
Minimal omparability ompletions of arbitrary graphs�Pinar Heggernesy Federio Maniniy Charis PapadopoulosyAbstratA transitive orientation of an undireted graph is an assignment of diretions to itsedges so that these direted edges represent a transitive relation between the verties ofthe graph. Not every graph has a transitive orientation, but every graph an be turnedinto a graph that has a transitive orientation, by adding edges. We study the problem ofadding an inlusion minimal set of edges to an arbitrary graph so that the resulting graphis transitively orientable. We show that this problem an be solved in polynomial time, andwe give a surprisingly simple algorithm for it. We use a vertex inremental approah in thisalgorithm, and we also give a more general result that desribes graph lasses � for whih �ompletion of arbitrary graphs an be ahieved through suh a vertex inremental approah.1 IntrodutionA transitive orientation of an undireted graph is an assignment of a diretion to eah of theedges, suh that the edges represent a binary transitive relation on the verties. An undiretedgraph is a omparability graph if there is a transitive orientation of its edges, and hene ompara-bility graphs are also alled transitively orientable graphs. This is a wide and well known graphlass studied by many authors, and and it has appliations in areas like arheology, psyhology,and politial sienes [2, 11℄. Comparability graphs are perfet, and they an be reognized inpolynomial time. Many interesting optimization problems that are NP-hard on arbitrary graphs,are polynomially solvable on omparability graphs [2℄. Hene, omputing a omparability su-pergraph of an arbitrary graph, and solving a generally NP-hard problem in polynomial time onthis supergraph, is a way of obtaining approximation algorithms for several hard problems. Forgraphs oming from the appliation areas mentioned above, there may be missing edges due tolaking data so that the graph fails to be omparability, in whih ase one is again interested inomputing a omparability supergraph. A omparability graph obtained by adding edges to anarbitrary graph is alled a omparability ompletion of the input graph. Unfortunately, omput-ing a omparability ompletion with the minimum number of added edges (alled a minimumompletion) is an NP-hard problem [3℄.A minimal omparability ompletion H of G is a omparability ompletion of G suh that noproper subgraph of H is a omparability ompletion of G. Although the number of added edgesin a minimal omparability ompletion may be far from minimum, omputing a few di�erentminimal omparability ompletions, and hoosing the one with the smallest number of edges is�This work is supported by the Researh Counil of Norway through grant 166429/V30. A preliminary versionof this work appeared in ISAAC 2006.yDepartment of Informatis, University of Bergen, N-5020 Bergen, Norway. Emails: fpinar, federio,harisg�ii.uib.no 1



a possible approah to �nding a omparability ompletion lose to minimum. Furthermore, theset of minimal omparability ompletions of a graph ontains the set of minimum omparabilityompletions. Therefore, the study of minimal omparability ompletions is a �rst step in thesearh for minimum omparability ompletions, possibly through methods like exat exponentialtime algorithms or parameterized algorithms. In this paper, we give the �rst polynomial timealgorithm for omputing minimal omparability ompletions of arbitrary graphs, and henewe show that this problem is solvable in polynomial time, as opposed to omputing minimumomparability ompletions.The study of minimal ompletions of arbitrary graphs into a given graph lass started witha polynomial-time algorithm for minimal hordal ompletions in 1976 [12℄, before it was knownthat minimum hordal ompletions are NP-hard to ompute [15℄. Sine then the NP-hardnessof minimum ompletions has been established for several graph lasses (summarized in [9℄).Reently, several new results, some of whih have been presented at reent years' SODA andESA onferenes, have been published on ompletion problems, leading to faster algorithms forminimal hordal ompletions [5, 7, 8℄, and polynomial-time algorithms for minimal ompletionsinto split, interval, and proper-interval graphs [4, 14, 10℄. The omplexity of omputing minimalomparability ompletions has been open until now.There are simple examples to show that a minimal omparability ompletion annot be ob-tained by starting from an arbitrary omparability ompletion, and removing unneessary edgesone by one (as opposed to minimal ompletions into hordal and split graphs). To overomethis diÆulty, we use a vertex inremental approah in our algorithm. A vertex inrementalalgorithm has also proved useful for minimal ompletions into hordal graphs [1℄, and there-fore we �nd it worthwhile to give a more general result here, desribing lasses of graphs intowhih minimal ompletions of arbitrary graphs an be omputed with suh a vertex inrementalapproah. Notie, however, that the algorithm for eah step is ompletely di�erent for, anddependent on, eah graph lass, and polynomial time omputability is not guaranteed by thevertex inremental approah.This paper is organized as follows. In the next setion we give some notation and bakgroundon omparability graphs and a new result on vertex inremental minimal ompletions. In Setion3 we present an algorithm for the vertex inremental step: Given a omparability graph G (whihis the minimal omparability ompletion of the previous inremental step) and a new vertex xwhih is added to G along with a given set of edges between x and G, ompute a minimalomparability ompletion of this augmented graph. Gx = (V (G)[fxg; E(G)[fxv j v 2 Nxgg).We prove the orretness of the given algorithm in Setion 4, and disuss the time omplexityissues in Setion 5. We onlude in Setion 6.2 Notation and bakgroundWe onsider undireted �nite graphs with no loops or multiple edges. For a graph G, we denoteits vertex and edge set by V (G) and E(G), respetively, with n = jV (G)j and m = jE(G)j. Fora vertex subset S � V (G), the subgraph of G indued by S is denoted by G[S℄. Moreover, wedenote by G� S the graph G[V (G)� S℄ and by G� v the graph G[V (G)� fvg℄.The neighborhood NG(x) of a vertex x of the graph G is the set of all the verties of G whihare adjaent to x. The losed neighborhood of x is de�ned as NG[x℄ = NG(x)[fxg. If S � V (G),then the neighbors of S, denoted by NG(S), are given by �Sx2S NG(x)�� S. For a vertex x of2



G, the set NG(NG(x)) � fxg is denoted by N2G(x). For a pair of verties x; y of a graph G weall xy a non-edge of G if xy =2 E(G). A vertex x of G is universal if NG[x℄ = V (G).A lique is a set of pairwise adjaent verties while an independent set is a set of pairwise non-adjaent verties. A graph is bipartite if its vertex set an be partitioned into two independentsets. Bipartite graphs are exatly the lass of graphs that do not ontain yles of odd length.Given a new vertex x =2 V (G) and a set of verties Nx of G, we denote by Gx the graphobtained by adding x to G and making x adjaent to eah vertex in Nx, i.e., V (Gx) = V (G)[fxgand E(Gx) = E(G) [ fxv j v 2 Nxg; thus NGx(x) = Nx. For a vertex x =2 V (G), we denoteby G+ x the graph obtained by adding an edge between x and every vertex of V (G), thus x isuniversal in G+ x.2.1 Comparability graphsA digraph is a direted graph, and an ar is a direted edge. While we denote an undireted edgebetween verties a and b equivalent by ab or ba, we denote an ar from a to b by (a; b), and anar in the opposite diretion by (b; a). A direted ayli graph (dag) is transitive if, whenever(a; b) and (b; ) are ars of the dag, (a; ) is also an ar. An undireted graph is a omparabilitygraph if diretions an be assigned to its edges so that the resulting digraph is a transitive dag,in whih ase this assignment is alled a transitive orientation.We onsider an undireted graph G to be a symmetri digraph, that is, if xy 2 E(G) then(x; y) and (y; x) are ars of G. Two ars (a; b) and (b; ) of an undireted graph G are alledinompatible if a is not an edge of G. We say, then, that (a; b) is inompatible with (b; )and vie versa, or that ((a; b); (b; )) is an inompatible pair. The inompatibility graph BGof an undireted graph G is de�ned as follows: In BG there is one vertex for eah ar of G,and therefore we will (somewhat abusively) denote a vertex of BG that orresponds to ar(a; b) of G by (a; b). For eah edge ab of G, there are two adjaent verties (a; b) and (b; a)in BG. In addition, there is an edge between two verties (a; b) and (b; ) of BG if and onlyif ars (a; b) and (b; ) are inompatible in G. We will refer to the edges of BG of this lattertype as inompatibilities. Thus exept for the edges of the type (a; b)(b; a) all edges of BG areinompatibilities. Sine we onsider an undireted graph to be a symmetri digraph, if (a; b)(b; )is an edge (inompatibility) of BG then (; b)(b; a) is also an edge (inompatibility) of BG. Anexample of a graph G and its inompatibility graph BG is given in Figure 1.
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G BGFigure 1: A graph G and its inompatibility graph BG.The inompatibility graph will be our main tool to ompute minimal omparability omple-tions, and the following result from Kratsh et al. [6℄ is entral to our algorithm.Theorem 1 ([6℄). An undireted graph G is a omparability graph if and only if its inompati-bility graph BG is bipartite. 3



It is mentioned in [6℄ that a transitive orientation of a omparability graph G must be anindependent set of the bipartite graph BG. Note that for every edge ab of G, exatly one ofthe verties (a; b) and (b; a) of BG is in a given independent set. So by hoosing one of theindependent set of BG, we hoose an orientation of the edges of G. For the example in Figure1, we see that a good (transitive) orientation is (a; b); (; b); (; d); (a; d).2.2 A vertex inremental approah for minimal ompletionsA omparability graph an be obtained from any graph G by adding edges, and the resultinggraph is alled a omparability ompletion of G. An edge that is added to G to obtain aomparability ompletion H is alled a �ll edge. A omparability ompletion H = (V;E [ F )of G = (V;E), with E \ F = ;, is minimal if (V;E [ F 0) fails to be a omparability graphfor every F 0 � F . We will now show that minimal omparability ompletions an be obtainedvertex inrementally. It was shown previously that minimal triangulations [1℄ an be omputedinrementally. Therefore, we give a more general result here, desribing graph lasses into whihminimal ompletions of arbitrary graphs an be omputed by a vertex inremental approah.Let � be a graph lass. Speaking about � ompletions (de�ned analogously to omparabilityompletions) of arbitrary graphs is only meaningful if every graph an be embedded in a graphof � by adding edges. For example, if omplete graphs belong to � then any graph has a �ompletion. A graph lass � is alled hereditary if all indued subgraphs of graphs in � alsobelong to �.Property 2. We will say that a graph lass � has the universal vertex property if, for everygraph G 2 � and a vertex x 62 V (G), G+ x 2 �.Lemma 3. Let H be a minimal � ompletion of an arbitrary graph G, and let Gx be a graphobtained from G by adding a new vertex x adjaent to some verties of G. If � is hereditaryand has the universal vertex property, then there is a minimal � ompletion H 0 of Gx suh thatH 0 � x = H.Proof. Let Hx be the graph obtained by adding x to H together with the edges between x andNGx(x). Observe �rst that a � ompletion of Hx an be obtained by adding edges only inidentto x, sine H+x 2 �. Thus, a minimal � ompletion of Hx an be obtained by adding a subsetof the edges between x and V (Hx)�NGx(x). Let H 0 be a minimal � ompletion of Hx obtainedby adding edges inident to x. Obviously, H 0 � x = H. Assume for the sake of ontraditionthat H 0 is not a minimal � ompletion of Gx. This means that a subset of the newly addededges to Hx to obtain H 0 and a nonempty subset of the edges added to G to obtain H an beremoved from H 0 without destroying the � property. But sine � is hereditary, this ontraditsthat H is a minimal � ompletion of G. Thus H 0 must be a minimal � ompletion of Gx.An important onsequene of Lemma 3 is that for a hereditary graph lass � with the uni-versal vertex property, a minimal � ompletion of any input graph G an be omputed by intro-duing the verties of G in an arbitrary order x1; x2; : : : ; xn. Given a minimal � ompletion Hiof Gi = G[x1; : : : ; xi℄, we ompute a minimal � ompletion of Gi+1 = G[x1; : : : ; xi; xi+1℄ by atu-ally omputing a minimal � ompletion of the graph Hxi+1 = (fx1; : : : ; xi+1g; E(Hi)[ fxi+1v jv 2 NGi+1(xi+1)g). In this ompletion, we add only �ll edges inident to xi+1. Meanwhile, notiethat this minimal ompletion is not neessarily easy to obtain, and some major hallenges mightneed to be overome, depending on the graph lass �. Note also that all minimal ompletions4



of G annot be reated in this way, sine by allowing only addition of �ll edges inident to theinremental vertex x, we rule out several possible minimal ompletions.Observation 4. The lass of omparability graphs is hereditary and satis�es the universal vertexproperty.Proof. The transitive orientation property is learly hereditary (see for example [2℄). Let G bea omparability graph and x =2 V (G). We will show that G + x is a omparability graph. Weknow that G has a transitive orientation D of its edges. Let us give the following orientation tothe edges of G+x: For edges of G, we orient them as in D. For edges inident to x, we orient allof them towards x. Now the pairs of ars of this digraph that an ause a problem are all of type((a; b); (b; x)). But sine x is universal, ax is also an edge of G+ x, and it is oriented towards x.Thus the desribed orientation is transitive on G+ x, and therefore G+ x is omparability.The real hallenge is how to do the omputations of eah vertex inremental step. This isexatly the problem that we solve in the rest of this paper. Thus for the rest of the paper,due to Lemma 3 and Observation 4, we onsider as input a omparability graph G and a newvertex x =2 V (G) together with a list of verties Nx in G. Our aim is to ompute a minimalomparability ompletion of Gx = (V (G) [ fxg; E(G) [ fxv j v 2 Nxg). We do this by �ndingan appropriate set of �ll edges Fx inident to x suh that we obtain a omparability graph byadding Fx to Gx, and no proper subset Fx yields a omparability graph when added to Gx.3 An algorithm for minimal omparability ompletion of GxIn this setion, we give an algorithm that omputes a minimal omparability ompletion H ofGx, for a given omparability graph G and a new vertex x =2 V (G) adjaent to verties of a setNx � V (G). Our main tool will be the inompatibility graph BG of G, whih we know is bipartiteby Theorem 1. We will proeed to update BG with the aim of obtaining the inompatibilitygraph BGx of Gx. We will keep this partial inompatibility graph a bipartite graph at eah step.If Gx is not a omparability graph, we will have to add �ll edges to Gx to be able to ahievethis goal.Let Ex = fxv j v 2 Nxg (thus Gx = (V [ fxg; E [ Ex)). Our �rst step in obtaining BGxfrom BG is to add verties orresponding to edges of Ex and the edges and inompatibilitiesbetween these. We will make a separate graph Bx to represent the inompatibilities amongthe edges of Ex. Let Bx be the graph that has two adjaent verties (x; v) and (v; x) for eahxv 2 Ex, and that has all inompatibilities that are implied by non-edges of Gx between vertiesof Nx. To be more preise, if E = f(x; v) j xv 2 Exg [ f(v; x) j xv 2 Exg, and BGx[Nx[fxg℄ isthe inompatibility graph of Gx[Nx [ fxg℄, then Bx is the subgraph of BGx[Nx[fxg℄ indued byE . An example is given in Figure 2. Observe that the graph Gx[Nx [ fxg℄ is a omparabilitygraph, sine G[Nx℄ is omparability by the hereditary property, and x is a universal vertex inGx[Nx [ fxg℄. Following the above arguments, Bx is a bipartite graph by Theorem 1.For our purposes, we also need to de�ne the set of inompatibilities of BG implied by a givennon-edge uv of G. We all this set CG(uv), and de�ne it as follows for eah non-edge uv of G.CG(uv) = f(u;w)(w; v) j w 2 NG(u) \NG(v)g [ f(v; w)(w; u) j w 2 NG(u) \NG(v)g:Observe that CG(e1)\CG(e2) = ; for any pair of non-edges e1 and e2 of G, and Se=2E(G) CG(e)is exatly the set of all inompatibilities in BG.5
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BxFigure 2: An example that shows Gx, Bx, and BGx , for the graph G given in Figure 1.Lemma 5. By adding the set of edges CGx(xv) for eah v 2 N2Gx(x) into the graph BG [ Bx,we obtain the inompatibility graph BGx of Gx.Proof. Adding a new vertex x to G and some edges inident to x, an only reate inompati-bilities between pairs of ars that both have an endpoint in x and between pairs of ars whereone has an endpoint in x and the other has an endpoint in N2Gx(x). The inompatibilities ofthe �rst type are already present as edges in Bx. The inompatibilities of the seond type areexatly the ones given by CGx(xv) for all v 2 N2Gx(x). Notie that the graph BG [Bx does notontain any edges between verties of BG and Bx. By de�nition, all verties of BGx (ars ofedges in Gx) are ontained in BG [ Bx, and BG [ Bx has no further verties. Hene the resultfollows.Assume that we want to ompute the inompatibility graph BGx of Gx. We start with thepartial inompatibility graph BG [ Bx, whih is bipartite by the above arguments. By Lemma5, to get BGx it is suÆient to san all non-edges of Gx between x and N2Gx(x) one by one,and add the inompatibilities that are implied by eah non-edge into the partial inompatibilitygraph. If Gx is a omparability graph, then by Theorem 1, the partial inompatibility graphwill stay bipartite at eah step, sine we never delete edges from it. By the same argument, ifGx is not a omparability graph, then at some step, when we add the inompatibilities impliedby a non-edge, we will get an odd yle in the partial inompatibility graph. For omputing aminimal omparability ompletion H of Gx, we augment this approah as follows: If adding theinompatibilities implied by non-edge xv results in a non-bipartite partial inompatibility graph,then we do not add these inompatibilities, and instead, we deide that xv should beome a �lledge of H. Note that, by starting with the partial bipartite graph BG[Bx, we fore all possible�ll edges to be inident to x; all the inompatibilities of some non-edge xv an be removed bythe addition of �ll edge xv to H.At start, we let L = fxv j v 2 N2Gx(x)g, B = BG [ Bx, and H = Gx. For eah non-edgexv 2 L, we hek whether or not non-edge xv should beome a �ll edge of the intermediate graphH, using the information given by CH(xv) and B. If B [ CH(xv) is a bipartite graph, then weupdate B = B [ CH(xv) and deide that xv will never beome a �ll edge. In the opposite ase,we add �ll edge xv to H, and update B as follows.1. Add the two adjaent verties (x; v) and (v; x) in B.2. For eah new inompatible pair ((z; x); (x; v)) or ((v; x); (x; z)) inH, add the orrespondingedge (inompatibility) to B onneting the verties of the pair. (We will show that thisan never introdue odd yles in the inompatibility graph.)6



3. For eah new inompatible pair ((x; v); (v; u)) or ((u; v); (v; x)) inH, add the orrespondingedge (inompatibility) to B onneting the verties of the pair only if xu is a non-edgethat has already been proessed and deided to stay a non-edge (marked). If not, eitherxu 2 L or we add it to L.The seond ase takes are of new inompatibilities among the edges inident to x, and thelast ase takes are of all other new inompatibilities. In the last ase, when we enounter newinompatibilities that are implied by a non-edge e whih we have not yet proessed, we do notadd these inompatibilities to B at this step, and we wait until we ome to the step whihproesses e. The reason for this is the following: If we add these inompatibilities now, and laterdeide that e should beome a �ll edge, then we have to delete these inompatibilities from B.This auses problems regarding minimality, beause deleting \old" inompatibilities an makesome previously added �ll edges beome redundant, and thus we might have to examine eahinitial non-edge several times. When we do not add the inompatibilities before they are needed,we never have to delete anything from B, and B an only grow at eah step. This way, theintermediate graph B will at all steps be a supergraph of BG [Bx and a subgraph of BH . Thisis the lue to the simpliity of our algorithm, whih makes it suÆient to examine eah non-edgeinident to x one.The non-edges that are removed from L are marked, whih means that they will stay non-edges. This marking is neessary sine new non-edges enter L during the algorithm, and weneed to test for every inompatibility we disover, whether it is already implied by a markednon-edge so that we an add it at this step, or we should wait. The details of the algorithmalled Minimal Comparability Completion (MCC) are given below.
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Algorithm: Minimal Comparability Completion (MCC)Input: A omparability graph G, BG, and Gx for a vertex x =2 V (G)Output: A minimal omparability ompletion H of Gx, and B = BHB = BG [Bx; L = fxv j v 2 N2Gx(x)g; H = Gx;1 Unmark all non-edges of H inident to x;2 while L 6= ; do3 Choose a non-edge xv 2 L;4 if B [ CH(xv) is a bipartite graph then5 B = B [ CH(xv);6 else7 Add �ll edge xv to H;8 Add verties (x; v) and (v; x) and an edge between them to B;9 forall z 2 NH(x) and z =2 NH [v℄ do10 Add edges (v; x)(x; z) and (z; x)(x; v) to B;11 forall u 2 NH(v) and u =2 NH [x℄ do12 if xu is marked then13 Add edges (x; v)(v; u) and (u; v)(v; x) to B;14 else if xu =2 L then15 Add xu to L;16 Mark xv and remove it from L;174 Corretness of Algorithm MCCAlthough our algorithm is surprisingly simple due to the fat that eah non-edge is examinedone, its proof of orretness is quite involved, and requires a series of observations and lemmas,some of whih with long proofs. Let us de�ne a step of the algorithm to be one iteration of thewhile{loop given between lines 3{17. For the proof of orretness, we will sometimes need todistinguish between the graph H at the start of a step and the updated graph H at the end ofa step, to onsider the hanges made at one step. Throughout the rest of the paper, let HI bethe graph H at the start of step I, and let HI+1 be the graph obtained at the end of this step,and de�ne BI and BI+1 analogously.1Observation 6. Let I be the step of the algorithm that proesses the non-edge xv 2 L. ThenBI ontains no edge belonging to CHI (xv).Proof. Assume for the sake of ontradition that BI ontains an edge (x;w)(w; v) belonging toCHI (xv). This an happen only if there is a vertex w 2 NHI (x) \NHI (v) suh that xw is a �ll1Unonventionally, we need to use a apital letter as index, sine all small letters as i; j; k; l are used in theproofs of the results of this setion. 8



edge of HI . But by line 13 of the algorithm the inompatibility (x;w)(w; v) annot have beenadded previously, sine, being proessed for the �rst time, xv is unmarked at all previous steps.Thus no edge of CHI (xv) is ontained in BI .Lemma 7. At the end of eah step of the algorithm, BI is a subgraph of the inompatibilitygraph BHI of HI .Proof. We prove this by indution on the number of steps. At start, B = BG [Bx is de�nitelya subgraph B1 = BGx . Consider any step I of the algorithm. By the indution hypothesis, wean assume that BI is a subgraph of BHI , and we must show that BI+1 is a subgraph of BHI+1 .Let xv be the non-edge of L that we proess at step I. If BI [ CHI (xv) is bipartite thenno �ll edge is added at this step and we have HI+1 = HI and thus BHI+1 = BHI . Note alsothat CHI (xv) is a subset of the edges of BHI+1 by de�nition. Hene, in this ase the graphBI+1 = BI [CHI (xv) is a subgraph of BHI+1 .In ase the graph BI [CHI (xv) is not bipartite, BI+1 is obtained from BI by adding two ad-jaent verties (x; v) and (v; x) and the orresponding inompatibilities indued by the additionof the edge xv into HI . These new edges orrespond to inompatible pairs of HI+1 of the form((x; v); (v; u)) or ((u; v); (v; x)), and of the form ((z; x); (x; v)) or ((v; x); (x; z)). By de�nition,the graph BHI+1 ontains this kind of edges of BI+1. We see that all edges added to BI toobtain BI+1 are also edges of BHI+1 . Hene the only way BI+1 an fail to be a subgraph ofBHI+1 is if BI has edges that do not belong to BHI+1 . Assume that there is an inompatibilityp in BI whih should not be present in BHI+1 . This an happen only if the addition of �ll edgexv removes this inompatibility p at step I. This means that p is an inompatibility implied bythe non-edge xv and thus p belongs to CHI (xv). But by Observation 6, BI ontains no edge ofCHI (xv), thus this situation annot happen, and BI+1 is a subgraph of BHI+1 .We have thus proved that BI is at all times a partial inompatibility graph of the intermediategraph HI . At the end of the algorithm, sine all non-edges that an ause inompatibilities aresanned, and all suh inompatibilities are added, we will argue that BI is indeed the orretinompatibility graph of HI . What remains to prove is that BI is a bipartite graph at all steps.This is obvious if xv is not added as a �ll edge at the step that proesses xv, but it has to beshown in the ase xv is added as a �ll edge. First we introdue the notion of onits.De�nition 8. At eah step of the algorithm, a non-edge xv of the intermediate graph HI isalled a onit if B [ CHI (xv) is not a bipartite graph.Lemma 9. Let I be the step of the algorithm that proesses non-edge xv 2 L. If xv is a onitthen HI is not a omparability graph.Proof. Follows from Lemma 7 and Theorem 1 sine an odd yle in BI annot disappear by theaddition of edges or verties in BI .Now we start the series of results neessary to prove that at eah step BI is a bipartite graph.We will prove this by indution on the number of steps. For eah step I, we will assume that BIis bipartite, and show that this implies that BI+1 is bipartite. Sine B1 = Bx [BG is bipartite,the result will follow.Let z1; z2 and u1; u2 be verties of HI whih ful�ll the onditions of the �rst for{loop andthe seond for{loop of Algorithm MCC, respetively. With the following result we establish thesituations that our in BI whenever an odd yle appears in BI+1 (see also Figure 3). We9
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(z2, x) (z1, x) (v, x) (v, u1) (v, u2)Figure 3: Adding the �ll edge xv in B.denote a yle on k verties by Ck and a path on k verties by Pk. A path or a yle is even orodd aording to the parity of its number of verties.Observation 10. Assume that BI is bipartite. If xv is onit at step I, then BI+1 is not bipar-tite only if there is an even path in BI between the following pair of verties: (i) ((x; z1); (x; z2))or (ii) ((v; u1); (v; u2)) or (iii) ((x; z1); (u1; v)).Proof. Given that BI is bipartite, if BI+1 ontains an odd yle, it must ontain at least onevertex (x; v) or (v; x), sine we do not add edges between the other verties. Considering theedge between (x; v) and (v; x) and the symmetry of their neighborhood, there are only two waysan odd yle an be reated: (x; v) (or (v; x)) plus an even path between two of its neighbors(notie that the three ases of the observation over all possibilities); or (x; v) and (v; x) plus anodd path between a neighbor of (x; v) and a neighbor of (v; x). These two ases are equivalent,in fat if there is an odd path between a neighbor (a; b) of (x; v) and a neighbor (; d) of (v; x),then there is an even path between the neighbors (a; b) and (d; ) of (x; v) by the symmetry oftheir neighborhood. Hene, the pointed ases desribe the existene of an odd yle in BI+1.Our goal is to show that these ases annot happen in BI , and therefore BI+1 remains abipartite graph. We prove eah ase by showing that if suh a path exists then there is an oddyle in BI whih is a ontradition to our assumption that BI is a bipartite graph.Let G be a graph and BG be its inompatibility graph. We denote a path on k � 1 vertiesin BG in the following form: P = (x1; x2)(x2; x3) : : : (xk�1; xk); reall that a pair of adjaentverties of G represents a vertex of BG. By de�nition, if a path P in BG onnets the verties(x1; x2) and (xk�1; xk) then there exists also the transposed path of P denoted by P T whihonnets the verties (xk; xk�1) and (x2; x1), i.e., P T = (xk; xk�1) : : : (x3; x2)(x2; x1). Reall alsothat there is always an edge (x; y)(y; x) in BG for eah edge xy in G.Lemma 11. If there is an even (respetively, odd) path onneting verties (a; b) and (; d) ofBG then it has the following form:Pk+3 = (a; b)(b; q1)(q1; q2)(q2; q3) : : : (qk�1; qk)(qk; )(; d);where k is an odd (respetively, even) number, aq1; bq2; qkd; qk�1 =2 E(G), and qiqi+2 =2 E(G)for 1 � i � k � 2.Proof. By the de�nition of the edges of the inompatibility graph BG we have two types of edgesamong two verties of BG: either (u; v)(v; w) or (v; u)(w; v) suh that uw =2 E(G). The formof the path shown in the lemma uses only the �rst kind of edges. But any edge (path on twoverties) of the kind (v; u)(w; v) an be turned into a path on four verties using only the �rst10



form of edges: (v; u)(u; v)(v; w)(w; v). Thus an even or odd path between two verties of BGhas the form of the equation as shown and the onstraints for the non-edges are justi�ed byde�nition; otherwise there is no path onneting the verties.Suppose that BI is bipartite. If xv is a onit at step I, then there is an inlusion maximalsubset C 0HI (xv) of CHI (xv) suh that BI [ fC 0HI (xv)g is a bipartite graph. For the rest ofthis setion we de�ne B0I = BI [ fC 0HI (xv)g. Thus if BI is bipartite, so is B0I , and any of theinompatibilities of CHI (xv)nC 0HI (xv) results in an odd yle if added to B0I . This is formalizedin the following observation.Observation 12. Assume that BI is bipartite. If xv is a onit at step I, then there is a pathon odd number of verties in B0I onneting (x;w) and (w; v), for some w 2 NHI (x) \NHI (v).Observation 13. Assume that BI is bipartite. If xv is a onit at step I, then there is a pathin B0I of the form: Pxv = (x;w)(w; p1)(p1; p2) : : : (p`�1; p`)(p`; w)(w; v);where ` is an even number, x 6= p` and v 6= p1.Proof. By Lemma 11, Pxv ontains `+3 verties. Notie that by the de�nition of the odd path,xp1; p`�1w; p`v =2 E(HI), and ` is an even number by the odd number of verties in Pxv. Sine xvis a onit the inompatibility (x;w)(w; v) is not present in B0I and thus x 6= p` and v 6= p1.Now let us show that the inompatibilities added during the �rst forall-loop starting at line10 do not reate any odd yles.Lemma 14. Assume that BI is bipartite. If xv is a onit at step I then there is no path oneven number of verties onneting (x; z1) and (x; z2) in B0I , for every pair of verties z1; z2 suhthat z1; z2 2 NHI (x) and z1; z2 =2 NHI [v℄.Proof. Assume for the sake of ontradition that there is suh an even path onneting them.Then by Lemma 11 it has the following form:Pz = (x; z1)(z1; q1)(q1; q2) : : : (qk�1; qk)(qk; x)(x; z2);where k � 3 is an odd number. If k = 1 then there is no path on even number of vertiesonneting (x; z1) and (x; z2). Observe that the path Pz ontains k + 3 verties. Notie thatxq1; z1q2 =2 E(HI) and z2qk; xqk�1 =2 E(HI) and qiqi+2 =2 E(HI), for 1 � i � k � 2; otherwisethere is no even path (see also Lemma 11). Considering the path Pz in B0I , we have to distinguishbetween when z1 and z2 are adjaent in HI and when they are not. We will prove that in eahase there is an odd yle in B0I whih is a ontradition sine B0I is a bipartite graph.� Case 1: z1z2 =2 E(HI).In this ase it is easy to see that appending the pairs (z2; x) and (x; z1) in Pz we obtainan odd yle in B0I : Ck+4 = Pz (z2; x)(x; z1)| {z }z1z2 =2E(HI) :
11



� Case 2: z1z2 2 E(HI).In this ase we have to onsider also the fat that xv is a onit. By Observation 12there is a vertex w whih indues an odd path Pxv in B0I . We distinguish between theases where w is (i) non-adjaent to both z1; z2, (ii) adjaent only to one of them and (iii)adjaent to both of them.{ Case 2.1: wz1 =2 E(HI) and wz2 =2 E(HI).In this ase it is easy to see that the following odd yle ours in B0I :Ck+6 = (w; x)Pz (z2; x)(x;w)| {z }wz2 =2E(HI) (w; x):{ Case 2.2: wz1 =2 E(HI) and wz2 2 E(HI).By Observation 13 there is an odd path Pxv onneting (x;w) and (w; v) in B0I ; reallthat the path Pxv ontains `+3 verties, where ` is an even number and xp1 =2 E(HI).Here we prove that if there is an even path whih onnets (x; z1) and (x; z2) thenthere is a path Pz2z1 on r verties where r is an even number whih onnets (z2; z1)and (z1; x). Hene the result follows based on the path Pz2z1 , sine the following oddyle appears in B0I : C`+r+5 = (w; z2)Pz2z1Pxv(v; w)(w; z2):In order to prove the existene of the path Pz2z1 , notie that by the de�nition ofthe path Pz we have the following non-edges: xq1, xqk�1, z1q2, z2qk and qiqi+2, for1 � i � k � 2. If z1qk =2 E(HI) then we have the following odd yle:Ck+2 = (x; z1)(z1; q1)(q1; q2) : : : (qk�1; qk)(qk; x)(x; z1):In ase z1qk 2 E(HI) we have the following three ases to onsider: If z1qi 2 E(HI),1 � i � k then we have the following even path (r = k + 3):Pz2z1 = (z2; z1)(z1; qk)(qk; z1)(z1; qk�2) : : : (q3; z1)(z1; q1)(q1; z1)(z1; x):If z1qi =2 E(HI), z1qi+1; z1qi+2; : : : z1qk 2 E(HI), and i is an even number, 1 < i < k,then we have the following even path (r = k + 3):Pz2z1 = (z2; z1) (z1; qk)(qk; z1)(z1; qk�2) : : : (z1; qi+1)(qi+1; qi)| {z }k�i+1 Pi+1;where Pi+1 = (qi; qi�1)(qi�1; qi�2) : : : (q1; z1)(z1; x).If z1qi =2 E(HI), z1qi+1; z1qi+2; : : : z1qk 2 E(HI) and i is an odd number, 1 < i < k,then we have the following odd yle in B0I :Ck+2 = (x; z1) (z1; qk�1)(qk�1; z1)(z1; qk�3) : : : (z1; qi+1)(qi+1; qi)| {z }k�i Pi+2;where Pi+2 = (qi; qi�1)(qi�1; qi�2) : : : (q1; z1)(z1; x)(x; z1).12



{ Case 2.3: wz1 2 E(HI) and wz2 2 E(HI).In this ase we prove that if there is an even path Pz whih onnets (x; z1) and(x; z2) then there is either (i) a path Pxz1 (resp. Pxz2) on r1 verties where r1 is aneven number whih onnets (x;w) and (w; z1) (resp. (w; z2)) or (ii) a path Pwz onr2 verties where r2 is an even number whih onnets (w; z1) and (w; z2). In bothases the result follows sine if (i) holds then the following odd yle appears in B0I(notie that z1v; z2v =2 E(HI)):C`+r1+5 = P TxvPxz1(z1; w)(w; v)(v; w);and if (ii) holds then we have the following odd yle:Cr2+3 = (v; w)Pwz(z2; w)(w; v)(v; w):To justify the existene of the paths Pxz1 and Pxz2 , observe �rst that if wq1 =2 E(HI)and wqk =2 E(HI) then we have the following even path (r1 = k + 5):Pxz1 = (x;w) (w; x)(x; qk)(qk; qk�1) : : : (q2; q1)(q1; z1)(z1; w)| {z }k+3 (w; z1): (1)If wqi 2 E(HI), 1 � i � k, then we have the following even path (r = k + 1):Pxz1 = (x;w) (w; qk�1)(qk�1; w)(w; qk�3)(qk�3; w) : : : (q4; w)(w; q2)(q2; w)| {z }k�1 (w; z1):Now in all other ases let qjw =2 E(HI) and q1w; q2w; : : : ; qj�1w 2 E(HI), and letqiw =2 E(HI) and qi+1w; qi+2w; : : : ; qkw 2 E(HI), 1 � j � i � k. Depending on thevalues of i and j, we have the following four ases to onsider:� If i is an odd number and j is an even number then we have the following odd ylein B0I : Ck+2 = 8>>><>>>:(x;w)Pj (qj ; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i(w; x)(x;w); if i < k(x;w)Pj (qj ; qj+1) : : : (qk�1; qk)| {z }k�j (qk; x)(x;w); if i = kwhere Pj = (w; q1)(q1; w)(w; q3)(q3; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�3; w)(w; qk�1)(qk�1; w).� If i is an odd number and j is an odd number then we have the following even path:
Pxz1 = 8>>>>>>>><>>>>>>>>:

(x;w)Pk�i (qi; qi�1) : : : (qj+1; qj)| {z }i�j Pj�1(w; z1); if 1 < j � i < k(x;w)(w; x)(x; qk) (qk; qk�1) : : : (qj+1; qj)| {z }k�j Pj�1(w; z1); if 1 < j and i = k(x;w)Pk�i (qi; qi�1) : : : (q2; q1)| {z }i�1 (q1; z1)(z1; w)(w; z1); if j = 1 and i < k13



where Pj�1 = (qj; qj�1)(qj�1; w)(w; qj�3) : : : (w; q4)(q4; w)(w; q2)(q2; w)and Pk�i = (w; qk�1)(qk�1; w)(w; qk�3) : : : (qi+3; w)(w; qi+1)(qi+1; qi).Note that the �rst path has k + 1 verties, whereas the next two paths have k + 3verties, respetively. Reall that if j = 1 and i = k, then the orresponding path isdesribed in Equation 1.� If i is an even number and j is an even number then we have the following evenpath (r1 = k + 3):Pxz2 = (x;w)Pj (qj; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i+1(w; z2);where Pj = (w; q1)(q1; w)(w; q3)(q3; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i+1 = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�2; w)(w; qk)(qk; w).� If i is an even number and j is an odd number then we have the following evenpath (r2 = k + 3):Pwz = 8>>><>>>:(w; z1)(z1; w)Pj�1 (qj; qj+1) : : : (qi�1; qi)| {z }i�j Pk�i+1(w; z2); if 1 < j(w; z1)(z1; q1) (q1; q2) : : : (qi�1; qi)| {z }i�1 Pk�i+1(w; z2); if j = 1where Pj�1 = (w; q2)(q2; w)(w; q4)(q4; w) : : : (qj�3; w)(w; qj�1)(qj�1; qj)and Pk�i+1 = (qi; qi+1)(qi+1; w)(w; qi+3) : : : (qk�2; w)(w; qk)(qk; w).Now we show that adding the inompatibilities at the seond forall-loop starting at line 12does not reate an odd yle, if we skip the �rst for-all loop starting at line 10.Lemma 15. Assume that BI is bipartite. If xv is a onit at step I, then there is no pathon even number of verties onneting (v; u1) and (v; u2) in B0I , for every pair of verties u1; u2suh that u1; u2 2 NHI (v), u1; u2 =2 NHI [x℄ and xu1; xu2 are marked non-edges.Proof. Notie that the inompatibilities (x;w)(w; u1) and (x;w)(w; u2) are present in B0I sinexu1 and xu2 are marked non-edges. Thus if we swap verties x and v, and if we set u1 and u2to be z1 and z2, respetively, then the proof is similar (idential) to that of Lemma 14.Thus we have seen that eah of the two forall-loops maintains the bipartite graph if we skipthe other for-all loop. Let us now show that together they do not reate a problem.Lemma 16. Assume that BI is bipartite. If xv is a onit at step I, then there is no pathon even number of verties onneting (x; z1) and (u1; v) in B0I , for every pair of verties z1; u1suh that u1 2 NHI (v), u1 =2 NHI [x℄, xu1 is a marked non-edge and z1 2 NHI (x), z1 =2 NHI [v℄.Proof. Assume for the sake of ontradition that there is an even path Pzu onneting them. ByLemma 11 this path has the following form:Pzu = (x; z1)(z1; y1) : : : (ys; u1)(u1; v);14



where s � 1 is an odd number. Hene the path Pzu ontains s+ 3 verties. We will prove thatin this ase there is an odd yle in B0I whih is a ontradition sine B0I is a bipartite graph.First we prove that if z1u1 2 E(HI) then we have the following odd yle in B0I by the fat thatz1 =2 NHI [v℄ and u1 =2 NHI [x℄:Cs+6 = Pzu(v; u1)(u1; z1)(z1; x)(x; z1):Notie that if z1u1 2 E(HI) and s = 1 then there no path on even number of verties onneting(x; z1) and (u1; v) in B0I . Thus we ontinue by knowing that z1u1 =2 E(HI) and s � 1. Notiealso that by Observation 12 there is a vertex w whih indues a path Pxv with `+ 3 verties inB0I , where ` is an even number. We distinguish four ases aording to whether w is adjaentor not to z1 or/and v1:� Case A: wz1 =2 E(HI) and wu1 =2 E(HI).It is easy to see that the following odd yle appears in B0I :C`+s+6 = PzuP Txv(x; z1):� Case B: wz1 2 E(HI) and wu1 =2 E(HI).Here we have two ases to onsider aording to whether or not wy1 2 E(HI). In bothases we prove that an odd yle appears in B0I . First notie that if wy1 =2 E(HI) then thefollowing odd yle ours in B0I :Cs+4 = (w; z1) (z1; y1)(y1; y2) : : : (ys�1; ys)(ys; u1)| {z }s+1 (u1; v)(v; w)(w; z1):Also notie that if wyi 2 E(HI) for 1 � i � s then we have the following odd yle:Cs+`+6 = (x;w) (w; y1)(y1; w)(w; y3) : : : (w; ys)| {z }s (ys; u1)(u1; v)P Txv(x;w):In ase wy1; wy2; : : : wyi�1 2 E(HI) and wyi =2 E(HI) then we distinguish two asesaording to the value of i. If i is an odd number then the following odd yle appears inB0I : Cs+4 = (w; z1)(z1; w)Pi�1 (yi; yi+1) : : : (ys; u1)| {z }s�i+1 (u1; v)(v; w)(w; z1);where Pi�1 = (w; y2)(y2; w)(w; y4) : : : (yi�3; w)(w; yi�1)(yi�1; yi).Otherwise (i is an even number) we have:Cs+`+6 = (x;w)Pi (yi; yi+1) : : : (ys; u1)| {z }s�i+1 (u1; v)P Txv(x;w);where Pi = (w; y1)(y1; w)(w; y3) : : : (yi�3; w)(w; yi�1)(yi�1; yi).� Case C: wz1 2 E(HI) and wu1 =2 E(HI).This ase is similar (symmetri) to the previous one. By swapping verties z1 and u1 weonlude to the same result; notie that the inompatibility (x;w)(w; u1) is present in B0Isine xu1 is a marked non-edge of HI . 15



� Case D: wz1 2 E(HI) and wu1 2 E(HI).Here we obtain the following odd yle in B0I :C`+9 = (z1; w)(w; v)P Txv (x;w)(w; u1)(u1; w)(w; z1)(z1; w):Now we are ready to reah the desired result.Lemma 17. At eah step of the algorithm BI is a bipartite graph.Proof. At the beginning of the algorithm, we know that BG [ Bx is bipartite, and that allpossible onits of Gx are ontained in L. Assume that BI is a bipartite graph. We show thatBI+1 is also a bipartite graph. At step I, we have two ases to onsider. If HI+1 = HI , thenthis is beause BI+1 = BI [ CHI (xv) is a bipartite graph. Let HI+1 be obtained from HI byadding �ll edge xv. Then BI+1 is obtained from BI by adding an isolated edge (x; v)(v; x), andsome inompatibilities inident to the endpoints of this edge, implied by non-edges outside ofL. These inompatibilities are added by the �rst for{loop at line 10 and the seond for{loop atline 12.For the �rst for{loop if the set NHI+1(x) \ NHI+1 [v℄ ontains only one vertex, say z1, thenthere is an even yle in BI+1 formed by the verties (x; v); (v; z1); (v; x); (z1; v) and no oddyle is reated in BI+1. It is easy to see that the same argument (for one vertex u1) holdsfor the seond for-loop. Now in general notie that any odd yle reated in BI+1 will stillbe an odd yle in B0I+1 by Observation 12 sine BI+1 � B0I+1. But sine B0I is bipartite anyodd yle in B0I+1 an be reated only if the onditions of Observation 10 are true. Thus byLemmata 14{16 we justify that the orresponding ases annot exist and therefore B0I remainsbipartite by applying the two for{loops, i.e., B0I+1 is a bipartite graph. Hene the result followsfrom the fat that BI+1 � B0I+1.Theorem 18. The graph H returned by Algorithm MCC is a minimal omparability ompletionof Gx.Proof. First we show that H is a omparability ompletion of Gx. During the algorithm, everytime a new inompatible pair is reated, the orresponding inompatibility is added to BIunless it is implied by a non-edge of L. Inompatibilities implied by members of L that remainnon-edges are added one by one until L is empty. At the end of the algorithm, the graph Bontains all inompatibilities implied by the non-edges in H, sine L = ;. Thus B is the orretinompatibility graph of H, i.e., B = BH . Sine BH is bipartite graph by Lemma 17, theresulting graph H is a omparability graph by Theorem 1.Now we want to prove that H is minimal, that is, if any subset of the �ll edges is removedthe remaining graph is not omparability. Reall that at any step of the algorithm we do notremove any edges from the graph BI (see also Lemma 7). Assume for the sake of ontraditionthat there is a subset F of the �ll edges suh that H 0 = H � F is a omparability graph. Firstnote that BH0 is obtained from BH by removing the verties (x; u) and (u; x), and then addingthe set CH0(xu), for every xu 2 F . Let I be the earliest step in whih Algorithm MCC adds a �lledge xv 2 F . Thus no non-edge of Gx belonging to F has been proessed before step I, and HIis a subgraph of H 0. Furthermore, BI does not ontain any edge belonging to Sxu2F CH0(xu),and BI does not ontain any pair of verties (x; u) and (u; x), for xu 2 F . Thus BI is a subgraph16



of BH0 . Now, observe that for eah xu 2 F , CHI (xu) � CH0(xu), sine NHI (x) � NH0(x). Inpartiular, CHI (xv) � CH0(xv). Sine xv is a non-edge of H 0, all edges of CH0(xv) are presentin BH0 . Therefore BI [ CHI (xv) is a subgraph of BH0 . In Algorithm MCC, at step I, we knowthat BI [ CHI (xv) ontains an odd yle, otherwise xv would not be a �ll edge. Sine it isnot possible to remove an odd yle by adding edges or verties, this means that there is anodd yle in BH0 . This gives the desired ontradition, beause by Theorem 1 H 0 annot be aomparability graph as assumed.5 Time required to ompute minimal omparability ompletionsLet G be an arbitrary graph on n verties andm edges. First we prove the following observation.Observation 19. The inompatibility graph BG of a given graph G has O(mn) edges.Proof. Let G be a graph on n verties and m edges, and let BG be its inompatibility graph.By de�nition BG has preisely 2m verties. Clearly BG ontains m edges of the form (a; b)(b; a).For the other edges of BG (inompatibilities) it is easy to see that eah edge of G (two vertiesof BG) an de�ne at most O(n) inompatibilities in BG sine they are indued by the neighborsof its endpoints in G. Thus BG has O(nm) edges.Now we are ready to give the time bounds of the Algorithm MCC.Lemma 20. Given a omparability graph G and its inompatibility graph BG, Algorithm MCComputes a minimal omparability ompletion of Gx in O(n2m) time.Proof. Let G be a omparability graph on n verties and m edges, and let BG be its inompati-bility graph. Sine only non-edges inident to x are proessed, jLj = O(n), and sine non-edgesremoved from L are never reinserted in L, the algorithm has O(n) steps. By Observation 19 BGhas O(nm) edges. Sine jNxj = O(n), Bx has O(n) verties and thus O(n2) edges. At eah ofthe O(n) steps, we an add at most O(n) edges to B sine jCH(xv)j = O(n) for eah xv 2 L.Thus at all steps B has O(nm) edges. What dominates our time omplexity is to hek whetheror not B [ CH(xv) is bipartite. This hek an be done in time linear in the size of B, namelyO(nm). Therefore, eah step of the algorithm requires O(nm) time, whih gives a total runningtime of O(n2m).We point out that given an inompatible pair ((a; b)(b; )) of G there is an O(n +m) timealgorithm deiding whether its inompatibility graph has an odd yle [6℄. However, it is notstraightforward to use this result for heking whether the graph BI [ CHI (xv) of AlgorithmMCC is bipartite in O(n+m) time, sine at eah step of the algorithm, BI is merely a subgraphof BHI , and BI is not neessarily equal to BHI before the last step. The following result followsfrom Lemma 3, Lemma 20, and Algorithm MCC.Theorem 21. There is an algorithm for omputing a minimal omparability ompletion of anarbitrary graph G in O(n3m) time.
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