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Abstract: In this paper we present a new simple linear-time algorithm for determining
the number of spanning trees in the class of complement reducible graphs, also known as
cographs; for a cograph G on n vertices and m edges, our algorithm computes the number
of spanning trees of G in O(n + m) time and space, where the complexity of arithmetic
operations is measured under the uniform cost criterion. The algorithm takes advantage
of the cotree of the input cograph G and works by contracting it in a bottom-up fashion
until it becomes a single node; then, the number of spanning trees of G is computed as the
product of a collection of values which are associated with the vertices of G and are updated
during the contraction process. The correctness of our algorithm is established through the
Kirchhoff matrix tree theorem, and also relies on structural and algorithmic properties of
the class of cographs. We also extend our results to a proper superclass of cographs, namely
the P,-reducible graphs, and show that the problem of finding the number of spanning trees
of a Ps-reducible graph has linear-time solution.

Keywords: Cographs, Psy-reducible graphs, number of spanning trees, modular decompo-
sition, combinatorial problems, algorithms, complexity.

1 Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph on n
vertices. A spanning tree of G is a connected acyclic (n—1)-edge subgraph of the graph G. The number
of spanning trees of a graph (network) G, is an important, well-studied quantity in graph theory, and
appears in a number of applications. Most notable application fields are network reliability (in a
network modeled by a graph, intercommunication between all nodes of the network implies that the
graph must contain a spanning tree; thus, maximizing the number of spanning trees is the key to
maximizing reliability) [18], computing the total resistance along an edge in an electrical network [5],
and enumerating certain chemical isomers [6].

Thus, both for theoretical and practical purposes, we are interested in deriving formulas for or
computing the number of spanning trees of a graph G, and also of the K,,-complement of the graph
G; if G is a subgraph of the complete graph K,,, then the K, -complement of GG, denoted by K, — G, is
defined to be the graph obtained from K, by removing the edges of G (note that, if G has n vertices,



then K, — G coincides with the graph G, the complement of G). Many cases have been examined
depending on the choice of G. It has been studied when G is a labeled molecular graph [6], when G
is a circulant graph [27, 28], when G is a complete multipartite graph [25], when G is a cubic cycle

and quadruple cycle graph [26], when G is a quasi-threshold graph [20], and so on (see Berge [2] for
an exposition of the main results; also see [8, 20, 21, 22, 23, 24, 25]).

The purpose of this paper is to study the problem of finding the number of spanning trees in
the class of complement reducible graphs, or so-called cographs, a well-known class of perfect graphs
[4, 12]. The cographs were introduced in the early 1970s by Lerchs [16] and defined as the class of
graphs formed from a single vertex under the closure of the operations of union and complement. More
precisely, the class of cographs is defined recursively as follows: (i) a single-vertex graph is a cograph;
(ii) the disjoint union of cographs is a cograph; (iii) the complement of a cograph is a cograph. Lerchs
[16] has also shown that the class of cographs coincides with the class of graphs which contain no
induced subgraph isomorphic to a P, (chordless path on four vertices), and that a cograph G admits
a unique tree representation, up to isomorphism, called a cotree T.,(G).

Traditionally, the problem of finding the number of spanning trees of a graph is solved by means
of the classic Kirchhoff matrixz tree theorem [3]. This result expresses the number of spanning trees
of a graph G in terms of the determinant of a cofactor of the so-called Kirchhoff matrix that can be
easily constructed from the adjacency relation (adjacency matrix, adjacency lists, etc) of the graph G;
the Kirchhoff matrix tree theorem states that the number of spanning trees of a graph is equal to any
of the cofactors of the Kirchhoff matrix. An alternative way for computing the number of spanning
trees of a graph, can be achieved through the calculation of the eigenvalues of the Kirchhoff matrix
[15]. We point out that both approaches can be used for computing the number of spanning trees of
any graph G (see [2, 8, 11, 21, 25]), but they necessitate ©(n?®) time and ©(n?) space, where n is the
number of vertices of the graph G.

For some classes of graphs, such as threshold graphs, quasi-threshold graphs, cographs, circulant
graphs, etc, there are nice characterizations for the eigenvalues of their Kirchhoff matrix through
their constructive properties which hold for these classes of graphs [13, 26, 27, 28]. Thus, in these
cases, one has the advantage of associating the number of spanning trees through known formulas
for the eigenvalues of their Kirchhoff matrix. On the other hand, for other classes of graphs it is
common to compute the cofactor of the Kirchhoff matrix of a given graph G by using structural
properties of G along with standard techniques from linear algebra and matrix theory; see for example
[8, 11, 18, 20, 21, 22, 24, 25].

Based on structural properties of the class of cographs, Hammer and Kelmans [13] proposed a
linear-time algorithm for the number of spanning trees of a cograph GG using the approach of computing
the eigenvalues of the Kirchhoff matrix of G. In particular, the computation of the eigenvalues of the
Kirchhoff matrix is achieved by applying, recursively, a polynomial which corresponds to the operations
of union and complement of a cograph.

In this paper we propose a different approach for solving the problem of finding the number of
spanning trees of a cograph G. We use tree contraction operations and show that the stated problem
can be efficiently solved by successively applying these operations on the cotree T.,(G) of a cograph
G. Our approach avoids to compute the determinant of a cofactor of the Kirchhoff matrix or the

eigenvalues described in a certain polynomial.

In particular, we present a linear-time algorithm for determining the number of spanning tree of a
cograph; for an input cograph G on n vertices and m edges our algorithm constructs first the cotree
T.,(G) of the graph G, and then computes the number of spanning trees of G in O(n + m) time and
space. The algorithm relies on tree contraction operations which are applied in a systematic fashion
from bottom to top in order to shrink the T,,(G) into a single node, while at the same time certain
parameters are appropriately updated; since the cotree of a graph can be constructed in time and
space linear in the size of the graph [7], and each tree contraction operation takes time linear in the



size of the contracted part of the tree, the above computation takes time and space linear in the size
of G. The number of spanning trees of G is obtained as the product of n — 1 numbers, where n is the
number of vertices of G; this takes O(n) time under the uniform cost criterion [1]. The correctness
of our algorithm is established by means of the Kirchhoff matrix tree theorem along with standard
techniques from linear algebra and matrix theory.

The algorithmic approach we use in this paper for solving the problem of finding the number of
spanning trees of a cograph allows us to design a simple and efficient algorithm: it does not make use
of advanced data structures, it is easy to implement and its complexity analysis and its correctness are
straightforward. Moreover, our approach can be extended to other classes of graphs and, thus, allows
us to beat the O(n237%) time complexity for the problem of finding their number of spanning trees.
Indeed, in this paper we extend our results to a proper superclass of cographs, namely the P,-reducible
graphs, and show that the number of spanning trees of a Ps-reducible graph G on n vertices and m
edges can be computed in O(n + m) time and space.

The paper is organized as follows. In Section 2 we establish the notation and related terminology
and we present background results. In Sections 3 we propose a linear-time algorithm for determining
the number of spanning trees of a cograph, while in Section 4 we extend our results to a proper
superclass of cographs, namely the P,-reducible graphs. Finally, Section 5 concludes the paper and
presents possible future extensions.

2 Definitions and Background Results

Let G be a graph with vertex set V(G) and edge set F(G). The subgraph of a graph G induced
by a subset S of the vertex set V(@) is denoted by G[S]. For a vertex subset S of GG, we define
G - S := G[V(G) — S]; we denote G — v the graph G[V(G) — {v}]. The neighborhood N(v) of a
vertex v € V(G) is the set of all the vertices of G which are adjacent to v; the closed neighborhood of
z is defined as N[v] := {v} U N(v).

2.1 Cographs

As mentioned above, Lerchs proved that cographs are the family of graphs constructed from a single-
vertex under the closure of the operations of union and complement. These operations uniquely define
a tree representation referred to as a cotree. The cotree of a cograph G, denoted T,,(G), is a rooted
tree such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the children of a 1-node
(0-node resp.) are 0-nodes (1-nodes resp.), i.e., 1-nodes and 0-nodes alternate along every path
from the root to any node of the cotree;

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices of G, and two vertices
v;,v; are adjacent in G if and only if the least common ancestor of the leaves corresponding to
v; and v; is a 1-node.

Lerchs’ definition required that the root of a cotree be a 1-node; if however we relax this condition and
allow the root to be a 0-node as well, then we obtain cotrees whose internal nodes all have at least two
children, and whose root is a 1-node if and only if the corresponding cograph is connected.

Let G be a connected cograph, and let T,,(G) be its corresponding cotree. We define the following
node/vertex sets on the cotree T,,(G):



0
(%) Vg 1
V3 & V7
2
Va4 Vs
3
(@ (b)

Figure 1: (a) A cograph on 7 vertices and (b) the corresponding cotree.

o L;, which is the set of nodes/vertices on the ith level of T,,(G), and
o ch(u;), which is the set of children on the node u; € Tp.,(G).

The parent of a node/vertex w in T,,(G) is denoted by p(w). Figure 1 features a cotree T,,(G) with the
corresponding level sets. A set S of leaves of T.,(G), or, equivalently, a subset of vertices S C V(G),
is called

o strong block if all the vertices in S have the same parent u in T,,(G), and ch(u) = S.

Hereafter, we use p(S) to denote the parent of the vertices of the strong block S, and we call it strong
node; note that, p(S) is a node in T,,(G). In Figure 1, the only strong blocks of T,,(G) are formed by
nodes u1, us and by uz; nodes u; and uy are strong 1-nodes, while ug is strong 0-node.

Based on the structural properties of a cograph G and its corresponding cotree T.,(G), it is easy
to see that the following lemma holds:

Lemma 2.1. A cograph G contains at least one strong block.

2.2 Modular Decomposition Tree

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is either
adjacent to all the vertices in M or to none of them. The empty set, the singletons, and the vertex
set V are trivial modules and whenever G has only trivial modules it is called a prime graph (or
indecomposable). A non-trivial module is also called a homogeneous set. Furthermore, a module M of
G is called strong, if for any module M' # M of G, either M'NM =@ or M' C M.

The modular decomposition of a graph G is represented by a tree T'(G) which we call the modular
decomposition tree of G; the leaves of T'(G) are the vertices of (G, whereas each internal node u
corresponds to a strong module, denoted M (u), which is induced by the set of vertices/leaves of the
subtree rooted at u. Thus, T(G) represents all the strong modules of G. Each internal node is labeled
by either 0 (or P) for parallel module, 1 (or S) for series module, or 2 (or N) for neighborhood module.
The module corresponding to a 0-node induces a disconnected subgraph of GG, that of a 1-node induces
a connected subgraph of G whose complement is a disconnected subgraph and that of a 2-node induces
a connected subgraph of G whose complement is also a connected subgraph.

In particular, let u be an internal node of the modular decomposition tree T(G). If u has children
U1, Usa, ..., Uy, then we define the representative graph G(u) of the module M (u) as follows: V(G (u)) =
{ui,us,...,up}, and E(G(u)) = {u;u; | v;v; € E(Q), v; € M(u;) and v; € M (u; )}



Note that by the definition of a module, if a vertex of M (u;) is adjacent to a vertex of M (u;) then
every vertex of M (u;) is adjacent to every vertex of M(u;). Thus G(u) is isomorphic to the graph
induced by a subset of M (u) consisting of a single vertex from each maximal submodule of M (u) in
T(G). Then: (i) if u is a 0-node, G(u) is an edgeless graph, (ii) if v is a 1-node, G(u) is a complete
graph, and (iii) if u is a 2-node, G(u) is a prime graph.

The modular decomposition tree T'(G) of a graph G is constructed recursively as follows: parallel
modules are decomposed into their connected components, series modules into their co-connected
components, and neighborhood modules into their strong submodules. The efficient construction of
the modular decomposition tree of a graph has received a great deal of attention. It is well known that
for any graph G the tree T'(G) is unique up to isomorphism and it can be constructed in linear time
[9, 17]. Note that if the tree T'(G) does not contain any internal 2-node then G is a cograph and T'(G)
is its cotree, i.e., T(G) = T, (G).

2.3 Kirchhoff Matrix

For an n x n matrix A, the (n —1)-st order minor p’ is the determinant of the (n — 1) x (n — 1) matrix
obtained from A after having deleted row i and column j. The i-th cofactor equals pi. The Kirchhoff

matriz K for a graph G on n vertices is an » x n matrix with elements

d; ifi=j,
kij=<-1 ifi#jand (i,j) € E,

0 otherwise,

where d; is the degree of the vertex v; in the graph G. The Kirhhoff matrix tree theorem is one of
the most famous results in graph theory. It provides a formula for the number of spanning trees of a
graph G, in terms of the cofactors of its Kirhhoff matrix.

Theorem 2.1. (Kirchhoff Matrix Tree Theorem [3]): For any graph G with K defined as above, the

cofactors of K have the same value, and this value equals the number of spanning trees of G.

3 The Number of Spanning Trees

Let G be a cograph on n vertices and m edges and let T,,(G) be its cotree. In order to compute the
number of spanning trees of the graph G we use Theorem 2.1; that is, we delete an arbitrary vertex x of
the set V(G) and all the edges incident on vertex z. Now the vertex set of the resulting cograph G — =
is of size n — 1.

3.1 The Algorithm

We set s(v) := d, for every vertex v € V(G) — {z}, where d, is the degree of the vertex v in the input
graph (; we call these labels of the vertices their s-labels.

The algorithm works by contracting in a systematic fashion the strong nodes of the cotree of the
graph G — z and by assigning to the leaf that is produced the highest-index vertex of G which is a
child of the strong node (see Figure 2). The contractions are done by means of a function, namely,
Update_Replace( ), which also update the s-labels of the children/vertices of the strong node. We note
that the s-labels are assumed to be global variables in our algorithm.

Let u be a strong node of T,,(G), and let ch(u) = {v1,va,..., vp}. The function Update_Replace

3 3

is applied to note u, and works as follows:

o increase the s-labels s(v1),s(v2),...,s(vp) by 1, in the case where u is a 1-node;



o compute the parameter e(u) := Z

1

p s(v;)’

o update the s-labels s(v,_1) and s(vp) of the vertices v,_; and v,, using the parameter e(u);

o delete the vertices v1,va,...,vp—1 from T, (G), and replace the node u with the vertex v,,.

@ (b)

Figure 2: (a) A cotree T,,(G) and (b) the result of function Update_Replace(u,T.o(G)).

Figure 2 shows the application of the function Update_Replace on node u1 € T.o(G). First, it computes

the s-labels s(v1), s(v2),s(v3) and the parameter e(u;), then recomputes the values s(vs), s(vs), and

3

finally deletes the vertices v; and vy, and replaces the strong node u; with the vertex vz. The formal

description of the function Update_Replace is given in Algorithm 1.

Update_Replace(u,T)

[y

Compute the vertex set ch(u) = {vy,v2,...,0p};

if w is 1-node then
for every vertex v; € ch(u) do s(vi) := s(v;) + 1;
P
1
C t = ;
ompute e(u) ; S

Update the s-label s(v,_1) as follows:

S(Upﬁ) = s(qu) : S(Up) “e(u);

Update the s-label s(v,) as follows:

. . 1
if wis O-node then s(v,): ™
else  s(v,) := 1 1;
e(u)
Delete vertices vy, vs,...,vp_1 from T, and replace node u with vertex vp;

Return the resulting tree;

Algorithm 1: Update_Replace(u,T)



We next describe our algorithm Number_Spanning_Trees which computes the number of spanning trees
of a cograph G} it works as follows: First it computes the degree d; of each vertex v; € V(G) and assigns
s(vi) := d;, 1 < i < n. Then, it computes the graph G := G — v,,, where v,, € V(G), and constructs
its cotree T.o(G); recall that, v; is a leaf of T,,(G), 1 < i < n — 1. Next, it repeatedly applies the
function Update_Replace( ) to each strong node u, and computes the s-labels s(vy1), s(va), ..., s(vn_1)
of the vertices of T,,(G). Finally, it computes the number of spanning trees 7(G) := H:;] s(v;). The
formal description of the above algorithm is given in Algorithm 2.

Number_Spanning_Trees

Input: A cograph G on n vertices vy, vs,...,v, and m edges;

Output: The number of spanning trees 7(G) of the cograph G;

1. Compute the degree d; for each vertex v; € V(G);

2. Set s(v;) :==d;, for 1 <i < n;

3. Compute G := G — v,, where v, € V(QG);

4. Construct the cotree T := T, (G) of the cograph G;

5. Compute the sets Lo, L1,...,Ly_1;

6. for 1 =h—1downto0O do

for every node w € L; do T := Update_Replace(u,T);

n—1

7. Compute 7(G) := H s(vi);
i=1

Algorithm 2: Number_Spanning_Trees

3.2 Correctness

The correctness of the algorithm Number_Spanning_Trees is established thought the Kirchhoff matrix
tree theorem (Theorem 2.1), which implies that the number of spanning trees of a graph G is equal to
any of the cofactors of the Kirchhoff matrix.

Let G be a cograph on n vertices and m edges and let T.,(G) be the cotree of G consisting of n
vertices (leaves) and k nodes (internal nodes). Let Lo, L1,..., Ly be the level sets of T.,(G) and let
S = {wv1,v2,...,vp} be a strong block; note that v, vs,...,v, € L. We form the Kirhhoff matrix K
of the cograph G, which is an n x n matrix, and then we compute the n-th cofactor of the matrix K.
Recall that the n-th cofactor of K equals the (n —1)-st order minor ul, that is, the determinant of the
(n — 1) x (n — 1) matrix K, obtained from K after deleting its n-th row and column. Substituting

the values s(v;) =d;, 1 <i <mn — 1, the matrix K,,, becomes

[ s(vr) i

$(vn—1) |



where, according to the definition of the Kirchhoff matrix, s(v;) is equal to the degree of vertex v; in
G and the entries (—1);; and (—1);; of the off-diagonal positions (i,j) and (j,i) are both —1 if the
vertices v; and v; are adjacent in G and are equal to 0 otherwise, 1 <4, j <n — 1.

The matrix K, corresponds to a cograph G on n —1 vertices vy, vs, ..., v,_1, where each vertex v;
has an s-label s(v;) = d;, 1 <i < n—1. The first p rows of K, correspond to the p vertices vy, v, ..., v
of the strong block S; the next (n — 1) — p rows correspond to the vertices vp11,vp12,...,v5—1. Recall
that, all the vertices of the strong block S have the same parent p(S) and, also, the same degree in
graph G.

We next focus on the computation of the determinant of the matrix K,,,, as it is known from the
Kirchhoff matrix tree theorem (see Theorem 2.1) that

7(G) = det(Knn). 2)

In order to compute the determinant det(K ), we start by focusing on the first p rows and p columns
of the matrix K,, and work as follows: We first multiply the p-th row of K,, by -1 and add it to
rows 1,2,...,p — 1. Then, in the first p — 1 rows of K,,,, non-zero entries are found only in positions
(i,i) and (i,p), 1 <i < p—1, and have values s(v;) and —s(v,), respectively for the case where p(S)
is a 0-node and have values s(v;) — 1 and —s(v,) — 1, respectively for the case where p(S) is a 1-node.
Next, we focus on the non-zero positions (i,p) of K,,, 1 < i < p— 1, and do the following: if the
parent p(S) of the strong block S = {v1,va,...,v,} is a 1-node, then we multiply the column j by
igf}’;;ﬂ and add it to column p; otherwise, we multiply the column j by igf}:; and add it to column
p, 1 <j<p-1. Now, in the first p — 1 rows of K,,,, only the diagonal positions (i,7) have non-zero

values. Additionally, the p-th row remains unchanged, except the entry in the position (p, p), and all
the non-zero elements in positions (i,p) of column p, fori =p+ 1,p+ 2,...,n — 1, which were equal

to —1 in the initial matrix K,,, now have the same value

E = — (1 + (s(vp) +a) - Z m) = —(s(vp) +a)- (Z —S(w)l+ a> ’

i=1 i=1

where a = 1 if p(S) is a 1-node, and a = 0 otherwise. Finally, we multiply the column p by —% and
the column p — 1 by —k.

It is important to note that the above operations do not change the value of the determinant of
matrix K,,,. Moreover, in the matrix that results after these operations, we have:

(i) all the off-diagonal elements in positions (i,5), 1 <i<p—1and 1 <j <n —1, are equal to 0,

(ii) the off-diagonal elements in positions (i,7), p < i, j < n — 1, have their initial values, that is,
the values in the initial matrix K,,, and

iii) the diagonal elements in positions (7,4), 1 < i < p, have values s’(v;) which are equal to:
g

sv)) = s(v)+1, 1<i<p-—2
s'(p—1) = (s(op—1) +1) - ((s(vp) +1) - e(w))
1

s'(vp) = m_

if u is a 1-node, where e(u) = Y.7_, W, and
s'(vi) = s(vi), 1<i<p-2
s'(vp—1) = s(vp_1) - s(vp) - e(u)
1
' -
s (UP) - e(u)



if u is a 0-node, where e(u) = >°F_, S(li).

Thus, expanding in terms of the first p — 1 rows, we find that the determinant of the matrix K,
becomes

pet $(Up+1) (—1)ji
det(Kpn) = ( s'(vi)>- 8(Upt2)

$(Vn_1)

where K’ is an (n — p) X (n — p) matrix similar to the initial matrix K,,; in fact, it is identical to the
submatrix of the initial matrix K, defined by rows p,p+1,...,n—1 and columns p,p+1,...,n—1,
with the only exception that the value s'(v,) is different from s(v,). We note that, the matrix K’
corresponds to a cograph G' on n — p vertices, and, thus, it contains at least one strong block (see
Lemma 2.1).

Thus, if we assume (in an inductive fashion) that the determinant of the matrix K’ can be expressed
as the product of appropriate values s" (vp), 8" (Upt1), ..., 8" (vn—1), then the determinant of the initial

just as the algorithm Spanning_Trees_Number does by using function Update_Replace(). This estab-
lishes the correctness of our algorithm, and, thus, we can state the following result.

Lemma 3.1. The algorithm Number_Spanning_Trees correctly computes the number of spanning trees
of a cograph G.

3.3 Time and Space Complexity

We next compute the time and space complexity of the algorithm Number_Spanning_Trees. We prove
the following lemma.

Lemma 3.2. The algorithm Number_Spanning_Trees runs in O(n + m) time, where n is the number
of vertices and m the number of edges of the input cograph.

Proof. The construction of a cotree T,(G) of a cograph G on n vertices and m edges can be im-
plemented in O(n 4+ m) time complexity [7]. The computation of the level sets Ly, Lo, ..., Ly of the
cotree T,,(G) in Step 5 of the algorithm Number_Spanning_Trees can be performed in O(n) time, since
the cotree T.,(G) contains O(n) nodes. Additionally, the function Update_Replace is applied on each
of the nodes of the cotree T := T,,(G), and when it is applied on a node u, it can be executed in
O(|ch(u)|) time, where |ch(u)| is the cardinality of the set of children of node w in T'. Given that the
number of the nodes of the tree T is O(n), Step 6 of the algorithm Number_Spanning_Trees requires
> wer lch(u)| time. Finally, Step 7 takes O(n) time under the uniform cost criterion, according to
which each instruction requires one unit of time and each register requires one unit of space, implying
that, no matter how large the numbers are, an arithmetic operation involving k& numbers takes O(k)
time. Therefore, the algorithm Number_Spanning Trees takes O(n + m) time. 1



Remark 3.1. The time complexity of our algorithm is measured according to the uniform cost
criterion. Under this criterion each instruction on our model requires one unit of time and each
register requires one unit of space. Despite the fact that the arithmetic operations involve arbitrarily
large integers, we count each operation as a single step. In our case, the uniform cost is realistic if
a single computer word can store an integer as large as n™ "2, where n is the number of vertices of a
graph (the number of spanning trees of a graph G on n vertices is at most ™ 2; the complete graph
K, has n” 2 spanning trees). Note however that if the quantity n” 2 is larger than what can be stored
in one computer word, then even the logarithmic cost criterion (this takes into account the limited
size of a real memory word which is logarithmic in the number stored) is somewhat unrealistic, since
it assumes that two integers ¢ and j can be multiplied in time O(log(i) + log(j)), which is not known
to be possible (see [1]). O

Tt is not difficult to see that the space needed by the algorithm Number_Spanning_Trees is O(n+m).
Recall that, the cotree of a cograph on n vertices and m edges can also be constructed in linear time
and space [7]. Thus, the results of this section are summarized in the following theorem.

Theorem 3.1. The number of spanning trees of a cograph G on n vertices and m edges can be

computed in O(n 4+ m) time and space.

4 Extending the Approach to other Classes of Graphs

In this section we extend our results to a proper superclass of cographs, namely the P,-reducible
graphs. The class of Ps-reducible graphs was introduced by Jamison and Olariu in [14] as an extension
of the class of cographs, and defined as the class of graphs for which no vertex belongs to more than
one induced Py.

A bull graph is a graph on five vertices obtained by a P, with an additional vertex which is adjacent
to the midpoints and non-adjacent to the endpoints of the P;. The modular decomposition tree of
Py-reducible graphs has a structural property, which is shown by the following result (Theorem 4.2 in
[10]):

Theorem 4.1. (Giakoumakis and Vanherpe [10]): Let G be a graph, T(G) its modular decomposition
tree and u an internal 2-node of T(G). The graph G is a Py-reducible graph iff for every u of T(G),
G(u) is either a Py, or a bull graph. Moreover, the vertices of any Py of the graph G(u) are leaf vertices
in T(G).

The above theorem implies that we can easily distinguish the endpoints and the midpoints of every
P, of a Py-reducible graph GG. Moreover, the two endpoints and the two midpoints of a P, in G have
the same degrees, denoted by ds and dy, respectively.

Tt is not difficult to see that modular decomposition tree T'(G) of a Ps-reducible graph contains
at least one strong block; a 0-node, 1-node or 2-node u is called strong if the set ch(u) contains only
leaves in T'(G).

Let u be a strong 2-node that forms the strong block S = {v1,v2,...,v,}. Note that, the strong
2-node v induces either a graph on four vertices (i.e., a P,), or a graph on five vertices (i.e., a bull
graph) in T'(G); this is the graph G(u) (see Theorem 4.1). Let G(u) be a bull graph denoted by
019030405, and let K, (2) be the (n — 1) x (n — 1) matrix obtained from K after deleting its n-th row

and column. Substituting the values ds, dy and s(v;) = d;, 5 < i < n—1, the matrix K,,(2) becomes
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-1 dy, -1 -1 [—1];0i
-1 ds
Kon(2) = -t 5(vs) :
$(Up+1) (=1)ji
$(Up42)

[— 1350
L (=1)ij 8(vn—1) J

where, according to the definition of the Kirchhoff matrix, the entries (—1);; and (—1);; of the off-
diagonal position (i — p,j — p) and (j — p,i — p) of the matrix K,,(2) are both —1 if the vertices v;
and v; are adjacent in G and 0 otherwise, p+ 1 <, j <n — 1. The entries [-1];; and [—1];/; of the
off-diagonal positions (i,j) and (j,i) of the matrix K,,(2) correspond to 1 x 5 and 5 x 1 matrices,
respectively, with all their subelements having value —1, if vertices v; and »; are adjacent in G, and
0 otherwise, p+1<i<n—1and 1< j <5. Note that, if a vertex v € G(u) is adjacent to another
vertex v’ € G — G(u) then all the vertices in G(u) are adjacent to vertex v', since G(u) is a module in

G.

Next, we focus on the computation of the determinant of the matrix K,,(2). We start by focusing
on its first and fourth rows and columns. We multiply the first and the fourth columns of the matrix
K,,,»(2) by 1/ds and add them to the second and to the third columns, respectively. Then, we multiply
the fourth row of the matrix K,,(2) by —1 and add it to the first row. Finally, we add the first
column of the matrix K,,(2) to the fourth column. We point out that after applying these operations
to matrix K, (2) only the diagonal position of the first row have non-zero entries.

We now focus on the second and third rows and columns of the matrix K,,,(2). Here, we multiply
by —1 the third row of the matrix K,,,, and add it to the second row. Then, we add the second column
of the matrix K,,,,(2) to the third column, and, thus, only the diagonal positions of the second row have
non-zero entries with value dy + (ds — 1)/ds. Thus, the first and the second rows have zero elements
in the off-diagonal positions.

We apply a similar technique in order to make zero the elements in the off-diagonal positions of
the fourth and fifth rows of the matrix K,,(2). We first multiply the third row of matrix K,,(2)
by —1 and add it to the fourth row. Then, we multiply the fourth column of matrix by «, where
a = (dy —(ds +1)/ds)/(ds + 1), and add it to the third column. We also multiply the fourth column of
matrix K,,(2) by —a', where o' = 1/(ds + 1) and add it to the fifth column. Now, only the diagonal
position of the fourth row of matrix K,,(2) has non-zero entry.

We continue working in order to make zero the off-diagonal elements of the fifth row of matrix

K, (2). To this end, we first multiply the third row of matrix K,,(2) by —1 and add it to the fifth row,

and, then, we multiply the fifth column of matrix K,,(2) by o, where o/’ = 24(dx —(do+1)/d,) dn/(dat1)

s(vs)+(ds/(ds+1)) ’
and add it to the third column. Thus, we obtain
s'(v3)
5 $(Up+1) (=1)ji
det(K,n(2) = J]s(i)- $(Up+2)
iz (—1)i
8(vn—1)

I
—
)
[V}
-
i~
S
o
D
X
]
s
3
P
®
>
=

Sl
@ -
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where D,,,,(2) is a (n — p) X (n — p) matrix, and the s-labels s'(v;), 1 < i < 5, have values according
to following equations:

dy —1
S) = di+ = (4)

d, . s(vs) - (dy, — ’L‘d—+) —2

£l s(vs) + dd—ﬂ
s'(vg) = (6)
' _ ds 7)
s'(vs) = s(vs) + i1 (

where

9 + ds . dk, ds+1
o= 2(ds+dk+1)_(ds_1) g +1 ( d ds )
s(vs) + 725

(8)

Recall that G(u) is a bull graph (or, equivalently, p = |B| = 5). Note that, if G(u) is a P4 (or,
equivalently, p = |B| = 4) then D,,,,(2) is a (n — p) x (n — p) matrix, and the s-labels s'(v;), 1 < i < 4,
have values according to following equations:

So) = d )

§f(0g) = dmdsdsl (10)

Son) = 2= ()

o) = (12)
where

v = 2-(ds+dp+1). (13)

In conclusion, matrix D,,,(2) can be obtained from matrix K,,(2) by setting value s’ (v3) at position
(3,3) and by deleting the first, second and fourth rows and columns of K,,(2), and also by deleting
the fifth row and column of K,,,(2) in the case where p = 5. Thus, the matrices D,,(2) and K,,,(2)
are of the same form, and D,,(2) represents a tree T'(G) on n — p vertices.

Tt follows that we can describe a function, similar to function Update_Replace(u,T), in the case
where u is a 2-node and T is the modular decomposition tree of a Ps-reducible graph G. Such a
function relies basically on the following:

o if |ch(u)| = 5, then update the s-labels of the vertices of ch(u) based on Eqgs. (3 7);
o if |ch(u)| =4, then update the s-labels of the vertices of ch(u) based on Eqgs. (9 12);

o make vertex vz child of node p(u) and delete the vertices v1,v2,vs and node u from the tree
T(@G); if |ch(u)] = 5 then also delete the vertex vs.

Thus, since T(G) can be constructed in linear time in the size of the input graph G [9, 17] we can
extend our algorithm Number_Spanning_Trees to Ps-reducible graphs; we contract a strong 2-node of
T(G) by applying the appropriate function Update_Replace() described previously. Thus, the result
of this section is summarized in the following theorem.

Theorem 4.2. The number of spanning trees of a Py-reducible graph G on n vertices and m edges

can be computed in O(n + m) time and space.
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5 Concluding Remarks

In this paper we propose an approach for computing the number of spanning trees of a cograph or a
P;-reducible graph which takes advantage of the structural properties of the modular decomposition
trees of these graphs and yields linear-time algorithms for the problem.

More general classes of cographs and P,-reducible graphs, such as the classes of P,-sparse graphs,
P4-lite graphs, P4-tidy graphs, tree-cographs [4], also possess structural and algorithmic properties of
their modular decomposition trees. Thus, it is reasonable to ask whether the same approach can also
be used for computing the number of spanning trees of these, and other, classes of graphs.

It has been shown that a permutation graph G[r] can be transform into a directed acyclic graph
and, then, into a rooted tree by exploiting the inversion relation on the elements of the permutation
7 [19]; note that the permutation graphs are perfect and in fact form a proper superclass of cographs
[4, 12]. Based on these results, one can work towards the investigation whether the class of permutation
graphs G[r] belongs to the family of graphs that have formulas or efficient algorithms regarding the
number of their spanning trees. We pose it as an open problem.
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