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Abstract. In this paper we examine the classes of graphs whose Kn-complements are trees
or quasi-threshold graphs and derive formulas for their number of spanning trees; for a
subgraph H of Kn, the Kn-complement of H is the graph Kn � H which is obtained from Kn
by removing the edges of H . Our proofs are based on the complement spanning-tree matrix
theorem, which expresses the number of spanning trees of a graph as a function of the
determinant of a matrix that can be easily constructed from the adjacency relation of the
graph. Our results generalize previous results and extend the family of graphs of the form
Kn � H admitting formulas for the number of their spanning trees.
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1. Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph on n vertices. A spanning tree of G is an acyclic ðn� 1Þ-edge
subgraph; note that it is connected and spans G. Let Kn denote the complete graph
on n vertices. If H is a subgraph of Kn, then Kn � H is defined to be the graph
obtained from Kn by removing the edges of H ; the graph Kn � H is called the
Kn-complement of H . Note that, if H has n vertices, then Kn � H coincides with the
graph H , the complement of H .

The problem of calculating the number of spanning trees of a graph is an
important, well-studied problem. Deriving formulas for different types of graphs
can prove to be helpful in identifying those graphs that contain the maximum
number of spanning trees. Such an investigation has practical consequences
related to network reliability [2, 4, 13, 18].

Thus, for both theoretical and practical purposes, we are interested in deriving
formulas for the number of spanning trees of classes of graphs of the form
Kn � H . Many cases have already been examined. For example there exist for-
mulas for the cases when H is a pairwise disjoint set of edges [20], when it is a star
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[17], when it is a complete graph [1], when it is a path [5], when it is a cycle [5],
when it is a multi-star [3, 16, 22], and so on (see Berge [1] for an exposition of the
main results).

The purpose of this paper is to derive formulas regarding the number of
spanning trees of the graph G ¼ Kn � H in the cases where H is ðiÞ a tree on k
vertices, k � n, and ðiiÞ a quasi-threshold graph (or QT-graph for short) on p
vertices, p � n. A QT-graph is a graph that contains no induced subgraph
isomorphic to P4 or C4, the path or cycle on four vertices [7, 12, 15, 21]. Our
proofs are based on a classic result known as the complement spanning-tree
matrix theorem [19], which expresses the number of spanning trees of a graph
G as a function of the determinant of a matrix that can be easily constructed
from the adjacency relation (adjacency matrix, adjacency lists, etc.) of the
graph G. Calculating the determinant of the complement spanning-tree matrix
seems to be a promising approach for computing the number of spanning trees
of families of graphs of the form Kn � H , where H posses an inherent symmetry
(see [1, 3, 5, 16, 22, 23]). In our cases, since neither trees nor quasi-threshold
graphs possess any symmetry, we focus on their structural and algorithmic
properties. Indeed, both trees and quasi-threshold graphs possess properties
that allow us to efficiently use the complement spanning-tree matrix theorem;
trees are characterized by simple structures and quasi-threshold graphs are
characterized by a unique tree representation [10, 15] (see Section 2). We
compute the number of spanning trees of these graphs using standard
techniques from linear algebra and matrix theory on their complement
spanning-tree matrices.

Various important classes of graphs are trees, including paths, stars and multi-
stars. Moreover, the class of quasi-threshold graphs contains the classes of perfect
graphs known as threshold graphs and complete split (or, c-split) graphs (see
Remark 4.1) [6,8]. Thus, the results of this paper generalize previous results and
extend the family of graphs of the form Kn � H having formulas regarding the
number of spanning trees.

The paper is organized as follows. In Section 2 we establish the notation and
related terminology and we present background results. In particular, we show
structural properties for the class of quasi-threshold graphs and define a unique
tree representation of such graphs. In Sections 3 and 4 we present the results
obtained for the graphs Kn � T and Kn � Q, respectively, where T is a tree and Q is
a quasi-threshold graph. Finally, in Section 5 we conclude the paper and discuss
possible future extensions.

2. Definitions and Background Results

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph; then V ðGÞ and EðGÞ denote the set of vertices and of edges of G
respectively. The neighborhood NðxÞ of a vertex x 2 V ðGÞ is the set of all the
vertices of G that are adjacent to x. The closed neighborhood of x is defined as
N ½x� :¼ fxg [ NðxÞ.
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Let G be a graph on n vertices. The complement spanning-tree matrix A of the
graph G is defined as follows:

Ai;j ¼
1� di

n if i ¼ j,
1
n if i 6¼ j and ði; jÞ is not an edge of G,
0 otherwise,

8
<

:

where di is the number of edges incident to vertex ui in the complement of G; that
is, di is the degree of the vertex ui in G. It has been shown [19] that the number of
spanning trees sðGÞ of G is given by

sðGÞ ¼ nn�2 detðAÞ:

In the case where G ¼ Kn, we have that detðAÞ ¼ 1; Cayley’s tree formula [9] states
that sðKnÞ ¼ nn�2.

We next provide characterizations and structural properties of QT-graphs and
show that such a graph has a unique tree representation. The following lemma
follows immediately from the definition of G½S� as the subgraph of G induced by
the subset S of the vertex set V ðGÞ.

Lemma 2.1 ([10, 15]). If G is a QT-graph, then for every subset S � V ðGÞ, G½S� is
also a QT-graph.

The following theorem provides important properties for the class of
QT-graphs. For convenience, we define

centðGÞ ¼ fx 2 V ðGÞ j N ½x� ¼ V ðGÞg:

Theorem 2.1 ([10, 15]). Let G be an undirected graph.

(i) G is a QT-graph if and only if every connected induced subgraph
G½S�; S � V ðGÞ; satisfies centðG½S�Þ 6¼ ;.

(ii) G is a QT-graph if and only if G½V ðGÞ � centðGÞ� is a QT-graph.
(iii) Let G be a connected QT-graph. If V ðGÞ � centðGÞ 6¼ ;, then

G½V ðGÞ � centðGÞ� contains at least two connected components.

Let G be a connected QT-graph. Then V1 :¼ centðGÞ is not an empty set by
Theorem 2.1. Put G1 :¼ G, and G½V ðGÞ � V1� ¼ G2 [ G3 [ � � � [ Gr, where each Gi

is a connected component of G½V ðGÞ � V1� and r � 3. Then since each Gi is an
induced subgraph of G, Gi is also a QT-graph, and so let Vi :¼ centðGiÞ 6¼ ; for
2 � i � r. Since each connected component of Gi½V ðGiÞ � centðGiÞ� is also a
QT-graph, we can continue this procedure until we get an empty graph. Then we
finally obtain the following partition of V ðGÞ:

V ðGÞ ¼ V1 þ V2 þ � � � þ Vk;where Vi ¼ centðGiÞ:
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Moreover we can define a partial order � on fV1; V2; . . . ; Vkg as follows:

Vi � Vj if Vj � V ðGiÞ:

It is easy to see that the above partition of V ðGÞ possesses the following prop-
erties.

Theorem 2.2 ([10, 15]). Let G be a connected QT-graph, whose vertex set V(G) has
been partitioned into sets V1,V2,....,Vk, where V1 :¼cent(G). Then, the following
properties hold:

(P1) If Vi � Vj, then every vertex of Vi and every vertex of Vj are joined by an edge
of G.

(P2) For every Vj; centðG½f
S

Vi j Vi � Vjg�Þ ¼ Vj.
(P3) For every two Vs and Vt such that Vs � Vt, G½f

S
Vi j Vs � Vi � Vtg� is a com-

plete graph. Moreover, for every maximal element Vt of ðfVig;�Þ,
G½f
S

Vi j V1 � Vi � Vtg� is a maximal complete subgraph of G.
(P4) Every edge with both endpoints in Vi is a free edge; an edge ðx; yÞ is called free

if N ½x� ¼ N ½y�.
(P5) Every edge with one endpoint in Vi and the other endpoint in Vj, where Vi 6¼ Vj,

is a semi-free edge; an edge ðx; yÞ is called semi-free if either N ½x� � N ½y� or
N ½x� 	 N ½y�.

The results of Theorem 2.2 provide structural properties for the class of
QT-graphs. We shall refer to the structure that meets the properties of Theorem
2.2 as the cent-tree of the graph G and denote it by TcðGÞ. The cent-tree is a rooted
tree with root V1; every node Vi of the tree TcðGÞ is either a leaf or has at least two
children. Moreover, Vs � Vt if and only if Vs is an ancestor of Vt in TcðGÞ.

3. Trees

Let T be a tree on k vertices. In the following construction we view T as an
ordered, rooted tree: one vertex r 2 V ðT Þ is specified as the root and the children
of each vertex are given an ordering (the root is not considered a leaf if it has one
child). We partition the vertex set of the graph T , in the following manner:

We set T1 :¼ T and let leavesðT1Þ be the set of leaves of the tree T1. Then
V1 :¼ leavesðT1Þ is not an empty set. We delete the leaves of the tree T1 and let T2

be the resulting tree. We set V2 :¼ leavesðT2Þ and we continue this procedure until
we get an empty tree. Then, we finally obtain the following partition of V ðT Þ:

V ðT Þ ¼ V1 þ V2 þ � � � þ Vh;

where

Vi ¼ leavesðTiÞ; Tiþ1 ¼ Ti � leavesðTiÞ; and T1 ¼ T :

We call this partition the st-partition of the tree T .
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We consider the vertex sets V1; V2; . . . ; Vh of the st-partition of a graph T as
ordered sets; we here adopt the left-to-right ordering within T . Denote by V �1i ðujÞ
the position of the vertex uj in the ordered set Vi.

We label the vertices of T from 1 to k in the order that they appear in the
ordered sets V1; V2; . . . ; Vh. More precisely, if ‘i and ‘j denote the labels of the
vertices ui and uj, respectively, then ‘i < ‘j if and only if either both vertices ui and
uj belong to the same vertex set Vp and V �1p ðuiÞ < V �1p ðujÞ or vertices ui and uj

belong to different vertex sets Vp and Vq, respectively, and p < q. This labeling
defines a vertex ordering of T ; we call it the st-labeling of T .

Let ‘1; ‘2; . . . ; ‘k be the labels taken by the st-labeling of the tree T . For every
vertex ui of T , we define the vertex set chðiÞ � V ðT Þ as follows:

chðiÞ ¼ fuj 2 V ðT Þjuj 2 NðuiÞ and ‘i > ‘jg:

Hereafter, we shall also use i to denote the vertex ui of T , 1 � i � k. Note that
i 2 V ðT Þ is a leaf if and only if chðiÞ ¼ ;. Given a rooted tree T , we recursively
define the following function L on V ðT Þ:

LðiÞ ¼

ai if i is a leaf ,

ai � b2
X

j2chðiÞ

1

LðjÞ otherwise ,

8
>><

>>:

where ai ¼ 1� dib and b ¼ 1=n; recall that n � k and di is the degree of the
vertex i in T . We call L the st-function of T ; hereafter, we use Li to denote LðiÞ,
1 � i � k.

We consider the graph G ¼ Kn � T , where T is a tree on k vertices. We first
assign to each vertex of the graph G a label from 1 to n so that the vertices with
degree n� 1 obtain the smallest labels; that is, we label the vertices with degree
n� 1 from 1 to n� k. We label all the other vertices with degree less than n� 1
from n� k þ 1 to n according to the st-labeling of T . Notice that the vertices with
degree less than n� 1 induce the graph T in G.

Then, we form the complement spanning-tree matrix A of the graph G; it has
the following form:

A ¼
In�k

B

2

4

3

5;

where the submatrix B concerns those vertices of the graph Kn � T that have
degree less than n� 1; throughout the paper, empty entries in matrices or
determinants represent zeros. Let
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V1 ¼ ðu1; u2; . . . ; u‘Þ;

V2 ¼ ðu‘þ1; u‘þ2; . . . ; usÞ;

V3 ¼ ðusþ1; usþ2; . . . ; urÞ;

..

.

Vh ¼ ðukÞ

be the vertex sets of the st-partition of T ; recall that the vertices u1; u2; . . . ; uk of
Kn � T have degrees less than n� 1. Thus, B is a k 
 k matrix having the following
structure:

B ¼

a1

. .
.

a‘

a‘þ1 ðbÞj;i
. .

.

as

asþ1

ðbÞi;j . .
.

ar

. .
.

ak

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð1Þ

where, according to the definition of the complement spanning-tree matrix,
ai ¼ 1� dib, and the entries ðbÞi;j and ðbÞj;i of the off-diagonal positions ði; jÞ and
ðj; iÞ are both b if j 2 chðiÞ and 0 otherwise, 1 � j � i � k. Note that b ¼ 1=n and
di is the degree of the vertex i in T .

Starting from the upper left part of the matrix, the first ‘ rows of the matrix
correspond to the ‘ vertices of the set V1; the next s� ‘ rows correspond to the
vertices of the set V2, and so forth. The last row corresponds to the root of T .

From the form of the matrix A, we see that detðAÞ ¼ detðBÞ. Thus, we focus on
the computation of the determinant of matrix B.

In order to compute the determinant detðBÞ, we start by multiplying each
column i, 1 � i � ‘, of the matrix B by �b=ai and adding it to the column j if
ðbÞi;j ¼ b (i < j � k). This makes all the strictly upper-diagonal entries ðbÞi;j,
that is, for i < j � ‘, into zeros. Now expand in terms of rows 1; 2; . . . ; ‘,
getting
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detðBÞ ¼
Y‘

i¼1
Li

f ‘‘þ1
. .

.

f ‘s ðbÞj;i
f ‘sþ1

. .
.

ðbÞi;j f ‘r
. .

.

f ‘k

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

¼
Y‘

i¼1
Li detðB0Þ;

where
Li ¼ ai, for 1 � i � ‘, since the vertices 1; 2; . . . ; ‘ are leaves of T , and

f ‘t ¼ at � b2
X

i2chðtÞ
1�i�‘

1

Li
; for ‘þ 1 � t � k:

We observe that the ðk � ‘Þ 
 ðk � ‘Þ matrix B0 has a structure similar to that of
the initial matrix B; see Eq. (1). Thus, for the computation of its determinant
detðB0Þ, we follow a similar simplification; that is, we start by multiplying each
column i, 1 � i � s� ‘, of the matrix B0 by �b=f ‘i and adding it to the column j if
ðbÞi;j ¼ b (s < j � k). Then, we obtain

detðBÞ ¼
Y‘

i¼1
Li

Ys

i¼‘þ1
Li

f s
sþ1

. .
.

ðbÞj;i
f s

r

ðbÞi;j . .
.

f s
k

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

¼
Ys

i¼1
Li detðB00Þ;

where

Li ¼ f ‘i ; for ‘þ 1 � i � s; and

f s
t ¼ at � b2

X

i2chðtÞ
1�i�s

1

Li
; for sþ 1 � t � k:

The matrix B00 also has structure similar to that of the initial matrix B; see Eq. (1).
It differs only on the smaller size and on the diagonal values. Thus, continuing in
the same fashion we can finally show that

detðBÞ ¼
Yk

i¼1
Li;

where L is the st-function of T and k is the number of vertices of T .
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Thus, based on the formula that gives the number sðGÞ of the spanning trees of
the graph G ¼ Kn � T and the fact that detðAÞ ¼ detðBÞ, we obtain the following
result.

Theorem 3.1. Let T be a tree on k vertices, k � n, and let L be the st-function on T .
The number of spanning trees of the graph G ¼ Kn � T is equal to

sðGÞ ¼ nn�2
Yk

i¼1
Li:

Remark 3.1. We point out that Theorem 3.1 provides a simple linear-time algo-
rithm for computing the number of spanning trees of the graph G ¼ Kn � T ,
where T is a tree on k vertices, k � n; that is, for a graph on n vertices and m edges
the algorithm runs in Oðnþ mÞ time. Note that the time complexity is measured
according to the uniform cost criterion; under the uniform cost criterion each
instruction requires one unit of time and each register requires one unit of space.h

4. Quasi-threshold Graphs

In this section, we derive a formula for the number of the spanning trees of the
graph Kn � Q, where Q is a quasi-threshold graph.

Let Q be a QT-graph on p vertices and let V1; V2; . . . ; Vk be the nodes of its cent-
tree TcðQÞ containing p1; p2; . . . ; pk vertices, respectively. We let di denote the
degree of an arbitrary vertex of the node Vi. Recall that all the vertices u 2 V ðQÞ of
a node Vi have the same degree. In Fig. 1 we show a cent-tree of a QT-graph on 12
vertices. Nodes V3 and V10 contain two vertices, while all the other contain one
vertex. The degree of a vertex in node V3 is 4.

We next form the submatrix B of the complement spanning-tree matrix A of
the graph Kn � Q based on the structure of the cent-tree TcðQÞ, as well as on the
st-partition of TcðQÞ.

V1

V2

V8

V9 V10

V7

V3

V4 V5 V6

Fig. 1. A cent-tree TcðQÞ of a QT-graph on 12 vertices
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Let V 01 ; V
0
2 ; . . . ; V 0h be the node sets of the st-partition of TcðQÞ. More precisely,

the nodes of the TcðQÞ are partitioned in the following sets:

V 01 ¼V1; . . . ; V‘;

V 02 ¼V‘þ1; . . . ; Vs;

..

.

V 0h ¼Vk:

Then, we label the vertices of the graph Q from n� p þ 1 to n as follows: First, we
label the vertices in V1 from ðn� pÞ þ 1 to ðn� pÞ þ p1; next, we label the vertices
in V2 from ðn� pÞ þ p1 þ 1 to ðn� pÞ þ p1 þ p2; finally, we label the vertices in Vk.

Thus, based on the above labeling of the vertices of the QT-graph Q, we can
easily construct the matrix B of the graph Kn � Q; it is a p 
 p matrix and has the
following form:

B ¼

M1

. .
.

M‘

M‘þ1 ½b�j;i
. .

.

Ms

Msþ1

½b�i;j . .
.

Mr

. .
.

Mk

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð2Þ

where Mi is a pi 
 pi submatrix of the form

Mi ¼

ai b � � � b
b ai � � � b
..
. ..

. . .
. ..

.

b b � � � ai

2

6
6
6
4

3

7
7
7
5
;

and the entries ½b�i;j and ½b�j;i of the off-diagonal positions ði; jÞ and ðj; iÞ,
respectively, of matrix B correspond to pi 
 pj and pj 
 pi submatrices with all
their elements b0s if node Vj is a descendant of node Vi in TcðQÞ and zeros
otherwise, 1 � j � i � k. Recall that ai ¼ 1� dib, where di is the degree of an
arbitrary vertex in node Vi of TcðQÞ, and b ¼ 1=n.
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In order to compute the determinant of the matrix B we first simplify the
determinants of the matrices Mi, 1 � i � k. We multiply the last row of the matrix
Mi by �1 and add it to the first pi � 1 rows of the matrix Mi, 1 � i � k. Then we
add the first pi � 1 columns of the matrix Mi to the last column of the matrix Mi,
1 � i � k, and we obtain

detðMiÞ ¼

ai � b
ai � b

. .
.

b b ai � bþ pib

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

¼ ðai � bÞpi�1ðai � ð1� piÞbÞ:

It now suffices to substitute the above value in the determinant of matrix B. We
point out that after simplifying the determinant of matrices Mi only the diagonal
and the last row of each matrix Mi have nonzero entries; the diagonal has nonzero
entries since di < n� 1. Thus, we have

detðBÞ ¼
Yk

i¼1
piðai � bÞpi�1 detðDÞ; ð3Þ

where

D ¼

r1

. .
.

r‘
r‘þ1 ðbÞj;i

. .
.

rs

rsþ1

ðbÞi;j . .
.

rr

. .
.

rk

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

is a k 
 k matrix with diagonal elements ri ¼ ðai � ð1� piÞbÞ=pi, 1 � i � k, and
the entry ðbÞi;j of the off-diagonal position ði; jÞ is b if node Vj is a descendant of
node Vi in TcðQÞ and 0 otherwise, 1 � j � i � k.

We observe that if we set pi ¼ 1 in matrix D, 1 � i � k, then D is equal to the
submatrix B of the graph Kn � Q, where Q is a graph of a special type; it is a QT-
graph on k vertices possessing the property that each node of its cent-tree TcðQÞ
contains a single vertex; see Fig. 2.

It is easy to see that, if we form the submatrix B of the complement spanning-
tree matrix A of Kn � Q, where Q is the QT-graph of Fig. 2, using an appropriate
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vertex labeling, that is, ‘2 ¼ n� 9; ‘1 ¼ n� 8; . . . ; ‘10 ¼ n, then we obtain
D ¼ B. The idea now is to transform the k 
 k matrix D into a form similar to that
of the k 
 k matrix B of a tree T on k vertices; see Eq. (1) in Section 3. We proceed
as follows:

We first apply the following operations to each row i ¼ 1; 2; . . . ; k of the
matrix D:

� We find the minimum index j such that i < j � k and Di;j 6¼ 0, and then
� we multiply the jth column by �1 and add it to the ‘th column, if Di;‘ ¼ Di;j and

jþ 1 � ‘ � k.

Next, we apply similar operations to each column j ¼ 1; 2; . . . ; k of the matrix D:

� We find the minimum index i such that 1 � j < i and Di;j 6¼ 0, and then
� we multiply the ith row by �1 and add it to the ‘th row, if D‘;j ¼ Di;j and

iþ 1 � ‘ � k.

Thus, we obtain

detðDÞ ¼

a01
. .

.

a0‘ ðb0jÞj;i
a0‘þ1

. .
.

a0s
ðb0jÞi;j a0sþ1

. .
.

a0r
. .

.

a0k

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

;

u2 u1

u6 u5 u4 u3
u7

u8u9

u10

Fig. 2. A QT-graph Q on 10 vertices. Every node Vi of the cent-tree TcðQÞ contains exactly
one vertex
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where

a0i ¼
ri if Vi is a leaf of TcðQÞ,
ri þ

P
j2chðiÞ

‘þ1�j�k

ðrj � 2bÞ otherwise,

8
<

:
ð5Þ

and

b0i ¼
b if Vi is a leaf of TcðQÞ,
b� ri otherwise .

�

ð6Þ

Note that the entry ðb0jÞi;j in the off-diagonal position ði; jÞ is b0j if node Vj is a
descendant of node Vi in TcðQÞ and 0 otherwise, 1 � j � i � k. Recall that
ri ¼ ðai � ð1� piÞbÞ=pi; in the case where each node of the cent-tree TcðQÞ con-
tains a single vertex, we have ri ¼ ai (in this case pi ¼ 1, for every i ¼ 1; 2; . . . ; k).

It is easy to see that the structure of the resulting k 
 k matrix D is similar to
that of the k 
 k matrix B of a tree; see Eq. (1) in Section 3. Thus, for the
computation of the determinant detðDÞ, we can use similar techniques.

We next define the following function / on the nodes on the cent-tree of a
QT-graph Q:

/ðiÞ ¼
a0i if i 2 Vi and Vi is a leaf of TcðQÞ,
a0i �

P

j2chðiÞ

ðb0jÞ
2

/ðjÞ otherwise ,

8
<

:

where a0i and b0i are defined in Eq. (5) and Eq. (6), respectively. We call the
function / the cent-function of the graph Q or, equivalently, the cent-function of
the cent-tree TcðQÞ; hereafter, we use /i to denote /ðiÞ, 1 � i � k.

Following the same elimination scheme as that for the computation of the
determinant of the matrix B in Section 3, we obtain

detðDÞ ¼
Yk

i¼1
/i: ð7Þ

Thus, the results of this section are summarized in the following theorem.

Theorem 4.1. Let Q be a quasi-threshold graph on p vertices and let V1; V2; . . . ; Vk be
the nodes of the cent-tree of Q. Let / be the cent-function of the graph Q. Then, the
number of spanning trees of the graph G ¼ Kn � Q is equal to

sðGÞ ¼ nnþk�p�2
Yk

i¼1
piðn� di � 1Þpi�1/i;

where pi is the number of vertices of the node Vi and di is the degree of an arbitrary
vertex in node Vi, 1 � i � k.
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Proof. As mentioned in Section 3, the complement spanning-tree matrix A of a
graph Kn � Q can be represented by

A ¼ In�p

B

� �

;

where the submatrix B concerns those vertices of the graph Kn � Q that have
degree less than n� 1; these vertices induce the graph Q. Since ai ¼ 1� dib and
b ¼ 1=n, from Eq. (3) we have

detðBÞ ¼ nk�p
Yk

i¼1
piðn� di � 1Þpi�1 detðDÞ:

From the above equality and Eq. (7), we obtain

detðBÞ ¼ nk�p
Yk

i¼1
piðn� di � 1Þpi�1/i:

The number of spanning trees sðGÞ of the graph G is equal to nn�2 detðAÞ. Thus,
since detðAÞ ¼ detðBÞ, the theorem follows. h

Theorem 4.1 coupled with Theorem 3.1 implies a simple linear-time algorithm
for computing the number of spanning trees of the graph G ¼ Kn � Q, where Q is
a quasi-threshold graph on p vertices, p � n (see also Remark 3.1).

Remark 4.1. As mentioned in the introduction, the class of quasi-threshold
graphs contains the class of c-split graphs (complete split graphs); recall that a
graph is defined to be a c-split graph if there is a partition of its vertex set into a
stable set S and a complete set K and every vertex in S is adjacent to all the vertices
in K [6].

Thus, the cent-tree of a c-split graph H consists of jSj þ 1 nodes
V1; V2; . . . ; VjSjþ1 such that V1 ¼ K and the nodes V2; V3; . . . ; VjSjþ1 are children of
the root V1; each child contains exactly one vertex u 2 S.

Let H be a c-split graph on p vertices and let V ðHÞ ¼ K þ S be the partition of
its vertex set. Then, by Theorem 4.1, we obtain that the number of spanning trees
of the graph G ¼ Kn � H is given by the following closed formula:

sðGÞ ¼ nn�p�1ðn� jKjÞjSj�1ðn� pÞjKj;

where p ¼ jKj þ jSj and p � n. h

5. Concluding Remarks

It is well known that the classes of quasi-threshold and threshold graphs are
perfect graphs. Thus, it is reasonable to ask whether the complement
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spanning-tree matrix theorem can be efficiently used for deriving formulas,
regarding the number of spanning trees, for other classes of perfect graphs [6].

It has been shown that the classes of perfect graphs, namely complement
reducible graphs, or so-called cographs, and permutation graphs, have nice
structural and algorithmic properties: a cograph admits a unique tree represen-
tation, up to isomorphism, called a cotree [11] (note that the class of cographs
contain the classes of quasi-threshold and threshold graphs), while a permutation
graph G½p� can be transformed into a directed acyclic graph and, then, into a
rooted tree by exploiting the inversion relation on the elements of the permutation
p [14].

Based on these properties, one can work towards the investigation whether the
classes of cographs and permutation graphs belong to the family of graphs that
admit formulas for the number of their spanning trees.
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