
Restricted vertex multicut on permutation graphs

Charis Papadopoulos

Department of Mathematics, University of Ioannina

GR-45110, Ioannina, Greece

charis@cs.uoi.gr

Abstract

Given an undirected graph and pairs of terminals theRestricted Vertex Mul-
ticut problem asks for a minimum set of nonterminal vertices whose removal discon-
nects each pair of terminals. The problem is known to be NP-complete for trees and
polynomial-time solvable for interval graphs. In this paper we give a polynomial-time
algorithm for the problem on permutation graphs. Furthermore we show that the
problem remains NP-complete on split graphs whereas it becomes polynomial-time
solvable for the class of co-bipartite graphs.

1 Introduction

One of the well-studied problems that fall in the area of cut and separation problems
is the Multicut problem introduced by Hu in [14]. Given a graph G and a list L of
pairs of vertices that are called terminals, the objective for the Multicut problem is to
disconnect each terminal pair of the predefined list by removing a minimum set of edges
or vertices of G. Problems of this kind arise from areas concerning with the reliability
and robustness of network communications [6]. The Multicut problem is NP-complete
[7] and several algorithms that approximate a solution on general or restricted graph
classes are known [5, 9, 16], while the parameterized version was proved to be fixed-
parameter tractable only very recently [3, 17]. This problem includes as a special case
the Multiway Cut problem where instead of the list L we are given a set of terminals
that need to be pairwise separated from each other; see [7, 11, 15]. Depending on the
multicut, that is, the set of vertices or edges whose deletion disconnects each terminal
pair, there are three variations of the problem.

The history of multicut problems begins with the edge variation, known as the Edge
Multicut, that allows only the removal of edges. If L contains at most two terminal
pairs the Edge Multicut problem admits a polynomial-time algorithm [21] whereas
for at least three terminal pairs it becomes NP-hard [7]. Furthermore Edge Multicut
remains NP-hard even when the input graph is a star (tree of height 1) [10] and therefore
excluding any possible polynomial solution on many interesting graph classes. Similar to
the Edge Multicut is the Vertex Multicut problem in which one is only allowed
to remove vertices of the input graph.

As it was introduced by Cǎlinescu et al. in [5] the Vertex Multicut problem splits
into two subproblems depending on whether one is allowed to remove terminal vertices.

1

cograph (P)*

permutation P*

co-comparability ?

co-bipartite P* tree NP-c interval P split NP-c*

comparability (NP-c) chordal (NP-c)

Figure 1: An inclusion relationship of the considered graph classes and the complexity of
Restricted Vertex Multicut problem in each graph class. The arrow → represents
the ⊃ relation. NP-c means NP-complete, P means polynomial-time algorithm, the
asterisk ∗ indicates that the result is obtained here, the pair of parenthesis () means
that the complexity is obtained from graph inclusion relationships, and ? stands for
unknown complexity.

The Unrestricted Vertex Multicut problem refers to finding any minimum set of
vertices of G whose removal separates each terminal pair of L whereas the Restricted
Vertex Multicut refers to minimizing a set of nonterminal vertices for the same ob-
jective. Unrestricted Vertex Multicut is NP-hard on interval graphs [13], graphs
with bounded treewidth [5], and planar graphs of bounded degree [5]. From the positive
side there is a polynomial-time algorithm for the latter problem on trees [5]. Looking at
the line graph of G (that is, the graph representing the adjacencies between the edges
of G) an interesting reduction shows that the vertex variant is more general than the
edge variant [5]. More precisely, consider an instance of Edge Multicut whose input
is a graph G and a set of terminal pairs L, denoted by (G,L). Construct the line graph
of G, denoted by L(G) and construct the set of terminal pairs L′ which contains for
each pair (s, t) of L all pairs (ei, fi) such that ei has s as endpoint and fi has t as end-
point. Then it is known that a solution for the Edge Multicut on (G,L) is a solution
for the Unrestricted Vertex Multicut on (L(G), L′) and vice versa [5]. Observe
that the line graph of a star graph is a complete graph and, therefore, Unrestricted
Vertex Multicut on complete graphs is NP-complete. Thus for many interesting and
even constraint graph classes (e.g., cographs, split graphs, and co-bipartite graphs) the
Unrestricted Vertex Multicut problem is already NP-hard. Here we focus on the
Restricted Vertex Multicut problem.

Although many optimization problems that are NP-hard on arbitrary graphs are
polynomially solvable on restricted graph classes [4, 12], not much seems to be known
for the restricted variation of multicut on particular graph classes. The problem admits
a polynomial-time algorithm for interval graphs [13], whereas it becomes NP-hard for
trees [5, 13] and, thus, for chordal graphs which form a proper superclass of interval
graphs. Therefore it is interesting to study the complexity of the Restricted Vertex
Multicut problem on graph classes that are characterized without induced trees and
are not included in the class of interval graphs.

In this paper we consider the restricted version of the multicut problem on split
graphs, permutation graphs, and other related graph classes. Split graphs form a proper
subclass of chordal graphs and such graphs are unrelated to interval graphs [12]. We prove
that the problem remains NP-hard on split graphs. A natural superclass of interval

2

graphs is the class of co-comparability graphs (complements of comparability graphs)
where the complexity of the Restricted Vertex Multicut problem is still unknown.
Co-bipartite (complements of bipartite graphs) and permutation graphs are two unrelated
subclasses of co-comparability graphs [4, 12]. Interestingly most problems that are hard
on co-comparability graphs are already hard on co-bipartite graphs. Here we show that
the problem admits a simple and efficient (polynomial-time) solution on co-bipartite
graphs and therefore excluding such an approach through a hardness result on co-bipartite
graphs. Our main result is a polynomial-time algorithm for the class of permutation
graphs. To do so, we take advantage of the notion of scanlines already efficiently applied
for other problems such as treewidth and minimum fill-in on permutation graphs [1, 19].
We also give an independent result for cographs that can been seen as a special case of
the polynomial-time algorithm on permutation graphs. An overall picture of our results
is depicted in Figure 1.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G,
we denote its vertex and edge set by V (G) and E(G), respectively, with n = |V (G)| and
m = |E(G)|. For a vertex subset S ⊆ V (G), the subgraph of G induced by S is denoted
by G[S]. Moreover, we denote by G− S the graph G[V (G) \ S].

The neighborhood N(x) of a vertex x of the graph G is the set of all the vertices of G
which are adjacent to x. The closed neighborhood of x is defined as N [x] = N(x)∪{x}. If
S ⊆ V (G), then the neighbors of S, denoted by N(S), are given by

∪
x∈S N(x)−S. The

complement G of a graph G has vertex set V (G) and all edges not in G. A clique is a set
of pairwise adjacent vertices while an independent set is a set of pairwise non-adjacent
vertices. A graph is connected if there is a path between any pair of vertices. A connected
component of G is a maximal connected subgraph of G. A chordless path on k vertices
is denoted by Pk. A tree of height one is called a star graph and a star graph on four
vertices is called claw.

For a set F of graphs, a graph is called F-free if it does not contain a graph from F
as induced subgraph. For all graph classes mentioned here proper definitions and char-
acterizations can be found in [4, 12], though we give the corresponding characterizations
at the appropriate places. We only mention at the moment that for every graph class
Π that we consider here Π is closed under vertex removals, that is, Π is hereditary. The
relationships between the considered graph classes are shown in Figure 1.

Let G = (V,E) be a graph and let L = {(s1, t1), . . . , (sl, tl)} be a specified set of pairs
of vertices, where the vertices of each pair are distinct, but vertices in different pairs are
not required to be distinct. The set of vertices of L are called terminals denoted by T
whereas the rest of the vertices are called nonterminals.

The Restricted Vertex Multicut problem can be formulated as follows.

Restricted Vertex Multicut

Input: An undirected graph G = (V,E), a collection of pairs of vertices L ⊆ V ×V ,
and an integer k ≥ 0.

3

Task: Find a subset S of V that contains only nonterminal vertices such that
|S| ≤ k and vertices of each pair of L belong to different connected components of
G− S.

Let us note that a feasible solution for the Restricted Vertex Multicut problem
may not always exist. If there is a path P that connects a terminal pair and P consists
only of terminal vertices then no vertex removal is possible to achieve a solution since
terminal removals are not allowed. The same situation arises when s and t are adjacent for
a terminal pair (s, t) ∈ L. Notice however that detecting whether a feasible solution exists
is polynomial-time computable by checking for each (s, t) ∈ L whether s and t belong
to different connected components in the graph obtained by removing all nonterminal
vertices.

In order to avoid repeating the following notions we let

• G = (V,E) be a graph,

• L = {(s1, t1), . . . , (sl, tl)} be a set of non-adjacent terminal pairs,

• T be a set of terminals that appear in L,

• S be a solution for the Restricted Vertex Multicut problem on G; that is,
S ⊆ V (G), S ∩ T = ∅, every pair of L is separated in G− S, and |S| is minimum.

Notice that if k is part of the input then we ask for |S| ≤ k. In the Unrestricted Ver-
tex Multicut problem the vertices of the solution S do not require to be nonterminal
vertices; that is, the restriction S ∩ T = ∅ is omitted.

2.1 NP-completeness on split graphs

Next we prove that Restricted Vertex Multicut is NP-complete for the class of
split graphs. As already mentioned in the Introduction the Unrestricted Vertex
Multicut problem is NP-complete even on cliques by reducing from the Edge Multi-
cut problem on star graphs. In order to present the NP-completeness reduction of split
graphs, we give an alternative reduction for the Unrestricted Vertex Multicut
problem. The reduction is made from the NP-complete Vertex Cover problem [8], in
which for a given graph G = (V,E) and an integer k ≥ 0 we ask for a subset V ′ ⊆ V with
|V ′| ≤ k such that for every edge uv ∈ E at least one of u and v belongs to V ′. In this
way the NP-completeness of split graphs can be seen through an immediate reduction
from the Vertex Cover problem.

Proposition 2.1. Unrestricted Vertex Multicut on complete graphs is NP-complete.

Proof. Given an arbitrary graph G′ we construct an instance for the Unrestricted
Vertex Multicut problem as follows. We add all missing edges of G′ resulting in a
complete graph H and for each edge of G′ we add a pair of terminals to L. Thus an
edge of G′ corresponds to a pair (s, t) ∈ L and vertices incident to an edge in G′ are
terminals in H. Clearly H can be constructed in polynomial time. Consider a vertex
cover S′ of G′. Removing S′ from G′ results in an edgeless graph which implies that no

4

terminal pair of L belongs to the same connected component of H − S′. Thus a vertex
cover S′ of G′ gives a solution S for the Unrestricted Vertex Multicut on H. For
the converse observe that every terminal pair of L is adjacent in H and thus a solution
S for H contains at least one of the two terminal vertices; also note that a nonterminal
vertex of H is not contained in S. Hence at least one of the two terminal vertices belongs
to S which implies that at least one of the endpoints of each edge in G′ belongs to S.
Therefore G′ has a vertex cover S′ of size at most k if and only if H has a vertex multicut
S by removing at most k vertices.

The above proposition shows that for graphs with arbitrary large cliques (all graph
classes considered here), it is unlikely to have a polynomial-time algorithm for the Un-
restricted Vertex Multicut problem. Studying the reduction it becomes clear that
the hardness of the Unrestricted Vertex Multicut problem is mainly due to the
structure of the terminal pairs and not due to the structure of the input graph itself. We
show that a similar situation appears in the Restricted Vertex Multicut problem
for the class of split graphs. A graph is a split graph if its vertex set can be partitioned
into a clique C and an independent set I, where (C, I) is called a split partition.

Theorem 2.2. Restricted Vertex Multicut on split graphs is NP-complete.

Proof. We reduce the problem to the NP-complete problem Unrestricted Vertex
Multicut restricted to cliques given in Proposition 2.1. Consider an instance of the
Unrestricted Vertex Multicut on a complete graph G′ with a list of terminal
pairs L′ and let T ′ be the set of terminal vertices. From G′ we construct a split graph
H as follows. For each pair {s′, t′} ∈ L′ we add two non-adjacent vertices s and t
that are only adjacent to s′ and t′, respectively. The list of terminal pairs for H is
L = {(s, t) | (s′, t′) ∈ L′} and the set T of terminal vertices contains only vertices of L.
This particularly means that there is a bijection f between T and V (G′) such that for
each v ∈ T , f(v) = N(v) = {u} where u ∈ V (G′). Thus H is a split graph with split
partition (V (G′), T). We prove that the complete graph G′ has an unrestricted vertex
multicut S if and only if H has a restricted vertex multicut S. Since both vertices of
a pair (s, t) of L have exactly one neighbor in H, a pair (s, t) of L is separated only if
the pair (f(s), f(t)) of L′ is separated. Thus given a solution S′ for G′, the same set
of vertices of S′ can be removed from H so that each pair of L is separated. For the
opposite direction, observe that for a pair (s, t) of L we can remove f(s) or f(t) (or
both) from H, meaning that we are only allowed to remove vertices of the clique. Thus
given a solution S for H, the set S remains a solution for the Unrestricted Vertex
Multicut problem on G′. Therefore S is a solution for H if and only if S is a solution
for G′ and this completes the proof.

In Figure 2 we give a simple example of the proposed two-step reduction, directly
through Vertex Cover. The above proof shows that Restricted Vertex Multicut
is NP-complete even on split graphs where each vertex of I of the split partition (C, I)
has degree 1 and each vertex of C is adjacent to at most one vertex of I. Such graphs do
not contain a claw as an induced subgraph. Therefore Restricted Vertex Multicut
is NP-complete on claw-free graphs.

5

ba c d e

H

b

a c

d e

G
′

Figure 2: H is a split graph and G′ is a graph constructed according to the terminal pairs
L = {(a, b), (a, c), (b, d), (c, d), (c, e)} for the Restricted Vertex Multicut problem
in H. Notice that if we only remove {f(a), f(d)} from H then there is path between the
terminals c and e. A solution S = {f(b), f(c)} for H corresponds to a solution S′ = {b, c}
for the Vertex Cover problem in G′ and vise versa.

2.2 Common neighborhood, cographs, and co-bipartite graphs

Let us now turn to positive results for the Restricted Vertex Multicut problem.
As a first result it is an easy observation that the common neighbors of the terminals
should be included in any solution. We show that such a reduction results in a simple
algorithm for a certain graph class.

For simplicity we use Nst(L) to denote the set of all common neighbors of terminal
pairs, that is,

Nst(L) =
∪

(s,t)∈L

N(s) ∩N(t).

We state the common neighborhood property in the following observation.

Observation 2.3. S is a solution for G if and only if Nst(L)∩ T = ∅ and S \Nst(L) is
a solution of G−Nst(L).

Proof. Consider a terminal pair (s, t) ∈ L. If a common neighbor of s and t is a terminal
then there is no solution for the Restricted Vertex Multicut in G, since s and t
can only be separated by the removal of a terminal vertex. Otherwise it is clear that
every common neighbor of s and t belongs to a solution for G.

Interestingly for the class of cographs such a simple observation readily applies. The
class of cographs is strictly contained in the class of permutation graphs and we will
show later a polynomial-time algorithm for permutation graphs. However for the sake
of completeness we give a complete characterization on cographs for the Restricted
Vertex Multicut problem. Cographs are exactly the graphs that do not contain a P4

as an induced subgraph [4, 12].

Corollary 2.4. Let G be a cograph. If Nst(L) ∩ T ̸= ∅ then there is no solution for G.
Otherwise S = Nst(L) is a solution for G.

Proof. Due to the absence of a P4 in a cograph G, two vertices of G are adjacent,
or they have a common neighbor, or they are in different connected components. This
particularly means that for a pair (s, t) ∈ L, there is no path between s and t inG−Nst(L).
Thus Nst(L) is a solution for G.

6

Therefore due to Corollary 2.4, Restricted Vertex Multicut in cographs can be
solved in O(n|L|) time by computing the common neighbors for each terminal pair of L.

Next we consider a subclass of graphs that is not contained in the class of permutation
graphs and settle its complexity status. More specifically we prove that for co-bipartite
graphs the Restricted Vertex Multicut problem can be solved in polynomial time.

A graph is bipartite if its vertex set can be partitioned into two independent sets.
The partition of a bipartite graph G into two independent vertex sets is called bipartition
and this partition is unique if and only if G is connected. Bipartite graphs are exactly
the class of graphs that do not contain cycles of odd length (see [4, 12]). Note that the
Restricted Vertex Multicut remains NP-complete for trees [5, 13] and, thus, for
bipartite graphs. The complement of a bipartite graph is called co-bipartite graph and the
bipartition into two independent sets of a bipartite graph is a bipartition into two cliques
in its complement. In other words, for a co-bipartite graph G there exists a partition
(V1, V2) of V such that G[V1] and G[V2] are cliques.

Theorem 2.5. Restricted Vertex Multicut in co-bipartite graphs can be solved in
O(m

√
n+ |L|n) time.

Proof. Let G = (V,E) be a co-bipartite graph with (V1, V2) its co-bipartition. Observe
first that for a pair (s, t) of L we know that s ∈ V1 and t ∈ V2; otherwise we have no
solution. At the beginning, for each pair (s, t) of L we remove the common neighbors of
s and t by Observation 2.3. Let G′ be the graph obtained after removing the common
neighbors. That is, G′ = G−Nst(L) and G′ is co-bipartite since we only removed vertices
from a co-bipartite graph.

Let (V ′
1 , V

′
2) be the co-bipartition of G′. Let A1 be the set of vertices of V ′

1 having
at least one neighbor in V ′

2 and let A2 be the analogously subset of V ′
2 . We show that

no terminal vertex of L belongs to A1 ∪ A2. Assume for contradiction that there is a
pair (s, t) such that s ∈ A1. We know that t ∈ V ′

2 which implies that every vertex
of N(s) ∩ V ′

2 ̸= ∅ is adjacent to t. Due to the common neighborhood removal of (s, t)
we reach to a contradiction. Hence for every pair (s, t) we know that s ∈ V ′

1 \ A1 and
t ∈ V ′

2 \A2. Observe that s is adjacent to every vertex of A1, t is adjacent to every vertex
of A2, and we are forced to remove vertices only from A1 ∪A2. Thus in a solution there
cannot be any edge between A1 and A2.

Consider the bipartite graph B taken from G′[A1 ∪ A2] where every edge between
vertices of A1 is removed and every edge between vertices of A2 is removed. Then a
minimum vertex cover for B is exactly the minimum set of vertices that can be removed
from G′, since removing the vertex cover set from G′ disconnects the sets A1 and A2.
Finding a minimum vertex cover in a bipartite graph takes time O(m

√
n) [20]. Together

with the O(|L|n) time needed for the first step of removing the common neighbors we
obtain the stated result.

3 A polynomial-time algorithm for the restricted vertex
multicut problem on permutation graphs

In this section we show that Restricted Vertex Multicut can be solved in polyno-
mial time for the class of permutation graphs. Recall that we already showed in Corol-

7

lary 2.4 a polynomial-time algorithm for a proper subclass which can be seen as a special
case for permutation graphs. Let π be a permutation over the set Nn = {1, . . . , n} and
let π−1(i) be the index of i in π. We define the graph G[π] with vertex set Nn and edge
set ij ∈ E(G[π]) whenever (i− j)(π−1(i)−π−1(j)) < 0. A graph G is called permutation
graph if there exists a permutation π such that G is isomorphic to G[π]. Permutation
graphs can be represented by a model on a plane that is called permutation diagram [12]
and is defined as follows: we take two horizontal lines and label points on the upper line
with numbers 1 to n from left to right; on the lower horizontal line we label points with
numbers π(1) to π(n) and connect two points with the same label between the horizontal
lines by a line segment.

The connection between permutation graphs and permutation diagrams is given ac-
cording to the intersection of the line segments and the edges of the graph. More precisely
each vertex of the graph corresponds to a line segment and two vertices are adjacent if
and only if the corresponding line segments cross in the diagram [12]. Figure 3 shows a
permutation graph and its corresponding permutation diagram.

The algorithm forRestricted Vertex Multicut in permutation graphs is achieved
through the notion of scanlines that were introduced in [1], and have been applied in sev-
eral problems on permutation graphs [18, 19]. A scanline ℓ is a pair of numbers (x, y)
where x, y ∈ {1

2 , 1
1
2 , . . . , n

1
2}. We say that a scanline ℓ = (x, y) crosses a vertex i if either

i < x or π(i)−1 < y. The set of vertices that are crossed by a scanline ℓ is denoted by
Q(ℓ).

Let G[π] be a permutation graph and let u, v be two vertices with u < v. If u
and v are non-adjacent then according to the definition of permutation graph we have
π−1(u) < π−1(v). For two non-adjacent vertices u, v with u < v we define the following
set of scanlines that are between u and v:

A(u, v) =

{
(x, y) | x ∈

{
u
1

2
, . . . , (v − 1)

1

2

}
and y ∈

{
π−1(u)

1

2
, . . . , π−1(v − 1)

1

2

}}
.

The usage of scanlines in accordance to the Restricted Vertex Multicut problem
can be seen through the following result. We note here that the results of [1, 19] imply
the existence of a similar scanline. However we explicitly prove the following without
involving or introducing further notions relevant to other problems.

Lemma 3.1. Let G[π] be a permutation graph and let (u, v) ∈ L be a terminal pair so
that u < v. If there exists a solution S for Restricted Vertex Multicut on (G[π], L)
then there exists a scanline ℓ ∈ A(u, v) such that Q(ℓ) ⊂ S and Q(ℓ) ∩ T = ∅.

Proof. Suppose first that there is no path between u and v. Let Cu and Cv be the
connected components of u and v, respectively. Let u′ be the rightmost vertex of Cu

and let v′ be the vertex of Cv with the leftmost π−1(v′). Observe that u ≤ u′ < v and
π−1(u) < π−1(v′) ≤ π−1(v) since there is no crossing of line segments between Cu and
Cv. Then for every vertex w ∈ Cu it holds that π−1(w) < π−1(v′) and, similarly, for every
vertex z ∈ Cv it holds that u′ < z. Hence there exists a scanline ℓ = (u′ 12 , (π

−1(v′)−1)12)
such that Q(ℓ) = ∅.

Now suppose that there is a path between u and v. Then from the permutation
diagram we know that every path between u and v has a vertex w for which u < w < v.

8

s1

a

c

t

b

s2

G

a s1 b t s2 c

s1 t c a s2 b

Figure 3: A permutation graph G and its corresponding permutation diagram. For the
presented example we let the terminal pairs L = {(s1, t), (s2, t)}. With dotted lines we
represent the scanlines of A(s1, t) with squared end-points and A(s2, t) with circled end-
points that do not cross a terminal. According to the algorithm observe that St 1

2
= {a}

which implies Ss2
1
2
= {a, b} as the overall solution.

In order to separate u and v there must be a set of vertices Suv ⊆ S such that u and
v belong to different connected components of G[π] − Suv and for every vertex w of
Suv, u < w < v. As shown previously in G[π] − Suv we can choose two vertices u′ and
v′ that belong to the connected component of u and v, respectively, with the properties
mentioned above. Let a scanline ℓ = (u′ 12 , (π

−1(v′)−1)12). Every vertex that is crossed by
ℓ in G[π] must belong to Suv meaning that Q(ℓ) ⊆ Suv. Furthermore no terminal belongs
to Suv since Suv is part of the solution. Therefore Q(ℓ) ⊆ Suv and Suv ∩ T = ∅.

We are now ready to state our algorithm. Let G = G[π] be a permutation graph
and let L be a collection of terminal pairs. For 1 ≤ i ≤ n we denote the graph Gi =
G[{1, . . . , i}] and Li to denote the terminal pairs of Gi. In a vertex-incremental fashion
starting from vertex 1 we compute the solution Si 1

2
for the graph Gi and terminal pairs

Li. Each solution Si 1
2
is computed based on the solutions Sj 1

2
for 0 ≤ j < i. At the end

Sn 1
2
is a solution for the graph G = Gn and terminal pairs L = Ln.

Algorithm Multicut Permutation

Input: a permutation graph G = G[π] and a collection of terminal pairs L

Output: a vertex set S such that every pair of L is separated in G− S and

|S| is minimum

1. Let S1/2 = ∅
2. for i = 1, . . . , n do

3. Let s, t ∈ {1, . . . , i} such that s < t, (s, t) ∈ L, and s is maximum

4. Let AT (s, t) = {ℓ | ℓ ∈ A(s, t) and Q(ℓ) ∩ T = ∅}
5. for every scanline ℓ = (x, y) ∈ AT (s, t) do

6. Sℓ
i = Sx ∪Q(ℓ)

7. Let Si 1
2
= Sℓ

i with minimum |Sℓ
i |

8. Return S = Sn 1
2

We illustrate an example of the algorithm in the graph given in Figure 3. The main
result of this section is given in the following theorem.

9

Theorem 3.2. Restricted Vertex Multicut in permutation graphs can be solved
in O(n3) time.

Proof. Such an algorithm is described in Multicut Permutation. Let us first show the
correctness of the algorithm. For every graph Gi, 1 ≤ i ≤ n, we collect the current
solution in Si 1

2
. At vertex i we consider the pair (s, t) with s < t ≤ i that needs to be

separated. By Lemma 3.1 there is a scanline ℓ between s and t for which Q(ℓ) does not
contain a terminal vertex and Q(ℓ) is included in the solution. Thus among all scanlines
ℓ = (x, y) ∈ A(s, t) for which Q(ℓ) ∩ T = ∅ we compute the set Sℓ

i = Sx ∪Q(ℓ) with the
minimum |Sℓ

i | at lines 5–7. If Q(ℓ)∩T ̸= ∅ for every ℓ (that is, AT (s, t) = ∅) then clearly
there is no solution for G. Observe that the solution Sx corresponds to the solution for
the graph Gj where j = (x−1)12 < i. If we remove the vertices of Sℓ

i then Gi breaks into
two induced subgraphs Gj − Q(ℓ) and G[{j + 1, . . . , i}] − Q(ℓ). Since for the terminal
pair (s, t) we choose s to be maximum at line 3, there is no terminal pair in the graph
G[{j + 1, . . . , i}]. Thus Si 1

2
is obtained for a suitable choice of pair (x, y) for which

|Sx|+ |Q(ℓ)| is minimized.
Regarding the running time of the algorithm notice that the permutation diagram

(and therefore the permutation π and the ordering of the vertices) can be computed in
O(n+m) time [4, 12]. Computing each Si 1

2
requires O(n2) time since there are at most

i2 scanlines in A(s, t). Moreover for a fixed ℓ = (x, y) the set Q(ℓ) can be computed in
O(n) time. Therefore the overall running time of the algorithm is O(n3).

4 Concluding remarks

A future research direction is resolving the computational complexity of Restricted
Vertex Multicut for larger classes of permutation graphs. It seems that the pro-
posed algorithm for permutation graphs has the potential of being generalizable to larger
graph classes, such as trapezoid, or more general, d-trapezoid graphs, or co-comparability
graphs of bounded dimension. Note that these graph classes already have an established
scanline notion [2]. Moreover permutation graphs are exactly the graphs that are both
comparability and co-comparability [4, 12]. For comparability graphs it follows that
the problem is NP-complete since every tree is a comparability graph. In the case of
co-comparability graphs the complexity status remains open.

Furthermore the characterization given in Corollary 2.4 for P4-free graphs implies that
the solution consists of a separator set S for each pair of terminals without taking into
account its (minimum) cardinality. As an interesting dichotomy result notice that split
graphs do not contain P5 or larger chordless paths and, therefore, Restricted Vertex
Multicut remains NP-complete for the class of Pk-free graphs for k ≥ 5 whereas due
to Corollary 2.4 the problem is polynomial-time solvable for k ≤ 4. For split graphs it
is interesting to determine the maximum number k > 2 of terminal pairs for which the
problem admits a polynomial solution. We note that both problems Edge Multicut
and Restricted Vertex Multicut for general graphs on at least 3 terminal pairs are
NP-complete [7, 13].

10

Acknowledgements

The author would like to thank the anonymous referees whose valuable suggestions helped
improve the presentation of the paper.

References

[1] H. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation
graphs. SIAM Journal on Discrete Mathematics, 8:606–616, 1995.

[2] H. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth and minimum fill-in
on d-trapezoid graphs, Journal of Graph Algorithms and Applications, 2:1–23, 1998.

[3] N. Bousquet, J. Daligault, and S. Thomassé, Multicut is FPT. In Proceedings of
STOC 2011, pp. 459–468, 2011.

[4] A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, vol. 3, Philadelphia, 1999.

[5] G. Cǎlinescu, C. G. Fernandes, and B. A. Reed. Multicuts in unweighted graphs
and digraphs with bounded degree and bounded tree-width. Journal of Algorithms,
48:333–359, 2003.

[6] M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer
multiflow: A survey. European Journal of Operational Research, 162:55–69, 2005.

[7] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P.D.Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894,
1994.

[8] M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-completeness. Freeman, 1979.

[9] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing, 25:235–251, 1996.

[10] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

[11] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs.
Journal of Algorithms, 50:49–61, 2004.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete
Mathematics (second ed.), vol. 57, Elsevier, 2004.

[13] J. Guo, F. Huffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs. Eu-
ropean Journal of Operational Research, 186:542–553, 2008.

11

[14] T. C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading, MA,
1969.

[15] D. Marx. Parameterized graph separation problems. Theoretical Computer Science,
351:394–406, 2006.

[16] D. Marx and I. Razgon. Constant ratio fixed-parameter approximation of the edge
multicut problem. Information Processing Letters, 109:1161–1166, 2009.

[17] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In Proceedings of STOC 2011, pp. 469–478, 2011.

[18] D. Meister. A characterisation of the minimal triangulations of permutation graphs.
In Proceedings of WG 2007, LNCS 4769:99–108, 2007.

[19] D. Meister. Treewidth and minimum fill-in on permutation graphs in linear time.
Theoretical Computer Science, 411:3685–3700, 2010.

[20] S. Micali and V.V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum
matching in general graphs. In Proceedings of FOCS 1980, pp. 17–27, 1980.

[21] M. Yannakakis, P. C. Kanellakis, S. S. Cosmadakis, and C. H. Papadimitriou. Cut-
ting and partitioning a graph after a fixed pattern. In Proceedings of ICALP 1983,
pp. 712–722, 1983.

12

