
Making arbitrary graphs transitively orientable:

Minimal comparability completions∗

Pinar Heggernes† Federico Mancini† Charis Papadopoulos†

Abstract

A transitive orientation of an undirected graph is an assignment of directions to its
edges so that these directed edges represent a transitive relation between the vertices of
the graph. Not every graph has a transitive orientation, but every graph can be turned
into a graph that has a transitive orientation, by adding edges. We study the problem of
adding an inclusion minimal set of edges to an arbitrary graph so that the resulting graph
is transitively orientable. We show that this problem can be solved in polynomial time, and
we give a surprisingly simple algorithm for it.

1 Introduction

A transitive orientation of an undirected graph is an assignment of a direction to each of the
edges, such that the edges represent a binary transitive relation on the vertices. An undirected
graph is a comparability graph if there is a transitive orientation of its edges, and hence compara-
bility graphs are also called transitively orientable graphs. This is a wide and well known graph
class studied by many authors, and and it has applications in areas like archeology, psychology,
and political sciences [1, 11]. Comparability graphs are perfect, and they can be recognized in
polynomial time. Many interesting optimization problems that are NP-hard on arbitrary graphs,
like coloring and maximum (weighted) clique, are polynomially solvable on comparability graphs
[1]. Hence, computing a comparability supergraph of an arbitrary graph, and solving a generally
NP-hard problem in polynomial time on this supergraph, is a way of obtaining approximation
algorithms for several hard problems. For graphs coming from the application areas mentioned
above, there may be missing edges due to lacking data so that the graph fails to be comparability,
in which case one is again interested in computing a comparability supergraph. A comparability
graph obtained by adding edges to an arbitrary graph is called a comparability completion of the
input graph. Unfortunately, computing a comparability completion with the minimum number
of added edges (called a minimum completion) is an NP-hard problem [2].

A minimal comparability completion H of G is a comparability completion of G such that no
proper subgraph of H is a comparability completion of G. Although the number of added edges
in a minimal comparability completion may be far from minimum, computing a few different
minimal comparability completions, and choosing the one with the smallest number of edges is
a possible approach to finding a comparability completion close to minimum. Furthermore, the

∗This work is supported by the Research Council of Norway through grant 166429/V30.
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails: {pinar, federico,

charis}@ii.uib.no

1

set of minimal comparability completions of a graph contains the set of minimum comparability
completions. Therefore, the study of minimal comparability completions is a first step in the
search for minimum comparability completions, possibly through methods like exact exponential
time algorithms or parameterized algorithms. In this paper, we give the first polynomial time
algorithm for computing minimal comparability completions of arbitrary graphs, and hence
we show that this problem is solvable in polynomial time, as opposed to computing minimum
comparability completions.

The study of minimal completions of arbitrary graphs into a given graph class started with
a polynomial-time algorithm for minimal chordal completions in 1976 [12], before it was known
that minimum chordal completions are NP-hard to compute [14]. Since then the NP-hardness
of minimum completions has been established for several graph classes (summarized in [9]).
Recently, several new results, some of which have been presented at recent years’ SODA and
ESA conferences, have been published on completion problems, leading to faster algorithms for
minimal chordal completions [5, 7, 8], and polynomial-time algorithms for minimal completions
into split, interval, and proper-interval graphs [3, 4, 10]. The complexity of computing minimal
comparability completions has been open until now.

There are simple examples to show that a minimal comparability completion cannot be ob-
tained by starting from an arbitrary comparability completion, and removing unnecessary edges
one by one (as opposed to minimal completions into chordal and split graphs). To overcome
this difficulty, we use a vertex incremental approach in our algorithm. A vertex incremental
algorithm has also proved useful for minimal completions into interval graphs [4], and there-
fore we find it worthwhile to give a more general result here, describing classes of graphs into
which minimal completions of arbitrary graphs can be computed with such a vertex incremental
approach. Notice, however, that the algorithm for each step is completely different for, and
dependent on, each graph class, and polynomial time computability is not guaranteed by the
vertex incremental approach.

2 Notation and background

We consider undirected finite graphs with no loops or multiple edges. For a graph G, we denote
its vertex and edge set by V (G) and E(G), respectively, with n = |V (G)| and m = |E(G)|. For
a vertex subset S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. Moreover, we
denote by G− S the graph G[V (G)− S] and by G− v the graph G[V (G)− {v}].

The neighborhood NG(x) of a vertex x of the graph G is the set of all the vertices of G which
are adjacent to x. The closed neighborhood of x is defined as NG[x] = NG(x)∪{x}. If S ⊆ V (G),
then the neighbors of S, denoted by NG(S), are given by

(⋃
x∈S NG(x)

)− S. For a vertex x of
G, the set NG(NG(x)) − {x} is denoted by N2

G(x). For a pair of vertices x, y of a graph G we
call xy a non-edge of G if xy /∈ E(G). A vertex x of G is universal if NG[x] = V (G).

Given a new vertex x /∈ V (G) and a set of vertices Nx of G, we denote by Gx the graph
obtained by adding x to G and making x adjacent to each vertex in Nx, i.e., V (Gx) = V (G)∪{x}
and E(Gx) = E(G) ∪ {xv | v ∈ Nx}; thus NGx(x) = Nx. For a vertex x /∈ V (G), we denote
by G + x the graph obtained by adding an edge between x and every vertex of V (G), thus x is
universal in G + x.

Due to limited space, the proofs of most of the results of this extended abstract will be given
in an appendix.

2

2.1 Comparability graphs

A digraph is a directed graph, and an arc is a directed edge. While we denote an undirected edge
between vertices a and b equivalent by ab or ba, we denote an arc from a to b by (a, b), and an
arc in the opposite direction by (b, a). A directed acyclic graph (dag) is transitive if, whenever
(a, b) and (b, c) are arcs of the dag, (a, c) is also an arc. An undirected graph is a comparability
graph if directions can be assigned to its edges so that the resulting digraph is a transitive dag,
in which case this assignment is called a transitive orientation.

We consider an undirected graph G to be a symmetric digraph, that is, if xy ∈ E(G) then
(x, y) and (y, x) are arcs of G. Two arcs (a, b) and (b, c) of an undirected graph G are called
incompatible if ac is not an edge of G. We say, then, that (a, b) is incompatible with (b, c)
and vice versa, or that ((a, b), (b, c)) is an incompatible pair. The incompatibility graph BG of
an undirected graph G is defined as follows: In BG there is one vertex for each arc of G, and
therefore we will (somewhat abusively) denote a vertex of BG that corresponds to arc (a, b)
of G by (a, b). For each edge ab of G, there are two adjacent vertices (a, b) and (b, a) in BG.
In addition, there is an edge between two vertices (a, b) and (b, c) of BG if and only if arcs
(a, b) and (b, c) are incompatible in G. We will refer to the edges of BG of this latter type as
incompatibilities. Since we consider an undirected graph to be a symmetric digraph, if (a, b)(b, c)
is an edge (incompatibility) of BG then (c, b)(b, a) is also an edge (incompatibility) of BG. An
example of a graph G and its incompatibility graph BG is given in Figure 1.

a b

d c

(a, b) (c, b) (c, d) (a, d)

(b, a) (b, c) (d, c) (d, a)

G BG

Figure 1: A graph G and its incompatibility graph BG.

A graph is bipartite if its vertex set can be partitioned into two independent sets. Bipartite
graphs are exactly the class of graphs that do not contain cycles of odd length. The incom-
patibility graph will be our main tool to compute minimal comparability completions, and the
following result from Kratsch et al. [6] is central to our algorithm.

Theorem 1 ([6]). An undirected graph G is a comparability graph if and only if its incompati-
bility graph BG is bipartite.

2.2 A vertex incremental approach for minimal completions

A comparability graph can be obtained from any graph G by adding edges, and the resulting
graph is called a comparability completion of G. An edge that is added to G to obtain a
comparability completion H is called a fill edge. A comparability completion H = (V, E ∪F) of
G = (V, E), with E ∩F = ∅, is minimal if (V, E ∪F ′) fails to be a comparability graph for every
F ′ ⊂ F . We will now show that minimal comparability completions can be obtained vertex
incrementally. In fact, we give a more general result here, describing graph classes into which
minimal completions of arbitrary graphs can be computed by a vertex incremental approach. A
graph class Π is called hereditary if all induced subgraphs of graphs in Π also belong to Π.

3

Property 2. We will say that a graph class Π has the universal vertex property if, for every
graph G ∈ Π and a vertex x 6∈ V (G), G + x ∈ Π.

Lemma 3. Let H be a minimal Π completion of an arbitrary graph G, and let Gx be a graph
obtained from G by adding a new vertex x adjacent to some vertices of G. If Π is hereditary
and has the universal vertex property, then there is a minimal Π completion H ′ of Gx such that
H ′ − x = H.

An important consequence of Lemma 3 is that for a hereditary graph class Π with the uni-
versal vertex property, a minimal Π completion of any input graph G can be computed by intro-
ducing the vertices of G in an arbitrary order x1, x2, . . . , xn. Given a minimal Π completion Hi

of Gi = G[x1, . . . , xi], we compute a minimal Π completion of Gi+1 = G[x1, . . . , xi, xi+1] by actu-
ally computing a minimal Π completion of the graph Hxi+1 = ({x1, . . . , xi+1}, E(Hi)∪ {xi+1v |
v ∈ NGi+1(xi+1)}). In this completion, we add only fill edges incident to xi+1. Meanwhile, notice
that this minimal completion is not necessarily easy to obtain, and some major challenges might
need to be overcome, depending on the graph class Π.

Observation 4. The class of comparability graphs is hereditary and satisfies the universal vertex
property.

The real challenge is how to do the computations of each vertex incremental step. This is
exactly the problem that we solve in the rest of this paper. Thus for the rest of the paper,
due to Lemma 3 and Observation 4, we consider as input a comparability graph G and a new
vertex x /∈ V (G) together with a list of vertices Nx in G. Our aim is to compute a minimal
comparability completion of Gx = (V (G) ∪ {x}, E(G) ∪ {xv | v ∈ Nx}). We do this by finding
an appropriate set of fill edges Fx incident to x such that we obtain a comparability graph by
adding Fx to Gx, and no proper subset Fx yields a comparability graph when added to Gx.

3 An algorithm for minimal comparability completion of Gx

In this section, we give an algorithm that computes a minimal comparability completion H of
Gx, for a given comparability graph G and a new vertex x /∈ V (G) together with a neighborhood
Nx in G. Our main tool will be the incompatibility graph BG of G, which we know is bipartite
by Theorem 1. We will proceed to update BG with the aim of obtaining the incompatibility
graph BGx of Gx. We will keep this partial incompatibility graph a bipartite graph at each step.
If Gx is not a comparability graph, we will have to add fill edges to Gx to be able to achieve
this goal.

Let Ex = {xv | v ∈ Nx} (thus Gx = (V ∪ {x}, E ∪ Ex)). Our first step in obtaining BGx

from BG is to add vertices corresponding to edges of Ex and the edges and incompatibilities
between these. We will make a separate graph Bx to represent the incompatibilities among
the edges of Ex. Let Bx be the graph that has two adjacent vertices (x, v) and (v, x) for each
xv ∈ Ex, and that has all incompatibilities that are implied by non-edges of Gx between vertices
of Nx. To be more precise, if E = {(x, v) | xv ∈ Ex} ∪ {(v, x) | xv ∈ Ex}, and BGx[Nx∪{x}] is
the incompatibility graph of Gx[Nx ∪ {x}], then Bx is the subgraph of BGx[Nx∪{x}] induced by
E . An example is given in Figure 2. Observe that the graph Gx[Nx ∪ {x}] is a comparability
graph, since G[Nx] is comparability by the hereditary property, and x is a universal vertex in
Gx[Nx ∪ {x}]. Following the above arguments, Bx is a bipartite graph by Theorem 1.

4

x

a
b

d c

(a, x) (c, x) (b, x)

(x, a) (x, c) (x, b)

(a, b) (c, b) (c, d) (a, d) (a, x) (c, x) (b, x)

(b, a) (b, c) (d, c) (d, a) (x, a) (x, c) (x, b)

Gx Bx BGx

︸ ︷︷ ︸

BG

︸ ︷︷ ︸

Bx

Figure 2: An example that shows Gx, Bx, and BGx , for the graph G given in Figure 1.

For our purposes, we also need to define the set of incompatibilities of BG implied by a given
non-edge xv of G. We call this set CG(xv), and define it as follows for each non-edge xv of G.

CG(xv) = {(x,w)(w, v) | w ∈ NG(x) ∩NG(v)} ∪ {(v, w)(w, x) | w ∈ NG(x) ∩NG(v)}

Observe that CG(e1)∩CG(e2) = ∅ for any pair of non-edges e1 and e2 of G, and
⋃

e/∈E(G) CG(e)
is exactly the set of all incompatibilities in BG.

Lemma 5. By adding the set of edges CGx(xv) for each v ∈ N2
Gx

(x) into the graph BG ∪ Bx,
we obtain the incompatibility graph BGx of Gx.

Assume that we want to compute the incompatibility graph BGx of Gx. We start with the
partial incompatibility graph BG ∪ Bx, which is bipartite by the above arguments. By Lemma
5, to get BGx it is sufficient to scan all non-edges of Gx between x and N2

Gx
(x) one by one,

and add the incompatibilities that are implied by each non-edge into the partial incompatibility
graph. If Gx is a comparability graph, then by Theorem 1, the partial incompatibility graph
will stay bipartite at each step, since we never delete edges from it. By the same argument, if
Gx is not a comparability graph, then at some step, when we add the incompatibilities implied
by a non-edge, we will get an odd cycle in the partial incompatibility graph. For computing a
minimal comparability completion H of Gx, we augment this approach as follows: If adding the
incompatibilities implied by non-edge xv results in a non-bipartite partial incompatibility graph,
then we do not add these incompatibilities, and instead, we decide that xv should become a fill
edge of H.

At start, we let L = {xv | v ∈ N2
Gx

(x)}, B = BG ∪ Bx, and H = Gx. For each non-edge
xv ∈ L, we check whether or not non-edge xv should become a fill edge of the intermediate graph
H, using the information given by CH(xv) and B. If B ∪ CH(xv) is a bipartite graph, then we
update B = B ∪ CH(xv) and decide that xv will never become a fill edge. In the opposite case,
we add fill edge xv to H, and update B as follows.

1. Add the two adjacent vertices (x, v) and (v, x) in B.

2. For each new incompatible pair ((z, x), (x, v)) or ((v, x), (x, z)) in H, add the corresponding
edge (incompatibility) to B connecting the vertices of the pair. (We will show that this
can never introduce odd cycles in the incompatibility graph.)

3. For each new incompatible pair ((x, v), (v, u)) or ((u, v), (v, x)) in H, add the corresponding
edge (incompatibility) to B connecting the vertices of the pair only if xu is a non-edge
that has already been processed and decided to stay a non-edge (marked). If not, either
xu ∈ L or we add it to L.

5

The second case takes care of new incompatibilities among the edges incident to x, and the
last case takes care of all other new incompatibilities. In the last case, when we encounter new
incompatibilities that are implied by a non-edge e which we have not yet processed, we do not
add these incompatibilities to B at this step, and we wait until we come to the step which
processes e. The reason for this is the following: If we add these incompatibilities now, and later
decide that e should become a fill edge, then we have to delete these incompatibilities from B.
This causes problems regarding minimality, because deleting “old” incompatibilities can make
some previously added fill edges become redundant, and thus we might have to examine each
initial non-edge several times. When we do not add the incompatibilities before they are needed,
we never have to delete anything from B, and B can only grow at each step. This way, the
intermediate graph B will at all steps be a supergraph of BG ∪Bx and a subgraph of BH . This
is the clue to the simplicity of our algorithm, which makes it sufficient to examine each non-edge
incident to x once.

The non-edges that are removed from L are marked, which means that they will stay non-
edges. This marking is necessary since new non-edges enter L during the algorithm, and we
need to test for every incompatibility we discover, whether it is already implied by a marked
non-edge so that we can add it at this step, or we should wait.

Algorithm: Minimal Comparability Completion (MCC)
Input: A comparability graph G, BG, and Gx for a vertex x /∈ V (G)
Output: A minimal comparability completion H of Gx, and B = BH

B = BG ∪Bx; L = {xv | v ∈ N2
Gx

(x)}; H = Gx;1

Unmark all non-edges of H incident to x;2

while L 6= ∅ do3

Choose a non-edge xv ∈ L;4

if B ∪ CH(xv) is a bipartite graph then5

B = B ∪ CH(xv);6

else7

Add fill edge xv to H;8

Add vertices (x, v) and (v, x) and an edge between them to B;9

forall z ∈ NH(x) and z /∈ NH [v] do10

Add edges (v, x)(x, z) and (z, x)(x, v) to B;11

forall u ∈ NH(v) and u /∈ NH [x] do12

if xu is marked then13

Add edges (x, v)(v, u) and (u, v)(v, x) to B;14

else if xu /∈ L then15

Add xu to L;16

Mark xv and remove it from L;17

6

4 Correctness of Algorithm MCC

Although our algorithm is surprisingly simple due to the fact that each non-edge is examined
once, its proof of correctness is quite involved, and requires a series of observations and lemmas,
some of which with long proofs. Let us define a step of the algorithm to be one iteration of the
while–loop given between lines 3–17. For the proof of correctness, we will sometimes need to
distinguish between the graph H at the start of a step and the updated graph H at the end of
a step, to consider the changes made at one step. Throughout the rest of the paper, let HI be
the graph H at the start of step I, and let HI+1 be the graph obtained at the end of this step,
and define BI and BI+1 analogously.1

Observation 6. Let I be the step of the algorithm that processes the non-edge xv ∈ L. Then
BI contains no edge belonging to CHI

(xv).

Lemma 7. At the end of each step of the algorithm, BI is a subgraph of the incompatibility
graph BHI

of HI .

We have thus proved that BI is at all times a partial incompatibility graph of the intermediate
graph HI . At the end of the algorithm, since all non-edges that can cause incompatibilities are
scanned, and all such incompatibilities are added, we will argue that BI is indeed the correct
incompatibility graph of HI . What remains to prove is that BI is a bipartite graph at all steps.
This is obvious if xv is not added as a fill edge at the step that processes xv, but it has to be
shown in the case xv is added as a fill edge. First we introduce the notion of conflicts.

Definition 8. At each step of the algorithm, a non-edge xv of the intermediate graph HI is
called a conflict if B ∪ CHI

(xv) is not a bipartite graph.

Lemma 9. Let I be the step of the algorithm that processes non-edge xv ∈ L. If xv is a conflict
then HI is not a comparability graph.

Now we start the series of results necessary to prove that at each step BI is a bipartite graph.
We will prove this by induction on the number of steps. For each step I, we will assume that BI

is bipartite, and show that this implies that BI+1 is bipartite. Since B1 = Bx ∪BG is bipartite,
the result will follow.

(x, z2) (x, z1) (x, v) (u1, v) (u2, v)

(z2, x) (z1, x) (v, x) (v, u1) (v, u2)

Figure 3: Adding the fill edge xv in B.

Let z1, z2 and u1, u2 be vertices of HI which fulfill the conditions of the first for–loop and
the second for–loop of Algorithm MCC, respectively. With the following result we establish the
situations that occur in BI whenever an odd cycle appears in BI+1 (see also Figure 3).

1Unconventionally, we need to use a capital letter as index, since all small letters as i, j, k, l are used in the
proofs of the results of this section.

7

Observation 10. Assume that BI is bipartite. If xv is conflict at step I, then BI+1 is not
bipartite only if there is a path on even number of vertices in BI between the following pair of
vertices: (i) ((x, z1), (x, z2)) or (ii) ((v, u1), (v, u2)) or (iii) ((x, z1), (u1, v)).

Our goal is to show that these cases cannot happen in BI , and therefore BI+1 remains a
bipartite graph. We prove each case by showing that if such a path exists then there is an odd
cycle in BI which is a contradiction to our assumption that BI is a bipartite graph.

For the following results, we denote a cycle on k vertices by Ck and a path on k vertices by
Pk. A path or a cycle is even or odd according to the parity of its number of vertices. Let G
be a graph and BG be its incompatibility graph. We denote a path on k − 1 vertices in BG in
the following form: P = (x1, x2)(x2, x3) . . . (xk−1, xk); recall that a pair of adjacent vertices of
G represents a vertex of BG. By definition, if a path P in BG connects the vertices (x1, x2) and
(xk−1, xk) then there exists also the transposed path of P denoted by P T which connects the
vertices (xk, xk−1) and (x2, x1), i.e., P T = (xk, xk−1) . . . (x3, x2)(x2, x1). Recall also that there
is always an edge (x, y)(y, x) in BG for each edge xy in G.

Lemma 11. If there is an even (respectively, odd) path connecting vertices (a, b) and (c, d) of
BG then it has the following form: Pk+3 = (a, b)(b, q1)(q1, q2)(q2, q3) . . . (qk−1, qk)(qk, c)(c, d),
where k is an odd (respectively, even) number, aq1, bq2, qkd, cqk−1 /∈ E(G), and qiqi+2 /∈ E(G)
for 1 ≤ i ≤ k − 2.

Suppose that BI is bipartite. If xv is a conflict at step I, then there is an inclusion maximal
subset C ′

HI
(xv) of CHI

(xv) such that BI ∪ {C ′
HI

(xv)} is a bipartite graph. For the rest of
this section we define B′

I = BI ∪ {C ′
HI

(xv)}. Thus if BI is bipartite, so is B′
I , and any of the

incompatibilities of CHI
(xv)\C ′

HI
(xv) results in an odd cycle if added to B′

I . This is formalized
in the following observation.

Observation 12. Assume that BI is bipartite. If xv is a conflict at step I, then there is a path
on odd number of vertices in B′

I connecting (x,w) and (w, v), for some w ∈ NHI
(x) ∩NHI

(v).

Observation 13. Assume that BI is bipartite. If xv is a conflict at step I, then there is a
path in B′

I of the form: Pxv = (x,w)(w, p1)(p1, p2) . . . (p`−1, p`)(p`, w)(w, v), where ` is an even
number, x 6= p` and v 6= p1.

Now let us show that the incompatibilities added during the first forall-loop starting at line
10 do not create any odd cycles.

Lemma 14. Assume that BI is bipartite. If xv is a conflict at step I then there is no path on
even number of vertices connecting (x, z1) and (x, z2) in B′

I , for every pair of vertices z1, z2 such
that z1, z2 ∈ NHI

(x) and z1, z2 /∈ NHI
[v].

Now we show that adding the incompatibilities at the second forall-loop starting at line 12
does not create an odd cycle, if we skip the first for-all loop starting at line 10.

Lemma 15. Assume that BI is bipartite. If xv is a conflict at step I, then there is no path
on even number of vertices connecting (v, u1) and (v, u2) in B′

I , for every pair of vertices u1, u2

such that u1, u2 ∈ NHI
(v), u1, u2 /∈ NHI

[x] and xu1, xu2 are marked non-edges.

Thus we have seen that each of the two forall-loops maintains the bipartite graph if we skip
the other for-all loop. Let us now show that together they do not create a problem.

8

Lemma 16. Assume that BI is bipartite. If xv is a conflict at step I, then there is no path
on even number of vertices connecting (x, z1) and (u1, v) in B′

I , for every pair of vertices z1, u1

such that u1 ∈ NHI
(v), u1 /∈ NHI

[x], xu1 is a marked non-edge and z1 ∈ NHI
(x), z1 /∈ NHI

[v].

Lemma 17. At each step of the algorithm BI is a bipartite graph.

Theorem 18. The graph H returned by Algorithm MCC is a minimal comparability completion
of Gx.

Proof. First we show that H is a comparability completion of Gx. During the algorithm, every
time a new incompatible pair is created, the corresponding incompatibility is added to BI

unless it is implied by a non-edge of L. Incompatibilities implied by members of L that remain
non-edges are added one by one until L is empty. At the end of the algorithm, the graph B
contains all incompatibilities implied by the non-edges in H, since L = ∅. Thus B is the correct
incompatibility graph of H, i.e., B = BH . Since BH is bipartite graph by Lemma 17, the
resulting graph H is a comparability graph by Theorem 1.

Now we want to prove that H is minimal, that is, if any subset of the fill edges is removed
the remaining graph is not comparability. Recall that at any step of the algorithm we do not
remove any edges from the graph BI (see also Lemma 7). Assume for the sake of contradiction
that there is a subset F of the fill edges such that H ′ = H − F is a comparability graph. First
note that BH′ is obtained from BH by removing the vertices (x, u) and (u, x), and then adding
the set CH′(xu), for every xu ∈ F . Let I be the earliest step in which Algorithm MCC adds a fill
edge xv ∈ F . Thus no non-edge of Gx belonging to F has been processed before step I, and HI

is a subgraph of H ′. Furthermore, BI does not contain any edge belonging to
⋃

xu∈F CH′(xu),
and BI does not contain any pair of vertices (x, u) and (u, x), for xu ∈ F . Thus BI is a subgraph
of BH′ . Now, observe that for each xu ∈ F , CHI

(xu) ⊆ CH′(xu), since NHI
(x) ⊆ NH′(x). In

particular, CHI
(xv) ⊆ CH′(xv). Since xv is a non-edge of H ′, all edges of CH′(xv) are present

in BH′ . Therefore BI ∪ CHI
(xv) is a subgraph of BH′ . In Algorithm MCC, at step I, we know

that BI ∪ CHI
(xv) contains an odd cycle, otherwise xv would not be a fill edge. Since it is

not possible to remove an odd cycle by adding edges or vertices, this means that there is an
odd cycle in BH′ . This gives the desired contradiction, because by Theorem 1 H ′ cannot be a
comparability graph as assumed.

5 Time required to compute minimal comparability completions

Observation 19. The incompatibility graph BG of a given graph G has O(mn) edges.

Lemma 20. Given a comparability graph G and its incompatibility graph BG, Algorithm MCC
computes a minimal comparability completion of Gx in O(n2m) time.

We point out that given an incompatible pair ((a, b)(b, c)) of G there is an O(n + m) time
algorithm deciding whether its incompatibility graph has an odd cycle [6]. However, it is not
straightforward to use this result for checking whether the graph BI ∪ CHI

(xv) of Algorithm
MCC is bipartite in O(n+m) time, since at each step of the algorithm, BI is merely a subgraph
of BHI

, and BI is not necessarily equal to BHI
before the last step. The following result follows

from Lemma 3, Lemma 20, and Algorithm MCC.

Theorem 21. There is an algorithm for computing a minimal comparability completion of an
arbitrary graph G in O(n3m) time.

9

6 Concluding Remarks

In this paper, we have shown that minimal comparability completions of arbitrary graphs can be
computed in polynomial time. Our focus has been on the polynomial time complexity, and we
believe that the running time of the given algorithm can be improved. Comparability graphs can
be recognized in time O(n2.38) [13], and even the straight forward O(n3m) time complexity of
our algorithm for computing minimal comparability completions is thus comparable to the time
complexity of recognizing comparability graphs. As a comparison, both chordal and interval
graphs can be recognized in linear time; the best known time for minimal chordal completions
is O(n2.38) [5], and for minimal interval completions is O(n5) [4].

References

[1] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[2] S. L. Hakimi, E. F. Schmeichel, and N. E. Young. Orienting graphs to optimize reachability. Infor-
mation Processing Letters, 63(5):229–235, 1997.

[3] P. Heggernes and F. Mancini. Minimal split completions of graphs. In LATIN 2006: Theoretical
Informatics, pages 592–604. Springer Verlag, 2006. LNCS 3887.

[4] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval completions. In Algorithms
- ESA 2005, pages 403 – 414. Springer Verlag, 2005. LNCS 3669.

[5] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) =
o(n2.376). In Proceedings of SODA 2005 - 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 907–916, 2005.

[6] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algorithms for recognizing
interval graphs and permutation graphs. SIAM J. Comput., 2006. To appear.

[7] D. Kratsch and J. P. Spinrad. Between O(nm) and O(nα). In Proceedings of SODA 2003 - 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 709–716, 2003.

[8] D. Kratsch and J. P. Spinrad. Minimal fill in o(n3) time. Discrete Math., 306(3):366–371, 2006.

[9] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification prob-
lems. Disc. Appl. Math., 113:109–128, 2001.

[10] I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions. In Proceedings of
WG 2006 - 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, 2006.
To appear.

[11] F. S. Roberts. Graph Theory and Its Application to Problems of Society. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1978.

[12] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM
J. Comput., 5:266 – 283, 1976.

[13] J. Spinrad. On comparability and permutation graphs. SIAM J. Comput., 14:658 – 670, 1985.

[14] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79,
1981.

10

Appendix

Proof of Lemma 3:
Proof. Let Hx be the graph obtained by adding x to H together with the edges between x and
NGx(x). Observe first that a Π completion of Hx can be obtained by adding edges only incident
to x, since H +x ∈ Π. Thus, a minimal Π completion of Hx can be obtained by adding a subset
of the edges between x and V (Hx)−NGx(x). Let H ′ be a minimal Π completion of Hx obtained
by adding edges incident to x. Obviously, H ′ − x = H. Assume for the sake of contradiction
that H ′ is not a minimal Π completion of Gx. This means that a subset of the newly added
edges to Hx to obtain H ′ and a nonempty subset of the edges added to G to obtain H can be
removed from H ′ without destroying the Π property. But since Π is hereditary, this contradicts
that H is a minimal Π completion of G. Thus H ′ must be a minimal Π completion of Gx.

Proof of Observation 4:
Proof. The transitive orientation property is clearly hereditary (see for example [1]). Let G be
a comparability graph and x /∈ V (G). We will show that G + x is a comparability graph. We
know that G has a transitive orientation D of its edges. Let us give the following orientation to
the edges of G+x: For edges of G, we orient them as in D. For edges incident to x, we orient all
of them towards x. Now the pairs of arcs of this digraph that can cause a problem are all of type
((a, b), (b, x)). But since x is universal, ax is also an edge of G + x, and it is oriented towards x.
Thus the described orientation is transitive on G + x, and therefore G + x is comparability.

Proof of Lemma 5:
Proof. Adding a new vertex x to G and some edges incident to x, can only create incompatibil-
ities between pairs of arcs that both have an endpoint in x and between pairs of arcs where one
has an endpoint in x and the other has an endpoint in N2

Gx
(x). The incompatibilities of the first

type are already present as edges in Bx. The incompatibilities of the second type are exactly
the ones given by CGx(xv). Notice that the graph BG ∪Bx does not contain any edges between
vertices of BG and Bx. By definition, all vertices of BGx (arcs of edges in Gx) are contained in
BG ∪Bx, and BG ∪Bx has no further vertices. Hence the result follows.

Proof of Observation 6:
Proof. Assume for the sake of contradiction that BI contains an edge (x, w)(w, v) belonging to
CHI

(xv). This can happen only if there is a vertex w ∈ NHI
(x) ∩NHI

(v) such that xw is a fill
edge of HI . But by line 13 of the algorithm the incompatibility (x, w)(w, v) cannot have been
added previously, since, being processed for the first time, xv is unmarked at all previous steps.
Thus no edge of CHI

(xv) is contained in BI .

Proof of Lemma 7:
Proof. We prove this by induction on the number of steps. At start, B = BG ∪Bx is definitely
a subgraph B1 = BGx . Consider any step I of the algorithm. By the induction hypothesis, we
can assume that BI is a subgraph of BHI

, and we must show that BI+1 is a subgraph of BHI+1
.

Let xv be the non-edge of L that we process at step I. If BI ∪ CHI
(xv) is bipartite then

no fill edge is added at this step and we have HI+1 = HI and thus BHI+1
= BHI

. Note also
that CHI

(xv) is a subset of the edges of BHI+1
by definition. Hence, in this case the graph

BI+1 = BI ∪ CHI
(xv) is a subgraph of BHI+1

.

11

In case the graph BI ∪CHI
(xv) is not bipartite, BI+1 is obtained from BI by adding two ad-

jacent vertices (x, v) and (v, x) and the corresponding incompatibilities induced by the addition
of the edge xv into HI . These new edges correspond to incompatible pairs of HI+1 of the form
((x, v), (v, u)) or ((u, v), (v, x)), and of the form ((z, x), (x, v)) or ((v, x), (x, z)). By definition,
the graph BHI+1

contains this kind of edges of BI+1. We see that all edges added to BI to
obtain BI+1 are also edges of BHI+1

. Hence the only way BI+1 can fail to be a subgraph of
BHI+1

is if BI has edges that do not belong to BHI+1
. Assume that there is an incompatibility

p in BI which should not be present in BHI+1
. This can happen only if the addition of fill edge

xv removes this incompatibility p at step I. This means that p is an incompatibility implied by
the non-edge xv and thus p belongs to CHI

(xv). But by Observation 6, BI contains no edge of
CHI

(xv), thus this situation cannot happen, and BI+1 is a subgraph of BHI+1
.

Proof of Lemma 9:
Proof. Follows from Lemma 7 and Theorem 1 since an odd cycle in BI cannot disappear by the
addition of edges or vertices in BI .

Proof of Observation 10:
Proof. Given that BI is bipartite, if BI+1 contains an odd cycle, it must contain at least one
vertex (x, v) or (v, x), since we do not add edges between the other vertices. Considering the
edge between (x, v) and (v, x) and the symmetry of their neighborhood, there are only two ways
an odd cycle can be created: (x, v) (or (v, x)) plus an even path between two of its neighbors
(notice that the three cases of the observation cover all possibilities); or (x, v) and (v, x) plus an
odd path between a neighbor of (x, v) and a neighbor of (v, x). These two cases are equivalent,
in fact if there is an odd path between a neighbor (a, b) of (x, v) and a neighbor (c, d) of (v, x),
then there is an even path between the neighbors (a, b) and (d, c) of (x, v) by the symmetry of
their neighborhood. Hence, the pointed cases describe the existence of an odd cycle in BI+1.

Proof of Lemma 11:
Proof. By the definition of the edges of the incompatibility graph BG we have two types of edges
among two vertices of BG: either (a, b)(b, c) or (b, a)(c, b) such that ab /∈ E(G). The form of the
path shown in the lemma uses only the first kind of edges. But any edge (path on two vertices) of
the kind (b, a)(c, b) can be turned into a path on four vertices using only the first form of edges:
(b, a)(a, b)(b, c)(c, b). Thus an even or odd path between two vertices of BG has the form of the
equation as shown and the constraints for the non-edges are justified by definition; otherwise
there is no path connecting the vertices.

Proof of Observation 13:
Proof. By Lemma 11, Pxv contains `+3 vertices. Notice that by the definition of the odd path,
xp1, p`−1w, p`v /∈ E(HI), and ` is an even number by the odd number of vertices in Pxv. Since xv
is a conflict the incompatibility (x,w)(w, v) is not present in B′

I and thus x 6= p` and v 6= p1.

12

Proof of Lemma 14:
Proof. Assume for the sake of contradiction that there is such an even path connecting them.
Then by Lemma 11 it has the following form:

Pz = (x, z1)(z1, q1)(q1, q2) . . . (qk−1, qk)(qk, x)(x, z2),

where k ≥ 3 is an odd number. If k = 1 then there is no path on even number of vertices
connecting (x, z1) and (x, z2). Observe that the path Pz contains k + 3 vertices. Notice that
xq1, z1q2 /∈ E(HI) and z2qk, xqk−1 /∈ E(HI) and qiqi+2 /∈ E(HI), for 1 ≤ i ≤ k − 2; otherwise
there is no even path (see also Lemma 11). Considering the path Pz in B′

I , we have to distinguish
between when z1 and z2 are adjacent in HI and when they are not. We will prove that in each
case there is an odd cycle in B′

I which is a contradiction since B′
I is a bipartite graph.

• Case 1: z1z2 /∈ E(HI).
In this case it is easy to see that appending the pairs (z2, x) and (x, z1) in Pz we obtain
an odd cycle in B′

I :
Ck+4 = Pz (z2, x)(x, z1)︸ ︷︷ ︸

z1z2 /∈E(HI)

.

• Case 2: z1z2 ∈ E(HI).
In this case we have to consider also the fact that xv is a conflict. By Observation 12
there is a vertex w which induces an odd path Pxv in B′

I . We distinguish between the
cases where w is (i) non-adjacent to both z1, z2, (ii) adjacent only to one of them and (iii)
adjacent to both of them.

– Case 2.1: wz1 /∈ E(HI) and wz2 /∈ E(HI).
In this case it is easy to see that the following odd cycle occurs in B′

I :

Ck+6 = (w, x)Pz (z2, x)(x,w)︸ ︷︷ ︸
wz2 /∈E(HI)

(w, x).

– Case 2.2: wz1 /∈ E(HI) and wz2 ∈ E(HI).
By Observation 13 there is an odd path Pxv connecting (x,w) and (w, v) in B′

I ; recall
that the path Pxv contains `+3 vertices, where ` is an even number and xp1 /∈ E(HI).
Here we prove that if there is an even path which connects (x, z1) and (x, z2) then
there is a path Pz2z1 on r vertices where r is an even number which connects (z2, z1)
and (z1, x). Hence the result follows based on the path Pz2z1 , since the following odd
cycle appears in B′

I :

C`+r+5 = (w, z2)Pz2z1Pxv(v, w)(w, z2).

In order to prove the existence of the path Pz2z1 , notice that by the definition of
the path Pz we have the following non-edges: xq1, xqk−1, z1q2, z2qk and qiqi+2, for
1 ≤ i ≤ k − 2. If z1qk /∈ E(HI) then we have the following odd cycle:

Ck+2 = (x, z1)(z1, q1)(q1, q2) . . . (qk−1, qk)(qk, x)(x, z1).

13

In case z1qk ∈ E(HI) we have the following three cases to consider: If z1qi ∈ E(HI),
1 ≤ i ≤ k then we have the following even path (r = k + 3):

Pz2z1 = (z2, z1)(z1, qk)(qk, z1)(z1, qk−2) . . . (q3, z1)(z1, q1)(q1, z1)(z1, x).

If z1qi /∈ E(HI), z1qi+1, z1qi+2, . . . z1qk ∈ E(HI), and i is an even number, 1 < i < k,
then we have the following even path (r = k + 3):

Pz2z1 = (z2, z1) (z1, qk)(qk, z1)(z1, qk−2) . . . (z1, qi+1)(qi+1, qi)︸ ︷︷ ︸
k−i+1

Pi+1,

where Pi+1 = (qi, qi−1)(qi−1, qi−2) . . . (q1, z1)(z1, x).
If z1qi /∈ E(HI), z1qi+1, z1qi+2, . . . z1qk ∈ E(HI) and i is an odd number, 1 < i < k,
then we have the following odd cycle in B′

I :

Ck+2 = (x, z1) (z1, qk−1)(qk−1, z1)(z1, qk−3) . . . (z1, qi+1)(qi+1, qi)︸ ︷︷ ︸
k−i

Pi+2,

where Pi+2 = (qi, qi−1)(qi−1, qi−2) . . . (q1, z1)(z1, x)(x, z1).

– Case 2.3: wz1 ∈ E(HI) and wz2 ∈ E(HI).
In this case we prove that if there is an even path Pz which connects (x, z1) and
(x, z2) then there is either (i) a path Pxz1 (resp. Pxz2) on r1 vertices where r1 is an
even number which connects (x,w) and (w, z1) (resp. (w, z2)) or (ii) a path Pwz on
r2 vertices where r2 is an even number which connects (w, z1) and (w, z2). In both
cases the result follows since if (i) holds then the following odd cycle appears in B′

I

(notice that z1v, z2v /∈ E(HI)):

C`+r1+5 = P T
xvPxz1(z1, w)(w, v)(v, w),

and if (ii) holds then we have the following odd cycle:

Cr2+3 = (v, w)Pwz(z2, w)(w, v)(v, w).

To justify the existence of the paths Pxz1 and Pxz2 , observe first that if wq1 /∈ E(HI)
and wqk /∈ E(HI) then we have the following even path (r1 = k + 5):

Pxz1 = (x,w) (w, x)(x, qk)(qk, qk−1) . . . (q2, q1)(q1, z1)(z1, w)︸ ︷︷ ︸
k+3

(w, z1). (1)

If wqi ∈ E(HI), 1 ≤ i ≤ k, then we have the following even path (r = k + 1):

Pxz1 = (x,w) (w, qk−1)(qk−1, w)(w, qk−3)(qk−3, w) . . . (q4, w)(w, q2)(q2, w)︸ ︷︷ ︸
k−1

(w, z1).

Now in all other cases let qjw /∈ E(HI) and q1w, q2w, . . . , qj−1w ∈ E(HI), and let
qiw /∈ E(HI) and qi+1w, qi+2w, . . . , qkw ∈ E(HI), 1 ≤ j ≤ i ≤ k. Depending on the
values of i and j, we have the following four cases to consider:

14

• If i is an odd number and j is an even number then we have the following odd cycle
in B′

I :

Ck+2 =





(x,w)Pj (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i(w, x)(x,w), if i < k

(x,w)Pj (qj , qj+1) . . . (qk−1, qk)︸ ︷︷ ︸
k−j

(qk, x)(x,w), if i = k

where Pj = (w, q1)(q1, w)(w, q3)(q3, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)
and Pk−i = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−3, w)(w, qk−1)(qk−1, w).

• If i is an odd number and j is an odd number then we have the following even path:

Pxz1 =





(x,w)Pk−i (qi, qi−1) . . . (qj+1, qj)︸ ︷︷ ︸
i−j

Pj−1(w, z1), if 1 < j ≤ i < k

(x,w)(w, x)(x, qk) (qk, qk−1) . . . (qj+1, qj)︸ ︷︷ ︸
k−j

Pj−1(w, z1), if 1 < j and i = k

(x,w)Pk−i (qi, qi−1) . . . (q2, q1)︸ ︷︷ ︸
i−1

(q1, z1)(z1, w)(w, z1), if j = 1 and i < k

where Pj−1 = (qj , qj−1)(qj−1, w)(w, qj−3) . . . (w, q4)(q4, w)(w, q2)(q2, w)
and Pk−i = (w, qk−1)(qk−1, w)(w, qk−3) . . . (qi+3, w)(w, qi+1)(qi+1, qi).
Note that the first path has k + 1 vertices, whereas the next two paths have k + 3
vertices, respectively. Recall that if j = 1 and i = k, then the corresponding path is
described in Equation 1.

• If i is an even number and j is an even number then we have the following even
path (r1 = k + 3):

Pxz2 = (x,w)Pj (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i+1(w, z2),

where Pj = (w, q1)(q1, w)(w, q3)(q3, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)
and Pk−i+1 = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−2, w)(w, qk)(qk, w).

• If i is an even number and j is an odd number then we have the following even
path (r2 = k + 3):

Pwz =





(w, z1)(z1, w)Pj−1 (qj , qj+1) . . . (qi−1, qi)︸ ︷︷ ︸
i−j

Pk−i+1(w, z2), if 1 < j

(w, z1)(z1, q1) (q1, q2) . . . (qi−1, qi)︸ ︷︷ ︸
i−1

Pk−i+1(w, z2), if j = 1

where Pj−1 = (w, q2)(q2, w)(w, q4)(q4, w) . . . (qj−3, w)(w, qj−1)(qj−1, qj)
and Pk−i+1 = (qi, qi+1)(qi+1, w)(w, qi+3) . . . (qk−2, w)(w, qk)(qk, w).

15

Proof of Lemma 15:
Proof. Notice that the incompatibilities (x,w)(w, u1) and (x,w)(w, u2) are present in B′

I since
xu1 and xu2 are marked non-edges. Thus if we swap vertices x and v, and if we set u1 and u2

to be z1 and z2, respectively, then the proof is similar (identical) to that of Lemma 14.

Proof of Lemma 16:
Proof. Assume for the sake of contradiction that there is an even path Pzu connecting them. By
Lemma 11 this path has the following form:

Pzu = (x, z1)(z1, y1) . . . (ys, u1)(u1, v),

where s ≥ 1 is an odd number. Hence the path Pzu contains s + 3 vertices. We will prove that
in this case there is an odd cycle in B′

I which is a contradiction since B′
I is a bipartite graph.

First we prove that if z1u1 ∈ E(HI) then we have the following odd cycle in B′
I by the fact that

z1 /∈ NHI
[v] and u1 /∈ NHI

[x]:

Cs+6 = Pzu(v, u1)(u1, z1)(z1, x)(x, z1).

Notice that if z1u1 ∈ E(HI) and s = 1 then there no path on even number of vertices connecting
(x, z1) and (u1, v) in B′

I . Thus we continue by knowing that z1u1 /∈ E(HI) and s ≥ 1. Notice
also that by Observation 12 there is a vertex w which induces a path Pxv with ` + 3 vertices in
B′

I , where ` is an even number. We distinguish four cases according to whether w is adjacent
or not to z1 or/and v1:

• Case A: wz1 /∈ E(HI) and wu1 /∈ E(HI).
It is easy to see that the following odd cycle appears in B′

I :

C`+s+6 = PzuP T
xv(x, z1).

• Case B: wz1 ∈ E(HI) and wu1 /∈ E(HI).
Here we have two cases to consider according to whether or not wy1 ∈ E(HI). In both
cases we prove that an odd cycle appears in B′

I . First notice that if wy1 /∈ E(HI) then the
following odd cycle occurs in B′

I :

Cs+4 = (w, z1) (z1, y1)(y1, y2) . . . (ys−1, ys)(ys, u1)︸ ︷︷ ︸
s+1

(u1, v)(v, w)(w, z1).

Also notice that if wyi ∈ E(HI) for 1 ≤ i ≤ s then we have the following odd cycle:

Cs+`+6 = (x,w) (w, y1)(y1, w)(w, y3) . . . (w, ys)︸ ︷︷ ︸
s

(ys, u1)(u1, v)P T
xv(x,w).

In case wy1, wy2, . . . wyi−1 ∈ E(HI) and wyi /∈ E(HI) then we distinguish two cases
according to the value of i. If i is an odd number then the following odd cycle appears in
B′

I :
Cs+4 = (w, z1)(z1, w)Pi−1 (yi, yi+1) . . . (ys, u1)︸ ︷︷ ︸

s−i+1

(u1, v)(v, w)(w, z1),

16

where Pi−1 = (w, y2)(y2, w)(w, y4) . . . (yi−3, w)(w, yi−1)(yi−1, yi).

Otherwise (i is an even number) we have:

Cs+`+6 = (x,w)Pi (yi, yi+1) . . . (ys, u1)︸ ︷︷ ︸
s−i+1

(u1, v)P T
xv(x,w),

where Pi = (w, y1)(y1, w)(w, y3) . . . (yi−3, w)(w, yi−1)(yi−1, yi).

• Case C: wz1 ∈ E(HI) and wu1 /∈ E(HI).
This case is similar (symmetric) to the previous one. By swapping vertices z1 and u1 we
conclude to the same result; notice that the incompatibility (x,w)(w, u1) is present in B′

I

since xu1 is a marked non-edge of HI .

• Case D: wz1 ∈ E(HI) and wu1 ∈ E(HI).
Here we obtain the following odd cycle in B′

I :

C`+9 = (z1, w)(w, v)P T
xv(x,w)(w, u1)(u1, w)(w, z1)(z1, w).

Proof of Lemma 17:
Proof. At the beginning of the algorithm, we know that BG ∪ Bx is bipartite, and that all
possible conflicts of Gx are contained in L. Assume that BI is a bipartite graph. We show that
BI+1 is also a bipartite graph. At step I, we have two cases to consider. If HI+1 = HI , then
this is because BI+1 = BI ∪ CHI

(xv) is a bipartite graph. Let HI+1 be obtained from HI by
adding fill edge xv. Then BI+1 is obtained from BI by adding an isolated edge (x, v)(v, x), and
some incompatibilities incident to the endpoints of this edge, implied by non-edges outside of
L. These incompatibilities are added by the first for–loop at line 10 and the second for–loop at
line 12.

For the first for–loop if the set NHI+1
(x) ∩ NHI+1

[v] contains only one vertex, say z1, then
there is an even cycle in BI+1 formed by the vertices (x, v), (v, z1), (v, x), (z1, v) and no odd
cycle is created in BI+1. It is easy to see that the same argument (for one vertex u1) holds
for the second for-loop. Now in general notice that any odd cycle created in BI+1 will still
be an odd cycle in B′

I+1 by Observation 12 since BI+1 ⊆ B′
I+1. But since B′

I is bipartite any
odd cycle in B′

I+1 can be created only if the conditions of Observation 10 are true. Thus by
Lemmata 14–16 we justify that the corresponding cases cannot exist and therefore B′

I remains
bipartite by applying the two for–loops, i.e., B′

I+1 is a bipartite graph. Hence the result follows
from the fact that BI+1 ⊆ B′

I+1.

Proof of Observation 19:
Proof. Let G be a graph on n vertices and m edges, and let BG be its incompatibility graph.
By definition BG has precisely 2m vertices. Clearly BG contains m edges of the form (a, b)(b, a).
For the other edges of BG (incompatibilities) it is easy to see that each edge of G (two vertices
of BG) can define at most O(n) incompatibilities in BG since they are induced by the neighbors
of its endpoints in G. Thus BG has O(nm) edges.

17

Proof of Lemma 20:
Proof. Let G be a comparability graph on n vertices and m edges, and let BG be its incompati-
bility graph. Since only non-edges incident to x are processed, |L| = O(n), and since non-edges
removed from L are never reinserted in L, the algorithm has O(n) steps. By Observation 19 BG

has O(nm) edges. Since |Nx| = O(n), Bx has O(n) vertices and thus O(n2) edges. At each of
the O(n) steps, we can add at most O(n) edges to B since |CH(xv)| = O(n) for each xv ∈ L.
Thus at all steps B has O(nm) edges. What dominates our time complexity is to check whether
or not B ∪ CH(xv) is bipartite. This check can be done in time linear in the size of B, namely
O(nm). Therefore, each step of the algorithm requires O(nm) time, which gives a total running
time of O(n2m).

18

