
Counting Spanning Trees in Cographs: AnAlgorithmi ApproahStavros D. NikolopoulosDepartment of Computer Siene, University of IoanninaP.O.Box 1186, GR-45110 Ioannina, Greeestavros�s.uoi.grCharis PapadopoulosDepartment of Informatis, University of BergenN-5020 Bergen, Norwayharis�ii.uib.noAbstrat: In this paper we present a new simple linear-time algorithm for determiningthe number of spanning trees in the lass of omplement reduible graphs, also known asographs; for a ograph G on n verties and m edges, our algorithm omputes the numberof spanning trees of G in O(n + m) time and spae, where the omplexity of arithmetioperations is measured under the uniform ost riterion. The algorithm takes advantageof the otree of the input ograph G and works by ontrating it in a bottom-up fashionuntil it beomes a single node; then, the number of spanning trees of G is omputed as theprodut of a olletion of values whih are assoiated with the verties of G and are updatedduring the ontration proess. The orretness of our algorithm is established through theKirhho� matrix tree theorem, and also relies on strutural and algorithmi properties ofthe lass of ographs. We also extend our results to a proper superlass of ographs, namelythe P4-reduible graphs, and show that the problem of �nding the number of spanning treesof a P4-reduible graph has linear-time solution.Keywords: Cographs, P4-reduible graphs, number of spanning trees, modular deompo-sition, ombinatorial problems, algorithms, omplexity.1 IntrodutionWe onsider �nite undireted graphs with no loops or multiple edges. Let G be suh a graph on nverties. A spanning tree of G is a onneted ayli (n�1)-edge subgraph of the graph G. The numberof spanning trees of a graph (network) G, is an important, well-studied quantity in graph theory, andappears in a number of appliations. Most notable appliation �elds are network reliability (in anetwork modeled by a graph, interommuniation between all nodes of the network implies that thegraph must ontain a spanning tree; thus, maximizing the number of spanning trees is the key tomaximizing reliability) [18℄, omputing the total resistane along an edge in an eletrial network [5℄,and enumerating ertain hemial isomers [6℄.Thus, both for theoretial and pratial purposes, we are interested in deriving formulas for oromputing the number of spanning trees of a graph G, and also of the Kn-omplement of the graphG; if G is a subgraph of the omplete graph Kn, then the Kn-omplement of G, denoted by Kn�G, isde�ned to be the graph obtained from Kn by removing the edges of G (note that, if G has n verties,1



then Kn � G oinides with the graph G, the omplement of G). Many ases have been examineddepending on the hoie of G. It has been studied when G is a labeled moleular graph [6℄, when Gis a irulant graph [27, 28℄, when G is a omplete multipartite graph [25℄, when G is a ubi yleand quadruple yle graph [26℄, when G is a quasi-threshold graph [20℄, and so on (see Berge [2℄ foran exposition of the main results; also see [8, 20, 21, 22, 23, 24, 25℄).The purpose of this paper is to study the problem of �nding the number of spanning trees inthe lass of omplement reduible graphs, or so-alled ographs, a well-known lass of perfet graphs[4, 12℄. The ographs were introdued in the early 1970s by Lerhs [16℄ and de�ned as the lass ofgraphs formed from a single vertex under the losure of the operations of union and omplement. Morepreisely, the lass of ographs is de�ned reursively as follows: (i) a single-vertex graph is a ograph;(ii) the disjoint union of ographs is a ograph; (iii) the omplement of a ograph is a ograph. Lerhs[16℄ has also shown that the lass of ographs oinides with the lass of graphs whih ontain noindued subgraph isomorphi to a P4 (hordless path on four verties), and that a ograph G admitsa unique tree representation, up to isomorphism, alled a otree To(G).Traditionally, the problem of �nding the number of spanning trees of a graph is solved by meansof the lassi Kirhho� matrix tree theorem [3℄. This result expresses the number of spanning treesof a graph G in terms of the determinant of a ofator of the so-alled Kirhho� matrix that an beeasily onstruted from the adjaeny relation (adjaeny matrix, adjaeny lists, et) of the graph G;the Kirhho� matrix tree theorem states that the number of spanning trees of a graph is equal to anyof the ofators of the Kirhho� matrix. An alternative way for omputing the number of spanningtrees of a graph, an be ahieved through the alulation of the eigenvalues of the Kirhho� matrix[15℄. We point out that both approahes an be used for omputing the number of spanning trees ofany graph G (see [2, 8, 11, 21, 25℄), but they neessitate �(n3) time and �(n2) spae, where n is thenumber of verties of the graph G.For some lasses of graphs, suh as threshold graphs, quasi-threshold graphs, ographs, irulantgraphs, et, there are nie haraterizations for the eigenvalues of their Kirhho� matrix throughtheir onstrutive properties whih hold for these lasses of graphs [13, 26, 27, 28℄. Thus, in theseases, one has the advantage of assoiating the number of spanning trees through known formulasfor the eigenvalues of their Kirhho� matrix. On the other hand, for other lasses of graphs it isommon to ompute the ofator of the Kirhho� matrix of a given graph G by using struturalproperties of G along with standard tehniques from linear algebra and matrix theory; see for example[8, 11, 18, 20, 21, 22, 24, 25℄.Based on strutural properties of the lass of ographs, Hammer and Kelmans [13℄ proposed alinear-time algorithm for the number of spanning trees of a ographG using the approah of omputingthe eigenvalues of the Kirhho� matrix of G. In partiular, the omputation of the eigenvalues of theKirhho� matrix is ahieved by applying, reursively, a polynomial whih orresponds to the operationsof union and omplement of a ograph.In this paper we propose a di�erent approah for solving the problem of �nding the number ofspanning trees of a ograph G. We use tree ontration operations and show that the stated probleman be eÆiently solved by suessively applying these operations on the otree To(G) of a ographG. Our approah avoids to ompute the determinant of a ofator of the Kirhho� matrix or theeigenvalues desribed in a ertain polynomial.In partiular, we present a linear-time algorithm for determining the number of spanning tree of aograph; for an input ograph G on n verties and m edges our algorithm onstruts �rst the otreeTo(G) of the graph G, and then omputes the number of spanning trees of G in O(n +m) time andspae. The algorithm relies on tree ontration operations whih are applied in a systemati fashionfrom bottom to top in order to shrink the To(G) into a single node, while at the same time ertainparameters are appropriately updated; sine the otree of a graph an be onstruted in time andspae linear in the size of the graph [7℄, and eah tree ontration operation takes time linear in the2



size of the ontrated part of the tree, the above omputation takes time and spae linear in the sizeof G. The number of spanning trees of G is obtained as the produt of n� 1 numbers, where n is thenumber of verties of G; this takes O(n) time under the uniform ost riterion [1℄. The orretnessof our algorithm is established by means of the Kirhho� matrix tree theorem along with standardtehniques from linear algebra and matrix theory.The algorithmi approah we use in this paper for solving the problem of �nding the number ofspanning trees of a ograph allows us to design a simple and eÆient algorithm: it does not make useof advaned data strutures, it is easy to implement and its omplexity analysis and its orretness arestraightforward. Moreover, our approah an be extended to other lasses of graphs and, thus, allowsus to beat the O(n2:376) time omplexity for the problem of �nding their number of spanning trees.Indeed, in this paper we extend our results to a proper superlass of ographs, namely the P4-reduiblegraphs, and show that the number of spanning trees of a P4-reduible graph G on n verties and medges an be omputed in O(n+m) time and spae.The paper is organized as follows. In Setion 2 we establish the notation and related terminologyand we present bakground results. In Setions 3 we propose a linear-time algorithm for determiningthe number of spanning trees of a ograph, while in Setion 4 we extend our results to a propersuperlass of ographs, namely the P4-reduible graphs. Finally, Setion 5 onludes the paper andpresents possible future extensions.2 De�nitions and Bakground ResultsLet G be a graph with vertex set V (G) and edge set E(G). The subgraph of a graph G induedby a subset S of the vertex set V (G) is denoted by G[S℄. For a vertex subset S of G, we de�neG � S := G[V (G) � S℄; we denote G � v the graph G[V (G) � fvg℄. The neighborhood N(v) of avertex v 2 V (G) is the set of all the verties of G whih are adjaent to v; the losed neighborhood ofx is de�ned as N [v℄ := fvg [N(v).2.1 CographsAs mentioned above, Lerhs proved that ographs are the family of graphs onstruted from a single-vertex under the losure of the operations of union and omplement. These operations uniquely de�nea tree representation referred to as a otree. The otree of a ograph G, denoted To(G), is a rootedtree suh that:(i) eah internal node, exept possibly for the root, has at least two hildren;(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the hildren of a 1-node(0-node resp.) are 0-nodes (1-nodes resp.), i.e., 1-nodes and 0-nodes alternate along every pathfrom the root to any node of the otree;(iii) the leaves of the otree are in a 1-to-1 orrespondene with the verties of G, and two vertiesvi; vj are adjaent in G if and only if the least ommon anestor of the leaves orresponding tovi and vj is a 1-node.Lerhs' de�nition required that the root of a otree be a 1-node; if however we relax this ondition andallow the root to be a 0-node as well, then we obtain otrees whose internal nodes all have at least twohildren, and whose root is a 1-node if and only if the orresponding ograph is onneted.Let G be a onneted ograph, and let To(G) be its orresponding otree. We de�ne the followingnode/vertex sets on the otree To(G): 3
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1 00 0123ab Figure 1: (a) A ograph on 7 verties and (b) the orresponding otree.Æ Li, whih is the set of nodes/verties on the ith level of To(G), andÆ h(ui), whih is the set of hildren on the node ui 2 To(G).The parent of a node/vertex w in To(G) is denoted by p(w). Figure 1 features a otree To(G) with theorresponding level sets. A set S of leaves of To(G), or, equivalently, a subset of verties S � V (G),is alledÆ strong blok if all the verties in S have the same parent u in To(G), and h(u) = S.Hereafter, we use p(S) to denote the parent of the verties of the strong blok S, and we all it strongnode; note that, p(S) is a node in To(G). In Figure 1, the only strong bloks of To(G) are formed bynodes u1, u2 and by u3; nodes u1 and u2 are strong 1-nodes, while u3 is strong 0-node.Based on the strutural properties of a ograph G and its orresponding otree To(G), it is easyto see that the following lemma holds:Lemma 2.1. A ograph G ontains at least one strong blok.2.2 Modular Deomposition TreeA subset M of verties of a graph G is said to be a module of G, if every vertex outside M is eitheradjaent to all the verties in M or to none of them. The empty set, the singletons, and the vertexset V are trivial modules and whenever G has only trivial modules it is alled a prime graph (orindeomposable). A non-trivial module is also alled a homogeneous set. Furthermore, a module M ofG is alled strong, if for any module M 0 6=M of G, either M 0 \M = ; or M 0 �M .The modular deomposition of a graph G is represented by a tree T (G) whih we all the modulardeomposition tree of G; the leaves of T (G) are the verties of G, whereas eah internal node uorresponds to a strong module, denoted M(u), whih is indued by the set of verties/leaves of thesubtree rooted at u. Thus, T (G) represents all the strong modules of G. Eah internal node is labeledby either 0 (or P ) for parallel module, 1 (or S) for series module, or 2 (or N) for neighborhood module.The module orresponding to a 0-node indues a disonneted subgraph of G, that of a 1-node induesa onneted subgraph of G whose omplement is a disonneted subgraph and that of a 2-node induesa onneted subgraph of G whose omplement is also a onneted subgraph.In partiular, let u be an internal node of the modular deomposition tree T (G). If u has hildrenu1; u2; : : : ; up, then we de�ne the representative graph G(u) of the moduleM(u) as follows: V (G(u)) =fu1; u2; : : : ; upg, and E(G(u)) = fuiuj j vivj 2 E(G); vi 2M(ui) and vj 2M(uj)g.4



Note that by the de�nition of a module, if a vertex of M(ui) is adjaent to a vertex of M(uj) thenevery vertex of M(ui) is adjaent to every vertex of M(uj). Thus G(u) is isomorphi to the graphindued by a subset of M(u) onsisting of a single vertex from eah maximal submodule of M(u) inT (G). Then: (i) if u is a 0-node, G(u) is an edgeless graph, (ii) if u is a 1-node, G(u) is a ompletegraph, and (iii) if u is a 2-node, G(u) is a prime graph.The modular deomposition tree T (G) of a graph G is onstruted reursively as follows: parallelmodules are deomposed into their onneted omponents, series modules into their o-onnetedomponents, and neighborhood modules into their strong submodules. The eÆient onstrution ofthe modular deomposition tree of a graph has reeived a great deal of attention. It is well known thatfor any graph G the tree T (G) is unique up to isomorphism and it an be onstruted in linear time[9, 17℄. Note that if the tree T (G) does not ontain any internal 2-node then G is a ograph and T (G)is its otree, i.e., T (G) � To(G).2.3 Kirhho� MatrixFor an n�n matrix A, the (n�1)-st order minor �ij is the determinant of the (n�1)� (n�1) matrixobtained from A after having deleted row i and olumn j. The i-th ofator equals �ii. The Kirhho�matrix K for a graph G on n verties is an n� n matrix with elementski;j =8>><>>:di if i = j;�1 if i 6= j and (i; j) 2 E;0 otherwise;where di is the degree of the vertex vi in the graph G. The Kirhho� matrix tree theorem is one ofthe most famous results in graph theory. It provides a formula for the number of spanning trees of agraph G, in terms of the ofators of its Kirhho� matrix.Theorem 2.1. (Kirhho� Matrix Tree Theorem [3℄): For any graph G with K de�ned as above, theofators of K have the same value, and this value equals the number of spanning trees of G.3 The Number of Spanning TreesLet G be a ograph on n verties and m edges and let To(G) be its otree. In order to ompute thenumber of spanning trees of the graph G we use Theorem 2.1; that is, we delete an arbitrary vertex x ofthe set V (G) and all the edges inident on vertex x. Now the vertex set of the resulting ograph G�xis of size n� 1.3.1 The AlgorithmWe set s(v) := dv for every vertex v 2 V (G)�fxg, where dv is the degree of the vertex v in the inputgraph G; we all these labels of the verties their s-labels.The algorithm works by ontrating in a systemati fashion the strong nodes of the otree of thegraph G � x and by assigning to the leaf that is produed the highest-index vertex of G whih is ahild of the strong node (see Figure 2). The ontrations are done by means of a funtion, namely,Update Replae( ), whih also update the s-labels of the hildren/verties of the strong node. We notethat the s-labels are assumed to be global variables in our algorithm.Let u be a strong node of To(G), and let h(u) = fv1; v2; : : : ; vpg. The funtion Update Replaeis applied to note u, and works as follows:Æ inrease the s-labels s(v1); s(v2); : : : ; s(vp) by 1, in the ase where u is a 1-node;5



Æ ompute the parameter e(u) := pXi=1 1s(vi) ;Æ update the s-labels s(vp�1) and s(vp) of the verties vp�1 and vp, using the parameter e(u);Æ delete the verties v1; v2; : : : ; vp�1 from To(G), and replae the node u with the vertex vp.
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1 00000123ab Figure 2: (a) A otree To(G) and (b) the result of funtion Update Replae(u1; To(G)).Figure 2 shows the appliation of the funtion Update Replae on node u1 2 To(G). First, it omputesthe s-labels s(v1); s(v2); s(v3) and the parameter e(u1), then reomputes the values s(v2); s(v3), and�nally deletes the verties v1 and v2, and replaes the strong node u1 with the vertex v3. The formaldesription of the funtion Update Replae is given in Algorithm 1.Update Replae(u; T )1. Compute the vertex set h(u) = fv1; v2; : : : ; vpg;2. if u is 1-node thenfor every vertex vi 2 h(u) do s(vi) := s(vi) + 1;3. Compute e(u) := pXi=1 1s(vi) ;4. Update the s-label s(vp�1) as follows:s(vp�1) := s(vp�1) � s(vp) � e(u);5. Update the s-label s(vp) as follows:if u is 0-node then s(vp) := 1e(u)else s(vp) := 1e(u) � 1;6. Delete verties v1; v2; : : : ; vp�1 from T , and replae node u with vertex vp;7. Return the resulting tree;Algorithm 1: Update Replae(u; T )
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We next desribe our algorithm Number Spanning Trees whih omputes the number of spanning treesof a ographG; it works as follows: First it omputes the degree di of eah vertex vi 2 V (G) and assignss(vi) := di, 1 � i � n. Then, it omputes the graph G := G � vn, where vn 2 V (G), and onstrutsits otree To(G); reall that, vi is a leaf of To(G), 1 � i � n � 1. Next, it repeatedly applies thefuntion Update Replae( ) to eah strong node u, and omputes the s-labels s(v1); s(v2); : : : ; s(vn�1)of the verties of To(G). Finally, it omputes the number of spanning trees �(G) :=Qn�1i=1 s(vi). Theformal desription of the above algorithm is given in Algorithm 2.Number Spanning TreesInput: A ograph G on n verties v1; v2; : : : ; vn and m edges;Output: The number of spanning trees �(G) of the ograph G;1. Compute the degree di for eah vertex vi 2 V (G);2. Set s(vi) := di, for 1 � i � n;3. Compute G := G� vn, where vn 2 V (G);4. Construt the otree T := To(G) of the ograph G;5. Compute the sets L0; L1; : : : ; Lh�1;6. for i = h� 1 down to 0 dofor every node u 2 Li do T := Update Replae(u; T );7. Compute �(G) := n�1Yi=1 s(vi);Algorithm 2: Number Spanning Trees3.2 CorretnessThe orretness of the algorithm Number Spanning Trees is established thought the Kirhho� matrixtree theorem (Theorem 2.1), whih implies that the number of spanning trees of a graph G is equal toany of the ofators of the Kirhho� matrix.Let G be a ograph on n verties and m edges and let To(G) be the otree of G onsisting of nverties (leaves) and k nodes (internal nodes). Let L0; L1; : : : ; Lh be the level sets of To(G) and letS = fv1; v2; : : : ; vpg be a strong blok; note that v1; v2; : : : ; vp 2 Lh. We form the Kirhho� matrix Kof the ograph G, whih is an n� n matrix, and then we ompute the n-th ofator of the matrix K.Reall that the n-th ofator of K equals the (n�1)-st order minor �nn, that is, the determinant of the(n � 1)� (n � 1) matrix Knn obtained from K after deleting its n-th row and olumn. Substitutingthe values s(vi) = di, 1 � i � n� 1, the matrix Knn beomes
Knn = 2666666666664

s(v1) . . . (�1)jis(vp) s(vp+1) s(vp+2)(�1)ij . . . s(vn�1)
3777777777775 ; (1)

7



where, aording to the de�nition of the Kirhho� matrix, s(vi) is equal to the degree of vertex vi inG and the entries (�1)ij and (�1)ji of the o�-diagonal positions (i; j) and (j; i) are both �1 if theverties vi and vj are adjaent in G and are equal to 0 otherwise, 1 � i; j � n� 1.The matrix Knn orresponds to a ograph G on n�1 verties v1; v2; : : : ; vn�1, where eah vertex vihas an s-label s(vi) = di, 1 � i � n�1. The �rst p rows ofKnn orrespond to the p verties v1; v2; : : : ; vpof the strong blok S; the next (n� 1)� p rows orrespond to the verties vp+1; vp+2; : : : ; vn�1. Reallthat, all the verties of the strong blok S have the same parent p(S) and, also, the same degree ingraph G.We next fous on the omputation of the determinant of the matrix Knn, as it is known from theKirhho� matrix tree theorem (see Theorem 2.1) that�(G) = det(Knn): (2)In order to ompute the determinant det(Knn), we start by fousing on the �rst p rows and p olumnsof the matrix Knn and work as follows: We �rst multiply the p-th row of Knn by -1 and add it torows 1; 2; : : : ; p� 1. Then, in the �rst p� 1 rows of Knn, non-zero entries are found only in positions(i; i) and (i; p), 1 � i � p� 1, and have values s(vi) and �s(vp), respetively for the ase where p(S)is a 0-node and have values s(vi)� 1 and �s(vp)� 1, respetively for the ase where p(S) is a 1-node.Next, we fous on the non-zero positions (i; p) of Knn, 1 � i � p � 1, and do the following: if theparent p(S) of the strong blok S = fv1; v2; : : : ; vpg is a 1-node, then we multiply the olumn j bys(vp)+1s(vj)+1 and add it to olumn p; otherwise, we multiply the olumn j by s(vp)s(vj) and add it to olumnp, 1 � j � p� 1. Now, in the �rst p� 1 rows of Knn, only the diagonal positions (i; i) have non-zerovalues. Additionally, the p-th row remains unhanged, exept the entry in the position (p; p), and allthe non-zero elements in positions (i; p) of olumn p, for i = p+ 1; p+ 2; : : : ; n� 1, whih were equalto �1 in the initial matrix Knn, now have the same valuek = � 1 + (s(vp) + a) � p�1Xi=1 1s(vi) + a! = � (s(vp) + a) � pXi=1 1s(vi) + a! ;where a = 1 if p(S) is a 1-node, and a = 0 otherwise. Finally, we multiply the olumn p by � 1k andthe olumn p� 1 by �k.It is important to note that the above operations do not hange the value of the determinant ofmatrix Knn. Moreover, in the matrix that results after these operations, we have:(i) all the o�-diagonal elements in positions (i; j), 1 � i � p� 1 and 1 � j � n� 1, are equal to 0,(ii) the o�-diagonal elements in positions (i; j), p � i; j � n � 1, have their initial values, that is,the values in the initial matrix Knn, and(iii) the diagonal elements in positions (i; i), 1 � i � p, have values s0(vi) whih are equal to:s0(vi) = s(vi) + 1; 1 � i � p� 2s0(vp�1) = (s(vp�1) + 1) � ((s(vp) + 1) � e(u))s0(vp) = 1e(u) � 1if u is a 1-node, where e(u) =Ppi=1 1s(vi)+1 , ands0(vi) = s(vi); 1 � i � p� 2s0(vp�1) = s(vp�1) � s(vp) � e(u)s0(vp) = 1e(u) 8



if u is a 0-node, where e(u) =Ppi=1 1s(vi) .Thus, expanding in terms of the �rst p � 1 rows, we �nd that the determinant of the matrix Knnbeomes
det(Knn) =  p�1Yi=1 s0(vi)! � ������������ s

0(vp) s(vp+1) (�1)jis(vp+2)(�1)ij . . . s(vn�1)
������������=  p�1Yi=1 s0(vi)! � det(K 0);where K 0 is an (n� p)� (n� p) matrix similar to the initial matrix Knn; in fat, it is idential to thesubmatrix of the initial matrix Knn de�ned by rows p; p+1; : : : ; n� 1 and olumns p; p+1; : : : ; n� 1,with the only exeption that the value s0(vp) is di�erent from s(vp). We note that, the matrix K 0orresponds to a ograph G0 on n � p verties, and, thus, it ontains at least one strong blok (seeLemma 2.1).Thus, if we assume (in an indutive fashion) that the determinant of the matrixK 0 an be expressedas the produt of appropriate values s00(vp); s00(vp+1); : : : ; s00(vn�1), then the determinant of the initialmatrixKnn is equal to the produt of these values multiplied by the produt of s0(v1); s0(v2); : : : ; s0(vp�1),just as the algorithm Spanning Trees Number does by using funtion Update Replae( ). This estab-lishes the orretness of our algorithm, and, thus, we an state the following result.Lemma 3.1. The algorithm Number Spanning Trees orretly omputes the number of spanning treesof a ograph G.3.3 Time and Spae ComplexityWe next ompute the time and spae omplexity of the algorithm Number Spanning Trees. We provethe following lemma.Lemma 3.2. The algorithm Number Spanning Trees runs in O(n +m) time, where n is the numberof verties and m the number of edges of the input ograph.Proof. The onstrution of a otree To(G) of a ograph G on n verties and m edges an be im-plemented in O(n +m) time omplexity [7℄. The omputation of the level sets L1; L2; : : : ; Lh of theotree To(G) in Step 5 of the algorithm Number Spanning Trees an be performed in O(n) time, sinethe otree To(G) ontains O(n) nodes. Additionally, the funtion Update Replae is applied on eahof the nodes of the otree T := To(G), and when it is applied on a node u, it an be exeuted inO(jh(u)j) time, where jh(u)j is the ardinality of the set of hildren of node u in T . Given that thenumber of the nodes of the tree T is O(n), Step 6 of the algorithm Number Spanning Trees requiresPu2T jh(u)j time. Finally, Step 7 takes O(n) time under the uniform ost riterion, aording towhih eah instrution requires one unit of time and eah register requires one unit of spae, implyingthat, no matter how large the numbers are, an arithmeti operation involving k numbers takes O(k)time. Therefore, the algorithm Number Spanning Trees takes O(n+m) time.
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Remark 3.1. The time omplexity of our algorithm is measured aording to the uniform ostriterion. Under this riterion eah instrution on our model requires one unit of time and eahregister requires one unit of spae. Despite the fat that the arithmeti operations involve arbitrarilylarge integers, we ount eah operation as a single step. In our ase, the uniform ost is realisti ifa single omputer word an store an integer as large as nn�2, where n is the number of verties of agraph (the number of spanning trees of a graph G on n verties is at most nn�2; the omplete graphKn has nn�2 spanning trees). Note however that if the quantity nn�2 is larger than what an be storedin one omputer word, then even the logarithmi ost riterion (this takes into aount the limitedsize of a real memory word whih is logarithmi in the number stored) is somewhat unrealisti, sineit assumes that two integers i and j an be multiplied in time O(log(i) + log(j)), whih is not knownto be possible (see [1℄). 2It is not diÆult to see that the spae needed by the algorithm Number Spanning Trees is O(n+m).Reall that, the otree of a ograph on n verties and m edges an also be onstruted in linear timeand spae [7℄. Thus, the results of this setion are summarized in the following theorem.Theorem 3.1. The number of spanning trees of a ograph G on n verties and m edges an beomputed in O(n+m) time and spae.4 Extending the Approah to other Classes of GraphsIn this setion we extend our results to a proper superlass of ographs, namely the P4-reduiblegraphs. The lass of P4-reduible graphs was introdued by Jamison and Olariu in [14℄ as an extensionof the lass of ographs, and de�ned as the lass of graphs for whih no vertex belongs to more thanone indued P4.A bull graph is a graph on �ve verties obtained by a P4 with an additional vertex whih is adjaentto the midpoints and non-adjaent to the endpoints of the P4. The modular deomposition tree ofP4-reduible graphs has a strutural property, whih is shown by the following result (Theorem 4.2 in[10℄):Theorem 4.1. (Giakoumakis and Vanherpe [10℄): Let G be a graph, T (G) its modular deompositiontree and u an internal 2-node of T (G). The graph G is a P4-reduible graph i� for every u of T (G),G(u) is either a P4, or a bull graph. Moreover, the verties of any P4 of the graph G(u) are leaf vertiesin T (G).The above theorem implies that we an easily distinguish the endpoints and the midpoints of everyP4 of a P4-reduible graph G. Moreover, the two endpoints and the two midpoints of a P4 in G havethe same degrees, denoted by ds and dk, respetively.It is not diÆult to see that modular deomposition tree T (G) of a P4-reduible graph ontainsat least one strong blok; a 0-node, 1-node or 2-node u is alled strong if the set h(u) ontains onlyleaves in T (G).Let u be a strong 2-node that forms the strong blok S = fv1; v2; : : : ; vpg. Note that, the strong2-node u indues either a graph on four verties (i.e., a P4), or a graph on �ve verties (i.e., a bullgraph) in T (G); this is the graph G(u) (see Theorem 4.1). Let G(u) be a bull graph denoted byv1v2v3v4v5, and let Knn(2) be the (n�1)� (n�1) matrix obtained from K after deleting its n-th rowand olumn. Substituting the values ds, dk and s(vi) = di, 5 � i � n� 1, the matrix Knn(2) beomes
10



Knn(2) =
26666666666666664

ds �1�1 dk �1 �1�1 dk �1 �1 [�1℄j0i�1 ds�1 �1 s(v5) s(vp+1) (�1)jis(vp+2)[�1℄ij0 . . .(�1)ij s(vn�1)
37777777777777775,where, aording to the de�nition of the Kirhho� matrix, the entries (�1)ij and (�1)ji of the o�-diagonal position (i � p; j � p) and (j � p; i � p) of the matrix Knn(2) are both �1 if the verties viand vj are adjaent in G and 0 otherwise, p+ 1 � i; j � n� 1. The entries [�1℄ij0 and [�1℄j0i of theo�-diagonal positions (i; j) and (j; i) of the matrix Knn(2) orrespond to 1 � 5 and 5 � 1 matries,respetively, with all their subelements having value �1, if verties vi and vj are adjaent in G, and0 otherwise, p+ 1 � i � n� 1 and 1 � j � 5. Note that, if a vertex v 2 G(u) is adjaent to anothervertex v0 2 G�G(u) then all the verties in G(u) are adjaent to vertex v0, sine G(u) is a module inG. Next, we fous on the omputation of the determinant of the matrix Knn(2). We start by fousingon its �rst and fourth rows and olumns. We multiply the �rst and the fourth olumns of the matrixKnn(2) by 1=ds and add them to the seond and to the third olumns, respetively. Then, we multiplythe fourth row of the matrix Knn(2) by �1 and add it to the �rst row. Finally, we add the �rstolumn of the matrix Knn(2) to the fourth olumn. We point out that after applying these operationsto matrix Knn(2) only the diagonal position of the �rst row have non-zero entries.We now fous on the seond and third rows and olumns of the matrix Knn(2). Here, we multiplyby �1 the third row of the matrix Knn and add it to the seond row. Then, we add the seond olumnof the matrixKnn(2) to the third olumn, and, thus, only the diagonal positions of the seond row havenon-zero entries with value dk + (ds � 1)=ds. Thus, the �rst and the seond rows have zero elementsin the o�-diagonal positions.We apply a similar tehnique in order to make zero the elements in the o�-diagonal positions ofthe fourth and �fth rows of the matrix Knn(2). We �rst multiply the third row of matrix Knn(2)by �1 and add it to the fourth row. Then, we multiply the fourth olumn of matrix by �, where� = (dk� (ds+1)=ds)=(ds+1), and add it to the third olumn. We also multiply the fourth olumn ofmatrix Knn(2) by ��0, where �0 = 1=(ds + 1) and add it to the �fth olumn. Now, only the diagonalposition of the fourth row of matrix Knn(2) has non-zero entry.We ontinue working in order to make zero the o�-diagonal elements of the �fth row of matrixKnn(2). To this end, we �rst multiply the third row of matrixKnn(2) by �1 and add it to the �fth row,and, then, we multiply the �fth olumn of matrixKnn(2) by �00, where �00 = 2+(dk�(ds+1)=ds) ds=(ds+1)s(v5)+(ds=(ds+1)) ,and add it to the third olumn. Thus, we obtain

det(Knn(2)) = 5Yi=1i6=3 s0(vi) � ������������ s
0(v3) s(vp+1) (�1)jis(vp+2)(�1)ij . . . s(vn�1)

������������= 5Yi=1i6=3 s2(vi) � det(Dnn(2));11



where Dnn(2) is a (n � p) � (n � p) matrix, and the s-labels s0(vi), 1 � i � 5, have values aordingto following equations:s0(v1) = ds (3)s0(v2) = dk + ds � 1ds (4)s0(v3) = ds � s(v5) � (dk � ds+1ds )� 2s(v5) + dsds+1 (5)s0(v4) =  (6)s0(v5) = s(v5) + dsds + 1 (7)where  = 2 � (ds + dk + 1)� (ds � 1) � 2 + dsds+1 � (dk � ds+1ds )s(v5) + dsds+1 : (8)Reall that G(u) is a bull graph (or, equivalently, p = jBj = 5). Note that, if G(u) is a P4 (or,equivalently, p = jBj = 4) then Dnn(2) is a (n� p)� (n� p) matrix, and the s-labels s0(vi), 1 � i � 4,have values aording to following equations:s0(v1) = ds (9)s0(v2) = dk + ds � 1ds (10)s0(v3) = ds � (dk � ds + 1ds ) (11)s0(v4) =  (12)where  = 2 � (ds + dk + 1): (13)In onlusion, matrixDnn(2) an be obtained from matrixKnn(2) by setting value s0(v3) at position(3; 3) and by deleting the �rst, seond and fourth rows and olumns of Knn(2), and also by deletingthe �fth row and olumn of Knn(2) in the ase where p = 5. Thus, the matries Dnn(2) and Knn(2)are of the same form, and Dnn(2) represents a tree T 0(G) on n� p verties.It follows that we an desribe a funtion, similar to funtion Update Replae(u; T ), in the asewhere u is a 2-node and T is the modular deomposition tree of a P4-reduible graph G. Suh afuntion relies basially on the following:Æ if jh(u)j = 5, then update the s-labels of the verties of h(u) based on Eqs. (3{7);Æ if jh(u)j = 4, then update the s-labels of the verties of h(u) based on Eqs. (9{12);Æ make vertex v3 hild of node p(u) and delete the verties v1; v2; v4 and node u from the treeT (G); if jh(u)j = 5 then also delete the vertex v5.Thus, sine T (G) an be onstruted in linear time in the size of the input graph G [9, 17℄ we anextend our algorithm Number Spanning Trees to P4-reduible graphs; we ontrat a strong 2-node ofT (G) by applying the appropriate funtion Update Replae( ) desribed previously. Thus, the resultof this setion is summarized in the following theorem.Theorem 4.2. The number of spanning trees of a P4-reduible graph G on n verties and m edgesan be omputed in O(n +m) time and spae. 12
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