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tA transitive orientation of an undire
ted graph is an assignment of dire
tions to itsedges so that these dire
ted edges represent a transitive relation between the verti
es ofthe graph. Not every graph has a transitive orientation, but every graph 
an be turnedinto a graph that has a transitive orientation, by adding edges. We study the problem ofadding an in
lusion minimal set of edges to an arbitrary graph so that the resulting graphis transitively orientable. We show that this problem 
an be solved in polynomial time, andwe give a surprisingly simple algorithm for it. We use a vertex in
remental approa
h in thisalgorithm, and we also give a more general result that des
ribes graph 
lasses � for whi
h �
ompletion of arbitrary graphs 
an be a
hieved through su
h a vertex in
remental approa
h.1 Introdu
tionA transitive orientation of an undire
ted graph is an assignment of a dire
tion to ea
h of theedges, su
h that the edges represent a binary transitive relation on the verti
es. An undire
tedgraph is a 
omparability graph if there is a transitive orientation of its edges, and hen
e 
ompara-bility graphs are also 
alled transitively orientable graphs. This is a wide and well known graph
lass studied by many authors, and and it has appli
ations in areas like ar
heology, psy
hology,and politi
al s
ien
es [2, 11℄. Comparability graphs are perfe
t, and they 
an be re
ognized inpolynomial time. Many interesting optimization problems that are NP-hard on arbitrary graphs,are polynomially solvable on 
omparability graphs [2℄. Hen
e, 
omputing a 
omparability su-pergraph of an arbitrary graph, and solving a generally NP-hard problem in polynomial time onthis supergraph, is a way of obtaining approximation algorithms for several hard problems. Forgraphs 
oming from the appli
ation areas mentioned above, there may be missing edges due tola
king data so that the graph fails to be 
omparability, in whi
h 
ase one is again interested in
omputing a 
omparability supergraph. A 
omparability graph obtained by adding edges to anarbitrary graph is 
alled a 
omparability 
ompletion of the input graph. Unfortunately, 
omput-ing a 
omparability 
ompletion with the minimum number of added edges (
alled a minimum
ompletion) is an NP-hard problem [3℄.A minimal 
omparability 
ompletion H of G is a 
omparability 
ompletion of G su
h that noproper subgraph of H is a 
omparability 
ompletion of G. Although the number of added edgesin a minimal 
omparability 
ompletion may be far from minimum, 
omputing a few di�erentminimal 
omparability 
ompletions, and 
hoosing the one with the smallest number of edges is�This work is supported by the Resear
h Coun
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a possible approa
h to �nding a 
omparability 
ompletion 
lose to minimum. Furthermore, theset of minimal 
omparability 
ompletions of a graph 
ontains the set of minimum 
omparability
ompletions. Therefore, the study of minimal 
omparability 
ompletions is a �rst step in thesear
h for minimum 
omparability 
ompletions, possibly through methods like exa
t exponentialtime algorithms or parameterized algorithms. In this paper, we give the �rst polynomial timealgorithm for 
omputing minimal 
omparability 
ompletions of arbitrary graphs, and hen
ewe show that this problem is solvable in polynomial time, as opposed to 
omputing minimum
omparability 
ompletions.The study of minimal 
ompletions of arbitrary graphs into a given graph 
lass started witha polynomial-time algorithm for minimal 
hordal 
ompletions in 1976 [12℄, before it was knownthat minimum 
hordal 
ompletions are NP-hard to 
ompute [15℄. Sin
e then the NP-hardnessof minimum 
ompletions has been established for several graph 
lasses (summarized in [9℄).Re
ently, several new results, some of whi
h have been presented at re
ent years' SODA andESA 
onferen
es, have been published on 
ompletion problems, leading to faster algorithms forminimal 
hordal 
ompletions [5, 7, 8℄, and polynomial-time algorithms for minimal 
ompletionsinto split, interval, and proper-interval graphs [4, 14, 10℄. The 
omplexity of 
omputing minimal
omparability 
ompletions has been open until now.There are simple examples to show that a minimal 
omparability 
ompletion 
annot be ob-tained by starting from an arbitrary 
omparability 
ompletion, and removing unne
essary edgesone by one (as opposed to minimal 
ompletions into 
hordal and split graphs). To over
omethis diÆ
ulty, we use a vertex in
remental approa
h in our algorithm. A vertex in
rementalalgorithm has also proved useful for minimal 
ompletions into 
hordal graphs [1℄, and there-fore we �nd it worthwhile to give a more general result here, des
ribing 
lasses of graphs intowhi
h minimal 
ompletions of arbitrary graphs 
an be 
omputed with su
h a vertex in
rementalapproa
h. Noti
e, however, that the algorithm for ea
h step is 
ompletely di�erent for, anddependent on, ea
h graph 
lass, and polynomial time 
omputability is not guaranteed by thevertex in
remental approa
h.This paper is organized as follows. In the next se
tion we give some notation and ba
kgroundon 
omparability graphs and a new result on vertex in
remental minimal 
ompletions. In Se
tion3 we present an algorithm for the vertex in
remental step: Given a 
omparability graph G (whi
his the minimal 
omparability 
ompletion of the previous in
remental step) and a new vertex xwhi
h is added to G along with a given set of edges between x and G, 
ompute a minimal
omparability 
ompletion of this augmented graph. Gx = (V (G)[fxg; E(G)[fxv j v 2 Nxgg).We prove the 
orre
tness of the given algorithm in Se
tion 4, and dis
uss the time 
omplexityissues in Se
tion 5. We 
on
lude in Se
tion 6.2 Notation and ba
kgroundWe 
onsider undire
ted �nite graphs with no loops or multiple edges. For a graph G, we denoteits vertex and edge set by V (G) and E(G), respe
tively, with n = jV (G)j and m = jE(G)j. Fora vertex subset S � V (G), the subgraph of G indu
ed by S is denoted by G[S℄. Moreover, wedenote by G� S the graph G[V (G)� S℄ and by G� v the graph G[V (G)� fvg℄.The neighborhood NG(x) of a vertex x of the graph G is the set of all the verti
es of G whi
hare adja
ent to x. The 
losed neighborhood of x is de�ned as NG[x℄ = NG(x)[fxg. If S � V (G),then the neighbors of S, denoted by NG(S), are given by �Sx2S NG(x)�� S. For a vertex x of2



G, the set NG(NG(x)) � fxg is denoted by N2G(x). For a pair of verti
es x; y of a graph G we
all xy a non-edge of G if xy =2 E(G). A vertex x of G is universal if NG[x℄ = V (G).A 
lique is a set of pairwise adja
ent verti
es while an independent set is a set of pairwise non-adja
ent verti
es. A graph is bipartite if its vertex set 
an be partitioned into two independentsets. Bipartite graphs are exa
tly the 
lass of graphs that do not 
ontain 
y
les of odd length.Given a new vertex x =2 V (G) and a set of verti
es Nx of G, we denote by Gx the graphobtained by adding x to G and making x adja
ent to ea
h vertex in Nx, i.e., V (Gx) = V (G)[fxgand E(Gx) = E(G) [ fxv j v 2 Nxg; thus NGx(x) = Nx. For a vertex x =2 V (G), we denoteby G+ x the graph obtained by adding an edge between x and every vertex of V (G), thus x isuniversal in G+ x.2.1 Comparability graphsA digraph is a dire
ted graph, and an ar
 is a dire
ted edge. While we denote an undire
ted edgebetween verti
es a and b equivalent by ab or ba, we denote an ar
 from a to b by (a; b), and anar
 in the opposite dire
tion by (b; a). A dire
ted a
y
li
 graph (dag) is transitive if, whenever(a; b) and (b; 
) are ar
s of the dag, (a; 
) is also an ar
. An undire
ted graph is a 
omparabilitygraph if dire
tions 
an be assigned to its edges so that the resulting digraph is a transitive dag,in whi
h 
ase this assignment is 
alled a transitive orientation.We 
onsider an undire
ted graph G to be a symmetri
 digraph, that is, if xy 2 E(G) then(x; y) and (y; x) are ar
s of G. Two ar
s (a; b) and (b; 
) of an undire
ted graph G are 
alledin
ompatible if a
 is not an edge of G. We say, then, that (a; b) is in
ompatible with (b; 
)and vi
e versa, or that ((a; b); (b; 
)) is an in
ompatible pair. The in
ompatibility graph BGof an undire
ted graph G is de�ned as follows: In BG there is one vertex for ea
h ar
 of G,and therefore we will (somewhat abusively) denote a vertex of BG that 
orresponds to ar
(a; b) of G by (a; b). For ea
h edge ab of G, there are two adja
ent verti
es (a; b) and (b; a)in BG. In addition, there is an edge between two verti
es (a; b) and (b; 
) of BG if and onlyif ar
s (a; b) and (b; 
) are in
ompatible in G. We will refer to the edges of BG of this lattertype as in
ompatibilities. Thus ex
ept for the edges of the type (a; b)(b; a) all edges of BG arein
ompatibilities. Sin
e we 
onsider an undire
ted graph to be a symmetri
 digraph, if (a; b)(b; 
)is an edge (in
ompatibility) of BG then (
; b)(b; a) is also an edge (in
ompatibility) of BG. Anexample of a graph G and its in
ompatibility graph BG is given in Figure 1.
a b

d c

(a, b) (c, b) (c, d) (a, d)

(b, a) (b, c) (d, c) (d, a)

G BGFigure 1: A graph G and its in
ompatibility graph BG.The in
ompatibility graph will be our main tool to 
ompute minimal 
omparability 
omple-tions, and the following result from Krats
h et al. [6℄ is 
entral to our algorithm.Theorem 1 ([6℄). An undire
ted graph G is a 
omparability graph if and only if its in
ompati-bility graph BG is bipartite. 3



It is mentioned in [6℄ that a transitive orientation of a 
omparability graph G must be anindependent set of the bipartite graph BG. Note that for every edge ab of G, exa
tly one ofthe verti
es (a; b) and (b; a) of BG is in a given independent set. So by 
hoosing one of theindependent set of BG, we 
hoose an orientation of the edges of G. For the example in Figure1, we see that a good (transitive) orientation is (a; b); (
; b); (
; d); (a; d).2.2 A vertex in
remental approa
h for minimal 
ompletionsA 
omparability graph 
an be obtained from any graph G by adding edges, and the resultinggraph is 
alled a 
omparability 
ompletion of G. An edge that is added to G to obtain a
omparability 
ompletion H is 
alled a �ll edge. A 
omparability 
ompletion H = (V;E [ F )of G = (V;E), with E \ F = ;, is minimal if (V;E [ F 0) fails to be a 
omparability graphfor every F 0 � F . We will now show that minimal 
omparability 
ompletions 
an be obtainedvertex in
rementally. It was shown previously that minimal triangulations [1℄ 
an be 
omputedin
rementally. Therefore, we give a more general result here, des
ribing graph 
lasses into whi
hminimal 
ompletions of arbitrary graphs 
an be 
omputed by a vertex in
remental approa
h.Let � be a graph 
lass. Speaking about � 
ompletions (de�ned analogously to 
omparability
ompletions) of arbitrary graphs is only meaningful if every graph 
an be embedded in a graphof � by adding edges. For example, if 
omplete graphs belong to � then any graph has a �
ompletion. A graph 
lass � is 
alled hereditary if all indu
ed subgraphs of graphs in � alsobelong to �.Property 2. We will say that a graph 
lass � has the universal vertex property if, for everygraph G 2 � and a vertex x 62 V (G), G+ x 2 �.Lemma 3. Let H be a minimal � 
ompletion of an arbitrary graph G, and let Gx be a graphobtained from G by adding a new vertex x adja
ent to some verti
es of G. If � is hereditaryand has the universal vertex property, then there is a minimal � 
ompletion H 0 of Gx su
h thatH 0 � x = H.Proof. Let Hx be the graph obtained by adding x to H together with the edges between x andNGx(x). Observe �rst that a � 
ompletion of Hx 
an be obtained by adding edges only in
identto x, sin
e H+x 2 �. Thus, a minimal � 
ompletion of Hx 
an be obtained by adding a subsetof the edges between x and V (Hx)�NGx(x). Let H 0 be a minimal � 
ompletion of Hx obtainedby adding edges in
ident to x. Obviously, H 0 � x = H. Assume for the sake of 
ontradi
tionthat H 0 is not a minimal � 
ompletion of Gx. This means that a subset of the newly addededges to Hx to obtain H 0 and a nonempty subset of the edges added to G to obtain H 
an beremoved from H 0 without destroying the � property. But sin
e � is hereditary, this 
ontradi
tsthat H is a minimal � 
ompletion of G. Thus H 0 must be a minimal � 
ompletion of Gx.An important 
onsequen
e of Lemma 3 is that for a hereditary graph 
lass � with the uni-versal vertex property, a minimal � 
ompletion of any input graph G 
an be 
omputed by intro-du
ing the verti
es of G in an arbitrary order x1; x2; : : : ; xn. Given a minimal � 
ompletion Hiof Gi = G[x1; : : : ; xi℄, we 
ompute a minimal � 
ompletion of Gi+1 = G[x1; : : : ; xi; xi+1℄ by a
tu-ally 
omputing a minimal � 
ompletion of the graph Hxi+1 = (fx1; : : : ; xi+1g; E(Hi)[ fxi+1v jv 2 NGi+1(xi+1)g). In this 
ompletion, we add only �ll edges in
ident to xi+1. Meanwhile, noti
ethat this minimal 
ompletion is not ne
essarily easy to obtain, and some major 
hallenges mightneed to be over
ome, depending on the graph 
lass �. Note also that all minimal 
ompletions4



of G 
annot be 
reated in this way, sin
e by allowing only addition of �ll edges in
ident to thein
remental vertex x, we rule out several possible minimal 
ompletions.Observation 4. The 
lass of 
omparability graphs is hereditary and satis�es the universal vertexproperty.Proof. The transitive orientation property is 
learly hereditary (see for example [2℄). Let G bea 
omparability graph and x =2 V (G). We will show that G + x is a 
omparability graph. Weknow that G has a transitive orientation D of its edges. Let us give the following orientation tothe edges of G+x: For edges of G, we orient them as in D. For edges in
ident to x, we orient allof them towards x. Now the pairs of ar
s of this digraph that 
an 
ause a problem are all of type((a; b); (b; x)). But sin
e x is universal, ax is also an edge of G+ x, and it is oriented towards x.Thus the des
ribed orientation is transitive on G+ x, and therefore G+ x is 
omparability.The real 
hallenge is how to do the 
omputations of ea
h vertex in
remental step. This isexa
tly the problem that we solve in the rest of this paper. Thus for the rest of the paper,due to Lemma 3 and Observation 4, we 
onsider as input a 
omparability graph G and a newvertex x =2 V (G) together with a list of verti
es Nx in G. Our aim is to 
ompute a minimal
omparability 
ompletion of Gx = (V (G) [ fxg; E(G) [ fxv j v 2 Nxg). We do this by �ndingan appropriate set of �ll edges Fx in
ident to x su
h that we obtain a 
omparability graph byadding Fx to Gx, and no proper subset Fx yields a 
omparability graph when added to Gx.3 An algorithm for minimal 
omparability 
ompletion of GxIn this se
tion, we give an algorithm that 
omputes a minimal 
omparability 
ompletion H ofGx, for a given 
omparability graph G and a new vertex x =2 V (G) adja
ent to verti
es of a setNx � V (G). Our main tool will be the in
ompatibility graph BG of G, whi
h we know is bipartiteby Theorem 1. We will pro
eed to update BG with the aim of obtaining the in
ompatibilitygraph BGx of Gx. We will keep this partial in
ompatibility graph a bipartite graph at ea
h step.If Gx is not a 
omparability graph, we will have to add �ll edges to Gx to be able to a
hievethis goal.Let Ex = fxv j v 2 Nxg (thus Gx = (V [ fxg; E [ Ex)). Our �rst step in obtaining BGxfrom BG is to add verti
es 
orresponding to edges of Ex and the edges and in
ompatibilitiesbetween these. We will make a separate graph Bx to represent the in
ompatibilities amongthe edges of Ex. Let Bx be the graph that has two adja
ent verti
es (x; v) and (v; x) for ea
hxv 2 Ex, and that has all in
ompatibilities that are implied by non-edges of Gx between verti
esof Nx. To be more pre
ise, if E = f(x; v) j xv 2 Exg [ f(v; x) j xv 2 Exg, and BGx[Nx[fxg℄ isthe in
ompatibility graph of Gx[Nx [ fxg℄, then Bx is the subgraph of BGx[Nx[fxg℄ indu
ed byE . An example is given in Figure 2. Observe that the graph Gx[Nx [ fxg℄ is a 
omparabilitygraph, sin
e G[Nx℄ is 
omparability by the hereditary property, and x is a universal vertex inGx[Nx [ fxg℄. Following the above arguments, Bx is a bipartite graph by Theorem 1.For our purposes, we also need to de�ne the set of in
ompatibilities of BG implied by a givennon-edge uv of G. We 
all this set CG(uv), and de�ne it as follows for ea
h non-edge uv of G.CG(uv) = f(u;w)(w; v) j w 2 NG(u) \NG(v)g [ f(v; w)(w; u) j w 2 NG(u) \NG(v)g:Observe that CG(e1)\CG(e2) = ; for any pair of non-edges e1 and e2 of G, and Se=2E(G) CG(e)is exa
tly the set of all in
ompatibilities in BG.5
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a
b

d c

(a, x) (c, x) (b, x)

(x, a) (x, c) (x, b)

(a, b) (c, b) (c, d) (a, d) (a, x) (c, x) (b, x)

(b, a) (b, c) (d, c) (d, a) (x, a) (x, c) (x, b)

Gx Bx BGx

︸ ︷︷ ︸

BG

︸ ︷︷ ︸

BxFigure 2: An example that shows Gx, Bx, and BGx , for the graph G given in Figure 1.Lemma 5. By adding the set of edges CGx(xv) for ea
h v 2 N2Gx(x) into the graph BG [ Bx,we obtain the in
ompatibility graph BGx of Gx.Proof. Adding a new vertex x to G and some edges in
ident to x, 
an only 
reate in
ompati-bilities between pairs of ar
s that both have an endpoint in x and between pairs of ar
s whereone has an endpoint in x and the other has an endpoint in N2Gx(x). The in
ompatibilities ofthe �rst type are already present as edges in Bx. The in
ompatibilities of the se
ond type areexa
tly the ones given by CGx(xv) for all v 2 N2Gx(x). Noti
e that the graph BG [Bx does not
ontain any edges between verti
es of BG and Bx. By de�nition, all verti
es of BGx (ar
s ofedges in Gx) are 
ontained in BG [ Bx, and BG [ Bx has no further verti
es. Hen
e the resultfollows.Assume that we want to 
ompute the in
ompatibility graph BGx of Gx. We start with thepartial in
ompatibility graph BG [ Bx, whi
h is bipartite by the above arguments. By Lemma5, to get BGx it is suÆ
ient to s
an all non-edges of Gx between x and N2Gx(x) one by one,and add the in
ompatibilities that are implied by ea
h non-edge into the partial in
ompatibilitygraph. If Gx is a 
omparability graph, then by Theorem 1, the partial in
ompatibility graphwill stay bipartite at ea
h step, sin
e we never delete edges from it. By the same argument, ifGx is not a 
omparability graph, then at some step, when we add the in
ompatibilities impliedby a non-edge, we will get an odd 
y
le in the partial in
ompatibility graph. For 
omputing aminimal 
omparability 
ompletion H of Gx, we augment this approa
h as follows: If adding thein
ompatibilities implied by non-edge xv results in a non-bipartite partial in
ompatibility graph,then we do not add these in
ompatibilities, and instead, we de
ide that xv should be
ome a �lledge of H. Note that, by starting with the partial bipartite graph BG[Bx, we for
e all possible�ll edges to be in
ident to x; all the in
ompatibilities of some non-edge xv 
an be removed bythe addition of �ll edge xv to H.At start, we let L = fxv j v 2 N2Gx(x)g, B = BG [ Bx, and H = Gx. For ea
h non-edgexv 2 L, we 
he
k whether or not non-edge xv should be
ome a �ll edge of the intermediate graphH, using the information given by CH(xv) and B. If B [ CH(xv) is a bipartite graph, then weupdate B = B [ CH(xv) and de
ide that xv will never be
ome a �ll edge. In the opposite 
ase,we add �ll edge xv to H, and update B as follows.1. Add the two adja
ent verti
es (x; v) and (v; x) in B.2. For ea
h new in
ompatible pair ((z; x); (x; v)) or ((v; x); (x; z)) inH, add the 
orrespondingedge (in
ompatibility) to B 
onne
ting the verti
es of the pair. (We will show that this
an never introdu
e odd 
y
les in the in
ompatibility graph.)6



3. For ea
h new in
ompatible pair ((x; v); (v; u)) or ((u; v); (v; x)) inH, add the 
orrespondingedge (in
ompatibility) to B 
onne
ting the verti
es of the pair only if xu is a non-edgethat has already been pro
essed and de
ided to stay a non-edge (marked). If not, eitherxu 2 L or we add it to L.The se
ond 
ase takes 
are of new in
ompatibilities among the edges in
ident to x, and thelast 
ase takes 
are of all other new in
ompatibilities. In the last 
ase, when we en
ounter newin
ompatibilities that are implied by a non-edge e whi
h we have not yet pro
essed, we do notadd these in
ompatibilities to B at this step, and we wait until we 
ome to the step whi
hpro
esses e. The reason for this is the following: If we add these in
ompatibilities now, and laterde
ide that e should be
ome a �ll edge, then we have to delete these in
ompatibilities from B.This 
auses problems regarding minimality, be
ause deleting \old" in
ompatibilities 
an makesome previously added �ll edges be
ome redundant, and thus we might have to examine ea
hinitial non-edge several times. When we do not add the in
ompatibilities before they are needed,we never have to delete anything from B, and B 
an only grow at ea
h step. This way, theintermediate graph B will at all steps be a supergraph of BG [Bx and a subgraph of BH . Thisis the 
lue to the simpli
ity of our algorithm, whi
h makes it suÆ
ient to examine ea
h non-edgein
ident to x on
e.The non-edges that are removed from L are marked, whi
h means that they will stay non-edges. This marking is ne
essary sin
e new non-edges enter L during the algorithm, and weneed to test for every in
ompatibility we dis
over, whether it is already implied by a markednon-edge so that we 
an add it at this step, or we should wait. The details of the algorithm
alled Minimal Comparability Completion (MCC) are given below.

7



Algorithm: Minimal Comparability Completion (MCC)Input: A 
omparability graph G, BG, and Gx for a vertex x =2 V (G)Output: A minimal 
omparability 
ompletion H of Gx, and B = BHB = BG [Bx; L = fxv j v 2 N2Gx(x)g; H = Gx;1 Unmark all non-edges of H in
ident to x;2 while L 6= ; do3 Choose a non-edge xv 2 L;4 if B [ CH(xv) is a bipartite graph then5 B = B [ CH(xv);6 else7 Add �ll edge xv to H;8 Add verti
es (x; v) and (v; x) and an edge between them to B;9 forall z 2 NH(x) and z =2 NH [v℄ do10 Add edges (v; x)(x; z) and (z; x)(x; v) to B;11 forall u 2 NH(v) and u =2 NH [x℄ do12 if xu is marked then13 Add edges (x; v)(v; u) and (u; v)(v; x) to B;14 else if xu =2 L then15 Add xu to L;16 Mark xv and remove it from L;174 Corre
tness of Algorithm MCCAlthough our algorithm is surprisingly simple due to the fa
t that ea
h non-edge is examinedon
e, its proof of 
orre
tness is quite involved, and requires a series of observations and lemmas,some of whi
h with long proofs. Let us de�ne a step of the algorithm to be one iteration of thewhile{loop given between lines 3{17. For the proof of 
orre
tness, we will sometimes need todistinguish between the graph H at the start of a step and the updated graph H at the end ofa step, to 
onsider the 
hanges made at one step. Throughout the rest of the paper, let HI bethe graph H at the start of step I, and let HI+1 be the graph obtained at the end of this step,and de�ne BI and BI+1 analogously.1Observation 6. Let I be the step of the algorithm that pro
esses the non-edge xv 2 L. ThenBI 
ontains no edge belonging to CHI (xv).Proof. Assume for the sake of 
ontradi
tion that BI 
ontains an edge (x;w)(w; v) belonging toCHI (xv). This 
an happen only if there is a vertex w 2 NHI (x) \NHI (v) su
h that xw is a �ll1Un
onventionally, we need to use a 
apital letter as index, sin
e all small letters as i; j; k; l are used in theproofs of the results of this se
tion. 8



edge of HI . But by line 13 of the algorithm the in
ompatibility (x;w)(w; v) 
annot have beenadded previously, sin
e, being pro
essed for the �rst time, xv is unmarked at all previous steps.Thus no edge of CHI (xv) is 
ontained in BI .Lemma 7. At the end of ea
h step of the algorithm, BI is a subgraph of the in
ompatibilitygraph BHI of HI .Proof. We prove this by indu
tion on the number of steps. At start, B = BG [Bx is de�nitelya subgraph B1 = BGx . Consider any step I of the algorithm. By the indu
tion hypothesis, we
an assume that BI is a subgraph of BHI , and we must show that BI+1 is a subgraph of BHI+1 .Let xv be the non-edge of L that we pro
ess at step I. If BI [ CHI (xv) is bipartite thenno �ll edge is added at this step and we have HI+1 = HI and thus BHI+1 = BHI . Note alsothat CHI (xv) is a subset of the edges of BHI+1 by de�nition. Hen
e, in this 
ase the graphBI+1 = BI [CHI (xv) is a subgraph of BHI+1 .In 
ase the graph BI [CHI (xv) is not bipartite, BI+1 is obtained from BI by adding two ad-ja
ent verti
es (x; v) and (v; x) and the 
orresponding in
ompatibilities indu
ed by the additionof the edge xv into HI . These new edges 
orrespond to in
ompatible pairs of HI+1 of the form((x; v); (v; u)) or ((u; v); (v; x)), and of the form ((z; x); (x; v)) or ((v; x); (x; z)). By de�nition,the graph BHI+1 
ontains this kind of edges of BI+1. We see that all edges added to BI toobtain BI+1 are also edges of BHI+1 . Hen
e the only way BI+1 
an fail to be a subgraph ofBHI+1 is if BI has edges that do not belong to BHI+1 . Assume that there is an in
ompatibilityp in BI whi
h should not be present in BHI+1 . This 
an happen only if the addition of �ll edgexv removes this in
ompatibility p at step I. This means that p is an in
ompatibility implied bythe non-edge xv and thus p belongs to CHI (xv). But by Observation 6, BI 
ontains no edge ofCHI (xv), thus this situation 
annot happen, and BI+1 is a subgraph of BHI+1 .We have thus proved that BI is at all times a partial in
ompatibility graph of the intermediategraph HI . At the end of the algorithm, sin
e all non-edges that 
an 
ause in
ompatibilities ares
anned, and all su
h in
ompatibilities are added, we will argue that BI is indeed the 
orre
tin
ompatibility graph of HI . What remains to prove is that BI is a bipartite graph at all steps.This is obvious if xv is not added as a �ll edge at the step that pro
esses xv, but it has to beshown in the 
ase xv is added as a �ll edge. First we introdu
e the notion of 
on
i
ts.De�nition 8. At ea
h step of the algorithm, a non-edge xv of the intermediate graph HI is
alled a 
on
i
t if B [ CHI (xv) is not a bipartite graph.Lemma 9. Let I be the step of the algorithm that pro
esses non-edge xv 2 L. If xv is a 
on
i
tthen HI is not a 
omparability graph.Proof. Follows from Lemma 7 and Theorem 1 sin
e an odd 
y
le in BI 
annot disappear by theaddition of edges or verti
es in BI .Now we start the series of results ne
essary to prove that at ea
h step BI is a bipartite graph.We will prove this by indu
tion on the number of steps. For ea
h step I, we will assume that BIis bipartite, and show that this implies that BI+1 is bipartite. Sin
e B1 = Bx [BG is bipartite,the result will follow.Let z1; z2 and u1; u2 be verti
es of HI whi
h ful�ll the 
onditions of the �rst for{loop andthe se
ond for{loop of Algorithm MCC, respe
tively. With the following result we establish thesituations that o

ur in BI whenever an odd 
y
le appears in BI+1 (see also Figure 3). We9



(x, z2) (x, z1) (x, v) (u1, v) (u2, v)

(z2, x) (z1, x) (v, x) (v, u1) (v, u2)Figure 3: Adding the �ll edge xv in B.denote a 
y
le on k verti
es by Ck and a path on k verti
es by Pk. A path or a 
y
le is even orodd a

ording to the parity of its number of verti
es.Observation 10. Assume that BI is bipartite. If xv is 
on
i
t at step I, then BI+1 is not bipar-tite only if there is an even path in BI between the following pair of verti
es: (i) ((x; z1); (x; z2))or (ii) ((v; u1); (v; u2)) or (iii) ((x; z1); (u1; v)).Proof. Given that BI is bipartite, if BI+1 
ontains an odd 
y
le, it must 
ontain at least onevertex (x; v) or (v; x), sin
e we do not add edges between the other verti
es. Considering theedge between (x; v) and (v; x) and the symmetry of their neighborhood, there are only two waysan odd 
y
le 
an be 
reated: (x; v) (or (v; x)) plus an even path between two of its neighbors(noti
e that the three 
ases of the observation 
over all possibilities); or (x; v) and (v; x) plus anodd path between a neighbor of (x; v) and a neighbor of (v; x). These two 
ases are equivalent,in fa
t if there is an odd path between a neighbor (a; b) of (x; v) and a neighbor (
; d) of (v; x),then there is an even path between the neighbors (a; b) and (d; 
) of (x; v) by the symmetry oftheir neighborhood. Hen
e, the pointed 
ases des
ribe the existen
e of an odd 
y
le in BI+1.Our goal is to show that these 
ases 
annot happen in BI , and therefore BI+1 remains abipartite graph. We prove ea
h 
ase by showing that if su
h a path exists then there is an odd
y
le in BI whi
h is a 
ontradi
tion to our assumption that BI is a bipartite graph.Let G be a graph and BG be its in
ompatibility graph. We denote a path on k � 1 verti
esin BG in the following form: P = (x1; x2)(x2; x3) : : : (xk�1; xk); re
all that a pair of adja
entverti
es of G represents a vertex of BG. By de�nition, if a path P in BG 
onne
ts the verti
es(x1; x2) and (xk�1; xk) then there exists also the transposed path of P denoted by P T whi
h
onne
ts the verti
es (xk; xk�1) and (x2; x1), i.e., P T = (xk; xk�1) : : : (x3; x2)(x2; x1). Re
all alsothat there is always an edge (x; y)(y; x) in BG for ea
h edge xy in G.Lemma 11. If there is an even (respe
tively, odd) path 
onne
ting verti
es (a; b) and (
; d) ofBG then it has the following form:Pk+3 = (a; b)(b; q1)(q1; q2)(q2; q3) : : : (qk�1; qk)(qk; 
)(
; d);where k is an odd (respe
tively, even) number, aq1; bq2; qkd; 
qk�1 =2 E(G), and qiqi+2 =2 E(G)for 1 � i � k � 2.Proof. By the de�nition of the edges of the in
ompatibility graph BG we have two types of edgesamong two verti
es of BG: either (u; v)(v; w) or (v; u)(w; v) su
h that uw =2 E(G). The formof the path shown in the lemma uses only the �rst kind of edges. But any edge (path on twoverti
es) of the kind (v; u)(w; v) 
an be turned into a path on four verti
es using only the �rst10



form of edges: (v; u)(u; v)(v; w)(w; v). Thus an even or odd path between two verti
es of BGhas the form of the equation as shown and the 
onstraints for the non-edges are justi�ed byde�nition; otherwise there is no path 
onne
ting the verti
es.Suppose that BI is bipartite. If xv is a 
on
i
t at step I, then there is an in
lusion maximalsubset C 0HI (xv) of CHI (xv) su
h that BI [ fC 0HI (xv)g is a bipartite graph. For the rest ofthis se
tion we de�ne B0I = BI [ fC 0HI (xv)g. Thus if BI is bipartite, so is B0I , and any of thein
ompatibilities of CHI (xv)nC 0HI (xv) results in an odd 
y
le if added to B0I . This is formalizedin the following observation.Observation 12. Assume that BI is bipartite. If xv is a 
on
i
t at step I, then there is a pathon odd number of verti
es in B0I 
onne
ting (x;w) and (w; v), for some w 2 NHI (x) \NHI (v).Observation 13. Assume that BI is bipartite. If xv is a 
on
i
t at step I, then there is a pathin B0I of the form: Pxv = (x;w)(w; p1)(p1; p2) : : : (p`�1; p`)(p`; w)(w; v);where ` is an even number, x 6= p` and v 6= p1.Proof. By Lemma 11, Pxv 
ontains `+3 verti
es. Noti
e that by the de�nition of the odd path,xp1; p`�1w; p`v =2 E(HI), and ` is an even number by the odd number of verti
es in Pxv. Sin
e xvis a 
on
i
t the in
ompatibility (x;w)(w; v) is not present in B0I and thus x 6= p` and v 6= p1.Now let us show that the in
ompatibilities added during the �rst forall-loop starting at line10 do not 
reate any odd 
y
les.Lemma 14. Assume that BI is bipartite. If xv is a 
on
i
t at step I then there is no path oneven number of verti
es 
onne
ting (x; z1) and (x; z2) in B0I , for every pair of verti
es z1; z2 su
hthat z1; z2 2 NHI (x) and z1; z2 =2 NHI [v℄.Proof. Assume for the sake of 
ontradi
tion that there is su
h an even path 
onne
ting them.Then by Lemma 11 it has the following form:Pz = (x; z1)(z1; q1)(q1; q2) : : : (qk�1; qk)(qk; x)(x; z2);where k � 3 is an odd number. If k = 1 then there is no path on even number of verti
es
onne
ting (x; z1) and (x; z2). Observe that the path Pz 
ontains k + 3 verti
es. Noti
e thatxq1; z1q2 =2 E(HI) and z2qk; xqk�1 =2 E(HI) and qiqi+2 =2 E(HI), for 1 � i � k � 2; otherwisethere is no even path (see also Lemma 11). Considering the path Pz in B0I , we have to distinguishbetween when z1 and z2 are adja
ent in HI and when they are not. We will prove that in ea
h
ase there is an odd 
y
le in B0I whi
h is a 
ontradi
tion sin
e B0I is a bipartite graph.� Case 1: z1z2 =2 E(HI).In this 
ase it is easy to see that appending the pairs (z2; x) and (x; z1) in Pz we obtainan odd 
y
le in B0I : Ck+4 = Pz (z2; x)(x; z1)| {z }z1z2 =2E(HI) :
11



� Case 2: z1z2 2 E(HI).In this 
ase we have to 
onsider also the fa
t that xv is a 
on
i
t. By Observation 12there is a vertex w whi
h indu
es an odd path Pxv in B0I . We distinguish between the
ases where w is (i) non-adja
ent to both z1; z2, (ii) adja
ent only to one of them and (iii)adja
ent to both of them.{ Case 2.1: wz1 =2 E(HI) and wz2 =2 E(HI).In this 
ase it is easy to see that the following odd 
y
le o

urs in B0I :Ck+6 = (w; x)Pz (z2; x)(x;w)| {z }wz2 =2E(HI) (w; x):{ Case 2.2: wz1 =2 E(HI) and wz2 2 E(HI).By Observation 13 there is an odd path Pxv 
onne
ting (x;w) and (w; v) in B0I ; re
allthat the path Pxv 
ontains `+3 verti
es, where ` is an even number and xp1 =2 E(HI).Here we prove that if there is an even path whi
h 
onne
ts (x; z1) and (x; z2) thenthere is a path Pz2z1 on r verti
es where r is an even number whi
h 
onne
ts (z2; z1)and (z1; x). Hen
e the result follows based on the path Pz2z1 , sin
e the following odd
y
le appears in B0I : C`+r+5 = (w; z2)Pz2z1Pxv(v; w)(w; z2):In order to prove the existen
e of the path Pz2z1 , noti
e that by the de�nition ofthe path Pz we have the following non-edges: xq1, xqk�1, z1q2, z2qk and qiqi+2, for1 � i � k � 2. If z1qk =2 E(HI) then we have the following odd 
y
le:Ck+2 = (x; z1)(z1; q1)(q1; q2) : : : (qk�1; qk)(qk; x)(x; z1):In 
ase z1qk 2 E(HI) we have the following three 
ases to 
onsider: If z1qi 2 E(HI),1 � i � k then we have the following even path (r = k + 3):Pz2z1 = (z2; z1)(z1; qk)(qk; z1)(z1; qk�2) : : : (q3; z1)(z1; q1)(q1; z1)(z1; x):If z1qi =2 E(HI), z1qi+1; z1qi+2; : : : z1qk 2 E(HI), and i is an even number, 1 < i < k,then we have the following even path (r = k + 3):Pz2z1 = (z2; z1) (z1; qk)(qk; z1)(z1; qk�2) : : : (z1; qi+1)(qi+1; qi)| {z }k�i+1 Pi+1;where Pi+1 = (qi; qi�1)(qi�1; qi�2) : : : (q1; z1)(z1; x).If z1qi =2 E(HI), z1qi+1; z1qi+2; : : : z1qk 2 E(HI) and i is an odd number, 1 < i < k,then we have the following odd 
y
le in B0I :Ck+2 = (x; z1) (z1; qk�1)(qk�1; z1)(z1; qk�3) : : : (z1; qi+1)(qi+1; qi)| {z }k�i Pi+2;where Pi+2 = (qi; qi�1)(qi�1; qi�2) : : : (q1; z1)(z1; x)(x; z1).12



{ Case 2.3: wz1 2 E(HI) and wz2 2 E(HI).In this 
ase we prove that if there is an even path Pz whi
h 
onne
ts (x; z1) and(x; z2) then there is either (i) a path Pxz1 (resp. Pxz2) on r1 verti
es where r1 is aneven number whi
h 
onne
ts (x;w) and (w; z1) (resp. (w; z2)) or (ii) a path Pwz onr2 verti
es where r2 is an even number whi
h 
onne
ts (w; z1) and (w; z2). In both
ases the result follows sin
e if (i) holds then the following odd 
y
le appears in B0I(noti
e that z1v; z2v =2 E(HI)):C`+r1+5 = P TxvPxz1(z1; w)(w; v)(v; w);and if (ii) holds then we have the following odd 
y
le:Cr2+3 = (v; w)Pwz(z2; w)(w; v)(v; w):To justify the existen
e of the paths Pxz1 and Pxz2 , observe �rst that if wq1 =2 E(HI)and wqk =2 E(HI) then we have the following even path (r1 = k + 5):Pxz1 = (x;w) (w; x)(x; qk)(qk; qk�1) : : : (q2; q1)(q1; z1)(z1; w)| {z }k+3 (w; z1): (1)If wqi 2 E(HI), 1 � i � k, then we have the following even path (r = k + 1):Pxz1 = (x;w) (w; qk�1)(qk�1; w)(w; qk�3)(qk�3; w) : : : (q4; w)(w; q2)(q2; w)| {z }k�1 (w; z1):Now in all other 
ases let qjw =2 E(HI) and q1w; q2w; : : : ; qj�1w 2 E(HI), and letqiw =2 E(HI) and qi+1w; qi+2w; : : : ; qkw 2 E(HI), 1 � j � i � k. Depending on thevalues of i and j, we have the following four 
ases to 
onsider:� If i is an odd number and j is an even number then we have the following odd 
y
lein B0I : Ck+2 = 8>>><>>>:(x;w)Pj (qj ; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i(w; x)(x;w); if i < k(x;w)Pj (qj ; qj+1) : : : (qk�1; qk)| {z }k�j (qk; x)(x;w); if i = kwhere Pj = (w; q1)(q1; w)(w; q3)(q3; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�3; w)(w; qk�1)(qk�1; w).� If i is an odd number and j is an odd number then we have the following even path:
Pxz1 = 8>>>>>>>><>>>>>>>>:

(x;w)Pk�i (qi; qi�1) : : : (qj+1; qj)| {z }i�j Pj�1(w; z1); if 1 < j � i < k(x;w)(w; x)(x; qk) (qk; qk�1) : : : (qj+1; qj)| {z }k�j Pj�1(w; z1); if 1 < j and i = k(x;w)Pk�i (qi; qi�1) : : : (q2; q1)| {z }i�1 (q1; z1)(z1; w)(w; z1); if j = 1 and i < k13



where Pj�1 = (qj; qj�1)(qj�1; w)(w; qj�3) : : : (w; q4)(q4; w)(w; q2)(q2; w)and Pk�i = (w; qk�1)(qk�1; w)(w; qk�3) : : : (qi+3; w)(w; qi+1)(qi+1; qi).Note that the �rst path has k + 1 verti
es, whereas the next two paths have k + 3verti
es, respe
tively. Re
all that if j = 1 and i = k, then the 
orresponding path isdes
ribed in Equation 1.� If i is an even number and j is an even number then we have the following evenpath (r1 = k + 3):Pxz2 = (x;w)Pj (qj; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i+1(w; z2);where Pj = (w; q1)(q1; w)(w; q3)(q3; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i+1 = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�2; w)(w; qk)(qk; w).� If i is an even number and j is an odd number then we have the following evenpath (r2 = k + 3):Pwz = 8>>><>>>:(w; z1)(z1; w)Pj�1 (qj; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i+1(w; z2); if 1 < j(w; z1)(z1; q1) (q1; q2) : : : (qi�1; qi)| {z }i�1 Pk�i+1(w; z2); if j = 1where Pj�1 = (w; q2)(q2; w)(w; q4)(q4; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i+1 = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�2; w)(w; qk)(qk; w).Now we show that adding the in
ompatibilities at the se
ond forall-loop starting at line 12does not 
reate an odd 
y
le, if we skip the �rst for-all loop starting at line 10.Lemma 15. Assume that BI is bipartite. If xv is a 
on
i
t at step I, then there is no pathon even number of verti
es 
onne
ting (v; u1) and (v; u2) in B0I , for every pair of verti
es u1; u2su
h that u1; u2 2 NHI (v), u1; u2 =2 NHI [x℄ and xu1; xu2 are marked non-edges.Proof. Noti
e that the in
ompatibilities (x;w)(w; u1) and (x;w)(w; u2) are present in B0I sin
exu1 and xu2 are marked non-edges. Thus if we swap verti
es x and v, and if we set u1 and u2to be z1 and z2, respe
tively, then the proof is similar (identi
al) to that of Lemma 14.Thus we have seen that ea
h of the two forall-loops maintains the bipartite graph if we skipthe other for-all loop. Let us now show that together they do not 
reate a problem.Lemma 16. Assume that BI is bipartite. If xv is a 
on
i
t at step I, then there is no pathon even number of verti
es 
onne
ting (x; z1) and (u1; v) in B0I , for every pair of verti
es z1; u1su
h that u1 2 NHI (v), u1 =2 NHI [x℄, xu1 is a marked non-edge and z1 2 NHI (x), z1 =2 NHI [v℄.Proof. Assume for the sake of 
ontradi
tion that there is an even path Pzu 
onne
ting them. ByLemma 11 this path has the following form:Pzu = (x; z1)(z1; y1) : : : (ys; u1)(u1; v);14



where s � 1 is an odd number. Hen
e the path Pzu 
ontains s+ 3 verti
es. We will prove thatin this 
ase there is an odd 
y
le in B0I whi
h is a 
ontradi
tion sin
e B0I is a bipartite graph.First we prove that if z1u1 2 E(HI) then we have the following odd 
y
le in B0I by the fa
t thatz1 =2 NHI [v℄ and u1 =2 NHI [x℄:Cs+6 = Pzu(v; u1)(u1; z1)(z1; x)(x; z1):Noti
e that if z1u1 2 E(HI) and s = 1 then there no path on even number of verti
es 
onne
ting(x; z1) and (u1; v) in B0I . Thus we 
ontinue by knowing that z1u1 =2 E(HI) and s � 1. Noti
ealso that by Observation 12 there is a vertex w whi
h indu
es a path Pxv with `+ 3 verti
es inB0I , where ` is an even number. We distinguish four 
ases a

ording to whether w is adja
entor not to z1 or/and v1:� Case A: wz1 =2 E(HI) and wu1 =2 E(HI).It is easy to see that the following odd 
y
le appears in B0I :C`+s+6 = PzuP Txv(x; z1):� Case B: wz1 2 E(HI) and wu1 =2 E(HI).Here we have two 
ases to 
onsider a

ording to whether or not wy1 2 E(HI). In both
ases we prove that an odd 
y
le appears in B0I . First noti
e that if wy1 =2 E(HI) then thefollowing odd 
y
le o

urs in B0I :Cs+4 = (w; z1) (z1; y1)(y1; y2) : : : (ys�1; ys)(ys; u1)| {z }s+1 (u1; v)(v; w)(w; z1):Also noti
e that if wyi 2 E(HI) for 1 � i � s then we have the following odd 
y
le:Cs+`+6 = (x;w) (w; y1)(y1; w)(w; y3) : : : (w; ys)| {z }s (ys; u1)(u1; v)P Txv(x;w):In 
ase wy1; wy2; : : : wyi�1 2 E(HI) and wyi =2 E(HI) then we distinguish two 
asesa

ording to the value of i. If i is an odd number then the following odd 
y
le appears inB0I : Cs+4 = (w; z1)(z1; w)Pi�1 (yi; yi+1) : : : (ys; u1)| {z }s�i+1 (u1; v)(v; w)(w; z1);where Pi�1 = (w; y2)(y2; w)(w; y4) : : : (yi�3; w)(w; yi�1)(yi�1; yi).Otherwise (i is an even number) we have:Cs+`+6 = (x;w)Pi (yi; yi+1) : : : (ys; u1)| {z }s�i+1 (u1; v)P Txv(x;w);where Pi = (w; y1)(y1; w)(w; y3) : : : (yi�3; w)(w; yi�1)(yi�1; yi).� Case C: wz1 2 E(HI) and wu1 =2 E(HI).This 
ase is similar (symmetri
) to the previous one. By swapping verti
es z1 and u1 we
on
lude to the same result; noti
e that the in
ompatibility (x;w)(w; u1) is present in B0Isin
e xu1 is a marked non-edge of HI . 15



� Case D: wz1 2 E(HI) and wu1 2 E(HI).Here we obtain the following odd 
y
le in B0I :C`+9 = (z1; w)(w; v)P Txv (x;w)(w; u1)(u1; w)(w; z1)(z1; w):Now we are ready to rea
h the desired result.Lemma 17. At ea
h step of the algorithm BI is a bipartite graph.Proof. At the beginning of the algorithm, we know that BG [ Bx is bipartite, and that allpossible 
on
i
ts of Gx are 
ontained in L. Assume that BI is a bipartite graph. We show thatBI+1 is also a bipartite graph. At step I, we have two 
ases to 
onsider. If HI+1 = HI , thenthis is be
ause BI+1 = BI [ CHI (xv) is a bipartite graph. Let HI+1 be obtained from HI byadding �ll edge xv. Then BI+1 is obtained from BI by adding an isolated edge (x; v)(v; x), andsome in
ompatibilities in
ident to the endpoints of this edge, implied by non-edges outside ofL. These in
ompatibilities are added by the �rst for{loop at line 10 and the se
ond for{loop atline 12.For the �rst for{loop if the set NHI+1(x) \ NHI+1 [v℄ 
ontains only one vertex, say z1, thenthere is an even 
y
le in BI+1 formed by the verti
es (x; v); (v; z1); (v; x); (z1; v) and no odd
y
le is 
reated in BI+1. It is easy to see that the same argument (for one vertex u1) holdsfor the se
ond for-loop. Now in general noti
e that any odd 
y
le 
reated in BI+1 will stillbe an odd 
y
le in B0I+1 by Observation 12 sin
e BI+1 � B0I+1. But sin
e B0I is bipartite anyodd 
y
le in B0I+1 
an be 
reated only if the 
onditions of Observation 10 are true. Thus byLemmata 14{16 we justify that the 
orresponding 
ases 
annot exist and therefore B0I remainsbipartite by applying the two for{loops, i.e., B0I+1 is a bipartite graph. Hen
e the result followsfrom the fa
t that BI+1 � B0I+1.Theorem 18. The graph H returned by Algorithm MCC is a minimal 
omparability 
ompletionof Gx.Proof. First we show that H is a 
omparability 
ompletion of Gx. During the algorithm, everytime a new in
ompatible pair is 
reated, the 
orresponding in
ompatibility is added to BIunless it is implied by a non-edge of L. In
ompatibilities implied by members of L that remainnon-edges are added one by one until L is empty. At the end of the algorithm, the graph B
ontains all in
ompatibilities implied by the non-edges in H, sin
e L = ;. Thus B is the 
orre
tin
ompatibility graph of H, i.e., B = BH . Sin
e BH is bipartite graph by Lemma 17, theresulting graph H is a 
omparability graph by Theorem 1.Now we want to prove that H is minimal, that is, if any subset of the �ll edges is removedthe remaining graph is not 
omparability. Re
all that at any step of the algorithm we do notremove any edges from the graph BI (see also Lemma 7). Assume for the sake of 
ontradi
tionthat there is a subset F of the �ll edges su
h that H 0 = H � F is a 
omparability graph. Firstnote that BH0 is obtained from BH by removing the verti
es (x; u) and (u; x), and then addingthe set CH0(xu), for every xu 2 F . Let I be the earliest step in whi
h Algorithm MCC adds a �lledge xv 2 F . Thus no non-edge of Gx belonging to F has been pro
essed before step I, and HIis a subgraph of H 0. Furthermore, BI does not 
ontain any edge belonging to Sxu2F CH0(xu),and BI does not 
ontain any pair of verti
es (x; u) and (u; x), for xu 2 F . Thus BI is a subgraph16



of BH0 . Now, observe that for ea
h xu 2 F , CHI (xu) � CH0(xu), sin
e NHI (x) � NH0(x). Inparti
ular, CHI (xv) � CH0(xv). Sin
e xv is a non-edge of H 0, all edges of CH0(xv) are presentin BH0 . Therefore BI [ CHI (xv) is a subgraph of BH0 . In Algorithm MCC, at step I, we knowthat BI [ CHI (xv) 
ontains an odd 
y
le, otherwise xv would not be a �ll edge. Sin
e it isnot possible to remove an odd 
y
le by adding edges or verti
es, this means that there is anodd 
y
le in BH0 . This gives the desired 
ontradi
tion, be
ause by Theorem 1 H 0 
annot be a
omparability graph as assumed.5 Time required to 
ompute minimal 
omparability 
ompletionsLet G be an arbitrary graph on n verti
es andm edges. First we prove the following observation.Observation 19. The in
ompatibility graph BG of a given graph G has O(mn) edges.Proof. Let G be a graph on n verti
es and m edges, and let BG be its in
ompatibility graph.By de�nition BG has pre
isely 2m verti
es. Clearly BG 
ontains m edges of the form (a; b)(b; a).For the other edges of BG (in
ompatibilities) it is easy to see that ea
h edge of G (two verti
esof BG) 
an de�ne at most O(n) in
ompatibilities in BG sin
e they are indu
ed by the neighborsof its endpoints in G. Thus BG has O(nm) edges.Now we are ready to give the time bounds of the Algorithm MCC.Lemma 20. Given a 
omparability graph G and its in
ompatibility graph BG, Algorithm MCC
omputes a minimal 
omparability 
ompletion of Gx in O(n2m) time.Proof. Let G be a 
omparability graph on n verti
es and m edges, and let BG be its in
ompati-bility graph. Sin
e only non-edges in
ident to x are pro
essed, jLj = O(n), and sin
e non-edgesremoved from L are never reinserted in L, the algorithm has O(n) steps. By Observation 19 BGhas O(nm) edges. Sin
e jNxj = O(n), Bx has O(n) verti
es and thus O(n2) edges. At ea
h ofthe O(n) steps, we 
an add at most O(n) edges to B sin
e jCH(xv)j = O(n) for ea
h xv 2 L.Thus at all steps B has O(nm) edges. What dominates our time 
omplexity is to 
he
k whetheror not B [ CH(xv) is bipartite. This 
he
k 
an be done in time linear in the size of B, namelyO(nm). Therefore, ea
h step of the algorithm requires O(nm) time, whi
h gives a total runningtime of O(n2m).We point out that given an in
ompatible pair ((a; b)(b; 
)) of G there is an O(n +m) timealgorithm de
iding whether its in
ompatibility graph has an odd 
y
le [6℄. However, it is notstraightforward to use this result for 
he
king whether the graph BI [ CHI (xv) of AlgorithmMCC is bipartite in O(n+m) time, sin
e at ea
h step of the algorithm, BI is merely a subgraphof BHI , and BI is not ne
essarily equal to BHI before the last step. The following result followsfrom Lemma 3, Lemma 20, and Algorithm MCC.Theorem 21. There is an algorithm for 
omputing a minimal 
omparability 
ompletion of anarbitrary graph G in O(n3m) time.
17



6 Con
luding RemarksIn this paper, we have shown that minimal 
omparability 
ompletions of arbitrary graphs 
anbe 
omputed in polynomial time. Comparability graphs 
an be re
ognized in time O(n2:38) [13℄.As a 
omparison, both 
hordal and interval graphs 
an be re
ognized in linear time; the bestknown time for minimal 
hordal 
ompletions is O(n2:38) [5℄, and for minimal interval 
ompletionsis O(nm) [14℄. Hen
e even with the straight forward O(n3m) running time analysis of ouralgorithm for 
omputing minimal 
omparability 
ompletions the di�eren
e between re
ognizingand 
ompleting is 
omparable to the same di�eren
e for 
hordal and interval graphs.Although minimal 
omparability 
ompletions 
an be 
omputed in polynomial time, this doesnot imply that the following problem is solvable in polynomial time: Given a 
omparability
ompletion H of an arbitrary graph G, is H a minimal 
omparability 
ompletion of G? Wewould like to know whether this problem 
an be solved in polynomial time. In fa
t, it would bevery useful and interesting to obtain a 
hara
terization of minimal 
omparability 
ompletions.There are minimal 
omparability 
ompletions whi
h the algorithm given in this paper 
annot
ompute. For the goal of using minimal 
omparability 
ompletions in the sear
h for minimum
omparability 
ompletions, we would need an algorithm that is able to generate any possibleminimal 
omparability 
ompletion of a given graph. We leave it an open problem to design analgorithm that is both eÆ
ient and able to do this.Referen
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