
An optimal parallel solution for the path cover

problem on P4-sparse graphs

Katerina Asdre1 Stavros D. Nikolopoulos1 Charis Papadopoulos2

1Department of Computer Science, University of Ioannina
P.O.Box 1186, GR-45110 Ioannina, Greece

2Department of Informatics, University of Bergen, N-5020 Bergen, Norway

katerina@cs.uoi.gr stavros@cs.uoi.gr charis@ii.uib.no

Abstract: Nakano et al. in [20] presented a time- and work-optimal algorithm for finding
the smallest number of vertex-disjoint paths that cover the vertices of a cograph and left
open the problem of applying their technique into other classes of graphs. Motivated by this
issue we generalize their technique and apply it to the class of P4-sparse graphs, which forms
a proper superclass of cographs. We show that the path cover problem on P4-sparse graphs
can also be optimally solved. More precisely, given a P4-sparse graph G on n vertices and
its modular decomposition tree, we describe an optimal parallel algorithm which returns
a minimum path cover of G in O(log n) time using O(n/ log n) processors on the EREW
PRAM model. Our results generalize previous results and extend the family of perfect
graphs admitting optimal solutions for the path cover problem.

Keywords: P4-sparse graphs, cographs, modular decomposition, parallel algorithms, path
cover.

1 Introduction

A well studied problem with numerous practical applications in graph theory is to find a minimum
number of vertex-disjoint paths of a graph G that cover the vertices of G. This problem, also known as
the path cover problem, finds application in the fields of database design, networks, code optimization
among many others (see [2, 8]); it is well-known that the path cover and many of its variants are
NP-complete in general graphs [8]. A graph that admits a path cover of size one is referred to as
Hamiltonian. Thus, the path cover problem is at least as hard as the problem of deciding whether a
graph has a Hamiltonian path.

The study of graphs with few P4’s (chordless paths on four vertices) has practical applications
related to examination scheduling and semantic clustering of index terms [5, 15]. These applications
have motivated both the theoretical and algorithmic study of the class of cographs, which contain no
induced P4’s. By extending the notion of a P4-free graph many classes have been obtained by relaxing
in various ways the absence of P4’s.

The class of P4-sparse graphs is defined as the class which contains the graphs for which every set
of five vertices induces at most one chordless path on four vertices [11]. This class has been extensively
studied and several sequential and/or parallel algorithms for the recognition and classical optimization
problems have been proposed. Giakoumakis et al. in [9] solved the recognition problem and also the
problems of finding the clique number, the stability number and the chromatic number on P4-sparse

1



graphs in linear sequential time, i.e., in O(n+m) time, where n and m are the number of vertices and
edges of the input graph, respectively. Hochstättler and Tinhofer [12] presented a sequential algorithm
for the path cover problem on this class of graphs, which runs in f(n) + O(n) time, where f(n) is the
time complexity for the construction of a tree representation of a P4-sparse graph. Recently, Asdre
et al. [3] proposed a sequential algorithm for the same problem; their algorithm takes as input a
P4-sparse graph G and its modular decomposition tree, and produces a minimum path cover of G in
O(n + m) time. Sequential algorithms for optimization problems on other related classes of graphs
(proper subclasses or superclasses of P4-sparse graphs) have been also proposed: Lin et al. in [17]
proposed an optimal algorithm for the path cover problem on cographs (a proper subclass of P4-sparse
graphs), while Giakoumakis et al. in [9] studied hamiltonicity properties for the class of P4-tidy graphs
(a proper superclass of P4-sparse graphs); see also [4].

In a parallel environment, the recognition problem on the class of P4-sparse graphs was studied
in [16] and presented a recognition algorithm running in O(log2 n) time with O(n2+nm

log n ) processors
on the EREW PRAM model. The problem of finding maximum matching on P4-tidy graphs was
examined in [22] and proposed an optimal parallel algorithm for the problem; the algorithm optimally
computes a maximum matching of a P4-tidy graph given its modular decomposition tree. For the class
of quasi-threshold graphs (a proper subclass of cographs), the problem of recognizing whether such
a graph is a Hamiltonian graph and finding a Hamiltonian path (cycle) was solved in O(log n) time
with O(n + m) processors on the CREW PRAM model [21]; in the same work, the coloring and other
optimization problems was also solved in O(log n) time using a linear number of processors.

Recently, Nakano et al. in [20] offered a time- and work-optimal parallel solution for the path cover
problem on the class of cographs. In particular, they first proved that any algorithm that solves the
path cover problem on a cograph of n vertices represented by its modular decomposition tree must take
Ω(log n) time on the CREW PRAM model, and then showed that this time lower bound is tight for the
class of cographs by presenting an EREW algorithm that, given an n-vertex cograph G represented by
its cotree, finds and reports a minimum path cover of G in O(log n) time using O(n/ log n) processors.
It is worth noting that it was open for more than 10 years to find a time- and work-optimal parallel
solution for this important problem.

Nakano et al. in [20] use novel techniques that combine in a clever way tree structures, called path
trees, and sequences of square and round brackets; their algorithm produces a minimum path cover of
a cograph by finding matchings of brackets in these sequences, constructing path trees, and converting
the path trees to a minimum path cover using the inorder traversal. In [20] they left open the problem
of applying their technique into other classes of graphs. Motivated by this issue we generalize their
technique and apply it to the class of P4-sparse graphs. We investigate the structure of the paths that
occur in a minimum path cover of a P4-sparse graph and the structure of the corresponding path trees,
and present a time- and work-optimal algorithm that runs in O(log n) time with O(n/ log n) processors
on the EREW PRAM model. We also show that our results can be extended to a proper superclass
of P4-sparse graphs, namely the P4-tidy graphs.

Our work is organized as follows. In Section 2 we establish the notation and related terminology
and we present background results. In Section 3 we investigate the paths that occur in a minimum path
cover of a P4-sparse graph, while in Section 4 we describe the path trees that efficiently produce such
paths in a parallel process environment. Section 5 describes the construction of the bracket sequences
[20] and in Section 6 we describe our optimal parallel path cover algorithm. In Section 7 we extend
our results to a proper superclass of P4-sparse graphs, namely the P4-tidy graphs. Finally, in Section 8
we conclude the paper and discuss possible future extensions.

2



2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its
vertex and edge set by V (G) and E(G), respectively. Let S be a subset of the vertex set of a graph G.
Then, the subgraph of G induced by S is denoted by G[S]. Moreover, we denote by G− S the graph
G[V (G)− S] and by G− v the graph G[V (G)− {v}].

The neighborhood N(x) of a vertex x of the graph G is the set of all the vertices of G which are
adjacent to x. The closed neighborhood of x is defined as N [x] := N(x) ∪ {x}. The set of vertices in
V (G)− {x} that are not neighbors of x is its non-neighbors and is denoted by N(x). The degree of a
vertex x in a graph G, denoted by degree(x), is the number of edges incident on x; thus, degree(x) =
|N(x)|. A clique is a set of pairwise adjacent vertices while a stable set is a set of pairwise non-adjacent
vertices.

2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is either
adjacent to all vertices in M or to none of them. The emptyset, the singletons, and the vertex set V (G)
are trivial modules and whenever G has only trivial modules it is called a prime (or indecomposable)
graph. A non-trivial module is also called homogeneous set. A module M of the graph G is called a
strong module, if for any module M ′ of G, either M ′∩M = ∅ or one module is included into the other.
Furthermore, a module in G is also a module in G.

The modular decomposition of a graph G is a linear-space representation of all the partitions of
V (G) where each partition class is a module. The modular decomposition tree T (G) of the graph G

(or md-tree for short) is a unique labelled tree associated with the modular decomposition of G in
which the leaves of T (G) are the vertices of G and the set of leaves associated with the subtree rooted
at an internal node induces a strong module of G. Thus, the md-tree T (G) represents all the strong
modules of G. An internal node is labelled by either P (for parallel module), S (for series module),
or N (for neighborhood module). It is shown that for every graph G the md-tree T (G) is unique up
to isomorphism and it can be constructed sequentially in linear time [7, 19]. Dahlhaus in [6] suggests
a parallel algorithm for the modular decomposition of graphs that runs in O(log2 n) on a CRCW
PRAM with a linear number of processors. The approach of Dahlhaus (1995) recursively develops
the modular decomposition of two induced subgraphs, which are then spliced together to produce the
modular decomposition of the whole graph. Moreover, using O(n+m) EREW processors the modular
decomposition tree can be retrieved in O(log3 n) as shown in [7].

Let t be an internal node of the md-tree T (G) of a graph G. We denote by M(t) the module
corresponding to t which consists of the set of vertices of G associated with the subtree of T (G)
rooted at node t; note that M(t) is a strong module for every (internal or leaf) node t of T (G). Let
u1, u2, . . . , up be the children of the node t of md-tree T (G). We denote by G(t) the representative
graph of the module M(t) defined as follows: V (G(t)) = {u1, u2, . . . , up} and uiuj ∈ E(G(t)) if there
exists an edge vkv` ∈ E(G) such that vk ∈ M(ui) and v` ∈ M(uj).

By the definition of a module, if a vertex of M(ti) is adjacent to a vertex of M(tj) then every
vertex of M(ti) is adjacent to every vertex of M(tj). Thus G(t) is isomorphic to the graph induced
by a subset of M(t) consisting of a single vertex from each maximal strong submodule of M(t) in the
modular decomposition of G. It is easy to show that the following lemma holds (see also [10]):

Lemma 2.1. Let G be a graph, T (G) its modular decomposition tree, and t an internal node of T (G).
Then, G(t) is an edgeless graph if t is a P-node, G(t) is a complete graph if t is an S-node, and G(t)
is a prime graph if t is an N-node.

3



2.2 P4-sparse Graphs

Below, we review characterizations and properties of P4-sparse graphs and prove results which we use
in our algorithm for the solution of the problem of the path cover of a P4-sparse graph.

A graph G is called a spider if the vertex set V (G) of the graph G admits a partition into sets S,
K, and R such that:

P1: |S| = |K| ≥ 2, the set S is a stable set, and the set K is a clique;

P2: all the vertices in R are adjacent to all the vertices in K and to no vertex in S;

P3: there exists a bijection f : S −→ K such that exactly one of the following statements holds:

(i) for each vertex v ∈ S, N(v) ∩K = {f(v)};
(ii) for each vertex v ∈ S, N(v) ∩K = K − {f(v)}.

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if G is a spider with
|R| ≤ 1. If the condition of case P3(i) holds then the spider G is called a thin spider, whereas if the
condition of case P3(ii) holds then G is a thick spider ; note that the complement of a thin spider is a
thick spider and vice versa. A prime spider with |S| = |K| = 2 is simultaneously thin and thick.

It turns out that a P4-sparse graph contains prime spiders with special properties which will be
detailed later. Thus, we need to identify efficiently the spider partition of a prime spider graph G on
n vertices and m edges. Based on the structural properties of a prime spider graph G, we can determine
its degree sequence and partition its vertices according to the maximum and minimum degree of the
sequence. This approach, though, requires O((n + m)/ log n) processors and, thus, it is not optimal.
Nevertheless, we prove the following lemma.

Lemma 2.2. Let G be a prime spider on n vertices. We can recognize whether G is a thin or a thick
spider in O(log n) time using O(n/ log n) EREW PRAM processors.

Proof. We denote by (S, K, R) the spider-partition of G. Note that if n is an even number we know
that R = ∅; otherwise R = {r}. Let n = 2` + 1 (resp. n = 2`), where ` ≥ 3. We choose an arbitrary
vertex x ∈ V (G) and compute the sets of its neighbors N(x) and non-neighbors N(x) in G. Based on
the fact that G is a prime spider we have the following cases:

(i.1) |N(x)| = 1: G is a thin spider, since x ∈ S.

(i.2) |N(x)| = ` + 1 (resp. |N(x)| = `): G is a thin spider, since x ∈ K.

(i.3) |N(x)| = `− 1 (resp. |N(x)| = `− 1): G is a thick spider (x ∈ S).

(i.4) |N(x)| = 2`− 1 (resp. |N(x)| = 2`− 2): G is a thick spider (x ∈ K).

(i.5) |N(x)| = `: In this case, we can not immediately detect whether G is a thin or a thick spider,
since x ∈ R, but we have that K = N(x) and S = N(x). Thus, we choose a vertex y of the set
N(x) and check the number |N(y)| by the cases (i.1) and (i.3).

All the cases are verified by the definitions of a thin and a thick spider. Since the sets N(x) and N(x)
of an n-vertex graph G are computed in O(log n) time using O(n/ log n) EREW PRAM processors,
the five cases can be checked within the same time and processor complexity on the same model of
computation.

4



v1

v6

v11

v2

v7

v12

v3

v8

v4
v9

v13

v5

v10

�
t1

�

t2

�

v1

�

v2

�

v3

�

v6

�

v7

�

v8

�
t4

�

v11

	

v12



t3

�

v13

�
t5

�

v4



v5

�

v9

�

v10

Figure 1: A disconnected P4-sparse graph G on 13 vertices and the corresponding
modular decomposition tree T (G).

Let us now return to general P4-sparse graphs. Let G be a graph and t be an N-node of the
md-tree T (G); recall that the vertices of G(t) are the children of node t in T (G). Giakoumakis and
Vanherpe [10] showed the following result:

Lemma 2.3. Let G be a graph and let T (G) be its modular decomposition tree. The graph G is
P4-sparse iff for every N-node t of T (G), G(t) is a prime spider with a spider-partition (S,K, R) and
no vertex of S ∪K is an internal node in T (G).

The above lemma implies that every N-node t of the md-tree T (G) of a P4-sparse graph G has either 2k

or 2k+1 children, where |S| = |K| = k ≥ 2 and |R| ≤ 1; the sets S, K, and R form the spider-partition
of the graph G(t). More precisely, the N-node t has k children which correspond to S, k children which
correspond to K, and either no other child if R = ∅ or one more child if R 6= ∅ (in this case, |R| = 1
and this child is the root of a subtree of T (G)). The children which correspond to S and K are leaves
in T (G) and, thus, they are vertices of G, while the child which corresponds to R, if R 6= ∅, is either
a leaf (i.e., a vertex of G) or an internal node labelled by either P, S, or N.

The md-tree T (G) depicted in Fig. 1 contains two N-nodes, that is, the nodes t2 and t5. The
graph G(t2) is a prime spider on seven vertices with spider-partition S = {v1, v2, v3}, K = {v6, v7, v8},
and R = {t4}, while G(t5) is also a prime spider on four vertices with spider-partition S = {v4, v5},
K = {v9, v10}, and R = ∅. The graph G[M(t2)] is a spider (non prime spider) with R = {v11, v12},
and the graph G[M(t5)] is also a spider (prime spider) with R = ∅.

2.3 Number of Paths

Based on the techniques described in [18, 20], we modify the tree T (G): We binarize the tree T (G) in
such a way that each of its internal nodes labelled by either P or S has exactly two children; we denote
by Tb(G) the resulting tree. The left and right child of an internal P-node or S-node t of Tb(G) will
be denoted by tl and tr, respectively. Note that if T (G) has only N-nodes then Tb(G) coincides with
T (G).

Let G[M(t)] denote the subgraph induced by the leaf descendants of t in Tb(G), and let L(t) denote
the number of vertices of G[M(t)]. We say that Tb(G) is leftist, denoted by Tbl(G), if for every internal
node t labelled by either P or S, the condition L(tl) ≥ L(tr) is satisfied, where tl and tr are the left
and right child of t, respectively. For every S-node t of Tbl(G), we replace the subtree rooted at node
tr with the L(tr) leaves and call the resulting tree the reduced leftist binary tree of Tbl(G); we denote
it by Tblr(G).

5



Let λ(t) denote the number of paths in the minimum path cover of the graph G[M(t)]. It is easy
to see that, in order to construct the path cover using the tree Tblr(G), we need to know the number
of paths λ(t) of each internal node t ∈ Tblr(G). Recall that, if t is a P-node or S-node then it has a
left child tl and a right child tr; otherwise, t is an N-node and it has at least 4 children which induce a
prime spider G(t) = (S, K, R) with either R = ∅ or R = {r}, r ∈ Tblr(G). Note that in the case where
R = ∅ we set λ(r) = 0, otherwise λ(r) ≥ 1. Based on the results of [12, 18], we obtain the following
formula for the number of paths in a minimum path cover of a P4-sparse graph.

λ(t) =





λ(tl) + λ(tr) if t is a P-node,

max{1, λ(tl)− L(tr)} if t is an S-node,

λ(r) +
⌈
max

{
0, |K|−2λ(r)

2

}⌉
if G(t) is a thin spider,

max {1, λ(r)} if G(t) is a thick spider.

(1)

We conclude with the following results.

Lemma 2.4. Let G be a P4-sparse graph on n vertices and let T (G) be its modular decomposition tree.
The leftist binary tree Tbl(G) and the reduced leftist binary tree Tblr(G) can be computed in O(log n)
time using O(n/ log n) EREW PRAM processors.

Proof. Since we only binarize each subtree of T (G) rooted at a P-node or an S-node and since T (G)
contains O(n) nodes, we can construct both the leftist binary tree Tbl(G) and the reduced leftist binary
tree Tblr(G) in O(log n) time using O(n/ log n) EREW PRAM processors; see [1] and Lemma 5.2 of
[20].

Lemma 2.5. Let G be a P4-sparse graph on n vertices and Tblr(G) be its reduced leftist binary tree.
For every internal node t of Tblr(G), the number of paths λ(t) in a minimum path cover of G[M(t)]
can be computed in O(log n) time using O(n/ log n) EREW PRAM processors.

Proof. By Eq. (1) and Lemma 2.4 of [20] it suffices to detect whether G(t) is a thin spider or a thick
spider for every internal N-node t of Tblr(G). Let q be the number of the N-nodes of Tblr(G) and let
ti be an internal N-node of Tblr(G), 1 ≤ i ≤ q. By Lemma 2.2 it follows that each graph G(ti) can be
checked in O(log ni) time using O(ni/ log ni) EREW PRAM processors, where ni = V (G(ti)). Recall
that for every graph G(ti) at least ni − 1 vertices are leaves in Tblr(G); see Lemma 2.3. Thus the
overall time and processor complexity are O(log n) time and O(n/ log n) EREW PRAM processors,
respectively.

2.4 Path Trees and Bracket Matching

In this section we review the path trees [20], which are the key ingredients of our algorithm and we
show that using bracket matching we can make the construction of path trees more efficient.

Let G be a graph and let P = [p, . . . , p′] be a path of a minimum path cover P of G. Note that,
if G is a hamiltonian graph then P = {P}. A path tree, denoted by T (p, p′), is a rooted binary tree
whose nodes are exactly the vertices of a path P of the minimum path cover P of G and p, p′ are the
endpoints of P . The vertices of the path tree T (p, p′) are placed in T (p, p′) in such a way that the
inorder traversal of T (p, p′) returns the path P . It follows that the path tree of a given path P , is not
unique. Note that, a path P can be constructed from its corresponding path tree T (p, p′), optimally
in parallel, by applying the Euler tour technique [20].

Let Tblr(G) be the reduced leftist binary tree obtained from the md-tree T (G) of the graph G.
In order to construct the path trees efficiently in a parallel environment, we generate a sequence of
square/round brackets for each node of Tblr(G). We use two types of brackets: Square brackets “[”

6



and “]” and round brackets “(” and “)”. The path trees are constructed by finding matching pairs
of square brackets and matching pairs of round brackets independently. Note that, given a bracket
sequence corresponding to the vertices of a graph G, the path trees and consequently the path cover of
G can be constructed optimally. These matchings correspond to the edges of a path tree. Specifically,
for vertices a and b, we establish an edge as follows:

•
ap

[
bl

] an edge connecting the vertex a to its parent b as a left child;

•
ap

[
br

] an edge connecting the vertex a to its parent b as a right child;

•
al

(
bp

) an edge connecting the vertex b to its parent a as a left child;

•
ar

(
bp

) an edge connecting the vertex b to its parent a as a right child.

2.5 Time and Work Optimality

Let G be a cograph on n vertices and let T (G) be its representative cotree. For the minimum path
cover problem, Nakano et al. [20] have proved the following result:

Theorem 2.1. (Nakano et al. [20]): Every algorithm that determines the number of paths in a
minimum path cover or reports the minimum path cover of an n-vertex cograph represented by its
cotree must take Ω(log n) CREW time even if an infinite number of processors is available.

To verify the time- and work-optimality of our algorithm note that the class of P4-sparse graphs is a
proper superclass of cographs and that the md-tree T (G) of a P4-sparse graph G contains P-nodes,
S-nodes and N-nodes; if T (G) has only P- or S-nodes then T (G) coincides with the definition of a
cotree (see [4]). Thus, due to the following result, our algorithm is time- and work-optimal.

Corollary 2.1. Every algorithm that determines the number of paths in a minimum path cover or
reports the minimum path cover of an n-vertex P4-sparse graph G represented by its md-tree must take
Ω(log n) CREW time even if an infinite number of processors is available.

3 Path Cover in P4-sparse Graphs

In this section we review some ideas for finding a minimum path cover of a P4-sparse graph G. We
suppose that the reduced leftist binarized tree Tblr(G) of the input graph G is given. We focus on the
internal N-nodes since the cases of the P-nodes and S-nodes have already been studied in [17].

Let t be an internal N-node of Tblr(G). Let P be the minimum path cover of the graph G[M(t)]
and let λ(t) be the number of paths in P, i.e., λ(t) = |P|; recall that, M(t) is the module which
corresponds to node t and consists of all the vertices of G associated with the subtree of T (G) rooted
at t.

Let G(t) = (S,K, R) be a prime spider and let S = {s1, s2, . . . , s`} and K = {k1, k2, . . . , k`}, where
|S| = |K| = `; by definition, there exists a bijection f such that f(si) = ki, 1 ≤ i ≤ `. If R = {r} then
let Q = {Q1, Q2, . . . , Qd} be a minimum path cover of G[M(r)], where d = λ(r), and let qi and q′i be
the endpoints of the path Qi, 1 ≤ i ≤ d. Then, for the computation of the minimum path cover P of
G[M(t)] we distinguish the following two cases.

Case 1. G(t) = (S,K, R) is a thin spider.

7



� �
G[M(r)]

s1

k1

q1

�
�
�

s2

k2

q′
1

�
�
�

�
�
�

�
�
�

s2d−1

k2d−1

qd

�
�
�

s2d

k2d

q′
d

�
�
�

�
�
�

s`−1 k`−1

s` k`

� �
G[M(r)]

s1

k1

q1

s2 k2 ���

s3 k3 q′
1

q2

���
���

���

q′2

s`−4 k`−4
���

s`−3 k`−3
qd

s`−2 k`−2 ���

s`−1 k`−1 q′
d

s` k`

(a) (b)

Figure 2: Illustrating the path cover of (a) a thin spider graph and (b) a thick spider.

1.1 R = ∅. The graph G[M(t)] contains k = d `
2e paths. Thus, if ` is even then the `/2 paths in a

minimum path cover of G[M(t)] are the following:

P = {[s1k1k2s2], [s3k3k4s4], . . . , [s`−1k`−1k`s`]}. (2)

Note that the form of a path P of P can be arbitrary in terms of the order of the pair of adjacent
vertices siki; that is, any path P of P can have the following form P = [sikikjsj ], for i 6= j and
1 ≤ i, j ≤ `. For simplicity we adopt the order of the vertices as shown in Eq. (2).

In the case where ` is odd, the (` + 1)/2 paths in a minimum path cover of G[M(t)] are:

P = {[s1k1k2s2], [s3k3k4s4], . . . , [s`−2k`−2k`−1s`−1], [s`k`]}. (3)

1.2 R = {r}. The paths of G[M(t)] are obtained by joining the endpoints of some paths Qi of G[M(r)]
with the vertices of the k paths of G[S ∪K]. Thus, if k ≤ d (see Fig. 2(a)) and ` is even we have:

P = {[s1k1q1 . . . q′1k2s2], . . . , [s`−1k`−1qk . . . q′kk`s`], Qk+1, Qk+2, . . . , Qd}, (4)

while if k ≤ d and ` is odd we have:

P = {[s1k1q1 . . . q′1k2s2], . . . , [s`−2k`−2qk−1 . . . q′k−1k`−1s`−1], [s`k`qk . . . q′k], Qk+1, Qk+2, . . . , Qd}. (5)

If k > d and ` is even then the paths that occur in a minimum path cover of G[M(t)] are obtained by
joining d paths of G[S ∪K] with the d paths of G[M(r)]. Thus, we have:

P = {[s1k1q1 . . . q′1k2s2], . . . , [s2d−1k2d−1qd . . . q′dk2ds2d], . . . , [s`−1k`−1k`s`]}. (6)

If k > d and ` is odd, then the paths in a minimum path cover of G[M(t)] are:

P = {[s1k1q1 . . . q′1k2s2], . . . , [s2d−1k2d−1qd . . . q′dk2ds2d], . . . , [s`−2k`−2k`−1s`−1], [s`k`]}. (7)

8



Case 2. G(t) = (S,K, R) is a thick spider.

2.1 R = ∅. The graph G[M(t)] is a hamiltonian graph and every edge in the Hamilton path has one
endpoint in S and the other endpoint in K (i.e., there exists no Hamilton path which contains an edge
with both endpoints in K; for example, see Fig. 2(b)). Thus, if ` is an odd number and ` > 3 we have:

P = {[s1k2s3 . . . k`−3s`−2k`−1s`k`−2s`−1k`s`−3k`−4 . . . k1]}. (8)

Note that, if ` = 3 the path is P = {[s1k3s2k1s3k2]}. In the case where ` is even and ` = 2 the graph
G[M(t)] is also a thin spider and thus the path that occurs is P = {[s1k2k1s2]}. Thus, if ` is even and
` > 2 the paths that occur in a path cover of G[M(t)] are:

P = {[s1k2s3 . . . k`−2s`−1k`s`−2k`−1s`k`−3s`−4k`−5 . . . k1]}. (9)

We note that in Eqs. (8)–(9) the order of the vertices can be obtained in many other ways. In fact, if
we assume that the set K is an independent set then the Hamilton path of S∪K can be constructed by
any DFS traversal starting from an arbitrary vertex of S. More specifically in Eq. (8) (resp. Eq. (9))
the order between the vertices s1 and s` (resp. k`) can have the form kisi+1kjsj+1, for i 6= j, j 6= i+1,
and 1 < i, j < `. Similarly, between the vertices k` (resp. s`) and k1 we can have an arbitrary order
of the vertices of the form siki−1sjkj−1 (resp. kisi−1kjsj−1), for i 6= j, j 6= i− 1, and 1 < i, j ≤ `− 3.
In our study, for convenience we adopt the order shown in Eqs. (8)–(9).
2.2 R = {r}. The Hamilton path of G[S ∪ K] is connected to the path Q1 of G[M(r)]. Thus, the
paths that occur in a path cover of G[M(t)] are:

P = {[s1k2s3 . . . k3s2k1q1 . . . q′1], Q2, Q3, . . . , Qd}. (10)

Again, if ` = 2 the paths that occur are P = {[s1k2q1 . . . q′1k1s2], Q2, Q3, . . . , Qd}, while if ` = 3 we
have P = {[s1k3s2k1s3k2q1 . . . q′1], Q2, Q3, . . . , Qd}.

In both cases, the paths in P form a minimum path cover of G[M(t)]. Note that in a sequential
environment we can compute a minimum path cover in a P-node or an S-node t of Tblr(G) by using
appropriate functions described in [17]. Similar results have appeared in [12].

4 Path Trees of P4-sparse Graphs

Although the sequential algorithm is quite simple, a naive parallelization of this algorithm needs time
proportional to the height of the tree Tblr(G), which in the worst case is O(n). In order to obtain an
efficient parallel algorithm, we make use of the path tree structures and a bracket matching technique
introduced in [20] (see Section 2).

According to the way that a path tree is constructed, a vertex can be characterized as insert or
bridge vertex. A detailed description of a path tree construction, corresponding to a subtree of Tblr(G)
rooted at a P-node or an S-node t is presented in [20]. The construction of a path tree corresponding
to a subtree of Tblr(G) rooted at a P-node or an S-node t is performed by taking the union of two path
trees (in the case where t is a P-node) or by inserting a vertex v into a path tree or by using a vertex
v to bridge two path trees (in the cases where t is an S-node).

Let P1 = [p1, . . . , p
′
1] and P2 = [p2, . . . , p

′
2] be two paths of a graph G and let T (p1, p

′
1) and T (p2, p

′
2)

be their path trees rooted at nodes p′′1 ∈ P1 and p′′2 ∈ P2.

Suppose that a vertex v /∈ P1 has to be inserted in the path P1. In this case, we seek for an
appropriate modification of the path tree T (p1, p

′
1). Let u be a node of T (p1, p

′
1), i.e., u ∈ P1, having

at most one child (either left or right) in T (p1, p
′
1). Then, the vertex v is inserted in the path tree

T (p1, p
′
1) either (i) as a left or right child of the node u of T (p1, p

′
1) or (ii) as the root of the path tree

T (p1, p
′
1) (in this case, p′′1 becomes a left or right child of vertex v).

9



s2

k2

k1

s1 q′′1

T (q1, q
′

1
)

· · ·

s2d

k2d

k2d−1

s2d−1 q′′d

T (qd, q
′

d
)

· · ·

s`

k`

k`−1

s`−1

T (s1, s2)
�

T (s2d−1, s2d)
�

T (s`−1, s`)
�

Figure 3: The corresponding path trees of Figure 2(a).

Suppose now that a vertex v /∈ P1 ∪ P2 has to bridge the two paths P1 and P2, i.e., v is connected
to an endpoint, say, p′1, of P1 and to an endpoint, say, p′2, of P2. In this case, the vertex v merges the
two path trees T (p1, p

′
1) and T (p2, p

′
2) into a new path tree having root v with children the roots p′′1

and p′′2 of the path trees T (p1, p
′
1) and T (p2, p

′
2), respectively.

Next we describe a procedure which generates a path tree corresponding to a subtree of Tblr(G)
rooted at an N-node. In general, the paths Pi = [pi, . . . , p

′
i] of a path cover P of a prime spider are

considered to be path trees rooted at either pi or p′i, 1 ≤ i ≤ |P|.
Let G be a P4-sparse graph and let Tblr(G) be its reduced leftist binary tree. Let t be an N-node

and let G(t) = (S,K, R) be a prime spider with S = {s1, s2, . . . , s`} and K = {k1, k2, . . . , k`}, where
|S| = |K| = `. In Section 3 we have described the form of the paths of a minimum path cover of G(t).
Every such path Pi is considered as a path tree rooted at a vertex x ∈ S ∪K, where x is the rightmost
vertex of the path Pi, 1 ≤ i ≤ λ(t). More specifically, we distinguish two cases:

Case 1. G(t) = (S,K, R) is a thin spider.

1.1 R = ∅. If ` is even then every path Pi, 1 ≤ i ≤ k, of the path cover of G[S ∪K] has the following
form:

Pi = [s2i−1k2i−1k2is2i], for 1 ≤ i ≤ k,

where k = d `
2e. Then each of the k path trees T (s2i−1, s2i) is rooted at vertex s2i and each internal

node has only a left child. If ` is odd then only the k-th path differs from the previous case; it has the
form: Pk = [s`k`]. In this case the vertex s` is the root of the corresponding path tree T (s`, k`) and
the root s` has left child the vertex k`.

1.2 R = {r}. Let q′′1 , q′′2 , . . . , q′′d be the roots of the path trees T (q1, q
′
1), T (q2, q

′
2), . . . , T (qd, q

′
d) of the

graph G[M(r)], where d = λ(r). As described above, every vertex q′′i becomes the right child of vertex
k2i−1, 1 ≤ i ≤ d, in the path trees (see Fig. 3). Note that if ` is odd and d ≥ k, then the root of the
corresponding path tree of G[M(r)] becomes the right child of vertex k`.

Case 2. G(t) = (S,K, R) is a thick spider.

2.1 R = ∅. The paths described in Eqs. (8)–(9) are path trees T (s1, k1) rooted at vertex k1, which
is the rightmost vertex of the Hamilton path of G[S ∪K]. Each internal node u of T (s1, k1) has only
a left child which is the previous node of u in the sequences of Eqs. (8)–(9); that is, vertex s1 is the
leftmost leaf of T (s1, k1).

2.2 R = {r}. In this case, one path of a path cover of G[M(r)] is connected to vertex k1; see
Eq. (10). Let q′′1 , q′′2 , . . . , q′′d be the roots of the path trees T (q1, q

′
1), T (q2, q

′
2), . . . , T (qd, q

′
d) of G[M(r)],

10



k1

s2

k2

s1

q′′1

T (q1, q
′

1
)

q′′2

T (q2, q
′

2
)

· · ·

q′′d

T (qd, q
′

d
)

T (s1, q
′

1
) �

Figure 4: The corresponding path trees of Figure 2(b).

respectively, where d = λ(r). Then the resulting path tree T (s1, q
′
1) is similar to T (s1, k1) of the

previous case; the only difference is that vertex q′′1 becomes the right child of the root k1 of T (s1, q
′
1)

(see Fig. 4).

In all the cases, the structure of the corresponding path trees is verified from the fact that the
inorder traversal of the path trees returns the paths described in Eqs. (2)–(10).

5 Bracket Sequence on N-node

Let t be a node of Tblr(G) and let T (q1, q
′
1), T (q2, q

′
2), . . . , T (qλ(t), q

′
λ(t)) be the path trees of G[M(t)].

We denote by B(t) the bracket sequence of node t (see Section 2.4). Note that a bracket matching of
B(t) corresponds to an edge of a path tree T (qi, q

′
i), 1 ≤ i ≤ λ(t). Thus, all the bracket matchings of

B(t) generate the path trees of G[M(t)].

Let T (pi, p
′
i) be a path tree of G[M(t)] and let a be a vertex of T (pi, p

′
i). Then, we have: If a is the

root of T (pi, p
′
i) then there is an unmatched bracket

ap

[ in B(t). If a has only a right child in T (pi, p
′
i)

then there is an unmatched bracket
al

( in B(t), while if a has no right child in T (pi, p
′
i) then there is

an unmatched bracket
ar

( in B(t).

The cases where t is a P-node or an S-node of Tblr(G) have been established in [20]. Here we
study the case where t is an N-node of Tblr(G) and we show the construction of an appropriate bracket
sequence B(t) using the above results.

Let t be an N-node of Tblr(G) and let G(t) = (S, K,R) be a prime spider with S = {s1, s2, . . . , s`}
and K = {k1, k2, . . . , k`}, where |S| = |K| = `. For simplicity, we associate a dummy node t̂ to each
N-node t and define B(t̂) to be the bracket sequence of the vertices of the set S ∪K. In the case where
R = {r}, let B(r) be the bracket sequence of node r. For the bracket sequence B(t) of the N-node t,
we have:

B(t) =

{
B(t̂) if R = ∅,
B(r) ·B(t̂) if R = {r},

(11)

where B(r) ·B(t̂) denotes the concatenation of B(r) and B(t̂). Thus, given the bracket sequence B(r),
we need to construct the bracket sequence B(t̂).

To simplify our description, for each path tree T (pi, p
′
i) of G[S ∪K], we denote by Λ(i) the bracket

sequence which has the property that its bracket matching generates the path tree T (pi, p
′
i). We

also denote by Π(i) the bracket sequence of the unmatched brackets which correspond to the root
of T (pi, p

′
i) or to the vertices of T (pi, p

′
i) that do not have a child (left or right) in T (pi, p

′
i). For

example, if T (pi, p
′
i) contains only a vertex x, then Λ(i) = ∅ since there is no edge in the path tree,

11



and Π(i) =
xp

[
xl

(
xr

( since x is the root of the path tree and has neither left nor right child. For the
special case where G[M(t)] is a prime spider with R = {r}, i.e., r is a leaf in Tblr(G), we associate the

bracket sequence B(r) =
rp

[
rl

(
rr

( . As before, we distinguish two cases for the prime spider G(t).

Case 1. G(t) = (S,K, R) is a thin spider.

1.1 R = ∅. The graph G[S ∪K] contains k = d `
2e paths. Thus, if ` is even we associate to node t an

appropriate bracket sequence B(t) that generates k = `
2 path trees T (q1, q

′
1), T (q2, q

′
2), . . . , T (qk, q′k).

Each path tree T (qi, q
′
i) should have the following structure: (i) it consists of four vertices, (ii) it

has root a vertex of S, and (iii) its internal vertices have only left children. Recall, that the inorder
traversal of T (qi, q

′
i) produces the path Pi = [s2i−1k2i−1k2is2i], which is the i-th path of P in Eq. (2)

(see also Section 4). The following two bracket sequences generate the path tree T (qi, q
′
i):

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

] , 1 ≤ i ≤ `

2
, and

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ `

2
,

By definition, the matching pair
sp
2i−1

[
kl
2i−1

] in Λ(i) makes vertex s2i−1 to be the left child of vertex k2i−1,

the matching pair
kp
2i−1

[
kl
2i

] makes vertex k2i−1 to be the left child of vertex k2i, while the matching

pair
kp
2i

[
sl
2i

] makes vertex k2i the left child of vertex s2i. The bracket sequence Π(i) consists only of left
brackets (round or square), because each vertex of the path tree T (qi, q

′
i) should be able to have two

children and a parent. In detail, the brackets
sl
2i−1

( and
sr
2i−1

( mean that the vertex s2i−1 can have a left
and a right child, respectively, since it is the leftmost leaf of the path tree T (qi, q

′
i). The vertices k2i−1

and k2i already have only left children in T (qi, q
′
i) and thus we add brackets

kr
2i−1

( and
kr
2i

( . As the root

s2i of the tree T (qi, q
′
i) can have a right child and a parent, we add brackets

sp
2i

[ and
sr
2i

( in Π(i).

If ` is odd, there are k = `+1
2 paths in the graph G[M(t)]. Thus, `+1

2 path trees are generated by
B(t), which produce the paths in Eq. (3). As in the previous case, the `−1

2 path trees T (qi, q
′
i) consist

of four vertices and the root of the path tree T (qk, q′k) is the vertex s` which has vertex k` as a left child.
Thus, we now need to distinguish the bracket sequence that generates path tree T (qk, q′k) from the rest
(`−1)

2 path trees T (qi, q
′
i). Therefore, the following bracket sequences generate the corresponding path

trees:

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

] , 1 ≤ i ≤ `− 1
2

,

Λ(
` + 1

2
) =

kp
`

[
sl

`

] ,

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ `− 1
2

, and

Π(
` + 1

2
) =

kl
`

(
kr

`

(
sp

`

[
sr

`

( ,

1.2 R = {r}. Since the graph G[S∪K] contains k paths, the paths of G[M(t)] are obtained by joining
the endpoints of the paths Q1, Q2, . . . , Qk of G[M(r)] with the endpoints of the k paths of G[S ∪K].
Thus, we need to connect the path trees T (qi, q

′
i) corresponding to the paths Qi of G[M(r)] with the

path trees corresponding to the paths of G[S ∪ K] in such a way that the inorder traversal of the
resulting path trees provides the correct paths. Thus, if k ≤ d and ` is even we have the following

12



s2

k2

k
p

2

[
sl
2

]

k1

k
p

1

[
kl
2

]

s1

s
p

1

[
kl
1

]

sl
1

(
sr
1

(

q′′1

q
′′p

1

[
kr
1

]

T (q1, q
′

1
)

kr
2

(

sr
2

(

s
p

2

[

s`

k`

k
p

`

[
sl

`

]

k`−1

k
p

`−1

[
kl

`

]

s`−1

s
p

`−1

[
kl

`−1

]

sl
`−1

(
sr

`−1

(

kr
`−1

(

kr
`

(

sr
`

(

s
p

`

[T (s1, s2)
�

T (s`−1, s`)
�

Figure 5: The brackets for the path trees T (s1, s2) and T (s`−1, s`) of Figure 3.

bracket sequences:

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

]
kr
2i−1

] , 1 ≤ i ≤ `

2
, and

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ `

2
.

Comparing Λ(i) and Π(i) with the corresponding sequences of the previous case where R = ∅, one

can observe that the round bracket
kr
2i−1

( does not appear in Π(i) but it is appended to Λ(i) as square

bracket
kr
2i−1

] . This is because we need to connect the root of a path tree of G[M(r)] as a right child
of vertex k2i−1 of the i-th path tree.

Recall that, in the case where ` is odd there exists a path tree Tqk
consisting of two vertices: The

root s` and its left child k`. Consequently, if k ≤ d, a path tree of G[M(r)] is connected as a left child
of vertex k` of Tqk

and, thus, we have the following bracket sequences:

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

]
kr
2i−1

] , 1 ≤ i ≤ `− 1
2

,

Λ(
` + 1

2
) =

kp
`

[
sl

`

]
kl

`

] ,

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ `− 1
2

and

Π(
` + 1

2
) =

kr
`

(
sp

`

[
sr

`

( .

If k > d then the paths that occur in a minimum path cover of G[M(t)] are obtained by joining d

paths of G[S ∪K] with the d paths of G[M(r)]. The rest k − d paths of G[S ∪K] remain the same.

As a result, if k > d and ` is even, the bracket
kr
2i−1

] appears only in Λ(i) where 1 ≤ i ≤ d. Recall

that, the bracket
kr
2i−1

] means that vertex k2i−1 can have a right child which is the root of a path tree
corresponding to a path of G[M(r)]; for example, see Fig. 5. Therefore, we have the following bracket

13



sequences:

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

]
kr
2i−1

] , 1 ≤ i ≤ d,

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

] , d < i ≤ `

2
,

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ d and

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , d < i ≤ `

2
.

In the case where k > d and ` is odd, the sequence of brackets can be generated in a similar way; that
is, d paths trees corresponding to paths of G[S ∪ K] are joined with the d path trees corresponding
to paths of G[M(r)]. The rest k − d path trees corresponding to paths of G[S ∪K] remain the same.
Recall that, when ` is odd there is a path tree generating a path of G[S ∪K] which consists of only
two vertices. In order to obtain the paths of G[M(t)] we have the following bracket sequences:

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

]
kr
2i−1

] , 1 ≤ i ≤ d,

Λ(i) =
sp
2i−1

[
kl
2i−1

]
kp
2i−1

[
kl
2i

]
kp
2i

[
sl
2i

] , d < i ≤ `− 1
2

,

Λ(
` + 1

2
) =

kp
`

[
sl

`

] ,

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , 1 ≤ i ≤ d,

Π(i) =
sl
2i−1

(
sr
2i−1

(
kr
2i−1

(
kr
2i

(
sp
2i

[
sr
2i

( , d < i ≤ `− 1
2

, and

Π(
` + 1

2
) =

kl
`

(
kr

`

(
sp

`

[
sr

`

( .

Collecting all the previous results in both Case 1.1 and Case 1.2, we have that for ` even the bracket
sequence that generates the path trees of G[S ∪K] is the following:

B(t̂) = Λ(1) · Λ(2) · · ·Λ(
`

2
− 1) · Λ(

`

2
) ·Π(1) ·Π(2) · · ·Π(

`

2
− 1) ·Π(

`

2
), (12)

and for ` odd the bracket sequence is the following:

B(t̂) = Λ(1) · Λ(2) · · ·Λ(
`− 1

2
) · Λ(

` + 1
2

) ·Π(1) ·Π(2) · · ·Π(
`− 1

2
) ·Π(

` + 1
2

). (13)

We note that the order between any Λ(i) and Λ(j) in Eqs. (12)–(13) does not affect the correctness of
the construction of the corresponding path trees. The same holds for any bracket sequences Π(i) and
Π(j). Furthermore the number of brackets of each Λ(i) and Π(i) is at most seven and six, respectively.

Case 2. G(t) = (S,K, R) is a thick spider.

2.1 R = ∅. The graph G[S ∪K] is Hamiltonian and a Hamilton path can be constructed by edges
which have one endpoint in S and the other endpoint in K. Therefore, the sequence of brackets
described below result to a path tree. The first edge of the associated path is the one connecting the
first vertex of S, say, s1, with the second vertex of K, say, k2. The second edge is that connecting the
vertex k2 with the vertex s3, while the third edge connects the vertex s3 with the vertex k4, and so
on. Recall that, by definition there is no edge from a vertex sj of S to a vertex kj of K. Also, note
that the graph G[S ∪K] does not have a unique Hamilton path; in fact every edge of a Hamilton path
can have its endpoints in two arbitrary vertices si and kj as long as i 6= j and 1 < i, j ≤ `− 3.

14



As described in Section 3, we need to distinguish two cases depending on the value of `. If ` is an
odd number, then we have the following bracket sequences:

Λ(1) =
sp
1

[ , Λ(`) =
kl
1

] , Π(1) =
sl
1

(
sr
1

( ,

Λ(i) =
kl

i

]
kp

i

[
sl

i+1

]
sp

i+1

[ , i = 2, 4, . . . `− 5, `− 3, Π(i) =
sr

i

(
kr

i

( , 2 ≤ i ≤ `− 1,

Λ(i) =
kl

i

]
kp

i

[
sl

i−1

]
sp

i−1

[ , i = 3, 5, . . . `− 6, `− 4, Π(`) =
kp
1

[
kr
1

( .

Λmid =
kl

`−1

]
kp

`−1

[
sl

`

]
sp

`

[
kl

`−2

]
kp

`−2

[
sl

`−1

]
sp

`−1

[
kl

`

]
kp

`

[
sl

`−3

]
sp

`−3

[ ,

Λeven = Λ(2) · Λ(4) · · ·Λ(`− 5) · Λ(`− 3),
Λodd = Λ(`− 4) · Λ(`− 6) · · ·Λ(5) · Λ(3),

The sequences Λ(1) and Λ(`) are used to identify the endpoints s1 and k1 of the Hamilton path. Each
Λ(i) consists of one matching pair of vertices ki and si′ , i′ 6= i, such that the vertex ki will become the
left child of the vertex si′ in the corresponding path tree as described in Section 4. By concatenating
two sequences Λ(i) ·Λ(j) in the sequence Λeven, where i and j are even numbers, the vertex si′ becomes
the left child of the vertex kj in the corresponding path tree. The same holds for the sequence Λodd,
where, in this case, i and j are odd numbers. In this way we eventually connect the two edges kisi′

and kjsj′ by adding the edge si′kj .

Thus, the sequence Λ(1) ·Λeven constructs a path consisting of the odd-labelled vertices sj and the
even-labelled vertices ki, 1 ≤ i, j ≤ `− 2 (where i is even and j is odd). Let sj be the endpoint of the
path produced by the sequences Λ(1) · Λeven having an odd label, 1 < j ≤ `− 2. Then, we know that
we can append a closing square bracket ] corresponding to the even-labelled vertex k`−1 since there is
no bracket corresponding to the vertex s`−1 in the sequence Λeven. Now there is a matching between
the bracket of the vertex k`−1 and the bracket of the vertex sj . The five matching pairs of brackets in
Λmid construct the sequence of the corresponding vertices described in Eq. (8). In a similar manner
the sequence Λodd ·Λ(`) constructs a path of the even-labelled vertices si and the odd-labelled vertices
kj , 1 ≤ i, j < `− 3 (where i is even and j is odd).

Note that the above sequences of brackets Λ(i) will eventually produce a path tree which has nodes
that have only a left child. In order to make each internal node able to connect with a right child
we append Π(i) which contains right brackets (round or square). In addition, vertex s1 which is the
leftmost leaf of the path tree can obtain both a left and a right child and, therefore, we use the brackets
sl
1

(
sr
1

( in Π(1). In addition, we use the square bracket
kp
1

[ in Π(`) because vertex k1 is the root of the
path tree and it can become a child itself. Thus, the bracket sequence that generates the path trees of
G[M(t)] is the following:

B(t̂) = Λ(1) · Λeven · Λmid · Λodd · Λ(`) ·Π(1) ·Π(2) · · ·Π(`). (14)

In the case where ` is even, we have the following bracket sequences:

Λ(1) =
sp
1

[ , Λ(`) =
kl
1

] , Π(1) =
sl
1

(
sr
1

( ,

Λ(i) =
kl

i

]
kp

i

[
sl

i+1

]
sp

i+1

[ , i = 2, 4, . . . `− 4, `− 2, Π(i) =
sr

i

(
kr

i

( , 2 ≤ i ≤ `− 1,

Λ(i) =
kl

i

]
kp

i

[
sl

i−1

]
sp

i−1

[ , i = 3, 5, . . . `− 5, `− 3, Π(`) =
kp
1

[
kr
1

( .

Λmid =
kl

`

]
kp

`

[
sl

`−2

]
sp

`−2

[
kl

`−1

]
kp

`−1

[
sl

`

]
sp

`

[ ,

Λeven = Λ(2) · Λ(4) · · ·Λ(`− 4) · Λ(`− 2),
Λodd = Λ(`− 3) · Λ(`− 5) · · ·Λ(5) · Λ(3),

15



k1

s2

s
p

2

[
kl
1

]

k2

s1

s
p

1

[
kl
2

]

sl
1

(
sr
1

(

kr
2

(

sr
2

(
q′′

1

q
′′p

1

[
kr
1

]

T (q1, q
′

1
)

k
p

1

[

k
p

2

[

s
p

2

]

T (s1, q
′

1
) �

Figure 6: The brackets for the path tree T (s1, q
′
1) of Figure 4.

The above sequences are similar to those of the case where ` is an odd number. The only difference
is in sequence Λmid in which the three matching pairs can easily be verified by Eq. (9). As described
above, we need to make each internal node able to connect with a right child, and therefore we append
to the sequence Λ(1) · Λeven · Λmid · Λodd the bracket sequences Π(i), 1 ≤ i ≤ `. Thus, the bracket
sequence B(t̂) of Eq. (14) generates the path trees of G[S ∪K].

2.2 R = {r}. The Hamilton path of G[S ∪K] is connected to the path Q1 of G[M(r)]. Consequently,
the bracket sequences Λ(i) and Π(i) are similar to those described above in the case where R is empty

(for example, see Fig. 6). The only difference is that we need bracket
kr
1

] in order to make the path tree
corresponding to the path Q1 of G[M(r)] be the right child of the root vertex, that is vertex k1, of
the path tree corresponding to the Hamilton path of G[S ∪K]. Hence, only the two following brackets
sequences are different from the previous cases:

Λ(`) =
kl
1

]
kr
1

] , and Π(`) =
kp
1

[ .

Note that in the sequence of brackets Π(`) we now have one less bracket, compared with the case where

R is empty. The missing bracket is
kr
1

( because vertex k1 already has a right child. As a result, we have
that the bracket sequence B(t̂) that generates the path trees of G[S ∪K] is described in Eq. (14).

We note that the sequences Λ(2), Λ(4), . . . , Λ(`−4), Λ(`−2) can appear in any order in the bracket
sequence Λeven; similarly, the sequences Λ(` − 3), Λ(` − 5), . . . , Λ(5), Λ(3) can appear in any order
in Λodd. The same holds for the sequences Π(i), 1 ≤ i ≤ `; that is, they can appear in any order in
B(t̂) after the sequence Λ(`). Furthermore, the sequences Λ(1), Λmid, Λ(`), Π(1) and Π(`) contain a
constant number of brackets.

6 The Algorithm

In this section we present an optimal parallel algorithm for the minimum path cover problem on
P4-sparse graphs. Our algorithm takes as input a P4-sparse graph G on n vertices and its modular de-
composition tree T (G), and finds the paths of a minimum path cover in O(log n) time using O(n/ log n)
processors on the EREW PRAM model.

Let us first sketch the workings of our algorithm. Initially, we compute the binarized md-tree
Tb(G); recall that we only binarize each subtree of T (G) rooted at a P-node or an S-node. In order
to make the binarized tree leftist, we compute the number L(t) for each internal node t of Tb(G). We

16



next compute the number λ(t) of paths in the minimum path cover of G(M [t]) for each internal node
t of Tbl(G). Before assigning any bracket sequence, we first compute the reduced leftist binarized tree
Tblr(G), and, then, for every internal N-node t of Tblr(G) we compute a bracket sequence B(t) based on
the vertices of S∪K which are leaves and children of t in Tblr(G). Using this information, we generate
a bracket sequence B(troot) of the root troot of Tblr(G). Finally, we construct the path trees by finding
all matchings of B(troot) and then we return vertex sequences produced by the inorder traversal of
the path trees. Recall that the latter corresponds to a minimum path cover of G. We next give the
detailed description of the algorithm.

Parallel Minimum Path Cover

Input: A P4-sparse graph G and its modular decomposition tree T (G);

Output: A minimum path cover of the P4-sparse graph G;

1. Compute the binarized tree Tb(G) of T (G) and the number L(t) for each internal node t of Tb(G),
and then the leftist binarized tree Tbl(G);

2. Compute the number of paths λ(t) in the minimum path cover of G[M(t)] for each internal node
t of Tbl(G), and then the reduced leftist binarized tree Tblr(G);

3. Generate the sequence of brackets B(troot) of the root troot of Tblr(G) based on [20] (for P-nodes
or S-nodes) and on Eqs (11)–(14) of Section 5 (for N-nodes);

4. Construct the path trees by finding all matchings of B(troot);

5. Return a minimum path cover from the path trees;

We mention here that Step 4 needs a post-processing function. The bracket assignment procedure
for an S-node, as described in [20], may lead to path trees which result to paths having edges that
do not appear in the graph G. This post-processing function corrects any illegal path tree which has
been produced by the children of the S-node. The correct path trees are calculated with a detailed
technique, as a post-processing step, proposed in [20].

Time and Processor Complexity. Next, we analyze the time and processor complexity of the proposed
algorithm on the PRAM model; for details on PRAM techniques, see [13, 23]. We assume that the
input graph G and its modular decomposition tree T (G) are given in adjacency list representations.

Steps 1 and 2 are executed in O(log n) time using O(n/ log n) EREW processors (see Lemma 2.4
and Lemma 2.5). Step 3 computes the sequence of brackets B(troot) of the root troot of Tblr(G). This
computation can be efficiently done by first computing the bracket sequence B(t) of each internal
node t of Tblr(G) (see results of [20] and Eqs (11)–(14)), and then contracting the tree Tblr(G) into a
three-node tree consisting of the root and two nodes. We use standard parallel techniques (i.e., prefix
sums, array packing, concatenation) to construct the bracket sequences in each internal node, and the
rake operation to reduce the tree Tblr(G) into a three-node tree (see [13, 23]). Thus, this step can be
computed in O(log n) time using O(n/ log n) EREW processors. Step 4 can be performed in O(log n)
time using O(n/ log n) EREW processors by finding the matching pairs of the sequence B(troot), where
troot is the root of Tblr(G). Note that B(troot) has O(n) brackets since the tree Tblr(G) has O(n) nodes,
and also that each assignment of bracket of an internal node u ∈ Tblr(G) does not exceed the number
of its children in Tblr(G). Step 5 is accomplished with Euler-tours on the path trees. Since the nodes
of the path trees are the vertices of the input graph G, it follows that they contain n nodes, and, thus,
Step 5 can be executed in O(log n) time using O(n/ log n) processors on the EREW PRAM model.

17



By Corollary 2.1, the path cover problem of an n-vertex P4-sparse graph represented by its md-tree
must take Ω(log n) time on the CREW PRAM model. Our algorithm Parallel Minimum Path Cover
shows that this time lower bound is tight for the class of P4-sparse graphs. Summarizing, we obtain
the following result.

Theorem 6.1. Let G be a P4-sparse graph on n vertices and let T (G) be its modular decomposition
tree. A minimum path cover of G can be computed time- and work-optimally in O(log n) time using
O(n/ log n) EREW PRAM processors.

7 Other Classes of Graphs

In this section we extend our results to a proper superclass of P4-sparse graphs, namely the P4-tidy
graphs. The class of P4-tidy graphs was introduced by I. Rusu in order to illustrate the notion of
P4-domination in perfect graphs; see [9].

A graph G is P4-tidy if for any induced P4, say, abcd, there exists at most one vertex v ∈ V (G)−
{a, b, c, d} such that the subgraph G[{a, b, c, d, v}] has at least two P4’s (i.e., the P4 has at most one
partner). The P4-tidy graphs strictly contain the cographs, P4-reducible, P4-sparse, P4-extendible,
and P4-lite graphs. The P4-lite graphs were defined by Jamison and Olariu in [14]: A graph G is
P4-lite if every induced subgraph H of G with at most six vertices either contains at most two P4’s,
or is a 3-sun, or is the complement of a 3-sun (a 3-sun is a thick spider on six vertices with R = ∅).
They remark that every P4-sparse graph is P4-lite and prove that every P4-lite graph is brittle and,
thus perfect. We mention here that the P4-lite graphs coincide with the C5-free P4-tidy graphs.

The modular decomposition of P4-tidy graphs has a structural property, as in the case of P4-sparse
graphs (Lemma 2.3), which is shown by the following result (Theorem 3.2 in [9]):

Theorem 7.1. (Giakoumakis et al. [9]): Let G be a graph and let T (G) be its modular decomposition
tree. The graph G is P4-tidy iff for every N-node t of T (G), G(t) is either

(i) a P5, a P5, or a C5, and no vertex of G(t) is an internal node in T (G), or

(ii) a prime spider (S,K, R) with at most one vertex of S ∪K which is an internal node having two
children which are leaves in T (G).

The above theorem implies that every N-node t of the md-tree T (G) of a P4-tidy graph G has either
five vertices which are leaves in T (G) and G(t) ∈ {P5, P5, C5} or G(t) = (S, K, R) is a prime spider
with at most one vertex, say, t, of S ∪ K replaced by a 2K1 or a K2 (i.e., t is a P- or S-node with
two children which are leaves in T (G)). Based on this result, the path cover problem for the class of
P4-tidy graphs was solved in sequential linear time by describing the paths that occur in every internal
node of T (G) [9].

Let G be a P4-tidy graph, T (G) be its md-tree and t be an N-node of T (G). Here we describe
the bracket sequence B(t) that generates the corresponding path trees which produce the paths of a
minimum path cover of G[M(t)]. According to Theorem 7.1 we distinguish the following cases.

Case A1. G(t) is a P5, a P5 or a C5.

It is easy to see that λ(t) = 1, since a path on five vertices (not necessarily chordless) occurs in
the three possible graphs (see also [9]). Thus, λ(t) can be computed optimally and, hence, it is
possible to construct optimally the tree Tblr(G). Let v1v2v3v4v5 be such a path of G[M(t)]. Then
the corresponding path tree T (v1, v5) is constructed as in the case where we have a thick spider with
R = ∅ (Section 4, Case 2.1). Thus, it can be viewed as the Hamilton path of a thick spider and the
corresponding bracket sequence B(t) is given in details in Section 5, Case 2.1.

18



Case A2. G(t) = (S, K, R) is a prime spider.

In this case and if no vertex of S ∪K is replaced by an S2 or a K2, the paths of a minimum path cover
of G[M(t)] are obtained by considering the cases of a prime spider of a P4-sparse graph (Section 3).
Here, we also have to consider the fact that a vertex of S ∪K can be substituted by an S2 or a K2

which will eventually change the value of λ(t). Notice that in any case we have to distinguish whether
we have a thin or a thick spider and whether the set R = ∅ or not. For example, if G(t) is a thick
spider with R = ∅ and a vertex of S is replaced by the two vertices of S2, say, s1 and s′1, then the
paths of a minimum path cover of G[M(t)] are a Hamilton path (see Section 3) and an isolated vertex
(one of the two vertices, say, s′1, of the set S2). Thus, in this case, the value of λ(t) is equal to the
value of the case where G(t) is a thick spider (see Eq. 1) plus one.

In a similar manner, we can consider all the other cases and establish the corresponding paths of
a minimum path cover of G[M(t)]; details about the λ(t) and the paths in a minimum path cover of
G[M(t)] can be found in [9]. In order to obtain the paths of G[M(t)] we can construct the path trees
and the bracket sequence B(t) in a way similar to that described in Section 5.

Based on the above description, we can show the following result for the class of P4-tidy graphs:
Given a P4-tidy graph G on n vertices and its modular decomposition tree T (G), a minimum path
cover of G can be optimally computed in O(log n) time using O(n/ log n) processors on the EREW
PRAM model.

8 Concluding Remarks

We have presented an optimal parallel algorithm for solving the minimum path cover problem on P4-
sparse graphs; our algorithm runs in O(log n) time with O(n/ log n) processors on the EREW PRAM
model, and thus is time- and work-optimal due to the results of [20]. We also described the way we can
solve the same problem on the class of P4-tidy graphs, which forms a proper superclass of P4-sparse
graphs.

An interesting open question would be to see if similar techniques can be efficiently used for finding
a minimum path cover for other classes of graphs and solving other related algorithmic problems such
as the terminal path cover problem: Given a graph G and a subset S of its vertices, the terminal path
cover problem is to find a minimum path cover P of the graph G such that all the vertices of S are
endpoints of the paths in P.

References

[1] K. Abrahamson, N. Daboun, D.G. Kirkpatrick and T. Przytycka, A simple parallel tree contraction
algorithm, J. Algorithms 10 (1989) 287–302.

[2] G.S. Adhar and S. Peng, Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian
cycle in cographs, Int’l Conference on Parallel Processing, Vol. III (1990) 364–365.

[3] K. Asdre, S.D. Nikolopoulos and Ch. Papadopoulos, Optimal algorithms for the path cover prob-
lem on P4-sparse graphs, Workshop on Graphs and Combinatorial Optimization (CTW’05), Vol. 1
(2005) 79–83.

[4] A. Brandstädt, V.B. Le, and J. Spinrad, Graph Classes – A Survey, SIAM Monographs in Discrete
Mathematics and Applications, SIAM, Philadelphia, 1999.

[5] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J.
Comput. 14 (1985) 926–984.

19



[6] E. Dahlhaus, Efficient parallel modular decomposition, 21st Int’l Workshop on Graph Theoretic
Concepts in Computer Science (WG’95), LNCS 1017 (1995) 290–302.

[7] E. Dahlhaus, J. Gustedt and R.M. McConnell, Efficient and practical algorithms for sequential
modular decomposition, J. Algorithms 41 (2001) 360–387.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, W.H. Freeman, San Francisco, 1979.

[9] V. Giakoumakis, F. Roussel and H. Thuillier, On P4-tidy graphs, Discrete Math. and Theoret.
Comput. Science 1 (1997) 17–41.

[10] V. Giakoumakis and J-M. Vanherpe, On extended P4-reducible and P4-sparse graphs, Theoret.
Comput. Science 180 (1997) 269–286.

[11] C. Hoàng, Perfect graphs, PhD Thesis, McGill University, Montreal, Canada, 1985.

[12] W. Hochstättler and G. Tinhofer, Hammiltonicity in graphs with few P4’s, Computing 54 (1995)
213–225.

[13] J. Jájá, An introduction to parallel algorithms, Addison-Wesley, Reading, MA, 1992.

[14] B. Jamison and S. Olariu, A new class of brittle graphs, Studies Appl. Math. 81 (1989) 89–92.

[15] H. Lerchs, On cliques and kernels, Tech. Report, Department of Computer Science, University of
Toronto, March 1971.

[16] R. Lin and S. Olariu, A fast parallel algorithm to recognize P4-sparse graphs, Discrete Appl. Math.
81 (1998) 191–215.

[17] R. Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for cographs, Comput. Math.
Appl. 30 (1995) 75–83.

[18] R. Lin, S. Olariu, J.L. Schwing and J. Zhang, A fast EREW algorithm for minimum path cover
and hamiltonicity for cographs, Parallel Algorithms Appl. 2 (1994) 99–113.

[19] R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete
Math. 201 (1999) 189–241.

[20] K. Nakano, S. Olariu and A.Y. Zomaya, A time-optimal solution for the path cover problem on
cographs, Theoret. Comput. Science 290 (2003) 1541–1556.

[21] S.D. Nikolopoulos, Parallel algorithms for Hamiltonian problems on quasi-threshold graphs, J.
Parallel and Distributed Computing 64 (2004) 48–67.

[22] I. Parfenoff, An efficient parallel algorithm for maximum matching for some classes of graphs, J.
Parallel and Distributed Computing 52 (1998) 96–108.

[23] J. Reif (editor), Synthesis of Parallel Algorithms, Morgan Kaufmann, Inc., 1993.

20


