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Abstract

The (Weighted) Subset Feedback Vertex Set problem is a generalization of
the classical Feedback Vertex Set problem and asks for a vertex set of minimum
(weight) size that intersects all cycles containing a vertex of a predescribed set of ver-
tices. Although Subset Feedback Vertex Set and Feedback Vertex Set exhibit
different computational complexity on split graphs, no similar characterization is known
on other classes of graphs. Towards the understanding of the complexity difference
between the two problems, it is natural to study the importance of structural graph
parameters. Here we consider graphs of bounded independent set number for which it
is known that Weighted Feedback Vertex Set can be solved in polynomial time.
We provide a dichotomy result with respect to the size α of a maximum independent
set. In particular we show that Weighted Subset Feedback Vertex Set can be
solved in polynomial time for graphs with α ≤ 3, whereas we prove that the problem
remains NP-hard for graphs with α ≥ 4. Moreover, we show that the (unweighted)
Subset Feedback Vertex Set problem can be solved in polynomial time on graphs
of bounded independent set number by giving an algorithm with running time nO(α).
To complement our results, we demonstrate how our ideas can be extended to other
terminal set problems on graphs of bounded independent set size. Node Multiway
Cut is a terminal set problem that asks for a vertex set of minimum size that intersects
all paths connecting any two terminals. Based on our findings for Subset Feedback
Vertex Set, we settle the complexity of Node Multiway Cut as well as its variants
where nodes are weighted and/or the terminals are deletable, for every value of the given
independent set number.

1 Introduction

Given a (vertex-weighted) graph G = (V,E) and a set S ⊆ V , the (Weighted) Sub-
set Feedback Vertex Set problem asks for a vertex set of minimum (weight) size that
intersects all cycles containing a vertex of S. Subset Feedback Vertex Set was in-
troduced in the context of approximation algorithms by Even et al. who obtained an 8-
approximation algorithm for its weighted version [14]. Cygan et al. [12] and Kawarabayashi
and Kobayashi [25] independently showed that Subset Feedback Vertex Set is fixed-
parameter tractable (FPT) parameterized by the solution size, while Hols and Kratsch pro-
vided a randomized polynomial kernel for the problem [21]. There has been a considerable
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amount of work to obtain faster, still exponential-time, algorithms even when restricted to
particular graph classes [6, 17, 16, 20, 33]. As a generalization of the classical Feedback
Vertex Set for which S = V , the problem remains NP-hard on bipartite graphs [37] and
planar graphs [18]. On the positive side, Weighted Subset Feedback Vertex Set can
be solved in polynomial time on interval graphs, permutation graphs, and cobipartite graphs
[32], the latter being a subclass of graphs of independent set size at most two. However a
notable difference between the two problems regarding their complexity status is the class
of split graphs: Feedback Vertex Set is known to be polynomial-time solvable on split
graphs [8, 35], whereas Subset Feedback Vertex Set remains NP-hard on split graphs
[17].

In order to obtain further (in)tractability results for Subset Feedback Vertex Set,
it is reasonable to consider structural parameters of graphs that may lend themselves to pro-
vide a unified approach. In terms of parameterized complexity Feedback Vertex Set is
known to be FPT, when parameterized by tree-width [10] and clique-width [2] which implies
that Feedback Vertex Set can be solved in polynomial time on graphs of bounded such
parameters. Although Feedback Vertex Set is W[1]-hard parameterized by the size of
a maximum independent set1, it can be solved in polynomial time on graphs of bounded
maximum induced matching (i.e., Feedback Vertex Set belongs in XP parameterized by
the size of a maximum induced matching) [24]. Only very recently, Jaffke et al. proposed
an algorithm that solves Weighted Feedback Vertex Set in time nO(w) where w is the
maximum induced matching width of the given graph [23]. Independently from the work of
[23], Bergougnoux and Kanté proposed the same result through the notion of neighbor equiv-
alence [1]. Despite their relevant name, graphs of bounded maximum induced matching (or
graphs of bounded independent set number) are not related to graphs of bounded maximum
induced matching width as indicated in [36].

The approach of [23] provides a powerful mechanism, as it unifies polynomial-time al-
gorithms for Weighted Feedback Vertex Set on several graph classes such as interval
graphs, permutation graphs, circular-arc graphs, and Dilworth-k graphs for fixed k, among
others. Such a mechanism raises the question of whether the algorithm given in [23] can be
extended to the more general setting of Weighted Subset Feedback Vertex Set. How-
ever the proposed algorithm is based on the crucial fact that the forest formed by deleting
the nodes of a solution has bounded number of internal nodes which is not necessarily true
for the S-forest of Weighted Subset Feedback Vertex Set. Thus it seems difficult
to control the size of the solution whenever S ⊂ V . As this observation does not rule out
any positive answer, here we develop the first step towards such an approach by considering
graphs of bounded independent set number which form candidate relevant graphs. Although
Weighted Feedback Vertex Set can be solved in time nO(p) on graphs of maximum
induced matching at most p [24], Subset Feedback Vertex Set is already NP-complete
on graphs of maximum induced matching equal to one (i.e., split graphs) [17]. Moreover,
by standard algorithmic techniques, Weighted Subset Feedback Vertex Set is FPT
when parameterized by the tree-width of the input graph.

In this work we show that the complexity behaviour of the weighted version of the
problem is completely different from the behaviour of the unweighted variant on graphs of
independent set number α.

• We show that Weighted Subset Feedback Vertex Set can be solved in polyno-
mial time on graphs with α ≤ 3.

Notice that graphs with α ≤ 3 properly contain the complements of triangle-free graphs and
recall that for triangle-free graphs Feedback Vertex Set remains NP-hard [37]. We solve

1In Section 4 we give a new and simpler reduction from the Multicolored Independent Set problem.
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Weighted Subset Feedback Vertex Set on such graphs, by exploiting a structural
characterization of the solution with respect to the vertices that are close to S.

• We further provide a dichotomy result showing that Weighted Subset Feedback
Vertex Set remains NP-complete on graphs with α ≥ 4.

Thus we enlarge our knowledge on the complexity difference of the two problems with respect
to a structural graph parameter.

• In order to complement our results, we show that Subset Feedback Vertex Set can
be solved in nO(α) time for any value of α. We further show that the running time of
our algorithm achieves a tight lower bound, under the Exponential Time Hypothesis.
The latter result is accomplished through a W[1]-hardness reduction that preserves
a linear blowup of the bigger parameter of clique cover number, combined with the
conditional lower bound given in [4].

Our findings concerning Subset Feedback Vertex Set are summarized in Table 1.
Moreover, we demonstrate how our ideas can be extended to other terminal set problems

on graphs of bounded independent set size. In the (unweighted) Node Multiway Cut
problem, we are given a graph G = (V,E), a terminal set T ⊆ V , and a nonnegative integer
k and the goal is to find a set X ⊆ V \ T of size at most k such that any path between two
different terminals intersects X. Node Multiway Cut is known to be in FPT parameter-
ized by the solution size [5, 29] and even above guaranteed value [11]. For further results on
variants of Node Multiway Cut we refer to [3, 19, 27]. We completely characterize the
complexity of Node Multiway Cut with respect to the size of the maximum independent
set.

• In particular, we show that for α ≤ 2 Node Multiway Cut can be solved in poly-
nomial time, whereas for α ≥ 3 it remains NP-complete by adapting the reduction for
Weighted Subset Feedback Vertex Set for α ≥ 4.

We further consider a relaxed variation of Node Multiway Cut in which we are allowed
to remove terminal vertices, called Node Multiway Cut with Deletable Terminals
(also known as Unrestricted Node Multiway Cut).

• We show that the (unweighted) Node Multiway Cut with Deletable Terminals
problem can be solved in polynomial time on graphs of bounded independent set num-
ber, using an idea similar to the polynomial-time algorithm for the Subset Feedback
Vertex Set problem.

• Regarding its node-weighted variation, we provide a complexity dichotomy result show-
ing that Weighted Node Multiway Cut with Deletable Terminals can be
solved in polynomial time on graphs with α ≤ 2, whereas it becomes NP-complete on
graphs with α ≥ 3.

We note that the polynomial-time algorithm for the weighted variation is obtained by invok-
ing our algorithm for Weighted Subset Feedback Vertex Set on graphs with α ≤ 3.

2 Preliminaries

All graphs considered here are simple and undirected. A graph is denoted by G = (V,E)
with vertex set V and edge set E. We use the convention that n = |V | and m = |E|. For
a set of vertices X ⊆ V , the subgraph of G induced by X is G[X] = (X, {uv ∈ E : u, v ∈
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Bounded Structural Parameter

Max. Independent Set (α) Max. Induced Matching (p)

Weighted FVS nO(p) [24]

Weighted SFVS
α ≤ 3 nO(1) Theorem 3.5

α ≥ 4 NP-complete Theorem 3.8

Unweighted SFVS nO(α) Theorem 4.1 NP-complete [17]

Table 1: Computational complexity results for Feedback Vertex Set (FVS) and Subset
Feedback Vertex Set (SFVS) on graphs of bounded independent set number and graphs
of bounded maximum induced matching. Note that every graph of independent set number
α has maximum induced matching of size at most α, while the converse is not necessarily
true (e.g., star graphs).

X}). The neighborhood of a vertex x of G is NG(x) = {v ∈ V : xv ∈ E}. For X ⊆ V ,
NG(X) =

⋃
v∈X NG(v) \X and NG[X] = NG(X) ∪X. Moreover, we denote by G −X the

graph induced by the vertices of V \X.
A weighted graph G = (V,E) is a graph, where each vertex v ∈ V is assigned a weight

that is a positive integer number. We denote by w(v) the weight of each vertex v ∈ V . For a
vertex set X ⊆ V , the weight of X, denoted by w(X), is

∑
v∈X w(v). A set of vertices is an

independent set if there is no edge between any pair of these vertices, and it is a clique if all
possible edges are present between pairs of these vertices. We say that a graph is connected
if there is a path between any pair of vertices. A connected component of G is a maximal
connected subgraph of G. A forest is a graph that contains no cycles and a tree is a forest
that is connected. For a positive integer k, a k-partite graph is a graph whose vertices can be
partitioned into k independent sets. When k = 2 or k = 3, the particular k-partite graphs
are called bipartite and tripartite graphs, respectively.

Given a graph G, the independent set number, denoted by α(G), is the size of a maximum
independent set in G. The clique cover number of G, denoted by κ(G), is the smallest number
of cliques needed to partition V into S1, . . . , Sk such that G[Si] is a clique. A vertex cover
is a set of vertices such that every edge of G is incident to at least one vertex of the set. A
matching is a set of edges having no common endpoint. An induced matching is a matching
M of p edges such that G[V (M)] contains only the edges of M . The maximum induced
matching number, denoted by µ(G), is the largest number of edges in any induced matching
of G. It is not difficult to see that for any graph G, κ(G) ≥ α(G) ≥ µ(G) holds.

Here we consider the following problem.

Input: A (vertex-weighted) graph G, a set S ⊆ V , and a nonnegative integer k.

Task: Decide whether there is a set X ⊆ V with |X| ≤ k (w(X) ≤ k) such that
no cycle in G−X contains a vertex of S.

(Weighted) Subset Feedback Vertex Set – SFVS

As remarked, we distinguish between the weighted and the unweighted version of the problem.
In the unweighted version of the problem note that all weights are equal and positive. The
classical Feedback Vertex Set (FVS) problem is a special case of Subset Feedback
Vertex Set with S = V . A vertex of S is simply called S-vertex. An induced cycle of G is
called S-cycle if an S-vertex is contained in the cycle. An induced subgraph F of G is called
S-forest if there is no S-cycle in F . It is not difficult to see that the problem of computing
a minimum weighted subset feedback vertex set is equivalent to the problem of computing a
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maximum weighted S-forest.
Let us give a couple of observations on the nature of Subset Feedback Vertex Set

on graphs of bounded independent set size. Firstly note that the bound on the size of
an independent set is a hereditary property; for every induced subgraph H of G, we have
α(H) ≤ α(G). Moreover for any clique C of G, any S-forest of G contains at most two
vertices of S ∩ C.

Observation 2.1. Let G be a graph with α = α(G) and let S ⊆ V .

(1) For any set X of at least 2α+ 1 vertices, there is a cycle in G[X].

(2) Any S-forest of G has at most 2α vertices from S.

Proof. Let X be a set of at least 2α+1 vertices. Assume that G[X] is a forest. As an induced
subgraph of G, any independent set of G[X] has size at most α. Since G[X] is acyclic, there
is a proper 2-coloring A,B of the vertices of G[X] such that |A| ≥ |B|. By the fact that
|A| ≤ α, we conclude that |A| + |B| ≤ 2α, leading to a contradiction that |X| ≥ 2α + 1.
Thus G[X] contains a cycle.

For the second statement, let F = (VF , EF ) be an S-forest of G. By the first statement,
if S ∩ VF has at least 2α + 1 vertices then there is a cycle in F [S ∩ VF ], which implies an
S-cycle in F . Thus |S ∩ VF | ≤ 2α.

We note that Observation 2.1 allows us to construct by brute force all possible subsets
of S belonging to any S-forest in nO(α) time.

We conclude this section by giving some definitions from the parameterized complexity
theory; for further details we refer to [9, 13]. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimension is the
input size n and the other is a parameter k associated with the input. The complexity
class XP is composed by all parameterized problems with input size n and parameter k that
can be solved in time nf(k) for some computable function f . A parameterized problem is
para-NP-hard if it is already NP-hard for a constant value of k. It is known that a para-
NP-hard problem cannot belong to XP, unless P=NP. A problem with input size n and
parameter k is fixed parameter tractable (FPT), if it can be solved in time f(k) · nO(1) for
some computable function f . Respectively, the complexity class FPT is composed by all fixed
parameter tractable problems. Parameterized complexity also provides tools to refute the
FPT algorithms under plausible complexity-theoretic assumptions. The main assumptions
is the conjecture that FPT 6= W[1] for the parameterized complexity class W[1]. The basic
way to show that it is unlikely that a parameterized problem admit an FPT algorithm is to
show that it is W[1]-hard using a parameterized reduction from a known W[1]-hard problem.

3 Weighted SFVS on Graphs of Bounded Independent Set
Size

Here we consider the Weighted Subset Feedback Vertex Set and we show a di-
chotomy result with respect to the size of the maximum independent set. We first provide a
polynomial-time algorithm on graphs of independent set size at most three and then we show
that Weighted Subset Feedback Vertex Set is NP-complete on graphs of independent
set size at least four.

Let (G,S, k) be an instance of Weighted Subset Feedback Vertex Set where G is
a graph of independent set size α = α(G). In the forthcoming arguments, instead of directly
computing a solution for Weighted Subset Feedback Vertex Set, we consider the
equivalent problem of computing an S-forest of G having weight at least w(V )− k.
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v1 v2 v3 v4

s1 s2 s3

F≤1

F>1

A1 = {v1, v2}
A2 = {v2, v3}
A3 = {v4}

C1 C2 C3

Figure 1: Illustrating an S-distance partition (F≤1, F>1) of an S-forest F with S = {s1, s2, s3}
that shows the connected components C1, C2, C3 of F>1. The edges inside F>1 are not drawn
in order to highlight that the cut satisfies the given tuple (A1, A2, A3).

Let H = (VH , EH) be an induced subgraph of G. Let S0 = S ∩VH and let S1 = NH(S0).
Furthermore, we denote by S≤1 the set S0 ∪ S1. We partition the graph H into two induced
subgraphs H≤1 and H>1 as follows:

• H≤1 is the subgraph H[S≤1] of H that is induced by the vertices that are at distance
at most one from the vertices of S0.

• H>1 is the subgraph H −S≤1 of H that is induced by the vertices that are at distance
at least two from the vertices of S0.

Such a partition is called the S-distance partition of H, denoted by (H≤1, H>1). The set of
edges of H having one endpoint in H≤1 and the other in H>1 is called the cut of the partition
(H≤1, H>1). Notice that a vertex of H≤1 that is adjacent to a vertex of H>1 belongs to S1.

Let (C1, . . . , Cd) be an ordering of the partition of the vertices of H>1 such that each Ci,
1 ≤ i ≤ d, induces a connected component in H>1. Because H>1 is an induced subgraph of
G, it is clear that d ≤ α. Let (A1, . . . , Ad) be a tuple of d subsets of S1, i.e., each Ai ⊆ S1
holds. Observe that (A1, . . . , Ad) neither partitions nor covers the set S1. We say that the cut
satisfies the tuple (A1, . . . , Ad) if for any vertex v ∈ Ci, we have (N(v) ∩ S≤1) ⊆ Ai. Recall
that an S-forest is an induced subgraph of G. Thus, an S-forest F of G admits an S-distance
partition (F≤1, F>1). The notion of an S-distance partition of F with the corresponding cut
is illustrated in Figure 1.

We now utilize the S-distance partition of H in order to construct an algorithm that
solves Weighted Subset Feedback Vertex Set on graphs of independent set size α
and subsequently show that this algorithm is efficient for α ≤ 3. Our general approach relies
on the following facts:

• By Observation 2.1 (2), we try all subsets S′ of S with at most 2α vertices and keep
those sets that induce a forest. This step is used in constructing the vertices of S
within the graph H≤1. In particular, for each such set S′, we construct all H≤1 such
that S0 = S′. We will show that the number of such subsets produced is bounded by
nO(α).

• For each of the potential subgraphs H≤1 constructed in the previous step, and for each
d ≤ α, we determine all possible tuples (A1, . . . , Ad) with Ai ⊆ S1 having the following
property: every induced subgraph of G whose S-distance partition’s first part is H≤1
and its cut satisfies the tuple (A1, . . . , Ad) is indeed an S-forest F of G. We show that
considering only these tuples is sufficient in Lemma 3.1.

6



• Up to that point, we can show that all steps can be executed in time nO(α). However
for the next and final step we can only achieve polynomial running time if we restrict
ourselves to α ≤ 3 due to the number of connected components of F>1. For each tuple
computed in the previous step, we find connected components C1, . . . , Cd of maximum
cumulative weight such that the cut of (F≤1, G[C1 ∪ · · · ∪ Cd]) satisfies the tuple. For
doing so, we take advantage of the small number of connected components (d ≤ 3) and
an efficient way of computing a vertex-cut between such components.

We begin by showing that the S-distance partition of H provides a useful tool towards
computing a maximum S-forest. Given a set of vertices X ⊆ N [S] and d subsets Ai of X \S,
we construct the graph auxA1,...,Ad

(X) that is obtained from G[X] by adding d vertices
w1, . . . , wd such that every vertex wi is adjacent to all the vertices of Ai. In what follows,
we always assume that G is a graph having independent set size α.

Lemma 3.1. Let F be an S-forest of G with S-distance partition (F≤1, F>1) such that
S0 6= ∅. Then for some d ≤ α, there is a tuple (A1, . . . , Ad) with Ai ⊆ S1 such that

(i) the cut of (F≤1, F>1) satisfies (A1, . . . , Ad) and

(ii) every induced subgraph H of G with S-distance partition (H[S≤1], H−S≤1) that satisfies
(A1, . . . , Ad) is an S-forest.

Proof. Let (C1, . . . , Cd) be an ordering of the partition of the vertices of F>1 such that every
Ci induces a connected component in F>1. We define a tuple (A1, . . . , Ad) in which every
Ai = N(Ci)∩S≤1, for 1 ≤ i ≤ d. Clearly Ai ⊆ S1 since every vertex F>1 is at distance at least
two from S0. Thus, by construction, the cut of (F≤1, F>1) satisfies the tuple (A1, . . . , Ad).

For the next claim, we first show that Ĝ := auxA1,...,Ad
(S≤1) is an S-forest. Assume for

contradiction that there is an S-cycle Ĉ in Ĝ. Since F≤1 does not contain any S-cycle, Ĉ
contains a vertex wi and at least two vertices ui, vi from Ai, for some 1 ≤ i ≤ d. By the fact
that Ai = N(Ci) ∩ S≤1, there are vertices xi and yi, not necessarily distinct, in Ci that are
adjacent to ui and vi, respectively. Since Ci induces a connected component of F>1, there is
a path between xi and yi that lies entirely in F>1[Ci]. This means that we can replace the
vertex wi of Ĉ by a path between xi and yi for every i, to obtain an S-cycle in F , leading to
a contradiction. Thus, Ĝ is an S-forest.

Let H be an induced subgraph of G with S-distance partition (H[S≤1], H − S≤1) that
satisfies (A1, . . . , Ad). Observe that H[S≤1] = F≤1 as they are induced subgraphs of the same
vertex set of G. Thus H[S≤1] does not contain any S-cycle, because F is an S-forest. Since
the cut of (H[S≤1], H − S≤1) satisfies (A1, . . . , Ad), there is a partition (T1, . . . , Td) of the
vertices of H − S≤1 such that Ti is a connected component of H − S≤1 and N(Ti) ⊆ Ai, for
1 ≤ i ≤ d. We show that H is indeed an S-forest. For contradiction, assume an S-cycle C in
H. There are no S-cycles in H[S≤1] which implies that C ∩ Ti 6= ∅, for some 1 ≤ i ≤ d. For
every such set, we replace the part C ∩Ti by a vertex w′i. Denote by H ′ the resulting graph.

Notice that H ′[C] is a subgraph of Ĝ[C] because NH′(w
′
i) ⊆ NĜ

(wi). This, however, implies

an S-cycle in Ĝ, which gives the desired contradiction. Therefore, H is an S-forest.

Notice that G − S is trivially an S-forest of G. Moreover, G − S is maximal among all
S-forests of G such that S0 = ∅. In what follows, we assume that S0 6= ∅ and show how to
bound the vertex set S≤1 of F≤1.

Lemma 3.2. Let F be an S-forest of G such that S0 6= ∅.

1. If |S0| ≤ 2α− 2 then |S≤1| ≤ 4α− 2.

2. If |S0| ≥ 2α− 1 then |S≤1| ≤ 2α.
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Proof. Let F be such an S-forest of G with |S0| ≥ 1. By Observation 2.1 (2), we know that
|S0| ≤ 2α. Notice that |S≤1| = |S0|+ |S1|. We consider separately the two cases of the claim.

Case 1. Let 1 ≤ |S0| ≤ 2α− 2. Assume for contradiction that |S≤1| > 4α− 2. We show that
F [S1] contains a matching with at least α edges. Applying Observation 2.1 (1) shows that
there is a cycle C in F [S≤1]. Since F is an S-forest, this is not an S-cycle, so all vertices
contained in C are vertices of S1. Let VM = ∅. Iteratively adding the two endpoints of an
edge of C to VM and applying Observation 2.1 (1) to F − VM as long as |S≤1 \ VM | > 2α,
we identify α edges of S1 such that all their endpoints are distinct. Thus, F [S1], and in
particular F [VM ], contains a matching M with at least α edges.

Let C1, . . . , Cd be the connected components of F [S0]. Notice that d ≤ α because F [S0]
is an induced subgraph of a graph with maximum independent set size α. By construction,
every vertex of S1 is adjacent to at least one vertex of S0. If the endpoints of an edge of
M in S1 are adjacent to vertices of the same component Ci, 1 ≤ i ≤ d, then there is an
S-cycle in F since every vertex of Ci belongs to S. Thus the endpoints of every edge of M
are adjacent to different connected components of F [S0]. Now obtain a bipartite graph by
contracting every component Ci into a single vertex and every edge of M into a single vertex
and keep only the adjacencies between the components and the edges of M . Let (A,B) be
the bipartition of the resulting bipartite graph such that A contains the components of F [S0]
and B contains the edges of M . Since |A| ≤ |B| and every vertex of B is adjacent to at least
two vertices of A, there is a cycle in the bipartite graph. Then, it is not difficult to see that
the cycle of the contracted vertices corresponds to an S-cycle in F . Therefore there is an
S-cycle in an S-forest, leading to a contradiction.

Case 2. Let 2α−1 ≤ |S0| ≤ 2α. Assume for contradiction that |S≤1| > 2α. We pick a subset
W of S1 such that |S0|+ |W | = 2α+ 1. Notice that 1 ≤ |W | ≤ 2. Then Observation 2.1 (1)
implies that there is a cycle in F [S0 ∪W ]. Since W has at most two vertices, we conclude
that the induced cycle of F [S0 ∪W ] has at least one vertex from S, hence it is an S-cycle in
F . Therefore, we reach a contradiction which implies that |S≤1| ≤ 2α.

Lemma 3.2 shows that we can compute all possible candidates for S≤1 in polynomial
time as follows.

• We first construct, by brute force, all subsets S′ of S having at most 2α vertices,
according to Observation 2.1 (2).

• Then, for each such subset S′, we incorporate a set Y ⊆ N(S′) \ S for which either
|S′|+ |Y | ≤ 4α− 2, or |S′|+ |Y | ≤ 2α, according to Lemma 3.2.

• Given the described sets S′ and Y , we check if G[S′ ∪ Y ] induces an S-forest and, if
so, we include S′ ∪ Y into a list L1 containing all candidates for S≤1.

The correctness follows from Observation 2.1 and Lemma 3.2. Regarding the running time,
notice that we create at most nO(α) subsets for each of S′ and Y ⊆ N(S′)\S. Thus, in nO(α)

time we can compute a list L1 that contains all possible candidates for (the solution’s) set
S≤1.

Let S≤1 be a set of L1. We now focus on the graph G′ = G − (S≤1 ∪ S) that contains
the vertices that are at distance of at least two from S0. Recall that we assume S0 6= ∅, by
the discussion prior to Lemma 3.2. Let d be the number of connected components of G′. It
is clear that d ≤ α. In fact, since |S0| ≥ 1 and the vertices of G′ are at distance of at least
two from S0, we have d < α.

By brute force, we find all tuples (A1, . . . , Ad) such that the following hold:

(i) Ai ⊆ S1, for every 1 ≤ i ≤ d, and
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(ii) the graph auxA1,...,Ad
(S≤1) is an S-forest.

Notice that by the proof of Lemma 3.1 (ii) it is sufficient to consider only such tuples. Since
Ai ⊆ S≤1, d < α, and |S≤1| ≤ 4α, the number of tuples is αO(α), so that we can obtain the
desired set of tuples that satisfy both conditions in polynomial time.

In what follows, we consider the case for α ≤ 3. By the previous arguments, we are given
a set S≤1 ⊆ N [S] and tuples of the form A1 or (A1, A2) which are subsets of S1. Our task
is to compute a subset V ′ of the vertices of G′ such that the vertices of S≤1 ∪ V ′ induce a
maximum S-forest and the cut of (G[S≤1], G[V ′]) satisfies A1 or (A1, A2), respectively. We
distinguish the two cases with the following two lemmas.

Lemma 3.3. Let X ⊆ N [S] and let A1 be a subset of X\S such that both G[X] and auxA1(X)
are S-forests. There exists a polynomial-time algorithm that computes a maximum S-forest
F such that S≤1 = X and the cut of its S-distance partition (F≤1, F>1) satisfies A1.

Proof. Since F≤1 is a fixed S-forest of F , we need to determine the vertices of V \ (X ∪ S)
that are included in F>1. By the desired cut of (F≤1, F>1), we are restricted to the vertices of
V \ (X ∪S) whose neighbors in F≤1 are only vertices of A1. Those vertices can be described
as follows:

B1 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A1} .
Since the cut satisfies a single subset A1, we have at most one connected component of G[B1]
in F>1. In order to choose the correct connected component of G[B1], we try to include each
of them in F>1 and select the one having the maximum total weight. Notice that adding any
component of G[B1] into F>1 cannot create any S-cycle, because auxA1(X) is an S-forest.
Thus, by Lemma 3.1, we correctly compute a maximum S-forest with the desired properties.
Clearly the set B1 can be constructed in polynomial time. Since the number of connected
components G[B1] is at most two, all steps can be executed in polynomial time.

Next, we consider the case when we have a tuple (A1, A2).

Lemma 3.4. Let X ⊆ N [S] and let A1, A2 be subsets of X \ S such that both G[X] and
auxA1,A2(X) are S-forests. There exists a polynomial-time algorithm that computes a maxi-
mum S-forest F such that S≤1 = X and the cut of its S-distance partition (F≤1, F>1) satisfies
(A1, A2).

Proof. Similar to the proof of Lemma 3.3, we first construct the sets B1 and B2 that contain
all vertices of V \(X∪S) whose neighbors in F≤1 are only vertices of A1 and A2 respectively:

B1 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A1} and

B2 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A2} .

As the desired cut of (F≤1, F>1) satisfies (A1, A2), there are two connected components of F>1

which are subsets of the two sets B1 and B2, respectively. Let C1 and C2 be the connected
components of F>1 such that C1 ⊆ B1 and C2 ⊆ B2. Now observe that there should be two
non-adjacent vertices c1 ∈ B1 and c2 ∈ B2 that belong to C1 and C2, respectively. We iterate
over all possible pairs of non-adjacent vertices c1 ∈ B1 ∩C1 and c2 ∈ B2 ∩C2 in O(n2) time.
Assuming a given choice for c1 and c2, observe the following:

• Since c1 and c2 are vertices of different connected components of F>1, the components
themselves are further restricted to be subsets of B1\N [c2] and B2\N [c1], respectively.
That is, C1 ⊆ (B1 \N [c2]) and C2 ⊆ (B2 \N [c1]).
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• Since F has at least one vertex of S, c1, c2 ∈ V \ (X ∪ S) are non-adjacent, and by
the fact d ≤ 3, we have that B1 \ N [c2] and B2 \ N [c1] induce cliques in G. Thus
B1 \N [c2] ⊆ N [c1] and B2 \N [c1] ⊆ N [c2], respectively.

Then by the second statement it is not difficult to see that B1 \ N [c2] and B2 \ N [c1] are
disjoint. Let B′1 = (B1 \ N [c2]) \ {c1} and B′2 = (B2 \ N [c1]) \ {c2}. Now in order to find
the maximum induced S-forest under the stated conditions and our assumption that c1 and
c2 belong to the two connected components of F>1, it suffices to find the maximum subset
C1 ∪ C2 of B′1 ∪ B′2 such that there are no edges between the vertices of C1 ∩ B′1 and the
vertices of C2 ∩B′2. This boils down to computing a minimum weighted vertex cover on the
bipartite graph G′ obtained from G[B′1∪B′2] and removing the edges inside G[B′1] and G[B′2].
By standard techniques using maximum flow arguments, we compute a minimum weighted
vertex cover U on G′ in polynomial time [30, 31]. Therefore, G[B′1 ∪ B′2] − U contains the
connected components C1 \ {c1} and C1 \ {c2}, as required.

Now we are equipped with the necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves Weighted Subset Feedback Vertex Set on
graphs of independent set number at most 3.

Theorem 3.5. Weighted Subset Feedback Vertex Set on graphs of independent set
number at most 3 can be solved in time nO(1).

Proof. Let us briefly explain such an algorithm for computing a maximum S-forest F of a
graph G having independent set size at most three. Initially we set F ∗ = G− S. Then, for
every set X ⊆ N [S] with |X| ≤ 4 · 3 such that G[X] is an S-forest, we try by brute force
every tuple A1 and (A1, A2) with Ai ⊆ (X \S) and check whether auxA1(X) or auxA1,A2(X)
is an S-forest. For each of such subsets, we find a maximum S-forest F with an S-distance
partition (G[X], F>1) having a cut satisfying A1 or (A1, A2), respectively, by applying the
algorithms described in Lemma 3.3 and Lemma 3.4. At each step, we maintain the maximum
weighted S-forest F ∗ by comparing F with F ∗. Finally we provide the vertices V \ V (F ∗)
as the set with the minimum total weight that are removed from G.

By Lemma 3.2, it is sufficient to consider the described subsets X. Since every induced
subgraph of G − X contains at most two connected components, Lemma 3.1 implies that
all possible subsets A1 or (A1, A2) with the described properties are enough to consider.
Thus, the correctness follows from Lemmata 3.2–3.4. Regarding the running time, notice
that whether a graph contains an S-cycle can be tested in polynomial time. Thus, we can
construct all described and valid subsets in nO(1) time. Therefore the total running time
of the algorithm is nO(1), since each of the algorithms given in Lemma 3.3 and Lemma 3.4,
respectively, requires polynomial time.

Let us now show that extending Theorem 3.5 to graphs of larger independent sets is
not possible. More precisely, with the following result we show that Weighted Subset
Feedback Vertex Set is para-NP-complete parameterized by α.

Theorem 3.6. Weighted Subset Feedback Vertex Set is NP-complete on graphs of
independent set number 4.

Proof. We will provide a polynomial reduction from the Vertex Cover problem on tri-
partite graphs which is NP-complete [18] and asks whether a tripartite graph G contains a
vertex cover of size at most k. Let G = (A,B,C,E) be a tripartite graph on n vertices, where
(A,B,C) is the partition of V (G). We construct a weighted graph G′ from G in polynomial
time as follows.

• We assign to all vertices of G unary weight.
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• We add a vertex s and the vertices uI , vI for I ∈ {A,B,C} and we assign weight n to
all those vertices.

• We add all necessary edges to turn each set {uI , vI}∪I into a clique, for I ∈ {A,B,C},
and we make s adjacent to each vertex uI , for I ∈ {A,B,C}.

This completes the construction of G′. It is not difficult to verify that the constructed graph
G′ is a graph having independent set number 4, since the vertices {s, vA, vB, vC} are pairwise
non-adjacent and the vertex set of G′ − {s} can be partitioned into three cliques.

Next we claim that G has a vertex cover U of size at most k < n if and only if G′ with
S = {s} has a subset feedback vertex set of weight at most k. Assume a vertex cover U of G.
By definition, U covers all edges of G, so that G− U is an independent set. It follows that
{uA, vA}∪ (A \U), {uB, vB}∪ (B \U) and {uC , vC}∪ (C \U) are the connected components
of G′ − ({s} ∪ U). Since s is only adjacent to the vertices uA, uB, and uC , no vertex set
containing s induces a cycle of G′−U . Thus, G′−U is a connected S-forest. Therefore U is
a subset feedback vertex set of (G′, {s}) of weight at most k, because all vertices of G have
unary weight in G′.

For the opposite direction, assume a subset feedback vertex set U of (G′, {s}) having
weight at most k < n. If U is not a subset of A ∪ B ∪ C, then its sum of weights is greater
or equal to n. Thus U is indeed a subset of A ∪ B ∪ C. Assume that U is not a vertex
cover of G. By definition, there is an edge of G that remains uncovered. Without loss
of generality, assume that this edge has its endpoints on the vertices x ∈ A and y ∈ B.
Then 〈s, uA, x, y, uB〉 is an induced cycle of G′, which contradicts the fact that U is a subset
feedback vertex set of (G′, {s}). Therefore U is a vertex cover of G of size at most k, because
all vertices of G have unary weight in G′.

We stress that Theorem 3.6 further implies that the NP-completeness result carries along
to graphs of clique cover number four, since the constructed graph given in the proof can be
partitioned into four disjoint cliques.

Corollary 3.7. Weighted Subset Feedback Vertex Set is NP-complete on graphs of
clique cover number 4.

Moreover, it is not difficult to generalize the reduction given in Theorem 3.6 on graphs
with larger independent set number.

Theorem 3.8. Weighted Subset Feedback Vertex Set is NP-complete on graphs of
independent set number at least 4.

Proof. Let α ≥ 4. We apply the same reduction as in the proof of Theorem 3.6. In particular,
the reduction comes from the Vertex Cover problem on (α − 1)-partite graphs which is
NP-complete for any α ≥ 4 [18]. Let G = (A1, . . . Aα−1, E) be an (α − 1)-partite graph on
n vertices, where A1, . . . Aα−1 is the partition of V (G). By constructing the graph G′ as
explained in Theorem 3.6, we conclude the reduction on the α− 1 sets A1, . . . Aα−1, instead
of the 3 sets A,B,C, for any value of α ≥ 4. Therefore, G has a vertex cover of size at most
k < n if and only if G′ with α(G′) = α and S = {s} has a subset feedback vertex set of
weight at most k.

4 SFVS on Graphs of Bounded Independent Set Size

Here we show that despite the complexity dichotomy result for the Weighted Subset
Feedback Vertex Set, whenever the weights of the vertices are equal Subset Feedback
Vertex Set can be solved in polynomial time on graphs of bounded independent set number.
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Theorem 4.1. Subset Feedback Vertex Set on graphs of independent set number α
can be solved in time nO(α).

Proof. Let G = (V,E) be a graph with α = α(G) and let S ⊆ V . Consider a set X ⊆ V that
is a minimum subset feedback vertex set of G. Then F = G−X is a maximum S-forest of
G. By Observation 2.1 (2), the S-vertices of F are at most 2α. Thus the set S \X contains
at most 2α vertices. We now claim that the set X \ S also contains at most 2α vertices.
To see this, observe that if X \ S was to contain more than 2α vertices, then S would be a
subset feedback vertex set of G containing fewer vertices than X, leading to a contradiction
to the optimality of X, hence X \ S must contain at most 2α vertices.

We conclude that in order to find such a set X, it suffices to consider all sets S′ ⊆ S and
X ′ ⊆ V \ S containing at most 2α vertices as candidates for S \X and X \ S respectively.
To see this, notice that X ∩S = S \ (S \X) and X = (X ∩S)∪ (X \S). Moreover, checking
whether an induced subgraph of G consists an S-forest takes O(n + m) time. Since the
number of such sets S′ and X ′ is at most 2n2α, the total running time is bounded by nO(α).
Therefore, in nO(α) time we compute a minimum subset feedback vertex set showing the
claimed result.

Regarding the dependence of the exponent in the running time of the algorithm given
in Theorem 4.1, note that we can hardly avoid this fact, since Feedback Vertex Set
is W[1]-hard parameterized by the independent set number as explicitly given in [24]. At
the same time such an observation follows from the construction given in [22] in order to
prove that Feedback Vertex Set is W[1]-hard parameterized by the maximum induced
matching width. In the following result, we provide a different and simpler reduction from the
Multicolored Independent Set problem [15, 34] which shows an interesting connection
with graphs of bounded independent set size.

Theorem 4.2. Feedback Vertex Set is W[1]-hard when parameterized by the clique
cover number.

Proof. The reduction comes from the Multicolored Independent Set problem: given a
graph G and a partition (V1, . . . , Vk) of V (G), decide whether G has an independent set of
size k containing exactly one vertex from each Vi. We call such a set a multicolor independent
set of G. It is known that Multicolored Independent Set is W[1]-hard parameterized
by k [15, 34]. Let (G,V1, . . . , Vk) be an instance of Multicolored Independent Set
where n = |V (G)|. From G we construct a graph H as follows.

• We make every set Vi clique by adding all necessary edges.

• For each Vi we add two vertices xi, yi that are adjacent to every vertex of Vi.

• We add a vertex z that is adjacent to all the vertices of G.

This completes the construction of H. Observe that |V (H)| = n + 2k + 1. Let X =
{x1, . . . , xk} and Y = {y1, . . . , yk}. Then X ∪ Y ∪ {z} forms an independent set in H of size
2k + 1. Notice also that the vertices of each Vi ∪ {xi} induce a clique, so that V (H) can be
partitioned into 2k + 1 cliques. Thus, the clique cover number of H is at most 2k + 1 which
implies that H has a clique cover number that is linearly dependent on k. We claim that G
has a multicolored independent set if and only if H has a feedback vertex set of size at most
n− k.

Let I = {v1, . . . , vk} be a multicolor independent set of G where vi ∈ Vi for each Vi. We
describe an induced forest F of H that contains 3k + 1 vertices starting from the vertices
of I. For each vertex vi, we add in F both vertices xi and yi. Notice that F thus far
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contains k disjoint trees of the form {vi, xi, yi}. Since z is non-adjacent to every vertex of
{x1, . . . , xk} ∪ {y1, . . . , yk}, we can safely include z in F . Thus F is an induced forest with
3k + 1 vertices, so that V (H) \ V (F ) constitutes a feedback vertex set of size n− k.

For the opposite direction, let U be a feedback vertex set of size n− k. Then F = H −U
is an induced forest of H that has at least 3k+ 1 vertices. We claim that from each Vi there
is exactly one vertex in F . Observe that, since each Vi is a clique in H, there are at most
two vertices from Vi in F . We consider the following cases and recall that both xi, yi are
only adjacent to all the vertices of Vi in H:

• If |Vi ∩ V (F )| = 0 then the vertices of {xi, yi} ∪ V (F ) induce a forest, since X ∪ Y is
an independent set in H.

• If |Vi ∩ V (F )| = 1 then the vertices of {xi, yi} ∪ V (F ) induce a forest, since X ∪ Y is
an independent set in H.

• If |Vi ∩ V (F )| = 2 then xi, yi /∈ V (F ), since both xi, yi are adjacent to the vertices of
Vi ∩ V (F ).

This means that |(Vi ∪ {xi, yi}) ∩ V (F )| ≤ 2 whenever |Vi ∩ V (F )| 6= 1, whereas we have
|(Vi ∪ {xi, yi}) ∩ V (F )| ≤ 3 whenever |Vi ∩ V (F )| = 1. Thus, if there is a set Vi such that
|Vi ∩ F | 6= 1, then

|V (F ) \ {z}| =
k∑
i=1

|Vi ∩ V (F )|+ |(X ∪ Y ) ∩ V (F )| =
k∑
i=1

|(Vi ∪ {xi, yi}) ∩ V (F )| < 3k.

This, however, shows that |V (F )| < 3k + 1, contradicting the fact that |V (F )| ≥ 3k + 1,
which implies that |Vi ∩ V (F )| = 1 for every Vi. In particular, we have |V (F ) ∩ V (G)| = k.
Now observe that X ∪ Y is an independent set in H and no vertex from X ∪ Y induces a
cycle with the vertices from F , so that (X ∪ Y ) ⊆ V (F ). Also, notice that if z /∈ V (F ) then
|V (F )| ≤ 3k. Hence, we conclude that z ∈ V (F ). Moreover, the vertices of V (G) ∩ V (F )
are pairwise non-adjacent, because z is a vertex of F and z is adjacent to every vertex of G.
Therefore, the k vertices of each of Vi ∩ V (F ) form an independent set in G.

Chen et al. [4] showed that k-Multicolored Independent Set admits no f(k) ·no(k)
time algorithm, under the Exponential Time Hypothesis (ETH). Notice that the reduction
provided in the proof of Theorem 4.2 is linear in the parameter k. Thus we get the following
result, conditioned on ETH:

Corollary 4.3. Feedback Vertex Set on graphs of clique cover number k cannot be
solved in f(k) · no(k) time, unless ETH fails.

It should be noted that the stated lower bound shows that the running time of our
algorithm given in Theorem 4.1 achieves a tight lower bound.

Corollary 4.4. Feedback Vertex Set on graphs of clique cover number k can be solved
in time nO(k).

Proof. Let G be a graph of independent set number α and clique cover number k. Recall
that k ≥ α. Thus by Theorem 4.1 we can solve Subset Feedback Vertex Set on G in
time nO(k). By choosing S = V (G), any S-forest is simply a forest of G. Therefore we get
the claimed result.
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5 Extending to other Terminal Set Problems

Let us now consider further terminal set problems that are related to Subset Feedback
Vertex Set. In this class of problems we are given a graph G = (V,E), a terminal set
T ⊆ V , and a nonnegative integer k and the goal is to find a set X ⊆ V with |X| ≤ k
which intersects all “structures” (such as cycles or paths) passing through the vertices in T
[7]. In this setting, Subset Feedback Vertex Set is a particular terminal set problem
where the structures to hit are cycles. We show that the ideas that we developed for Subset
Feedback Vertex Set on graphs of bounded independent set size can be extended to
further terminal set problems where the structures to hit are paths between two terminals
instead of cycles containing a terminal.

The (unweighted) Node Multiway Cut problem is concerned with finding a set X ⊆
V \ T of size at most k such that any path between terminals intersects X. It can be
formulated as follows.

Input: A graph G, a set T ⊆ V of terminals, and a nonnegative integer k.

Task: Decide whether there is a set X ⊆ V \T with |X| ≤ k such that any path
between two different terminals intersects X.

Node Multiway Cut

Notice that in this problem we are not allowed to remove any terminal. For graphs having
bounded independent set size, we completely characterize the complexity of Node Multi-
way Cut. In particular, for graphs of independent set number at most three we can adapt
the reduction given in Theorem 3.6.

Theorem 5.1. Node Multiway Cut can be solved on graphs of independent set number
at most 2 in nO(1) time. Moreover, Node Multiway Cut is NP-complete on graphs of
independent set number at least 3.

Proof. Let (G,T, k) be an instance of Node Multiway Cut. If G[T ] contains an edge then
we conclude that (G,T, k) is a no-instance, since we are not allowed to remove any vertex
from T . In what follows we assume that G[T ] is an independent set. If α(G) ≤ 2 there are
at most two terminals, so that |T | = 2, and we can solve the problem by standard maximum
flow techniques [31].

For α(G) ≥ 3, we give a reduction from the NP-complete Vertex Cover problem on
α(G)-partite graphs, similar to the one given in Theorem 3.6. We give the concrete reduction
for α(G) = 3 which can be straightforward generalized for α(G) > 3. Let G = (A,B,C,E)
be a tripartite graph where (A,B,C) is the partition of V (G). We construct a graph G′

from G by making the three independent sets A, B and C into cliques and adding three
new vertices tA, tB, tC , that are adjacent to every vertex of A, B, and C, respectively. It
is clear that G′ has independent set size 3. We let T = {tA, tB, tC} and claim that G has
a vertex cover U of size at most k if and only if G′ has a set X of size at most k which
intersects every path between the vertices of T . Removing a vertex cover U from G results
in a vertex-disjoint union of three cliques in G′ in which each of the vertices tA, tB, tC belongs
to a separate clique. Thus X = U is a solution for Node Multiway Cut on G′. For the
opposite direction, observe that X cannot contain any of the three vertices tA, tB, tC . Assume
that X is not a vertex cover of G. Then there is an edge {a, b} that is not covered by X
where a and b belong to different partitions of V (G). Let ta and tb be the terminal vertices
of {tA, tB, tC} which are adjacent to a and b, respectively, in G′. Then it is clear that there
is a path between the terminals ta and tb in G′ −X, leading to a contradiction. Therefore,
X is a vertex cover of G of size at most k.
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Due to the difficulty of Node Multiway Cut even for the unweighted version and with
a small size of independent set, we consider a relaxed variation in which we are allowed to
remove terminal vertices.

Input: A (vertex-weighted) graph G, a set T ⊆ V of terminals, and a nonnegative
integer k.

Task: Decide whether there is a set X ⊆ V with |X| ≤ k (w(X) ≤ k) such that
any path between two different terminals intersects X.

(Weighted) Node Multiway Cut with Deletable Terminals

Next, we show that the (unweighted) Node Multiway Cut with Deletable Terminals
problem can be solved in polynomial time on graphs of bounded independent set number,
using an idea similar to the one given in Theorem 4.1.

Theorem 5.2. Node Multiway Cut with Deletable Terminals on graphs of inde-
pendent set number α can be solved in time nO(α).

Proof. Let (G,T, k) be an instance of Node Multiway Cut with Deletable Terminals
whereG is a graph having independent set size at most α. If |T | ≤ k then removing all vertices
of T results in a trivial solution. In what follows, we assume that |T | > k. Observe that
every solution X has size at most |T |. Assume first that |T | ≤ α. Then we can enumerate all
subsets having at most |T | vertices in time nO(|T |) and pick the smallest subset that separates
all terminals. Thus in time nO(α) we output a valid solution X, if it exists.

Next assume that α < |T |. We consider the graph G[T ]. As an induced subgraph of G,
G[T ] has independent set size at most α. Thus, G[T ] contains at least one edge. If neither
endpoint of an edge in G[T ] belongs to solution X, then there is a path between terminal
vertices. This means that there is a vertex cover U of G[T ] such that U ⊆ X. To compute
such a set U , we enumerate all independent sets T ′ ⊆ T of size at most α in time |T |O(α)
and construct U = T \ T ′. For each constructed U , we consider the graph G′ = G − U
with terminals T ′. Since T ′ is an independent set in G′, we know that |T ′| ≤ α. Thus, in
time nO(|T

′|) we can compute a set X ′ of minimum size such that all terminals of G′ − X ′
are separated. Therefore, the total running time is bounded by |T |O(α) · nO(|T ′|) which is
bounded by nO(α), because |T | ≤ n and |T ′| ≤ α.

Let us also stress that we can hardly avoid the dependence of the exponent in the running
time given in Theorem 5.2. This comes from the fact that Node Multiway Cut with
Deletable Terminals with T = V (G) is equivalent to asking whether the graph contains
an independent set of size at least k. That is, we have to solve the Independent Set which
is known to be W[1]-hard parameterized by the size of the independent set [13].

Regarding the node-weighted variant of Node Multiway Cut with Deletable Ter-
minals, we provide a dichotomy result with respect to α. In fact, for α ≤ 2 we can invoke
the algorithm for the Weighted Subset Feedback Vertex Set given in Theorem 3.5,
by adding a new vertex with a large weight that is adjacent to all terminals. Moreover, due
to its close connection to the Node Multiway Cut, for α ≥ 3 we can assign appropriate
weights to the terminals in a way that they become undeletable. Both ideas are explained
in the proof of the following result.

Theorem 5.3. Weighted Node Multiway Cut with Deletable Terminals can be
solved on graphs of independent set number at most 2 in nO(1) time. Moreover, Weighted
Node Multiway Cut with Deletable Terminals is NP-complete on graphs of inde-
pendent set number at least 3.
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Proof. Let (G,T ) be an instance of Weighted Node Multiway Cut with Deletable
Terminals and assume that α(G) ≤ 2. We create an equivalent instance for the Weighted
Subset Feedback Vertex Set problem. Starting from G, we obtain a new graph G′ by
adding a vertex s that is adjacent to all terminals of T and has w(T ) + 1 weight. Since
we only added one vertex, the size of a maximum independent set of G′ is at most 3.
Next we claim that a subset of V (G′) is a solution for Weighted Subset Feedback
Vertex Set on the instance (G′, {s}) if and only if it consists a solution for Weighted
Node Multiway Cut with Deletable Terminals on (G,T ). Notice that a solution for
Weighted Subset Feedback Vertex Set on (G′, {s}) cannot contain the new vertex s
due its assigned weight. Also observe that any cycle in G′ passing through s corresponds to
a path in G connecting two terminals of T and vice versa. Thus by running the algorithm of
Theorem 3.5 on (G′, {s}), we obtain a solution for Weighted Node Multiway Cut with
Deletable Terminals on (G,T ) in nO(1) time.

Now let (G,T, k) be an instance for the (unweighted) Node Multiway Cut and assume
that α(G) ≥ 3. We assign weight n to every terminal of T and unary weight to every
other vertex. Thus the solutions on (G,T, k) contain only non-terminal vertices for both
the (unweighted) Node Multiway Cut and the Weighted Node Multiway Cut with
Deletable Terminals problems which implies that they are equivalent. Therefore the NP-
completeness of Weighted Node Multiway Cut with Deletable Terminals follows,
since the (unweighted) Node Multiway Cut is NP-complete on graphs of independent set
size at least three by Theorem 5.1.

6 Concluding Remarks

Despite the fact that the Weighted Subset Feedback Vertex Set is NP-complete on
graphs with bounded independent set number, it is still interesting to settle the complexity
of Subset Feedback Vertex Set on graphs of maximum induced matching width by
extending the approach given in [23]. Towards such a direction, Dilworth-k graphs seem a
possible candidate for clarifying the complexity status of Subset Feedback Vertex Set
(for an exposition of such parameters, see for e.g. [36]). Moreover, Feedback Vertex Set
is known to be polynomial-time solvable on cocomparability graphs [28], and, more generally,
on AT-free graphs [26]. To our knowledge, Subset Feedback Vertex Set has not been
studied on such graphs, besides the existence of a fast exponential-time algorithm for the
unweighted variant of the problem [7]. Concerning such an approach, our results indicate
that it is natural and compelling to settle first the unweighted Subset Feedback Ver-
tex Set problem. Furthermore, Theorem 5.1 shows that Node Multiway Cut remains
NP-complete on graphs having maximum induced matching three. However, on graphs
of bounded maximum induced matching the complexity of Node Multiway Cut with
Deletable Terminals is still unknown.
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[2] B.-M. Bui-Xuan, O. Suchý, J. A. Telle, and M. Vatshelle. Feedback vertex set on graphs
of low clique-width. Eur. Journal of Combinatorics, 34(3):666–679, 2013.

[3] G. Calinescu. Multiway cut. In Encyclopedia of Algorithms. Springer, 2008.

[4] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci., 72:1346–1367, 2006.

[5] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica, 55:1–13, 2009.

[6] R. H. Chitnis, F. V. Fomin, D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh.
Faster exact algorithms for some terminal set problems. In Proceedings of IPEC 2013,
pages 150–162, 2013.

[7] R. H. Chitnis, F. V. Fomin, D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh.
Faster exact algorithms for some terminal set problems. Journal of Computer and
System Sciences, 88:195–207, 2017.

[8] D. G. Corneil and J. Fonlupt. The complexity of generalized clique covering. Discrete
Applied Mathematics, 22(2):109 – 118, 1988.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[10] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single expo-
nential time. In Proceedings of FOCS 2011, pages 150–159, 2011.

[11] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut pa-
rameterized above lower bounds. ACM Trans. Comput. Theory, 5(1):3:1–3:11, 2013.

[12] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Subset feedback vertex
set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309, 2013.

[13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

[14] G. Even, J. Naor, and L. Zosin. An 8-approximation algorithm for the subset feedback
vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000.

[15] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61,
2009.

[16] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via mono-
tone local search. In Proceedings of STOC 2016, pages 764–775, 2016.

[17] F. V. Fomin, P. Heggernes, D. Kratsch, C. Papadopoulos, and Y. Villanger. Enumerating
minimal subset feedback vertex sets. Algorithmica, 69(1):216–231, 2014.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co.,
1978.

17



[19] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs.
J. Algorithms, 50(1):49–61, 2004.

[20] P. A. Golovach, P. Heggernes, D. Kratsch, and R. Saei. Subset feedback vertex sets in
chordal graphs. J. Discrete Algorithms, 26:7–15, 2014.

[21] E. C. Hols and S. Kratsch. A randomized polynomial kernel for subset feedback vertex
set. Theory Comput. Syst., 62:54–65, 2018.

[22] L. Jaffke, O. Kwon, and J. A. Telle. A note on the complexity of feedback vertex set
parameterized by mim-width. CoRR, abs/1711.05157, 2017.

[23] L. Jaffke, O. Kwon, and J. A. Telle. A unified polynomial-time algorithm for feedback
vertex set on graphs of bounded mim-width. In Proceedings of STACS 2018, pages
42:1–42:14, 2018.

[24] B. Jansen, V. Raman, and M. Vatshelle. Parameter ecology for feedback vertex set.
Tsinghua Sci. and Technol., 19(4):387–409, 2014.

[25] K. Kawarabayashi and Y. Kobayashi. Fixed-parameter tractability for the subset
feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B,
102(4):1020–1034, 2012.

[26] D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on AT-free graphs. Discrete
Applied Mathematics, 156(10):1936–1947, 2008.

[27] S. Kratsch and M. Wahlstrom. Representative sets and irrelevant vertices: new tools
for kernelization. In Proceedings of FOCS 2012, pages 450–459, 2012.

[28] Y. D. Liang and M.-S. Chang. Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs. Acta Informatica, 34(5):337–346, 1997.

[29] D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351:399–406,
2006.

[30] S. Micali and V. V. Vazirani. An O(sqrt(—v—) —e—) algorithm for finding maximum
matching in general graphs. In Proceedings of FOCS 1980, pages 17–27, 1980.

[31] J. B. Orlin. Max flows in O(nm) time, or better. In Proceedings of STOC 2013, pages
765–774, 2013.

[32] C. Papadopoulos and S. Tzimas. Polynomial-time algorithms for the subset feedback
vertex set problem on interval graphs and permutation graphs. In Proceedings of FCT
2017, pages 381–394, 2017.

[33] G. Philip, V. Rajan, S. Saurabh, and P. Tale. Subset feedback vertex set in chordal and
split graphs. Algorithmica, 81(9):3586–3629, 2019.

[34] K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst. Sci.,
67(4):757–771, 2003.

[35] J. P. Spinrad. Efficient Graph Representations. American Mathematical Society, Fields
Institute Monograph Series 19, 2003.

[36] M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen,
Norway, 2012.

18



[37] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput.,
10(2):310–327, 1981.

19


