
Polynomial-Time Algorithms for the Subset Feedback Vertex

Set Problem on Interval Graphs and Permutation Graphs∗

Charis Papadopoulos† Spyridon Tzimas‡

Abstract

Given a vertex-weighted graph G = (V,E) and a set S ⊆ V , a subset feedback
vertex set X is a set of the vertices of G such that the graph induced by V \X has no
cycle containing a vertex of S. The Subset Feedback Vertex Set problem takes
as input G and S and asks for the subset feedback vertex set of minimum total weight.
In contrast to the classical Feedback Vertex Set problem which is obtained from
the Subset Feedback Vertex Set problem for S = V , restricted to graph classes
the Subset Feedback Vertex Set problem is known to be NP-complete on split
graphs and, consequently, on chordal graphs. However, whereas Feedback Vertex
Set is polynomially solvable for AT-free graphs, no such result is known for the Subset
Feedback Vertex Set problem on any subclass of AT-free graphs. Here we give the
first polynomial-time algorithms for the problem on two subclasses of AT-free graphs:
interval graphs and permutation graphs. Moreover, towards the unknown complexity
of the problem for AT-free graphs, we give a polynomial-time algorithm for co-bipartite
graphs. Thus, we contribute to the first positive results of the Subset Feedback
Vertex Set problem when restricted to graph classes for which Feedback Vertex
Set is solved in polynomial time.

1 Introduction

For a given set S of vertices of a graph G, a subset feedback vertex set X is a set of vertices
such that no cycle of G[V \X] contains a vertex from S. The Subset Feedback Vertex
Set problem takes as input a graph G = (V,E) and a set S ⊆ V and asks for the subset
feedback vertex set of minimum cardinality. In the weighted version every vertex of G
has weight and the objective is to compute a subset feedback vertex set of minimum total
weight. The Subset Feedback Vertex Set problem is a generalization of the classical
Feedback Vertex Set problem in which the goal is to remove a set of vertices X such
that G[V \X] has no cycles; by setting S = V , the problem coincides with the NP-complete
Feedback Vertex Set problem [19]. Both problems find important applications in several
aspects that arise in optimization theory, constraint satisfaction, and bayesian inference
[1, 2, 14, 15]. Interestingly, the Subset Feedback Vertex Set problem for |S| = 1
also coincides with the NP-complete Multiway Cut problem [17] in which the task is to
disconnect a predescribed set of vertices [9, 20].

Subset Feedback Vertex Set was first introduced by Even et al. who obtained a con-
stant factor approximation algorithm for its weighted version [14]. The unweighted version
in which all vertex weights are equal has been proved to be fixed parameter tractable [13].

∗A preliminary version of this paper appeared as an extended abstract in the proceedings of FCT 2017
[32]. This research has been financially supported by the General Secretariat for Research and Technology
(GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 1486).
†Department of Mathematics, University of Ioannina, Greece. E-mail: charis@cs.uoi.gr
‡Department of Mathematics, University of Ioannina, Greece. E-mail: roytzimas@hotmail.com

1

Moreover, the fastest algorithm for the weighted version in general graphs runs in O∗(1.87n)
time1 by enumerating its minimal solutions [17], whereas for the unweighted version the
fastest algorithm runs in O∗(1.76n) time [16]. As the unweighted version of the problem is
shown to be NP-complete even when restricted to split graphs [17], there is a considerable
effort to reduce the running time on chordal graphs, a proper superclass of split graphs, and
more general on other classes of graphs. Golovach et al. considered the weighted version
and gave an algorithm that runs in O∗(1.68n) time for chordal graphs [21]. Reducing the
existing running time even on chordal graphs has proved itself to be quite challenging and
only for the unweighted version of the problem a faster algorithm that runs in O∗(1.62n)
time was given [10]. In fact, the O∗(1.62n)-algorithm given in [10] runs for every graph class
on which the weighted Feedback Vertex Set problem can be solved in polynomial time
that is closed under vertex deletions and edge contractions. Thus, there is an algorithm that
runs in O∗(1.62n) time for the unweighted version of the Subset Feedback Vertex Set
problem when restricted to AT-free graphs [10], a graph class that properly contains interval
graphs and permutation graphs. Here we design algorithms for the classes of interval graphs
and permutation graphs that are much faster even for the weighted version of the problem.

As Subset Feedback Vertex Set is a generalization of the classical Feedback Ver-
tex Set problem, let us briefly give an overview of the complexity of Feedback Vertex
Set on related graph classes. Feedback Vertex Set is known to be NP-complete on
bipartite graphs [34] and planar graphs [19], whereas it becomes polynomial-time solvable
on the classes of bounded clique-width graphs [8], chordal graphs [11, 33], interval graphs
[28], permutation graphs [4, 5, 6, 26], cocomparability graphs [27], and, more generally, AT-
free graphs [25]. In contrast to the many positive and negative results on the complexity of
Feedback Vertex Set, concerning the complexity of Subset Feedback Vertex Set
very few similar results are known. In fact, there is only a negative result regarding the
NP-completeness of Subset Feedback Vertex Set on split graphs [17]. Such a result,
however, implies that there is an interesting algorithmic difference between the two prob-
lems, as the Feedback Vertex Set problem is known to be polynomial-time computable
on split graphs [11, 33]. Clearly, for graph classes on which the Feedback Vertex Set
problem is NP-complete, so does the Subset Feedback Vertex Set problem. As the
Subset Feedback Vertex Set problem is more general than the Feedback Vertex
Set problem, it is natural to study its complexity on graph classes on which Feedback
Vertex Set is polynomial-time solvable.

Both interval graphs and permutation graphs have unbounded clique-width [23] and, thus,
they lie beyond the scope of known algorithmic metatheorems related to MSOL formulation
[12]. Let us also briefly explain that extending the approach of [25] for the Feedback
Vertex Set problem when restricted to AT-free graphs is not straightforward. A graph
is AT-free if for every triple of pairwise non-adjacent vertices, the neighborhood of one of
them separates the two others. The class of AT-free graphs is well-studied and it properly
contains interval, permutation, and cocomparability graphs [7, 22]. One of the basic tools
in [25] relies on growing a small representation of an independent set into a suitable forest.
Although such a representation is rather small on AT-free graphs (and, thus, on interval
graphs or permutation graphs), when considering Subset Feedback Vertex Set it is not
necessary that the fixed set induces an independent set which makes it difficult to control
how the partial solution may be extended. Therefore, the methodology described in [25]
cannot be trivially extended towards the Subset Feedback Vertex Set problem.

Our Results. Here we initiate the study of Subset Feedback Vertex Set restricted to
graph classes from the positive perspective. We consider its weighted version and give the first
positive results on interval graphs and permutation graphs, both being proper subclasses of

1The O∗ notation is used to suppress polynomial factors.

2

AT-free ? chordal
NP-complete
unweighted

co-bipartite
P
weighted

permutation
P
weighted

interval
P
weighted

split
NP-complete
unweighted

⊃⊃

⊂ ⊂

⊃
1

Figure 1: The computational complexity of the Subset Feedback Vertex Set problem
restricted to the illustrated graph classes. All polynomial-time results (P) are obtained in
this work, whereas the NP-completeness result of split graphs is due to [17].

AT-free graphs. As already explained, we are interested in subclasses of AT-free graphs, since
for chordal graphs the problem is already NP-complete [17]. Interval graphs and permutation
graphs are unrelated to split graphs and are both characterized by a linear structure implied
by certain vertex orderings [7, 22, 33]. For both classes of graphs we design polynomial-
time algorithms based on dynamic programming of subproblems implied by their natural
linear ordering. One of our key ingredients is that we augment our subproblems with a
few additional vertices which are always included in the subsolutions. Although for interval
graphs such a strategy leads to a simple algorithm, the case for permutation graphs requires
augmenting with more vertices, resulting in more numerous and complex recursive relations.

Moreover, towards the unknown complexity of the problem on the class of AT-free graphs,
we consider the class of co-bipartite graphs (complements of bipartite graphs) and settle its
complexity status. Interestingly, most problems that are hard on AT-free graphs are already
hard on co-bipartite graphs (see for e.g., [29]). Co-bipartite graphs are the complements of
bipartite graphs and are unrelated to interval graphs and permutation graphs. We show that
Subset Feedback Vertex Set admits a simple solution on co-bipartite graphs, and, thus,
we eliminate the possibility of obtaining hardness on AT-free graphs through hardness on co-
bipartite graphs. Therefore, we provide the first positive results regarding the complexity of
the Subset Feedback Vertex Set problem on subclasses of AT-free graphs. Our overall
results are summarized in Figure 1.

Our paper is organized as follows. In Section 2 we give basic definitions and notations of
maximal solutions (S-forests) and present the enumeration algorithm for the complements
of bipartite graphs. Sections 3 and 4 contain the main results, namely the polynomial-
time algorithms for interval graphs and permutation graphs respectively. We conclude with
Section 5 in which we discuss some open problems and directions for future work.

2 Preliminaries

All graphs in this text are undirected and simple. A graph is denoted by G = (V,E) with
vertex set V and edge set E. We use the convention that n = |V | and m = |E|. For a vertex
subset X ⊆ V , the subgraph of G induced by X is G[X] = (X, {uv ∈ E : u, v ∈ X}). The
neighbourhood of a vertex x of G is N(x) = {v ∈ V : xv ∈ E} and the degree of x is |N(x)|.
If X ⊆ V , then N(X) =

⋃
x∈X N(x) \ X. A weighted graph G = (V,E) is a graph, where

each vertex v ∈ V is assigned weight that is a positive integer number. We denote by w(v)
the weight of each vertex v ∈ V . For a vertex subset X ⊆ V , the weight of X is

∑
v∈X w(v).

Given a relation � on elements, we extend � to support sets of elements as follows. For
two sets of elements L and R we write L � R if for any two elements u ∈ L and v ∈ R, we
have u � v.

A clique is a set of pairwise adjacent vertices, while an independent set is a set of pairwise

3

non-adjacent vertices. A path is a sequence of vertices 〈v1v2 · · · vk〉 where each pair of con-
secutive vertices vivi+1 forms an edge of G. If additionally v1vk is an edge, then we obtain a
cycle. In this paper, we distinguish between paths (or cycles) and induced paths (or induced
cycles). By an induced path (or cycle) of G we mean a chordless path (or cycle). A cycle on
three vertices is referred to as a triangle and a chordless cycle on four vertices is referred to
as a square. Notice that a square refers to an induced cycle. A graph is connected if there
is a path between any pair of vertices. A connected component of G is a maximal connected
subgraph of G. A forest is a graph that contains no cycles and a tree is a forest that is
connected.

The Subset Feedback Vertex Set (SFVS) problem is defined as follows: given a weighted
graph G and a vertex set S ⊆ V , find a vertex set X ⊂ V of minimum weight such that
every cycle that contains a vertex of S also contains a vertex of X. An instance of SFVS
is denoted by (G,S). In the unweighted version of the problem all weights are equal. A
vertex set X is a minimal subset feedback vertex set of (G,S) if no proper subset of X is
a subset feedback vertex set of (G,S). Thus, a minimum weight subset feedback vertex set
is dependent on the weights of the vertices, whereas a minimal subset feedback vertex set is
only dependent on the vertices themselves. Note, however, that a minimum subset feedback
vertex set must be minimal in the unweighted as well as the weighted version of the problem,
since all weights are positive.

A cycle of G is called an S-cycle if a vertex of S is contained in the cycle. We define
an S-forest of G to be a vertex set Y ⊆ V such that no cycle in G[Y] is an S-cycle. An
S-forest Y is maximal if no proper superset of Y is an S-forest. Observe that X is a minimal
subset feedback vertex set of (G,S) if and only if Y = V \ X is a maximal S-forest of G.
Thus, the problem of computing a minimum weighted subset feedback vertex set of (G,S) is
equivalent to the problem of computing a maximum weighted S-forest of G. Let us denote
by FS the class of S-forests of G. In such terms, given the graph G and the subset S of V ,
we are interested in finding a maxw {Y ⊆ V : G[Y] ∈ FS}, where maxw selects a vertex set
among the ones of maximum weight. It is not difficult to see that for any clique C of G, an
S-forest of G that contains a vertex of C ∩ S contains at most two vertices of C.

Before reaching the details of our algorithms, let us also explain that we are interested in
computing a minimum weighted subset feedback vertex set on connected graphs with n ≤ m.
If G is disconnected then we simply construct the union of the subsolutions taken over all
its connected components. Moreover, if a connected component Q of G is a tree then there
is no cycle (and, thus, no S-cycle) that passes through a vertex of Q, which means that no
vertex of Q belongs to an optimal solution. Thus, we assume throughout the remaining part
that the input graph G is connected and n ≤ m. We note that such restrictions are not
required for our described algorithms, rather than for the analysis of their running times.

2.1 Maximal S-forests of co-bipartite graphs

Here we show that the number of minimal solutions of a co-bipartite graph is polynomial,
which implies a polynomial-time algorithm for the Subset Feedback Vertex Set problem
on the class of co-bipartite graphs.

Theorem 2.1. The number of maximal S-forests of a co-bipartite graph is at most 22n4 and
these can be enumerated in time O(n4).

Proof. Let G = (V,E) be a co-bipartite graph and let (A,B) be a partition of V such that
such that G[A] and G[B] are cliques. We further partition V as (AS , AR, BS , BR) where
AS = A∩S, AR = A \S, BS = B ∩S, and BR = B \S. Let (X,Y, Z,W) be the partition of
the vertex set of a maximal S-forest of G such that X ⊆ AS , Y ⊆ AR, Z ⊆ BS and W ⊆ BR

4

A B

AS BS

AR BR

X

Z

Y

W

1

Figure 2: Illustrating the partition (X,Y, Z,W) of a maximal S-forest of a co-bipartite graph.

(see Figure 2). The key observation here is that since for any clique C of G, an S-forest of
G that contains a vertex of C ∩ S contains at most two vertices of C, we have |X| ≤ 2 and
|Z| ≤ 2. By examining the nine cases corresponding to the combinations of |X| and |Z|, we
can show that there are at most 22n4 maximal S-forests. In order to keep the main results
in focus, we have moved the resulting exhaustive list of subcases in Appendix A. Taking into
account that any maximal S-forest has at most n vertices, these arguments can be applied
to obtain an enumeration algorithm that runs in time O(n4).

3 Computing SFVS on interval graphs

Here we present a polynomial-time algorithm for the SFVS problem on interval graphs.
A graph is an interval graph if there is a bijection between its vertices and a family of
closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals intersect. Such a bijection is called an interval representation of the
graph, denoted by I. We identify the intervals of the given representation with the vertices
of the graph, interchanging these appropriately. Whether a given graph is an interval graph
can be decided in linear time and if so, an interval representation can be generated in linear
time [18]. Notice that every induced subgraph of an interval graph is an interval graph.
Moreover, it is known that any induced cycle of an interval graph is a triangle [28, 33].

As already mentioned, instead of finding a subset feedback vertex set X of (G,S) of
minimum weight we concentrate on the equivalent problem of finding a maximum weighted
S-forest Y of G. We first define the necessary vertex sets. Let G be a weighted interval graph
and let I be an interval representation of G. The vertices of G are considered to be equivalent
to their corresponding intervals of I, which are numbered from 1 to n in ascending order of
their right endpoints. The left and right endpoints of an interval i ∈ I are denoted by `(i)
and r(i) respectively and every endpoint can be assumed to be distinct from all others and
positive. For technical reasons, we add an interval numbered 0 with `(0) = −1 and r(0) = 0
that does not belong to S and has zero weight, thus augmenting I to I+. Notice that interval
0 is non-adjacent to all other intervals of I+. Clearly, if Y is a maximum weighted S-forest of
G[I+], then Y \{0} is a maximum weighted S-forest of G[I]. To simplify notations, hereafter
we assume that G is an interval graph that contains the interval 0 and corresponds to I+.

We consider the two relations on V that are defined by the endpoints of the intervals as
follows: i ≤` j ⇔ `(i) ≤ `(j) and i ≤r j ⇔ r(i) ≤ r(j). Since ≤ is a total order on the
real numbers, we get that ≤` and ≤r are total orders on V . For a set of vertices U ⊆ V ,
we write `- minU to denote the minimum vertex of U with respect to ≤` and we write

5

a

b c

d

e

f

g

Ve = {a, b, c, d, e}
VCe = {a, b, c, d}
V<Ce = ∅
Vf = {a, b, c, d, e, f}

VCf = {a, b, c, d, e}
V<Cf = {a, b, c}

1

Figure 3: An interval graph given by its interval representation along with its corresponding
sets Ve and Vf and their related subsets. Observe that Cf = e whereas <Cf = c. Also notice
that the intervals that are properly contained within the gray area form the set Ve.

i

Vi

Ai

x

i

Vi

Bx
i

y

x

i

Vi

Cx,y
i

Figure 4: Illustrating the three sets Ai, B
x
i , and Cx,yi defined for interval graphs. Intervals

x and y can be extended on their dotted parts, as long as `(x) < `(y).

r- maxU to denote the maximum vertex of U with respect to ≤r. For a vertex i ∈ V , we let
Vi := {h ∈ V : h ≤r i}. Then observe that for two vertices i, x ∈ V , we have i <r x if and
only if x ∈ V \ Vi.

We define two different types of predecessors of the interval i with respect to ≤r, which
correspond to the subproblems that our dynamic programming algorithm wants to solve.
These are

Ci := r- max(Vi \ {i}) and

<Ci := r- max(Vi \ ({i} ∪N(i))).

Intuitively, if we consider time increasing from left to right, then Ci is the last interval that
ends before i ends and <Ci is the last interval that ends before i begins. An example of an
interval graph given by an interval representation that depicts the defined vertex subset and
predecessor notation is shown in Figure 3. By definition, we get the following partitions of
Vi and V<i.

Observation 3.1. Let i ∈ V \ {0} and let j ∈ V \ V<i such that ij ∈ E. Then,

(1) Vi = VCi ∪ {i} and

(2) VCi = V<Cj ∪ (N(j) ∩ V<i).

Proof. The first statement follows by the definitions of Vi and Ci. For the second statement,
observe that VCi can be partitioned into the non-neighbors of j in VCi and the neighbors
of j in VCi. The first set corresponds to V<Cj , whereas the second set is exactly the set
N(j) ∩ VCi.

Next, we define the sets that our dynamic programming algorithm uses in order to com-
pute the S-forest of G that has maximum weight.

A-sets Let i ∈ V . Then,
Ai := max

w
{Y ⊆ Vi : G[Y] ∈ FS}.

6

B-sets Let i ∈ V and let x ∈ V \ Vi. Then,

Bx
i := max

w
{Y ⊆ Vi : G[Y ∪ {x}] ∈ FS}.

C-sets Let i ∈ V and let x, y ∈ V \ (Vi ∪ S) such that x <` y and xy ∈ E. Then,

Cx,yi := max
w
{Y ⊆ Vi : G[Y ∪ {x, y}] ∈ FS}.

Observe that Ai corresponds to an optimal S-forest of the graph G[Vi]. Moreover, Bx
i

corresponds to an optimal S-forest of the graph G[Vi ∪ {x}] such that x belongs to the
optimal S-forest and Cx,yi corresponds to an optimal S-forest of the graph G[Vi ∪ {x, y}]
such that both x and y belong to the optimal S-forest (see Figure 4). Since V0 = {0} and
w(0) = 0, we have A0 = ∅ and, since Vn = V , we have An = maxw{Y ⊆ V : G[Y] ∈ FS}.
The following lemmas state how to recursively compute all A-sets, B-sets, and C-sets besides
A0.

Lemma 3.2. Let i ∈ V \ {0}. Then Ai = maxw
{
ACi, Bi

Ci ∪ {i}
}

.

Proof. By Observation 3.1 (1), Vi = VCi ∪ {i}. If i /∈ Ai, then we get Ai = ACi; otherwise,
Ai = Bi

Ci ∪ {i} holds, since Bi
Ci is the maxw subset of VCi such that the graph induced by

its union with {i} contains no S-cycle by definition.

To simplify the proofs in the forthcoming lemmas, we use the following observation.

Observation 3.3. Let i, x, y ∈ V such that (i) i <r {x, y}, (ii) x <` y and (iii) iy, xy ∈ E.
Then 〈i, x, y〉 is a triangle of G.

Proof. Assuming r(i) < `(y) results in non-adjacent vertices i and y, a contradiction to
iy ∈ E, so we have `(y) < r(i). This inequality along with inequalities (i) and (ii) imply
`(x) < r(i) < r(x), which means that ix ∈ E. Therefore, 〈i, x, y〉 is a triangle of G.

We next describe the set Bx
i . Here we need to distinguish between i and x, the interval

with the smallest left endpoint, as the definition of Bx
i allows for both cases. For that reason,

we introduce x′ and y′.

Lemma 3.4. Let i ∈ V and let x ∈ V \ Vi. Moreover, let x′ = `- min{i, x} and let y′ be the
remaining vertex of {i, x}.

(1) If ix /∈ E, then Bx
i = Ai.

(2) If ix ∈ E, then Bx
i =

 maxw

{
Bx

Ci, B
x′
<Cy′ ∪ {i}

}
, if i ∈ S or x ∈ S

maxw

{
Bx

Ci, C
x′,y′

<i ∪ {i}
}
, if i, x /∈ S.

Proof. Assume first that ix /∈ E. Then r(i) < `(x), because we already have i <r x, so x
has no neighbor in G[Vi ∪ {x}]. Thus no subset of Vi ∪ {x} containing x induces an S-cycle
of G, implying that Bx

i = Ai.
Next assume that ix ∈ E. If i /∈ Bx

i , then, according to Observation 3.1 (1), it follows
that Bx

i = Bx
Ci. So let us assume in what follows that i ∈ Bx

i . Observe that Bx
i \ {i} ⊆ VCi

by Observation 3.1 (1). We distinguish two cases according to whether i and x belong to S.

• Let i ∈ S or x ∈ S. If there is a vertex h ∈ Bx
i \ {i} such that hy′ ∈ E then, by

Observation 3.3, 〈h, x′, y′〉 is an S-triangle of G. Thus, for any vertex h ∈ Bx
i \ {i},

we have that hy′ /∈ E. By Observation 3.1 (2), notice that Bx
i \ {i} ⊆ V<Cy′ . Also

observe that the neighborhood of y′ in G[V<Cy′ ∪ {x′, y′}] is {x′}. Thus, no subset of
V<Cy′ ∪ {x′, y′} containing y′ induces an S-cycle of G. Therefore, Bx

i = Bx′
<Cy′ ∪ {i}.

7

• Let i, x /∈ S. Since Vi = VCi ∪ {i} and x′ <` y
′, we get Bx

i = Cx
′,y′

Ci ∪ {i}.
Therefore, in every case, we obtain the desired equation.

We next inductively describe the set Cx,yi . As before, we use x′ and y′ to denote the two
leftmost intervals among i, x, and y.

Lemma 3.5. Let i ∈ V and let x, y ∈ V \ (Vi ∪ S) such that x <` y and xy ∈ E. Moreover,
let x′ = `- min{i, x} and let y′ = `- min({i, x, y} \ {x′}).

1. If iy /∈ E, then Cx,yi = Bx
i .

2. If iy ∈ E, then Cx,yi =

{
Cx,yCi , if i ∈ S
maxw

{
Cx,yCi , C

x′,y′

Ci ∪ {i}
}
, if i /∈ S.

Proof. Assume first that iy /∈ E. Then r(i) < `(y), because we already have i <r y, so the
neighborhood of y in G[Vi∪{x, y}] is {x}. Thus, no subset of Vi∪{x, y} containing y induces
an S-cycle of G. By the relevant definitions, it follows that Cx,yi = Bx

i .
Assume next that iy ∈ E. If i /∈ Cx,yi , then, by Observation 3.1 (1), we have Cx,yi = Cx,yCi .

Suppose that i ∈ Cx,yi . If i ∈ S then, by Observation 3.3, 〈i, x, y〉 is an S-triangle of G, a
contradiction to i ∈ Cx,yi . In what follows, we will assume that i /∈ S and we will show that

Cx,yi = Cx
′,y′

Ci ∪ {i}.
By definition, Cx,yi \ {i} and Cx

′,y′

Ci are subsets of VCi of maximum weight such that their
union with {i, x, y} and {x′, y′}, respectively, induce an S-forest of G. Let z′ be the vertex
of {i, x, y}\{x′, y′}. Observe that no vertex of x′, y′, z′ belongs to S by the definitions of x, y
and the hypothesis for i. Let Y be a subset of VCi such that Y ∪ {x′, y′} induces an S-forest
of G. We show that Y ∪ {x′, y′, z′} induces an S-forest of G. Assume for contradiction that
a subset of Y ∪ {x′, y′, z′} induces an S-triangle 〈v1, v2, z′〉 of G. Since z′ /∈ S, without loss
of generality, assume that v1 ∈ S. This particularly means that v1 ∈ Y , because x′, y′ /∈ S
as well. Notice that v1z

′ ∈ E implies that `(z′) < r(v1). By the fact that v1 ∈ VCi,
we have v1 <r {x′, y′, z′}. Also, recall that x′ <` y

′ <` z
′. Put together, the previous

inequalities imply that v1x
′, v1y

′ ∈ E. Thus, 〈v1, x′, y′〉 is an S-triangle of G, leading to a
contradiction that Y ∪ {x′, y′} induces an S-forest. Moreover, given a subset Y of VCi such
that Y ∪ {x′, y′, z′} induces an S-forest of G, it is clear that Y ∪ {x′, y′} induces an S-forest

as well. Therefore, Cx,yi = Cx
′,y′

Ci ∪ {i} as desired.

Now we are equipped with the necessary tools to obtain the main result of this section,
namely a polynomial-time algorithm for SFVS on interval graphs.

Theorem 3.6. Subset Feedback Vertex Set can be solved in O(mn) time on interval
graphs.

Proof. We briefly describe such an algorithm based on Lemmas 3.2, 3.4, and 3.5. In a
preprocessing step, we compute Ci and <Ci for all intervals i ∈ V \{0}. We visit all intervals
from 0 to n in ascending order with respect to <r. For every interval i that we visit, we
first compute Ai according to Lemma 3.2 and, then, compute Bx

i and Cx,yi for every x, y
such that i <r {x, y}, x <` y, and xy ∈ E according to Lemmas 3.4 and 3.5, respectively.
We output V \ An, as already explained. The correctness of the algorithm follows from the
aforementioned Lemmas.

Regarding its running time, recall that n ≤ m. Computing Ci and <Ci can be done in
O(m) time, because the intervals are sorted with respect to <r. The computation of a single
A-set, B-set or C-set takes constant time. Moreover, for each i, the number of Bx

i and Cx,yi
are at most n + m, based on the appropriate x and y. Therefore, the overall running time
of the algorithm is O(mn).

8

b

t

i

i j

j

h

h

g

g
b

t

i

i j

j

h

h

g

g

Figure 5: Illustrating the two partial orders ≤` and ≤r among crossing pairs.

4 Computing SFVS on permutation graphs

Let π = π(1), . . . , π(n) be a permutation over {1, . . . , n}. The position of an integer i in π is
denoted by π−1(i). Given a permutation π, the inversion graph of π, denoted by G(π), has
vertex set {1, . . . , n} and two vertices i, j are adjacent if (i − j)(π(i) − π(j)) < 0. A graph
is a permutation graph if it is isomorphic to the inversion graph of a permutation [7, 22].
Permutation graphs are the intersection graphs of segments between two horizontal parallel
lines, that is, there is a one-to-one mapping from the segments onto the vertices of a graph
such that there is an edge between two vertices of the graph if and only if their corresponding
segments intersect. We refer to the two horizontal lines as top and bottom lines. This
representation is called a permutation diagram and a graph is a permutation graph if and
only if it has a permutation diagram. Whether a given graph is a permutation graph can
be decided in linear time and if so, its permutation diagram can be constructed in linear
time [30]. Note that every induced subgraph of a permutation graph is a permutation graph.
It is also important to note that any induced cycle of a permutation graph is either an
triangle or a square [4, 5, 6, 26, 33].

We assume that we are given a permutation graph G = (V,E) such that G = G(π) along
with S ⊆ V and a weight function w : V → R+ as input. We add an isolated vertex 0 in
G and augment π to π+ so that π+(0) = 0. Further, we assign zero value for 0’s weight
and assume that 0 /∈ S. To simplify notations, hereafter we assume that G is a permutation
graph that contains the isolated vertex 0 and corresponds to π+.

The orderings of the segments’ endpoints on the top and bottom lines of the permuta-
tion diagram induce two total orders on the vertices of G which we denote by ≤t and ≤b,
respectively. That is, i ≤t j ⇔ i ≤ j and i ≤b j ⇔ π−1(i) ≤ π−1(j) for all i, j ∈ V .

Two vertices i, j ∈ V are called crossing pair, denoted by ij, if i ≤t j and j ≤b i. We
denote by X the set of all crossing pairs in G. Let I = {ii ∈ X : i ∈ V }. It is clear that for
any edge ij ∈ E either ij ∈ X \ I or ji ∈ X \ I. Given two crossing pairs gh, ij ∈ X , we
define two partial orders ≤` and ≤r:

gh ≤` ij ⇔ g ≤t i and h ≤b j and gh ≤r ij ⇔ g ≤b i and h ≤t j.

Intuitively, each crossing pair consists of its leftmost endpoints and its rightmost endpoints.
Thus ≤` corresponds to the ordering with respect to the leftmost endpoints, whereas ≤r
corresponds to the ordering with respect to the rightmost endpoints (Figure 5 illustrates
the two partial orders). We stress that we write <` and <r to denote that the inequalities
concerning the top and bottom endpoints are both strict. Given a vertex set X ⊆ V , we
denote by X [X] the set of all crossing pairs of G[X] under the same permutation diagram.
It is not difficult to see that the minimum crossing pair of X [X] with respect to ≤` and the
maximum crossing pair of X [X] with respect to ≤r are both well defined; we write `- min
and r- max to denote them respectively.

We next define the predecessors of a crossing pair with respect to ≤r, which correspond
to the subproblems that our dynamic programming algorithm wants to solve. Let ij ∈ X .
We define the set of vertices that induces the subproblem that we consider at the crossing

9

b

t
a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

Ddg = df
Edg = gg
Cdg = af
<Cdg = ac

dg · hh = bb

Vdg = {a, b, c, d, f, g}
V Ddg = {a, b, c, d, f}
VEdg = {a, b, c, f, g}
VCdg = {a, b, c, f}
V<Cdg = {a, b, c}

Figure 6: A permutation graph given by its permutation diagram and the set Vdg of the
crossing pair dg together with the corresponding predecessors of dg. Observe that the line
segments that are properly contained within the gray area form the set Vdg. Moreover,
regarding the ordering with respect to ≤r among the given predecessors of dg, notice that
bb ≤r ac ≤r af ≤r {gg, df}.

pair ij to be Vij := {h ∈ V : hh ≤r ij}. This implies that for any x ∈ V , we have x /∈ Vij if
and only if i <b x or j <t x. The predecessors of the crossing pair ij are defined as follows:

(i)

D

ij := r- maxX [Vij \ {j}],

(ii) Eij := r- maxX [Vij \ {i}],

(iii) Cij := r- maxX [Vij \ {i, j}] and

(iv) <Cij := r- maxX [Vij \ ({i, j} ∪N({i, j}))].

Those are precisely the greatest predecessors of ij with respect to <r having no member
being (i) j, (ii) i, (iii) either i or j and (iv) either i or j or any of their neighbors. We also
define the product of two crossing pairs gh and ij,

gh · ij := r- maxX [Vgh ∩ Vij],

which is the greatest common predecessor of gh and ij with respect to <r. An example of
a permutation graph that illustrates the defined predecessors is given in Figure 6. Having
defined the above predecessors of ij, it is not difficult to show how Vij can be partitioned
into smaller sets of vertices.

Observation 4.1. Let ij ∈ X and let x ∈ V \ Vij. Then,

(1) Vij = V Dij ∪ {j} = VEij ∪ {i} = VCij ∪ {i, j},

(2) VCij = V<Cjj ∪ (N(j) ∩ VCij) = V<Cii ∪ (N(i) ∩ VCij),

(3) V<Cii = V<Cij ∪ (N(j) ∩ V<Cii),

(4) V<Cjj = V<Cij ∪ (N(j) ∩ V<Cii), and

(5) VCij = VCij<Cxx ∪ (N(x) ∩ VCij).

Proof. Let ij1 be the predecessor Dij. By the r- max choice of j1, there is no vertex j′ such
that j1 <t j

′ <t j. Thus Vij1 ∪ {j} is the set Vij . The rest of the equalities in the first
statement follow in a similar way.

Let i1j1 be the predecessor <Cjj. Then both i1 and j1 are non-adjacent to j and have
the maximum values such that i1 <b j and j1 <t j, respectively. This particularly means
that i1 <t j1 <t j and j1 <b i1 <b j. Thus any vertex i′ ∈ Vij \ {i, j} with j1 <t i

′ <t j
or i1 <b i

′ <b j must be adjacent to j which implies that VCij \ V<Cjj contains exactly the
neighbors of j in VCij . These arguments imply the second, third, and fourth statements.

10

For the last statement, notice that VCij can be partitioned into the neighbors and the
non-neighbors of x. By definition, VCij<Cxx contains the non-neighbors of x so that every
vertex of VCij \ VCij<Cxx is adjacent to x.

Our dynamic programming algorithm relies on sets similar to the ones we used for the
case of interval graphs. That is, we need to describe appropriate sets of the considered
subproblems that are extended to candidate solutions of certain extended subproblems. Al-
though, for interval graphs we showed that adding two vertices into such sets is sufficient,
the equivalent for permutation graphs is that we consider at most two newly crossing pairs
which correspond to at most four newly vertices. This is implied by the following lemma.

Lemma 4.2. Let gh ∈ X and let ab ∈ X \ I such that gh <r ab and a, b /∈ S. Moreover,

let cd ∈ X such that

{
gh <r cd, if cd /∈ I
g <b c or h <t d, if cd ∈ I , ab <` cd, and c, d /∈ S, and let ef ∈ X

such that

{
gh <r ef, if ef /∈ I
g <b e or h <t f, if ef ∈ I , cd <` ef , and e, f /∈ S. Then, for all Y ⊆ Vgh,

the following are equivalent:

(i) G[Y ∪ {a, b, c, d, e, f}] ∈ FS (ii) G[Y ∪ {a, b, c, d, e}] ∈ FS
(iii) G[Y ∪ {a, b, c, d, f}] ∈ FS (iv) G[Y ∪ {a, b, c, d}] ∈ FS

Proof. In the context of this proof, we will consider statement (i) only if ef /∈ I, statement
(ii) only if ef /∈ I or ef ∈ I such that g <b e, and statement (iii) only if ef /∈ I or ef ∈ I
such that h <b f . Notice that this is sufficient, because (i), (ii), and (iii) are equivalent
whenever ef ∈ I. We next show all directions among the four statements.

(i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv). These facts are trivial because an induced subgraph
of an S-forest of G is also an S-forest of G.

(iv) ⇒ (ii). Assume for contradiction that a subset of Y ∪ {a, b, c, d, e} containing e induces
an S-cycle of G. Since an induced cycle of a permutation graph can only be a triangle or a
square, we assume that that S-cycle is an S-triangle or an S-square.

• Let 〈v1, v2, e〉 be an S-triangle. Since e /∈ S, without loss of generality, assume that
v1 ∈ S. Then v1 ∈ Y ⊆ Vgh because a, b, c, d are also not in S, which along with

gh <r ab,

{
gh <r cd, if cd /∈ I
g <b c, if cd ∈ I and

{
gh <r ef, if ef /∈ I
g <b e, if ef ∈ I imply v1 ≤t h <t b

and v1 ≤b g <b {a, c, e}. Since v1e ∈ E and we already know that v1 <b e, we get
e <t v1. By ab <` cd <` ef , we have that a <t c <t e and b <b d ≤b c. Putting it all
together gives a <t c <t v1 <t b and {v1, b} <b {a, c}, which in particular show that
v1a, v1c, bc ∈ E.

– If v1b ∈ E, then 〈v1, a, b〉 is an S-triangle of G.

– If ac ∈ E, then 〈v1, a, c〉 is an S-triangle of G.

– If v1b, ac /∈ E, then 〈v1, a, b, c〉 is an S-square of G.

• Let 〈v1, v2, v3, e〉 be an S-square. By the previous arguments, if v1 ∈ S or v3 ∈ S, then
we obtain an S-cycle in G induced by vertices of Y ∪{a, b, c, d}. So, let us assume that
v2 ∈ S. Since a, b, c, d /∈ S, we have v2 ∈ Y ⊆ Vgh, which along with gh <r ab gives
v2 ≤t h <t b and v2 ≤b g <b a. By ab <` cd <` ef , we have a <t e and b <b f ≤b e.
Moreover, as 〈v1, v2, v3, e〉 is a square, we conclude that either {v1, v3} <t {v2, e} and
{v2, e} <b {v1, v3}, or {v2, e} <t {v1, v3} and {v1, v3} <b {v2, e}. Assume the former.
Then {v1, v3} <t b and b <b {v1, v3}, so that v1b, v3b ∈ E.

– If v2b ∈ E, then 〈v1, v2, b〉 is an S-triangle of G.

11

– If v2b /∈ E, then 〈v1, v2, v3, b〉 is an S-square of G.

Assume the latter. Then a <t {v1, v3} and {v1, v3} <b a, so that v1a, v3a ∈ E.

– If v2a ∈ E, then 〈v1, v2, a〉 is an S-triangle of G.

– If v2a /∈ E, then 〈v1, v2, v3, a〉 is an S-square of G.

Thus, in all cases we obtain an S-cycle of G induced by a subset of Y ∪ {a, b, c, d}, resulting
in a contradiction to (iv). Therefore, no subset of Y ∪ {a, b, c, d, e} induces an S-cycle of G.

(iv) ⇒ (iii). Symmetrical arguments to the previous case show this direction.

(ii)⇒ (i). Assume for contradiction that a subset of Y ∪{a, b, c, d, e, f} containing f induces
an S-cycle of G. The S-cycle is either an S-triangle or an S-square.

• Let 〈v1, v2, f〉 be an S-triangle. Since f /∈ S, without loss of generality, assume that
v1 ∈ S. Then v1 ∈ Y ⊆ Vgh because a, b, c, d, e are also not in S. By v1 ∈ Vgh and
gh <r {ab, ef}, we get v1 ≤t h <t {b, d, f} and v1 ≤b g <b a. Since v1f ∈ E and
we already know that v1 <t f , we get that f <b v1. By ab <` cd <` ef , we have
that a <t c <t d and b <b d <b f . Putting it all together gives {v1, a} <t {b, d} and
b <b d <b v1 <b a, which in particular show that v1b, v1d, ad ∈ E.

– If v1a ∈ E, then 〈v1, a, b〉 is an S-triangle of G.

– If bd ∈ E, then 〈v1, b, d〉 is an S-triangle of G.

– If v1a, bd /∈ E, then 〈v1, b, a, d〉 is an S-square of G.

• Let 〈v1, v2, v3, f〉 be an S-square. By the previous arguments, if v1 ∈ S or v3 ∈ S,
then we obtain an S-cycle in G induced by vertices of Y ∪ {a, b, c, d, e}. Assume that
v2 ∈ S. Since a, b, c, d, e /∈ S, we have v2 ∈ Y ⊆ Vgh, which along with gh <r ab gives
v2 ≤t h <t b and v2 ≤b g <b a. By ab <` cd <` ef , we have that a <t e <t f and b <b f .
Moreover, as 〈v1, v2, v3, f〉 is a square, we conclude that either {v1, v3} <t {v2, f} and
{v2, f} <b {v1, v3}, or {v2, f} <t {v1, v3} and {v1, v3} <b {v2, f}. Assume the former.
Then {v1, v3} <t b and b <b {v1, v3}, so that v1b, v3b ∈ E.

– If v2b ∈ E, then 〈v1, v2, b〉 is an S-triangle of G.

– If v2b /∈ E, then 〈v1, v2, v3, b〉 is an S-square of G.

Assume the latter. Then a <t {v1, v3} and {v1, v3} <b a, so that v1a, v3a ∈ E.

– If v2a ∈ E, then 〈v1, v2, a〉 is an S-triangle of G.

– If v2a /∈ E, then 〈v1, v2, v3, a〉 is an S-square of G.

Thus, in all cases we obtain an S-cycle of G induced by a subset of Y ∪{a, b, c, d, e}, resulting
in a contradiction to (ii). Therefore, no subset of Y ∪ {a, b, c, d, e, f} induces an S-cycle of
G.

(iii) ⇒ (i). Symmetrical arguments to the previous case show this direction.

Notice that all other directions ((ii) ⇒ (iii), (iii) ⇒ (ii), and (iv) ⇒ (i)), follow from the
previous cases. Therefore, all four statements are equivalent, as desired.

We now introduce the A-sets, B-sets and C-sets for this section.

A-sets Let ij ∈ X . Then,
Aij = max

w
{Y ⊆ Vij : G[Y] ∈ FS}.

12

b

t

i

i

Vii

Aii

b

t

i

i

x

x

Vii

Bxx
ii

b

t

i

i

x

x y

y

Vii

Bxy
ii

b

t

i

i

x

x y

y z

z

Vii

Cxy,zz
ii

b

t

i

i

x

x y

y z

z w

w

Vii

Cxy,zw
ii

b

t

i

i j

j

Vij

Aij

b

t

i

i j

j x

x

Vij

Bxx
ij

b

t

i

i j

j x

x y

y

Vij

Bxy
ij

b

t

i

i j

j x

x y

y z

z

Vij

Cxy,zz
ij

b

t

i

i j

j x

x y

y z

z w

w

Vij

Cxy,zw
ij

Figure 7: Illustrating the three sets Aij , B
xy
ij , and Cxy,zwij defined for permutation graphs.

The upper and lower parts show the sets for crossing pairs ii ∈ I and ij ∈ X \I, respectively.
Each figure depicts its respective set whenever {uv ∈ E : u, v ∈ {i, j, x, y, z, w}} constitutes
the set {uv : u ∈ {i, x, z} and v ∈ {j, y, w}}.

B-sets Let ij ∈ X and let x ∈ V \ Vij . Then,

Bxx
ij := max

w
{Y ⊆ Vij : G[Y ∪ {x}] ∈ FS}.

Moreover, let xy ∈ X \ I such that ij <r xy and x, y /∈ S. Then,

Bxy
ij := max

w
{Y ⊆ Vij : G[Y ∪ {x, y}] ∈ FS}.

C-sets Let ij ∈ X , xy ∈ X \I, and let z ∈ V \ (Vij ∪S) such that ij <r xy, j <t z or i <b z,
xy <` zz, and x, y /∈ S. Then,

Cxy,zzij := max
w
{Y ⊆ Vij : G[Y ∪ {x, y, z}] ∈ FS}.

Moreover, let zw ∈ X \ I such that ij <r zw, xy <` zw and z, w /∈ S. Then,

Cxy,zwij := max
w
{Y ⊆ Vij : G[Y ∪ {x, y, z, w}] ∈ FS}.

The corresponding sets are shown in Figure 7. Observe that, since V00 = {0} and w(0) = 0,
we have A00 = ∅ and, since Vπ(n)n = V , we have Aπ(n)n = maxw{X ⊆ V : G[X] ∈ FS}. The
following lemmas state how to recursively compute all A-sets, B-sets, and C-sets, other than
A00. We first consider the crossing pairs ii for the sets Aii, B

xx
ii , Bxy

ii , Cxy,zzii , and Cxy,zwii .

13

Lemma 4.3. Let i ∈ V \ {0}. Then Aii = ACii ∪ {i}.

Proof. Notice that i has no neighbor in G[Vii] and, thus, no subset of Vii containing i induces
an S-cycle of G. Therefore, if Y is a subset of VCii such that G[Y] ∈ FS , then G[Y ∪{i}] ∈ FS
as well. By Observation 4.1 (1), we get Aii = ACii ∪ {i}.

Lemma 4.4. Let i ∈ V and let x ∈ V \ Vii.

1. If ix /∈ E, then Bxx
ii = Aii.

2. If ix ∈ E, then Bxx
ii = Bxx

Cii ∪ {i}.

Proof. First assume that ix /∈ E. Since x /∈ Vii, we know that i <t x or i <b x. As ix /∈ E,
we have i <t x and i <b x, so x has no neighbor in G[Vii ∪{x}]. Thus, no subset of Vii ∪{x}
containing x induces an S-cycle of G. Hence, Bxx

ii = Aii follows.
Next assume that ix ∈ E. Then the neighbourhood of i in G[Vii∪{x}] is {x}. This means

that no subset of Vii ∪ {x} containing i induces an S-cycle of G. By Observation 4.1 (1), it
follows that Bxx

ii = Bxx
Cii ∪ {i}.

Lemma 4.5. Let i ∈ V and let xy ∈ X \ I such that ii <r xy and x, y /∈ S.

1. If iy /∈ E, then Bxy
ii = Bxx

ii .

2. If ix /∈ E, then Bxy
ii = Byy

ii .

3. If ix, iy ∈ E, then Bxy
ii =

{
Bxy

Cii , if i ∈ S
Bxy

Cii ∪ {i}, if i /∈ S.

Proof. By xy ∈ X \ I and ii <r xy, we have {i, x} <t y and {i, y} <b x. First assume that i
is non-adjacent to at least one of x and y. Let iy /∈ E. Then {i, x} <t y and i <b y <b x, so
that the neighborhood of y in G[Vii∪{x, y}] is {x}. Thus, no subset of Vii∪{x, y} containing
y induces an S-cycle of G, which implies that Bxy

ii = Bxx
ii . If ix /∈ E, completely symmetrical

arguments apply in showing the second statement.
Next assume that ix, iy ∈ E. Then x <t i <t y and y <b i <b x, so that the neighborhood

of i in G[X ∪ {x, y}] is {x, y}. We distinguish two cases according to whether i is in S.
Suppose that i ∈ S. Then 〈i, x, y〉 is an S-triangle of G, so that i /∈ Bxy

ii . By this fact and
Observation 4.1 (1), we get that Bxy

ii = Bxy
Cii.

Next suppose that i /∈ S. We will show that no subset of Vii∪{x, y} that contains i induces
an S-cycle of G. Recall that an induced cycle of a permutation graph is either a triangle or a
square. Assume that 〈v1, v2, i〉 is an S-triangle of G induced by a subset of Vii∪{x, y}. Since
the neighborhood of i in G[Vii ∪ {x, y}] is {x, y}, we obtain that {v1, v2} = {x, y}, which
implies a contradiction because i, x, y /∈ S. Next assume that 〈v1, v2, v3, i〉 is an S-square of
G induced by a subset of Vii ∪ {x, y}. As before, we obtain that {v1, v3} = {x, y}. This,
however, implies a contradiction, since xy ∈ E and v1v3 /∈ E by the S-square. Therefore, no
subset of Vii ∪ {x, y} containing i induces an S-cycle of G, so that i ∈ Bxy

ii . By this fact and
Observation 4.1 (1), we get that Bxy

ii = Bxy
Cii ∪ {i} and this completes the proof.

Lemma 4.6. Let i ∈ V , xy ∈ X \ I, and let z ∈ V \ (Vii ∪ S) such that ii <r xy, i <t z or
i <b z, xy <` zz, and x, y /∈ S.

1. If iz /∈ E, then Cxy,zzii = Bxy
ii .

2. If iz ∈ E, then Cxy,zzii =

{
Cxy,zzCii , if i ∈ S
Cxy,zzCii ∪ {i}, if i /∈ S.

14

Proof. First assume that iz /∈ E. This fact along with z /∈ Vii gives i <t z and i <b z, which
implies that z is non-adjacent to any vertex of Vii, so the neighborhood of z in G[Vii∪{x, y, z}]
is a subset of {x, y}. Since x, y, z /∈ S and xy ∈ E, no subset of Vii ∪ {x, y, z} containing z
induces an S-cycle of G. Thus Cxy,zzii = Bxy

ii .
Next assume that iz ∈ E. Then, either i <t z and z <b i hold, or z <t i and i <b z hold.

Since xy ∈ X \I such that ii <r xy and xy <l zz, we have {i, x} <t y and {i, y} <b x as well
as x <t z and y <b z. Putting together, we get either {i, x} <t {y, z} and y <b z <b i <b x,
or x <t z <t i <t y and {i, y} <b {x, z}. In particular, the former implies that iy, xz ∈ E
and the latter implies that ix, yz ∈ E. We distinguish two cases depending on whether i is
in S.

• Let i ∈ S. We will show that i /∈ Cxy,zzii . For the sake of contradiction, let i ∈ Cxy,zzii . If
both x and y are adjacent to i, then 〈i, x, y〉 is an S-triangle of G. If x is non-adjacent
to i, then iy, xz ∈ E must hold. If we additionally have yz ∈ E, then 〈i, y, z〉 is an
S-triangle of G; otherwise, 〈i, y, x, z〉 is an S-square of G. The case for y being non-
adjacent to i is completely symmetric. Therefore, we obtain an S-cycle of G induced
by a subset of {i, x, y, z}, which is a contradiction, so that i /∈ Cxy,zzii . By this fact and
Observation 4.1 (1), we get Cxy,zzii = Cxy,zzCii .

• Let i /∈ S. Let Y ⊆ VCii such that G[Y ∪ {x, y, z}] ∈ FS . We will show that G[Y ∪
{i, x, y, z}] ∈ FS . Assume for contradiction that there is an S-triangle 〈v1, v2, i〉 or an S-
square 〈v1, v2, v3, i〉 ofG induced by a subset of Y ∪{i, x, y, z}. Then, {v1, v2} ⊂ {x, y, z}
or {v1, v3} ⊂ {x, y, z}, respectively, since i is non-adjacent to any vertex of Y . In the
former case, we have a contradiction because i, x, y, z /∈ S. In the latter case, notice
that v2 must be in S and, consequently, in Y . If {v1, v3} = {x, y}, then we reach a
contradiction to the S-square 〈v1, v2, v3, i〉 because xy ∈ E. Thus, either {v1, v3} =
{y, z}, or {v1, v3} = {x, z}. Without loss of generality, assume that {v1, v3} = {y, z}.
Then, yz /∈ E holds due to the square 〈v1, v2, v3, i〉 and, consequently, iy, xz ∈ E also
hold. This, however, implies that either 〈y, v2, x〉 is an S-triangle or 〈y, v2, z, x〉 is an
S-square of G depending on whether x is adjacent to v2, which is a contradiction to
v2 ∈ Y . Therefore, we obtain a contradiction in all cases, which means that no S-cycle
of G is induced by a subset of Y ∪ {i, x, y, z} containing i. By Observation 4.1 (1), we
get Cxy,zzii = Cxy,zzCii ∪ {i}.

In each case, we have shown the described equations and this completes the proof.

Lemma 4.7. Let i ∈ V and let xy, zw ∈ X \ I such that ii <r {xy, zw}, xy <` zw, and
x, y, z, w /∈ S.

1. If iw /∈ E, then Cxy,zwii = Cxy,zzii .

2. If iz /∈ E, then Cxy,zwii = Cxy,wwii .

3. If iz, iw ∈ E, then Cxy,zwii =

{
Cxy,zwCii , if i ∈ S
Cxy,zwCii ∪ {i}, if i /∈ S.

Proof. First assume that iw /∈ E. Since ii <r zw, we get i <t w and i <b w, which
implies that w has no neighbor in G[Vii]. Thus, the neighborhood of w in G[Vii∪{x, y, z, w}]
is a subset of {x, y, z}. Let Y ⊆ Vii such that G[Y ∪ {x, y, z}] ∈ FS . We will show that
G[Y ∪{x, y, z, w}] ∈ FS . Assume for contradiction that a subset of Y ∪{x, y, z, w} containing
w induces an S-cycle ofG. Such an S-cycle is either an S-triangle or an S-square. If 〈v1, v2, w〉
is an S-triangle, then {v1, v2} ⊂ {x, y, z}, which is a contradiction because x, y, z, w /∈ S.
Suppose that 〈v1, v2, v3, w〉 is an S-square. Then {v1, v3} ⊂ {x, y, z} and, since x, y, z, w /∈ S,
we get that v2 is in S and, thus, in Y ⊆ Vii.

15

• Assuming that {v1, v3} = {x, y} results in a contradiction to the square 〈v1, v2, v3, w〉
because xy ∈ E.

• Assume that {v1, v3} = {x, z}. If xz ∈ E, then 〈v1, v2, v3, w〉 is not a square, which
is a contradiction, so let xz /∈ E. This fact, along with xy <` zw, gives x <t z and
y <b x <b z. By the square and ii <r xy, zw, we get {x, z} <t v2 ≤t i <t y and
v2 ≤b i <b {x, z}. The previous inequalities imply that yz ∈ E. Then, either 〈x, v2, y〉
is an S-triangle or 〈x, v2, z, y〉 is an S-square of G depending on whether y is adjacent
to v2, which is a contradiction to v2 ∈ Y .

• Assume that {v1, v3} = {y, z}. If yz ∈ E, then 〈v1, v2, v3, w〉 is not a square, which is a
contradiction. If yz /∈ E, then, by this fact and ij <r {xy, zw}, we get v2 ≤t j <t y <t z
and v2 ≤b i <b w <b z, which imply that v2z /∈ E, resulting in a contradiction to the
square 〈v1, v2, v3, w〉.

Thus, no subset of Y ∪{x, y, z, w} induces an S-cycle of G. Therefore, Cxy,zwii = Cxy,zzii . The
case for iz /∈ E is completely symmetric in showing the second statement.

Now assume that iz, iw ∈ E. Together with the inequalities implied by iz, iw ∈ E,
ii <r {xy, zw}, and xy <` zw, give x <t z <t i <t {y, w} and y <b w <b i <b {x, z}. Thus,
the neighborhood of i in G[Vii∪{x, y, z, w}] is {x, y, z, w}. Assume that i ∈ S. Then 〈i, x, y〉 is
an S-triangle of G, which implies that i /∈ Cxy,zwii . By this fact and Observation 4.1 (1), we get
Cxy,zwii = Cxy,zwCii . Now let us assume that i /∈ S. Let Y ⊆ VCii such that G[Y ∪{x, y, z, w}] ∈
FS . We will show that G[Y ∪{i, x, y, z, w}] ∈ FS . Assume for contradiction that a subset of
Y ∪ {i, x, y, z, w} containing i induces an S-cycle of G.

• Let 〈v1, v2, i〉 be an S-triangle of G induced by a subset of Y ∪ {i, x, y, z, w}. Then
{v1, v2} ⊂ {x, y, z, w}, which yields a contradiction because i, x, y, z, w /∈ S.

• Let 〈v1, v2, v3, i〉 be an S-square of G induced by a subset of Y ∪ {i, x, y, z, w}. Then
{v1, v3} ⊂ {x, y, z, w}. Since i, x, y, z, w /∈ S, we get v2 ∈ S and, thus, v2 ∈ Y . By the
square, v1 and v3 are non-adjacent, so we have either {v1, v3} = {x, z} or {v1, v3} =
{y, w}. If {v1, v3} = {x, z}, then either 〈x, v2, y〉 is an S-triangle or 〈x, v2, z, y〉 is an
S-square of G depending on whether y is adjacent to v2, which is a contradiction to
v2 ∈ Y . The case for {v1, v3} = {y, w} is completely symmetric.

Thus, no subset of Y ∪ {i, x, y, z, w} induces an S-cycle of G. Therefore, by Observa-
tion 4.1 (1), we obtain Cxy,zwii = Cxy,zwCii ∪ {i}.

Based on Lemmas 4.3–4.7, for each crossing pair of the form ii we can describe its
subsolution by using appropriate formulations of the A-, B-, or C-sets. In the forthcoming
lemmas we give the recursive formulations for the sets Aij , B

xx
ij , Bxy

ij , Cxy,zzij , and Cxy,zwij

whenever ij ∈ X \ I which particularly means that i and j are distinct vertices in G.

Lemma 4.8. Let ij ∈ X \ I. Then,

Aij =

 maxw

{
A Dij , AEij , Bii

<Cjj ∪ {i, j}, Bjj
<Cii ∪ {i, j}

}
, if i ∈ S or j ∈ S

maxw

{
A Dij , AEij , B

ij
Cij ∪ {i, j}

}
, if i, j /∈ S.

Proof. Let j /∈ Aij . Then by Observation 4.1 (1) it follows that Aij = A Dij . Similarly, if
i /∈ Aij then Aij = AEij . For the rest of the proof, we assume that i, j ∈ Aij . We distinguish
two cases according to whether i or j belong to S.

• Assume that i, j /∈ S. By the definition of Bij
Cij , we get Aij = Bij

Cij ∪ {i, j}, which
completes the second description in the formula.

16

• Assume that i ∈ S or j ∈ S. We show that all the vertices of Aij \ {i, j} are non-
adjacent to i or non-adjacent to j. Let h ∈ Aij \ {i, j}. If hi, hj ∈ E, then 〈h, i, j〉
is an S-triangle in G, resulting in a contradiction to h, i, j ∈ Aij . Thus for every
h ∈ Aij \ {i, j} we know that hi /∈ E or hj /∈ E. Let g, h ∈ Aij \ {i, j} such that
gj, hi ∈ E and gi, hj /∈ E. Observe that {g, h} <b i and {g, h} <t j, as g, h ∈ VCij . It
follows that j <b g and i <t h, so that gj, hi ∈ E. If i <t g or j <b h, then gi ∈ E or
hj ∈ E, which contradict our assumption, so g <t i and h <b j. Thus, g <t i <t h and
h <b j <b g hold, which in turn imply that gh ∈ E. Hence, 〈g, h, i, j〉 is an S-square
in G, leading to a contradiction to g, h, i, j ∈ Aij . Thus, if a vertex of Aij \ {i, j} is
adjacent to i (resp. to j), then all its vertices are non-adjacent to j (resp. to i). By
Observation 4.1 (2), it follows that either Aij \ {i, j} ⊆ V<Cjj or Aij \ {i, j} ⊆ V<Cii.
Suppose that the former holds. Observe that the neighborhood of j in G[V<Cjj ∪{i, j}]
is {i}. Thus, no subset of V<Cjj ∪ {i, j} containing j induces an S-cycle of G. This
means that Aij = Bii

<Cjj ∪ {i, j}, as described in the first case of the given formula.

Symmetrically, if Aij \ {i, j} ⊆ V<Cii then we have Aij = Bjj
<Cii ∪ {i, j}.

Therefore, the corresponding formulas given in the statement follow.

With the next two lemmas we describe recursively the sets Bxx
ij and Bxy

ij .

Lemma 4.9. Let ij ∈ X \ I and let x ∈ V \ Vij. Moreover let x′y′ = `- minX [{i, j, x}] and
let z′ be the remaining vertex of {i, j, x}.

1. If ix, jx /∈ E then Bxx
ij = Aij.

2. If ix ∈ E and jx /∈ E then

Bxx
ij =


maxw

{
BxxDij , B

xx
Eij , B

ii
<Cjj ∪ {i, j}, Bjj

<Cix ∪ {i, j}
}
, if i ∈ S or j ∈ S

maxw

{
BxxDij , B

xx
Eij , B

ij
Cij<Cxx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
BxxDij , B

xx
Eij , C

x′y′,z′z′

Cij ∪ {i, j}
}
, if i, j, x /∈ S.

3. If ix /∈ E and jx ∈ E then

Bxx
ij =


maxw

{
BxxDij , B

xx
Eij , B

ii
<Cxj ∪ {i, j}, Bjj

<Cii ∪ {i, j}
}
, if i ∈ S or j ∈ S

maxw

{
BxxDij , B

xx
Eij , B

ij
Cij<Cxx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
BxxDij , B

xx
Eij , C

x′y′,z′z′

Cij ∪ {i, j}
}
, if i, j, x /∈ S.

4. If ix, jx ∈ E then

Bxx
ij =

 maxw

{
BxxDij , B

xx
Eij

}
, if i ∈ S or j ∈ S or x ∈ S

maxw

{
BxxDij , B

xx
Eij , C

x′y′,z′z′

Cij ∪ {i, j}
}
, if i, j, x /∈ S.

Proof. Let us assume first that ix, jx /∈ E. Since i <t j, j <b i, and x ∈ V \ Vij , we know
that i <t j <t x and j <b i <b x. Thus, x has no neighbor in G[Vij ∪ {x}]. Hence, no subset
of Vij ∪ {x} containing x induces an S-cycle of G and it follows that Bxx

ij = Aij as described
in the first statement.

Assume next that ix ∈ E or jx ∈ E. Let j /∈ Bxx
ij . By Observation 4.1 (1), we get

Bxx
ij = BxxDij . Similarly, if i /∈ Bxx

ij then Bxx
ij = Bxx

Eij . So, suppose next that i, j ∈ Bxx
ij . We

distinguish the following cases, according to whether ix and jx belong to E.

17

• Assume that ix ∈ E and jx /∈ E. Since x /∈ Vij , j <t x or i <b x. If i <b x, then x <t i
as ix ∈ E, so we have x <t i <t j and j <b i <b x. However, this means that jx ∈ E
which contradicts our assumption. Thus j <t x holds. Since ix ∈ E and jx /∈ E, we
have i <t j <t x and j <b x <b i. We further reduce to subcases depending on whether
i, j, x belong to S.

– Let i ∈ S or j ∈ S. We show that all the vertices of Bxx
ij \ {i, j} are non-adjacent

to i or non-adjacent to j. Let h ∈ Bxx
ij \ {i, j} such that hi, hj ∈ E. Then

〈h, i, j〉 is an S-triangle of G, a contradiction. So, hi /∈ E or hj /∈ E for every
h ∈ Bxx

ij \ {i, j}. Let g, h ∈ Bxx
ij \ {i, j} such that gj, hi ∈ E. Since {g, h} <b i and

{g, h} <t j by the fact that g, h ∈ VCij , it follows that g <t i <t h and h <b j <b g.
Thus gh ∈ E. This, however, results in an S-square 〈g, h, i, j〉 of G, leading to
a contradiction to g, h, i, j ∈ Bxx

ij \ {i, j}. By Observation 4.1 (2), it follows that
either Bxx

ij \ {i, j} ⊆ V<Cjj or Bxx
ij \ {i, j} ⊆ V<Cii.

In the former case, notice that both j and x in G[V<Cjj∪{i, j, x}] are adjacent only
to i. Thus no subset of V<Cjj ∪ {i, j, x} that contains j or x induces an S-cycle of
G so that Bxx

ij = Bii
<Cjj ∪ {i, j}, as described.

In the latter case we have Bxx
ij \ {i, j} ⊆ V<Cii. Let h ∈ Bxx

ij \ {i, j}. Observe that
h <t i and h <b i. We show that hx /∈ E. Assume for contradiction that hx ∈ E.
This means that either h <t x and x <b h, or x <t h and h <b x. Observe that
h <t j and h <b i. Since i <t j <t x and j <b x <b i, we get h <t i <t j <t x
and j <b x <b h <b i. Thus hj ∈ E. This, however, shows that 〈h, j, i, x〉 is
an S-square of G, a contradiction, so hx /∈ E for every h ∈ Bxx

ij \ {i, j}. By
Observation 4.1 (3), it follows that Bxx

ij \ {i, j} ⊆ V<Cix. Notice that i and x are
adjacent only to j in G[V<Cix ∪ {i, j, x}]. Hence, no subset of V<Cix ∪ {i, j, x} that
contains i or x induces an S-cycle in G, so that Bxx

ij = Bjj
<Cix∪{i, j}, as described.

– Let i, j /∈ S and x ∈ S. Let h ∈ Bxx
ij \ {i, j}. Observe that h <t j and h <b i.

We show that hx /∈ E. Assume for contradiction that hx ∈ E. Then either
h <t x and x <b h hold, or x <t h and h <b x hold. Since i <t j <t x and
j <b x <b i, we have {h, i} <t j <t x and j <b x <b h <b i, implying that hj ∈ E.
If hi ∈ E, then 〈h, i, x〉 is an S-triangle, whereas if hi /∈ E, then 〈h, j, i, x〉 is an
S-square. Thus, we reach a contradiction, so hx /∈ E for every h ∈ Bxx

ij \ {i, j}.
Notice that the neighborhood of x in G[VCij<Cxx ∪ {i, j, x}] is {i}, so no subset of
VCij<Cxx ∪ {i, j, x} containing x induces an S-cycle of G. By Observation 4.1 (5),

we get Bxx
ij = Bij

Cij<Cxx ∪ {i, j}, as described.

– Let i, j, x /∈ S. By the fact Bxx
ij \ {i, j} ⊆ VCij , we have Bxx

ij = Cx
′y′,z′z′

Cij ∪ {i, j}.

• Assume that ix /∈ E and jx ∈ E. This case is symmetric to the one above, which
proves the stated formulas.

• Assume that both ix, jx ∈ E. Then no vertex of {i, x, y} belong to S, as 〈i, j, x〉 is a

triangle in G and i, j ∈ Bxx
ij . Since Bxx

ij \ {i, j} ⊆ VCij , we get Bxx
ij = Cx

′y′,z′z′

Cij ∪ {i, j}.

Therefore, we obtain the described formulas in all cases.

Let ij, xy ∈ X \ I such that ij <r xy. For the crossing pair uv = `- minX [{i, j, x, y}],
observe that u ∈ {i, x} and v ∈ {j, y}. This means that uv ∈ X \ I. Such an observation
reassures that the crossing pair x′y′ defined in the following three lemmas belongs to X \ I.

Lemma 4.10. Let ij, xy ∈ X \ I such that ij <r xy and x, y /∈ S. Moreover, if iy, jx ∈ E
then let x′y′ = `- minX [{i, j, x, y}] and let z′w′ = `- minX [{i, j, x, y} \ {x′, y′}].

18

1. If iy /∈ E, then Bxy
ij = Bxx

ij .

2. If jx /∈ E, then Bxy
ij = Byy

ij .

3. If iy, jx ∈ E, then

Bxy
ij =

 maxw

{
BxyDij , B

xy
Eij

}
, if i ∈ S or j ∈ S

maxw

{
BxyD

ij , B
xy
Eij , C

x′y′,z′w′

Cij ∪ {i, j}
}
, if i, j /∈ S.

Proof. Assume that iy /∈ E. Then j <b i <b y, because i <t j <t y, so that the neighborhood
of y in G[Vij∪{x, y}] is {x}. Thus no subset of Vij∪{x, y} that contains y induces an S-cycle
in G. Therefore Bxy

ij = Bxx
ij as described. If jx /∈ E then i is non-adjacent to x and, similar

to the previous case, we obtain Bxy
ij = Byy

ij .
Assume that iy, jx ∈ E. We distinguish cases depending on whether i or j belong to the

solution. Assume first that at least one of i or j does not belong to Bxy
ij . If j /∈ Bxy

ij then we
have Bxy

ij = BxyDij by Observation 4.1 (1); if i /∈ Bxy
ij then we get Bxy

ij = Bxy
Eij .

Next assume that i, j ∈ Bxy
ij . Notice that by Observation 4.1 (1), we have Bxy

ij \ {i, j} ⊆
VCij . Let us show that i, j /∈ S. If ix ∈ E or jy ∈ E then 〈i, x, y〉 or 〈j, x, y〉 is a triangle
in G, since iy, jx ∈ E. Otherwise, ix, jy /∈ E, so that 〈i, j, x, y〉 is a square in G. Thus, if
i ∈ S or j ∈ S then a subset of {i, j, x, y} induces an S-cycle in G, which is a contradiction

to i, j ∈ Bxy
ij . Hence i, j /∈ S. Since Bxy

ij \ {i, j} ⊆ VCij , it follows Bxy
ij = Cx

′y′,z′w′

Cij ∪ {i, j} as
required.

Lemma 4.11. Let ij, xy ∈ X \I and let z ∈ V \(Vij∪S) such that ij <r xy, xy <` zz, j <t z
or i <b z, and x, y /∈ S. Moreover, if iz ∈ E or jz ∈ E then let x′y′ = `- minX [{i, j, x, y, z}]
and let z′w′ = `- minX [{i, j, x, y, z} \ {x′, y′}].

1. If iz, jz /∈ E then Cxy,zzij = Bxy
ij .

2. If iz ∈ E or jz ∈ E then

Cxy,zzij =

 maxw

{
Cxy,zzDij , Cxy,zzEij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zzDij , Cxy,zzEij , Cx

′y′,z′w′

Cij ∪ {i, j}
}
, if i, j /∈ S.

Proof. First assume that iz, jz /∈ E. Then i <t j <t z and j <b i <b z. This means that the
neighborhood of z in G[Vij ∪ {x, y, z}] is a subset of {x, y}. We will show that no subset of
Vij ∪ {x, y, z} that contains z induces an S-cycle of G.

• Let 〈v1, v2, z〉 be an S-triangle induced by a subset of Vij ∪ {x, y, z}. Then {v1, v2} =
{x, y}, which leads to a contradiction because x, y, z /∈ S.

• Let 〈v1, v2, v3, z〉 be an S-square induced by a subset of Vij ∪{x, y, z}. Then {v1, v3} =
{x, y}, which leads to a contradiction because xy ∈ E.

Thus, no subset of Vij ∪ {x, y, z} containing z induces an S-cycle of G. Therefore, Cxy,zzij =
Bxy
ij holds.

Assume that iz ∈ E or jz ∈ E. We show the described formula given in the second
statement. We distinguish cases depending on whether i or j belong to Cxy,zzij . If j /∈ Cxy,zzij or
i /∈ Cxy,zzij then by Observation 4.1 (1) we get Cxy,zzij = Cxy,zzDij or Cxy,zzij = Cxy,zzEij , respectively.
The remaining case is i, j ∈ Cxy,zzij . By Observation 4.1 (3), notice that Cxy,zzij \{i, j} ⊆ VCij .

Assume that i ∈ S or j ∈ S. We will show that there is always an S-cycle of G induced
by a subset of {i, j, x, y} containing i and j, which is a contradiction to i, j ∈ Cxy,zzij .

19

• If ix ∈ E, then 〈i, j, x〉 is an S-triangle.

• If jy ∈ E, then 〈i, j, y〉 is an S-triangle.

• If ix, jy /∈ E, then 〈i, j, y, x〉 is an induced S-square.

Thus, i, j /∈ S. Let a′ be the vertex of {i, j, x, y, z} \ {x′, y′, z′, w′}. Observe that a′ /∈ S,
since S ∩ {i, j, x, y, z} = ∅. Applying Lemma 4.2 with gh = Cij, ab = x′y′, cd = z′w′,
and ef = a′a′, shows that for all Y ⊆ VCij , G[Y ∪ {x′, y′, z′, w′}] ∈ FS if and only if

G[Y ∪ {x′, y′, z′, w′, a′}] ∈ FS . This particularly implies that Cxy,zzij = Cx
′y′,z′w′

Cij ∪ {i, j}, as
described in the second statement.

The next lemma shows how to recursively compute Cxy,zwij , where ij, xy, zw ∈ X \ I.
Note that in each case we describe Cxy,zwij as a predefined smaller set of a subsolution that
is either of the same form or has already been described in one of the previous lemmas.

Lemma 4.12. Let ij, xy, zw ∈ X \I such that ij <r {xy, zw}, xy <` zw, and x, y, z, w /∈ S.
Moreover, if iw, jz ∈ E then let x′y′ = `- minX [{i, j, x, y, z, w}] and z′w′ = `- minX [{i, j, x,
y, z, w} \ {x′, y′}].

1. If iw /∈ E then Cxy,zwij = Cxy,zzij .

2. If jz /∈ E then Cxy,zwij = Cxy,wwij .

3. If iw, jz ∈ E then

Cxy,zwij =

 maxw

{
Cxy,zwDij , Cxy,zwEij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zwDij , Cxy,zwEij , Cx

′y′,z′w′

Cij ∪ {i, j}
}
, if i, j /∈ S.

Proof. First assume that iw /∈ E. Since i <t j <t w, we have i <b w. Thus, the neighborhood
of w in G[Vij∪{x, y, z, w}] is a subset of {x, y, z}. Let Y ⊆ Vij such that G[Y ∪{x, y, z}] ∈ FS .
We will show that G[Y ∪ {x, y, z, w}] ∈ FS . Assume for contradiction that a subset of
Y ∪ {x, y, z, w} containing w, induces an S-cycle. Since an S-cycle in G is either an S-
triangle or an S-square, we distinguish the following two cases:

• Let 〈v1, v2, w〉 be an S-triangle such that v1, v2 ∈ Y ∪{x, y, z}. Then {v1, v2} ⊂ {x, y, z},
which leads to a contradiction because x, y, z, w /∈ S.

• Let 〈v1, v2, v3, w〉 be an S-square such that v1, v2, v3 ∈ Y ∪ {x, y, z}. Then {v1, v3} ⊂
{x, y, z}. Since x, y, z, w /∈ S, we have v2 ∈ Y so that v2 ∈ S.

– Assume that {v1, v3} = {x, y}. Then we reach a contradiction because xy, yz ∈ E
and the S-square is induced.

– Assume that {v1, v3} = {x, z}. If xz ∈ E then we have a contradiction to the
S-square, so xz /∈ E. This fact along with xy <` zw gives x <t z and y <b x <b z.
By the S-square and ij <r {xy, zw}, we get {x, z} <t v2 ≤t j <t y and v2 ≤b i <b
{x, z}. The previous inequalities imply that yz ∈ E. Then either 〈x, v2, y〉 is an
S-triangle, or 〈x, v2, z, y〉 is an S-square of G depending on whether y is adjacent
to v2, which is a contradiction to v2 ∈ Y .

– Assume that {v1, v3} = {y, z}. If yz ∈ E then we have a contradiction to the
S-square. If yz /∈ E then, by ij <r {xy, zw}, we get v2 ≤t j <t y <t z and
v2 ≤b i <b w <b z, which imply that v2z /∈ E, again a contradiction to the
S-square.

20

Thus, no subset of Y ∪{x, y, z, w} induces an S-cycle of G. Therefore, Cxy,zwij = Cxy,zzij holds.
If jz /∈ E then similar arguments to the previous case for iw /∈ E show that Cxy,zwij =

Cxy,wwij .
Our remaining case is iw, jz ∈ E. If j /∈ Cxy,zwij then by Observation 4.1 (1) we get

Cxy,zwij = Cxy,zwDij . Similarly, if i /∈ Cxy,zwij then Cxy,zwij = Cxy,zwEij . So, let us assume that
i, j ∈ Cxy,zwij . Notice that, by Observation 4.1 (1), we know that Cxy,zwij \ {i, j} ⊆ VCij . We
distinguish two cases depending on whether i, j belong to S. If i ∈ S or j ∈ S then the
following S-cycles show that we reach a contradiction to i, j ∈ Cxy,zwij :

• If iz ∈ E then 〈i, j, z〉 is an S-triangle of G.

• If jw ∈ E then 〈i, j, w〉 is an S-triangle of G.

• If iz, jw /∈ E then 〈i, j, z, w〉 is an S-square of G.

So, let i, j /∈ S and let a′b′ = `- minX [{i, j, x, y, z, w}\{x′, y′, z′, w′}]. Observe that a′, b′ /∈ S,
since S ∩ {i, j, x, y, z, w} = ∅. Applying Lemma 4.2 with gh = Cij, ab = x′y′, cd = z′w′,
and ef = a′b′, shows that for all Y ⊆ VCij , G[Y ∪ {x′, y′, z′, w′}] ∈ FS if and only if

G[Y ∪ {x′, y′, z′, w′, a′, b′}] ∈ FS . By this fact, it follows that Cxy,zwij = Cx
′y′,z′w′

Cij ∪ {i, j}, as
described in the third statement.

It is important to notice that all described formulations are given recursively based on
Lemmas 4.3–4.12. Now, we are in position to state our claimed polynomial-time algorithm
for the SFVS problem on permutation graphs.

Theorem 4.13. Subset Feedback Vertex Set can be solved in O(m3) time on permu-
tation graphs.

Proof. Let us describe such an algorithm. Recall that we consider connected graphs with
n ≤ m for the analysis of its running time. Given a permutation π, that is, the orderings <t
and <b on the vertices of the input graph, we first compute all crossing pairs ij ∈ X . Observe
that |X | = |I|+ |X \ I| = n+m. For each crossing pair ij, we compute Dij, Eij, Cij, <Cij,
and Cij<Cxx for all x ∈ V \ Vij . Note that such a simple application requires O(n2) time
for every crossing pair ij, giving a total running time of O(n2m). Next, we scan all crossing
pairs of X according to their ascending order with respect to <r. For every crossing pair
ij, we compute Aij according to Lemmas 4.3 and 4.8. That is, for every crossing pair xy of
V \ Vij in descending order with respect to <` we compute Bxy

ij according to Lemmas 4.4,
4.5, 4.9, and 4.10. By the recursive formulations of Bxy

ij , for every crossing pair zw of V \Vxy
in descending order with respect to <` we compute Cxy,zwij according to Lemmas 4.6, 4.7,

4.11, and 4.12. In total, such computations require O(m3) time. At the end, the set Aπ(n)n
is the maximum weighted S-forest for G, so that V \ Aπ(n)n is exactly the minimum subset
feedback vertex set of (G,S).

5 Concluding remarks

We have given the first polynomial-time algorithms for SFVS on subclasses of AT-free graphs.
Despite our positive results, the complexity of SFVS on AT-free graphs still remains unre-
solved. Due to Theorem 2.1, we believe that such an approach towards AT-free graphs should
deal first with the complexity of the unweighted version of SFVS. Moreover, it is interesting
to settle the complexity of SFVS on other related graph classes such as strongly chordal
graphs or subclasses of AT-free graphs like trapezoid graphs or complements of triangle-free
graphs. Regarding graphs of bounded structural parameter and due to the nature of the

21

dynamic programming used for SFVS on interval and permutation graphs, it is interesting
to consider graphs of bounded maximum induced matching width introduced in [3].

Another interesting open question is concerned with problems related to terminal-sets
such as the Multiway Cut problem in which we want to disconnect a given set of terminals
by removing vertices of minimum total weight. As already mentioned in the Introduction, the
Multiway Cut problem reduces to the SFVS problem by adding a vertex s with S = {s}
that is adjacent to all terminals and whose weight is larger than the sum of the weights
of all vertices in the original graph [17]. Notice that such a reduction does not directly
work on interval or permutation graphs, since the augmented graph might not belong to
the same graph class. Nonetheless, and even though polynomial-time algorithms exist for
the Multiway Cut problem on interval graphs [24] and permutation graphs [31], it is still
interesting to explore whether we can apply our algorithms for the SFVS problem to the
Multiway Cut problem.

Acknowledgement

We thank the anonymous reviewers whose valuable suggestions helped improve the presen-
tation of the results.

References

[1] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and bayesian
inference. SIAM Journal on Computing, 27(4):942–959, 1998.

[2] A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem. Artificial Intelligence,
83(1):167 – 188, 1996.

[3] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algo-
rithmic applications. Theor. Comput. Sci., 511:54–65, 2013.

[4] A. Brandstädt. On improved time bounds for permutation graph problems. In Proceed-
ings of WG 1992, pages 1–10, 1985.

[5] A. Brandstädt and D. Kratsch. On the restriction of some NP-complete graph problems
to permutation graphs. In Proceedings of FCT 1985, pages 53–62, 1985.

[6] A. Brandstädt and D. Kratsch. On domination problems for permutation and other
graphs. Theoretical Computer Science, 54(2):181 – 198, 1987.

[7] A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial
and Applied Mathematics, 1999.

[8] B.-M. Bui-Xuan, O. Suchý, J. A. Telle, and M. Vatshelle. Feedback vertex set on graphs
of low clique-width. Eur. Journal of Combinatorics, 34(3):666–679, 2013.

[9] G. Calinescu. Multiway cut. In Encyclopedia of Algorithms. Springer, 2008.

[10] R. H. Chitnis, F. V. Fomin, D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh.
Faster exact algorithms for some terminal set problems. Journal of Computer and
System Sciences, 88:195–207, 2017.

22

[11] D. G. Corneil and J. Fonlupt. The complexity of generalized clique covering. Discrete
Applied Mathematics, 22(2):109 – 118, 1988.

[12] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory Comput. Syst., 33:125–150, 2000.

[13] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Subset feedback vertex
set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309, 2013.

[14] G. Even, J. Naor, and L. Zosin. An 8-approximation algorithm for the subset feedback
vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000.

[15] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In Encyclopedia
of Optimization, pages 1005–1016. Springer, 2009.

[16] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via mono-
tone local search. In Proceedings of STOC 2016, pages 764–775, 2016.

[17] F. V. Fomin, P. Heggernes, D. Kratsch, C. Papadopoulos, and Y. Villanger. Enumerating
minimal subset feedback vertex sets. Algorithmica, 69(1):216–231, 2014.

[18] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15:835–855, 1965.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co.,
1978.

[20] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs.
J. Algorithms, 50(1):49–61, 2004.

[21] P. A. Golovach, P. Heggernes, D. Kratsch, and R. Saei. Subset feedback vertex sets in
chordal graphs. J. Discrete Algorithms, 26:7–15, 2014.

[22] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete
Mathematics 57, Elsevier, 2004.

[23] M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. Int.
J. Found. Comput. Sci., 11(3):423–443, 2000.

[24] J. Guo, F. Huffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and exact
algorithms for vertex multicut in interval and bounded treewidth graphs. European
Journal of Operational Research, 186:542–553, 2008.

[25] D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on AT-free graphs. Discrete
Applied Mathematics, 156(10):1936–1947, 2008.

[26] Y. D. Liang. On the feedback vertex set problem in permutation graphs. Information
Processing Letters, 52(3):123 – 129, 1994.

[27] Y. D. Liang and M.-S. Chang. Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs. Acta Informatica, 34(5):337–346, 1997.

[28] C. L. Lu and C. Y. Tang. A linear-time algorithm for the weighted feedback vertex
problem on interval graphs. Information Processing Letters, 61(2):107–111, 1997.

[29] C. Maw-Shang. Weighted domination of cocomparability graphs. Discrete Applied
Mathematics, 80(2):135 – 148, 1997.

23

[30] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201:189–241, 1999.

[31] C. Papadopoulos. Restricted vertex multicut on permutation graphs. Discrete Applied
Mathematics, 160(12):1791–1797, 2012.

[32] C. Papadopoulos and S. Tzimas. Polynomial-time algorithms for the subset feedback
vertex set problem on interval graphs and permutation graphs. In Proceedings of FCT
2017, pages 381–394, 2017.

[33] J. P. Spinrad. Efficient Graph Representations. American Mathematical Society, Fields
Institute Monograph Series 19, 2003.

[34] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput.,
10(2):310–327, 1981.

24

A Appendix: enumeration of maximal S-forests of a co-bipartite
graph

Here we analytically enumerate the 22n4 maximal S-forests claimed in the proof of Theo-
rem 2.1 regarding a co-bipartite graph G = (V,E). We remind that (A,B) be a partition of
V such that such that G[A] and G[B] are cliques. Also, recall that V is further partitioned
as (AS , AR, BS , BR), where AS = A ∩ S, AR = A \ S, BS = B ∩ S and BR = B \ S. For
a vertex v of G and a set U ∈ {AS , BS , AR, BR} we denote by NU (v) the neighbors of v in
the set U , that is, NU (v) := N(v) ∩ U . Moreover, the symmetric difference of two sets L
and R is the set (L \R) ∪ (R \ L) and is denoted by L M R. Recall that (X,Y, Z,W) is the
partition of the vertex set of a maximal S-forest of G such that X ⊆ AS , Y ⊆ AR, Z ⊆ BS
and W ⊆ BR (see Figure 2). It is clear that |X| ≤ 2 and |Z| ≤ 2. Thus, it is sufficient to
consider the following cases with respect to X and Z:
• Let X = ∅ and Z = ∅. Then the maximal S-forest contains no vertex of S, so we can

safely include all vertices of V \ S. Thus the following set is a maximal S-forest of G:

1. (∅, AR, ∅, BR).

• Let X = {aS} and Z = ∅. Observe that |Y | ≤ 1, since G[X ∪ Y] is a clique. If
Y = ∅ then including at least two neighbors of aS that are contained in BR leads to an
S-cycle. Thus, we can safely include all non-neighbors of aS and exactly one neighbor
of aS contained in BR in the maximal S-forest. If Y = {aR} then including a neighbor
of aS and a neighbor of aR (may well be the same) that are contained in BR leads to
an S-cycle. If we do not include a neighbor of aS then we can safely include all other
vertices of BR. However, if we include a neighbor of aS that is non-adjacent to aR
then we can safely include all other vertices that are non-adjacent to both. Thus, the
following sets induce the corresponding maximal S-forests of G:

2. ({aS}, ∅, ∅, BR), where NBR
(aS) = ∅;

3. ({aS}, ∅, ∅, {bR} ∪ (BR \N(aS))), where bR ∈ NBR
(aS);

4. ({aS}, {aR}, ∅, BR \N(aS));

5. ({aS}, {aR}, ∅, {bR} ∪ (BR \N({aS , aR}))), where bR ∈ NBR
(aS) \NBR

(aR).

• Let X = ∅ and Z = {bS}. Completely symmetric arguments with the previous case
imply that the following sets induce the corresponding maximal S-forests of G:

6. (∅, AR, {bS}, ∅), where NAR
(bS) = ∅;

7. (∅, {aR} ∪ (AR \N(bS)) , {bS}, ∅), where aR ∈ NAR
(bS);

8. (∅, AR \N(bS), {bS}, {bR});
9. (∅, {aR} ∪ (AR \N({bS , bR})) , {bS}, {bR}), where aR ∈ NAR

(bS) \NAR
(bR).

• Let X = {aS} and Z = {bS}. Then both |Y | ≤ 1 and |W | ≤ 1. Thus, the following
sets induce the maximal S-forest of G:

10. ({aS}, ∅, {bS}, ∅), where {aS , bS} ∈ E and V \ S ⊆ N(aS) ∩N(bS);

11. ({aS}, {aR}, {bS}, ∅), where G[{aS , aR, bS}] is acyclic and BR ⊆ N(aS) ∪N(aR);

12. ({aS}, ∅, {bS}, {bR}), where G[{aS , bS , bR}] is acyclic and AR ⊆ N(bS) ∪N(bR);

13. ({aS}, {aR}, {bS}, {bR}), where G[{aS , aR, bS , bR}] is acyclic.

• Let X = {aS , a′S} and Z = ∅. Then |Y | = 0, since G[X ∪ Y] is a clique. Adding a
vertex of BR that is adjacent to both aS and a′S leads to an S-cycle. If we add a vertex
of BR that is adjacent to either aS or a′S then adding another such vertex leads to an
S-cycle. Thus, we can safely include all other vertices that are non-adjacent to either
aS or a′S .

25

14. ({aS , a′S}, ∅, ∅, BR \ (N(aS) ∩N(a′S))), where NBR
(aS) M NBR

(a′S) = ∅;
15. ({aS , a′S}, ∅, ∅, {bR} ∪ (BR \N({aS , a′S}))), where bR ∈ NBR

(aS) M NBR
(a′S).

• Let X = ∅ and Z = {bS , b′S}. Completely symmetric arguments with the previous case
imply that the following sets induce the corresponding maximal S-forest of G:

16. (∅, AR \ (N(bS) ∩N(b′S)), {bS , b′S}, ∅), where NAR
(bS) M NAR

(b′S) = ∅;
17. (∅, {aR} ∪ (AR \ (N(bS) ∪N(b′S))) , {bS , b′S}, ∅), where aR ∈ NAR

(bS) M NAR
(b′S).

• Let X = {aS , a′S} and Z = {bS}. Then |Y | = 0 and |W | ≤ 1. Thus, the following sets
induce the maximal S-forest of G:

18. ({aS , a′S}, ∅, {bS}, ∅), where G[{aS , a′S , bS}] is acyclic;

19. ({aS , a′S}, ∅, {bS}, {bR}), where G[{aS , a′S , bS , bR}] is acyclic.

• Let X = {aS} and Z = {bS , b′S}. Then similarly to the previous case we obtain the
following:

20. ({aS}, ∅, {bS , b′S}, ∅), where G[{aS , bS , b′S}] is acyclic.

21. ({aS}, {aR}, {bS , b′S}, ∅), where G[{aS , bS , b′S , a}] is acyclic.

• Let X = {aS , a′S} and Z = {bS , b′S}. Then |Y | = 0 and |W | = 0, so that the following
set induces such a maximal S-forest:

22. ({aS , a′S}, ∅, {bS , b′S}, ∅), where G[{aS , a′S , bS , b′S}] is acyclic.

Because |X|, |Y |, |Z|, |W | ≤ n, each described maximal S-forest gives at most n4 maximal
S-forests. Therefore, in total there are at most 22n4 maximal S-forests that correspond to
each particular case.

26

