �rst p rows and p
olumnsof the matrix Knn and work as follows: We �rst multiply the p-th row of Knn by -1 and add it torows 1; 2; : : : ; p� 1. Then, in the �rst p� 1 rows of Knn, non-zero entries are found only in positions(i; i) and (i; p), 1 � i � p� 1, and have values s(vi) and �s(vp), respe
tively for the
ase where p(S)is a 0-node and have values s(vi)� 1 and �s(vp)� 1, respe
tively for the
ase where p(S) is a 1-node.Next, we fo
us on the non-zero positions (i; p) of Knn, 1 � i � p � 1, and do the following: if theparent p(S) of the strong blo
k S = fv1; v2; : : : ; vpg is a 1-node, then we multiply the
olumn j bys(vp)+1s(vj)+1 and add it to
olumn p; otherwise, we multiply the
olumn j by s(vp)s(vj) and add it to
olumnp, 1 � j � p� 1. Now, in the �rst p� 1 rows of Knn, only the diagonal positions (i; i) have non-zerovalues. Additionally, the p-th row remains un
hanged, ex
ept the entry in the position (p; p), and allthe non-zero elements in positions (i; p) of
olumn p, for i = p+ 1; p+ 2; : : : ; n� 1, whi
h were equalto �1 in the initial matrix Knn, now have the same valuek = � 1 + (s(vp) + a) � p�1Xi=1 1s(vi) + a! = � (s(vp) + a) � pXi=1 1s(vi) + a! ;where a = 1 if p(S) is a 1-node, and a = 0 otherwise. Finally, we multiply the
olumn p by � 1k andthe
olumn p� 1 by �k.It is important to note that the above operations do not
hange the value of the determinant ofmatrix Knn. Moreover, in the matrix that results after these operations, we have:(i) all the o�-diagonal elements in positions (i; j), 1 � i � p� 1 and 1 � j � n� 1, are equal to 0,(ii) the o�-diagonal elements in positions (i; j), p � i; j � n � 1, have their initial values, that is,the values in the initial matrix Knn, and(iii) the diagonal elements in positions (i; i), 1 � i � p, have values s0(vi) whi
h are equal to:s0(vi) = s(vi) + 1; 1 � i � p� 2s0(vp�1) = (s(vp�1) + 1) � ((s(vp) + 1) � e(u))s0(vp) = 1e(u) � 1if u is a 1-node, where e(u) =Ppi=1 1s(vi)+1 , ands0(vi) = s(vi); 1 � i � p� 2s0(vp�1) = s(vp�1) � s(vp) � e(u)s0(vp) = 1e(u) 8

if u is a 0-node, where e(u) =Ppi=1 1s(vi) .Thus, expanding in terms of the �rst p � 1 rows, we �nd that the determinant of the matrix Knnbe
omes
det(Knn) = p�1Yi=1 s0(vi)! � ������������ s

0(vp) s(vp+1) (�1)jis(vp+2)(�1)ij . . . s(vn�1)
������������= p�1Yi=1 s0(vi)! � det(K 0);where K 0 is an (n� p)� (n� p) matrix similar to the initial matrix Knn; in fa
t, it is identi
al to thesubmatrix of the initial matrix Knn de�ned by rows p; p+1; : : : ; n� 1 and
olumns p; p+1; : : : ; n� 1,with the only ex
eption that the value s0(vp) is di�erent from s(vp). We note that, the matrix K 0
orresponds to a
ograph G0 on n � p verti
es, and, thus, it
ontains at least one strong blo
k (seeLemma 2.1).Thus, if we assume (in an indu
tive fashion) that the determinant of the matrixK 0
an be expressedas the produ
t of appropriate values s00(vp); s00(vp+1); : : : ; s00(vn�1), then the determinant of the initialmatrixKnn is equal to the produ
t of these values multiplied by the produ
t of s0(v1); s0(v2); : : : ; s0(vp�1),just as the algorithm Spanning Trees Number does by using fun
tion Update Repla
e(). This estab-lishes the
orre
tness of our algorithm, and, thus, we
an state the following result.Lemma 3.1. The algorithm Number Spanning Trees
orre
tly
omputes the number of spanning treesof a
ograph G.3.3 Time and Spa
e ComplexityWe next
ompute the time and spa
e
omplexity of the algorithm Number Spanning Trees. We provethe following lemma.Lemma 3.2. The algorithm Number Spanning Trees runs in O(n +m) time, where n is the numberof verti
es and m the number of edges of the input
ograph.Proof. The
onstru
tion of a
otree T
o(G) of a
ograph G on n verti
es and m edges
an be im-plemented in O(n +m) time
omplexity [7℄. The
omputation of the level sets L1; L2; : : : ; Lh of the
otree T
o(G) in Step 5 of the algorithm Number Spanning Trees
an be performed in O(n) time, sin
ethe
otree T
o(G)
ontains O(n) nodes. Additionally, the fun
tion Update Repla
e is applied on ea
hof the nodes of the
otree T := T
o(G), and when it is applied on a node u, it
an be exe
uted inO(j
h(u)j) time, where j
h(u)j is the
ardinality of the set of
hildren of node u in T . Given that thenumber of the nodes of the tree T is O(n), Step 6 of the algorithm Number Spanning Trees requiresPu2T j
h(u)j time. Finally, Step 7 takes O(n) time under the uniform
ost
riterion, a

ording towhi
h ea
h instru
tion requires one unit of time and ea
h register requires one unit of spa
e, implyingthat, no matter how large the numbers are, an arithmeti
 operation involving k numbers takes O(k)time. Therefore, the algorithm Number Spanning Trees takes O(n+m) time.

9

Remark 3.1. The time
omplexity of our algorithm is measured a

ording to the uniform
ost
riterion. Under this
riterion ea
h instru
tion on our model requires one unit of time and ea
hregister requires one unit of spa
e. Despite the fa
t that the arithmeti
 operations involve arbitrarilylarge integers, we
ount ea
h operation as a single step. In our
ase, the uniform
ost is realisti
 ifa single
omputer word
an store an integer as large as nn�2, where n is the number of verti
es of agraph (the number of spanning trees of a graph G on n verti
es is at most nn�2; the
omplete graphKn has nn�2 spanning trees). Note however that if the quantity nn�2 is larger than what
an be storedin one
omputer word, then even the logarithmi

ost
riterion (this takes into a

ount the limitedsize of a real memory word whi
h is logarithmi
 in the number stored) is somewhat unrealisti
, sin
eit assumes that two integers i and j
an be multiplied in time O(log(i) + log(j)), whi
h is not knownto be possible (see [1℄). 2It is not diÆ
ult to see that the spa
e needed by the algorithm Number Spanning Trees is O(n+m).Re
all that, the
otree of a
ograph on n verti
es and m edges
an also be
onstru
ted in linear timeand spa
e [7℄. Thus, the results of this se
tion are summarized in the following theorem.Theorem 3.1. The number of spanning trees of a
ograph G on n verti
es and m edges
an be
omputed in O(n+m) time and spa
e.4 Extending the Approa
h to other Classes of GraphsIn this se
tion we extend our results to a proper super
lass of
ographs, namely the P4-redu
iblegraphs. The
lass of P4-redu
ible graphs was introdu
ed by Jamison and Olariu in [14℄ as an extensionof the
lass of
ographs, and de�ned as the
lass of graphs for whi
h no vertex belongs to more thanone indu
ed P4.A bull graph is a graph on �ve verti
es obtained by a P4 with an additional vertex whi
h is adja
entto the midpoints and non-adja
ent to the endpoints of the P4. The modular de
omposition tree ofP4-redu
ible graphs has a stru
tural property, whi
h is shown by the following result (Theorem 4.2 in[10℄):Theorem 4.1. (Giakoumakis and Vanherpe [10℄): Let G be a graph, T (G) its modular de
ompositiontree and u an internal 2-node of T (G). The graph G is a P4-redu
ible graph i� for every u of T (G),G(u) is either a P4, or a bull graph. Moreover, the verti
es of any P4 of the graph G(u) are leaf verti
esin T (G).The above theorem implies that we
an easily distinguish the endpoints and the midpoints of everyP4 of a P4-redu
ible graph G. Moreover, the two endpoints and the two midpoints of a P4 in G havethe same degrees, denoted by ds and dk, respe
tively.It is not diÆ
ult to see that modular de
omposition tree T (G) of a P4-redu
ible graph
ontainsat least one strong blo
k; a 0-node, 1-node or 2-node u is
alled strong if the set
h(u)
ontains onlyleaves in T (G).Let u be a strong 2-node that forms the strong blo
k S = fv1; v2; : : : ; vpg. Note that, the strong2-node u indu
es either a graph on four verti
es (i.e., a P4), or a graph on �ve verti
es (i.e., a bullgraph) in T (G); this is the graph G(u) (see Theorem 4.1). Let G(u) be a bull graph denoted byv1v2v3v4v5, and let Knn(2) be the (n�1)� (n�1) matrix obtained from K after deleting its n-th rowand
olumn. Substituting the values ds, dk and s(vi) = di, 5 � i � n� 1, the matrix Knn(2) be
omes
10

Knn(2) =
26666666666666664

ds �1�1 dk �1 �1�1 dk �1 �1 [�1℄j0i�1 ds�1 �1 s(v5) s(vp+1) (�1)jis(vp+2)[�1℄ij0 . . .(�1)ij s(vn�1)
37777777777777775,where, a

ording to the de�nition of the Kir
hho� matrix, the entries (�1)ij and (�1)ji of the o�-diagonal position (i � p; j � p) and (j � p; i � p) of the matrix Knn(2) are both �1 if the verti
es viand vj are adja
ent in G and 0 otherwise, p+ 1 � i; j � n� 1. The entries [�1℄ij0 and [�1℄j0i of theo�-diagonal positions (i; j) and (j; i) of the matrix Knn(2)
orrespond to 1 � 5 and 5 � 1 matri
es,respe
tively, with all their subelements having value �1, if verti
es vi and vj are adja
ent in G, and0 otherwise, p+ 1 � i � n� 1 and 1 � j � 5. Note that, if a vertex v 2 G(u) is adja
ent to anothervertex v0 2 G�G(u) then all the verti
es in G(u) are adja
ent to vertex v0, sin
e G(u) is a module inG. Next, we fo
us on the
omputation of the determinant of the matrix Knn(2). We start by fo
usingon its �rst and fourth rows and
olumns. We multiply the �rst and the fourth
olumns of the matrixKnn(2) by 1=ds and add them to the se
ond and to the third
olumns, respe
tively. Then, we multiplythe fourth row of the matrix Knn(2) by �1 and add it to the �rst row. Finally, we add the �rst
olumn of the matrix Knn(2) to the fourth
olumn. We point out that after applying these operationsto matrix Knn(2) only the diagonal position of the �rst row have non-zero entries.We now fo
us on the se
ond and third rows and
olumns of the matrix Knn(2). Here, we multiplyby �1 the third row of the matrix Knn and add it to the se
ond row. Then, we add the se
ond
olumnof the matrixKnn(2) to the third
olumn, and, thus, only the diagonal positions of the se
ond row havenon-zero entries with value dk + (ds � 1)=ds. Thus, the �rst and the se
ond rows have zero elementsin the o�-diagonal positions.We apply a similar te
hnique in order to make zero the elements in the o�-diagonal positions ofthe fourth and �fth rows of the matrix Knn(2). We �rst multiply the third row of matrix Knn(2)by �1 and add it to the fourth row. Then, we multiply the fourth
olumn of matrix by �, where� = (dk� (ds+1)=ds)=(ds+1), and add it to the third
olumn. We also multiply the fourth
olumn ofmatrix Knn(2) by ��0, where �0 = 1=(ds + 1) and add it to the �fth
olumn. Now, only the diagonalposition of the fourth row of matrix Knn(2) has non-zero entry.We
ontinue working in order to make zero the o�-diagonal elements of the �fth row of matrixKnn(2). To this end, we �rst multiply the third row of matrixKnn(2) by �1 and add it to the �fth row,and, then, we multiply the �fth
olumn of matrixKnn(2) by �00, where �00 = 2+(dk�(ds+1)=ds) ds=(ds+1)s(v5)+(ds=(ds+1)) ,and add it to the third
olumn. Thus, we obtain

det(Knn(2)) = 5Yi=1i6=3 s0(vi) � ������������ s
0(v3) s(vp+1) (�1)jis(vp+2)(�1)ij . . . s(vn�1)

������������= 5Yi=1i6=3 s2(vi) � det(Dnn(2));11

where Dnn(2) is a (n � p) � (n � p) matrix, and the s-labels s0(vi), 1 � i � 5, have values a

ordingto following equations:s0(v1) = ds (3)s0(v2) = dk + ds � 1ds (4)s0(v3) = ds
 � s(v5) � (dk � ds+1ds)� 2s(v5) + dsds+1 (5)s0(v4) =
 (6)s0(v5) = s(v5) + dsds + 1 (7)where
 = 2 � (ds + dk + 1)� (ds � 1) � 2 + dsds+1 � (dk � ds+1ds)s(v5) + dsds+1 : (8)Re
all that G(u) is a bull graph (or, equivalently, p = jBj = 5). Note that, if G(u) is a P4 (or,equivalently, p = jBj = 4) then Dnn(2) is a (n� p)� (n� p) matrix, and the s-labels s0(vi), 1 � i � 4,have values a

ording to following equations:s0(v1) = ds (9)s0(v2) = dk + ds � 1ds (10)s0(v3) = ds
 � (dk � ds + 1ds) (11)s0(v4) =
 (12)where
 = 2 � (ds + dk + 1): (13)In
on
lusion, matrixDnn(2)
an be obtained from matrixKnn(2) by setting value s0(v3) at position(3; 3) and by deleting the �rst, se
ond and fourth rows and
olumns of Knn(2), and also by deletingthe �fth row and
olumn of Knn(2) in the
ase where p = 5. Thus, the matri
es Dnn(2) and Knn(2)are of the same form, and Dnn(2) represents a tree T 0(G) on n� p verti
es.It follows that we
an des
ribe a fun
tion, similar to fun
tion Update Repla
e(u; T), in the
asewhere u is a 2-node and T is the modular de
omposition tree of a P4-redu
ible graph G. Su
h afun
tion relies basi
ally on the following:Æ if j
h(u)j = 5, then update the s-labels of the verti
es of
h(u) based on Eqs. (3{7);Æ if j
h(u)j = 4, then update the s-labels of the verti
es of
h(u) based on Eqs. (9{12);Æ make vertex v3
hild of node p(u) and delete the verti
es v1; v2; v4 and node u from the treeT (G); if j
h(u)j = 5 then also delete the vertex v5.Thus, sin
e T (G)
an be
onstru
ted in linear time in the size of the input graph G [9, 17℄ we
anextend our algorithm Number Spanning Trees to P4-redu
ible graphs; we
ontra
t a strong 2-node ofT (G) by applying the appropriate fun
tion Update Repla
e() des
ribed previously. Thus, the resultof this se
tion is summarized in the following theorem.Theorem 4.2. The number of spanning trees of a P4-redu
ible graph G on n verti
es and m edges
an be
omputed in O(n +m) time and spa
e. 12

5 Con
luding RemarksIn this paper we propose an approa
h for
omputing the number of spanning trees of a
ograph or aP4-redu
ible graph whi
h takes advantage of the stru
tural properties of the modular de
ompositiontrees of these graphs and yields linear-time algorithms for the problem.More general
lasses of
ographs and P4-redu
ible graphs, su
h as the
lasses of P4-sparse graphs,P4-lite graphs, P4-tidy graphs, tree-
ographs [4℄, also possess stru
tural and algorithmi
 properties oftheir modular de
omposition trees. Thus, it is reasonable to ask whether the same approa
h
an alsobe used for
omputing the number of spanning trees of these, and other,
lasses of graphs.It has been shown that a permutation graph G[�℄
an be transform into a dire
ted a
y
li
 graphand, then, into a rooted tree by exploiting the inversion relation on the elements of the permutation� [19℄; note that the permutation graphs are perfe
t and in fa
t form a proper super
lass of
ographs[4, 12℄. Based on these results, one
an work towards the investigation whether the
lass of permutationgraphs G[�℄ belongs to the family of graphs that have formulas or eÆ
ient algorithms regarding thenumber of their spanning trees. We pose it as an open problem.Referen
es[1℄ A.V. Aho, J.E. Hop
roft, and J.D. Ullman, The Design and Analysis of Computer Algorithms,Addison-Wesley, 1974.[2℄ C. Berge, Graphs and Hypergraphs, North-Holland, 1973.[3℄ N. Biggs, Algebrai
 Graph Theory, Cambridge University Press, London, 1974.[4℄ A. Brandst�adt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Dis-
rete Mathemati
s and Appli
ations, 1999.[5℄ B. Bollob�as, Graph Theory, An Introdu
tory Course, Springer-Verlag, New York, 1979.[6℄ T.J.N. Brown, R.B. Mallion, P. Pollak, and A. Roth, Some methods for
ounting the spanningtrees in labelled mole
ular graphs, examined in relation to
ertain fullereness, Dis
rete Appl. Math.67 (1996) 51{66.[7℄ D.G. Corneil, Y. Perl, and L.K. Stewart, A linear re
ognition algorithm for
ographs, SIAM J.Comput. 14 (1985) 926{984.[8℄ K.-L. Chung and W.-M. Yan, On the number of spanning trees of a multi-
omplete/star relatedgraph, Inform. Pro
ess. Lett. 76 (2000) 113{119.[9℄ E. Dalhaus, J. Gustedt and R.M. M
Connell, EÆ
ient and pra
ti
al algorithms for sequentialmodular de
omposition, J. Algorithms 41 (2001) 360{387.[10℄ V. Giakoumakis and J-M. Vanherpe, On extended P4-redu
ible and P4-sparse graphs, Theoreti
alComp. S
ien
e 180 (1997) 269{286.[11℄ B. Gilbert and W. Myrvold, Maximizing spanning trees in almost
omplete graphs, Networks 30(1997) 23{30.[12℄ M.C. Golumbi
, Algorithmi
 Graph Theory and Perfe
t Graphs, A
ademi
 Press, 1980.[13℄ P.L. Hammer and A.K. Kelmans, Lapla
ian spe
tra and spanning trees of threshold graphs, Dis-
rete Appl. Math. 65 (1996) 255{273. 13

[14℄ B. Jamison and S. Olariu, A linear-time re
ognition algorithm for P4-redu
ible graphs, Theoret.Comput. S
i. 145 (1995) 329{344.[15℄ A.K. Kelmans and V.M. Chelnokov, A
ertain polynomial of a graph and graphs with an extremalnumber of trees, J. Combin. Theory (B) 16 (1974) 197{214.[16℄ H. Ler
hs, On
liques and kernels, Department of Computer S
ien
e, University of Toronto, Mar
h1971.[17℄ R.M. M
Connell and J. Spinrad, Modular de
omposition and transitive orientation, Dis
reteMath. 201 (1999) 189{241.[18℄ W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do notalways exist, Networks 21 (1991) 417{419.[19℄ S.D. Nikolopoulos, Coloring permutation graphs in parallel, Dis
rete Appl. Math. 120 (2002)165{195.[20℄ S.D. Nikolopoulos and C. Papadopoulos, The number of spanning trees in Kn-
omplements ofquasi-threshold graphs, Graphs and Combinatori
s 20 (2004) 383{397.[21℄ S.D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star relatedgraphs, Inform. Pro
ess. Lett. 65 (1998) 183{188.[22℄ P.V. O'Neil, The number of trees in a
ertain network, Noti
es Amer. Math. So
. 10 (1963) 569.[23℄ L. Petingi and J. Rodriguez, A new te
hnique for the
hara
terization of graphs with a maximumnumber of spanning trees, Dis
rete Math. 244 (2002) 351{373.[24℄ L. Weinberg, Number of trees in a graph, Pro
. IRE. 46 (1958) 1954{1955.[25℄ W.-M. Yan, W. Myrvold, and K.-L. Chung, A formula for the number of spanning trees of amulti-star related graph, Inform. Pro
ess. Lett. 68 (1998) 295{298.[26℄ X. Yong, Talip, A
enjian, The numbers of spanning trees of the
ubi

y
le C3n and the quadruple
y
le C4n, Dis
rete Math. 169 (1997) 293{298.[27℄ Y. Zhang, X. Yong, and M.J. Golin, The number of spanning trees in
ir
ulant graphs, Dis
reteMath. 223 (2000) 337{350.[28℄ Y. Zhang, X. Yong, and M.J. Golin, Chebyshev polynomials and spanning tree formulas for
ir
ulant and related graphs, Dis
rete Math. 298 (2005) 334{364.

14

