N

Information
ﬁ Processing
- Letters
ELSEVIER Information Processing Letters 75 (2000) 265-273

www.elsevier.com/locate/ipl

On the performance of the first-fit coloring algorithm
on permutation graphs

Stavros D. Nikolopoulos, Charis Papadopoulos
Department of Computer Science, University of loannina, P.O. Box 1186, GR-45110 loannina, Greece

Received 6 July 1999; received in revised form 19 April 2000
Communicated by A. Tarlecki

Abstract

In this paper we study the performance of a particular on-line coloring algorithm, the First-Fit or Greedy algorithm, on a class
of perfect graphs namely the permutation graphs. We prove that the largest number ofeplarsthat the First-Fit coloring
algorithm (FF) needs on permutation graphs of chromatic nurpbéy = x when taken over all possible vertex orderings is
not linearly bounded in terms of the off-line optimumyifs a fixed positive integer. Specifically, we prove that for any integers
x > 0andk > 0, there exists a permutation graphonn vertices such that (G) = x andxrr(G) > %((X2 +x)+k(x2 =),
for sufficiently largen. Our result shows that the class of permutation graphis not First-Fity -bounded; that is, there exists
no function f such that for all graph& € P, xrr(G) < f(w(G)). Recall that for perfect graphs(G) = x(G), wherew (G)
denotes the clique number 6f O 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction only looking at the subgraph off induced by the
set{vy, v2, ..., v;}, and the color ofy; never changes
A coloring (or proper coloring) of a grapty is an thereafter.
assignment of positive integers called “colors” to its Let G be a graph with an ordering < vo < --- <
vertices so that no two adjacent vertices have the same,, of its vertices and letd be an on-line coloring
color. Thecoloring problenis to color a graphwithas  g1g0rithm with input(G, <). Over all such possible
few colors as possible; that is, to minimize the number orderings<, let x4(G) denote the maximum number
of colors (see_Jensen and Toft [4]):An-lin¢ coloring of colors used byA to color G. Clearly, x4(G)
of a graphG is a procedure that immediately colors o« res the worst-case behaviourdobn G. The
the vertices ofG taken from a list without looking .o/ number of colors required to col6r off-
ahead or changing the colors already assigned. More"ne is called chromatic number @, and is denoted
precisely, an on-line coloring @ is an algorithm that by x(G) ’

properly colors(G by receiving its vertices in some i,c' i ot on-fine coloring is tharstFit algo-
12, Une ' g y rithm (also sometimes called “the Greedy algorithm”);
"+ Corresponding author. we will refer t_o it by the abt_)reV|at|on FF throughout
E-mail addresses:stavros@cs.uoi.gr (S.D. Nikolopoulos), the paper. GivenG, <) as input, FF works by re-
charis@cs.uoi.gr (C. Papadopoulos). ceiving the vertices of the graph one vertex at time
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in the given ordew; < v2 < --- < v, and assigning
the smallest possible integer froft as the color to
vertexv; (1 <i < n); that is, the smallest color not
yet assigned to any vertex adjacentutoamong the
previously colored vertices. We note that if the ver-
tices of G are considered in an ideal sequence then
xer(G) = x(G); to construct such a sequence first
find an optimal coloring ofG and then put all ver-
tices with the same color in consecutive positions in
the sequence.

Our objective is to study the performance of the
coloring algorithm FF on permutation graphs, a well-
known class of perfect graphs. A gragh= (V, E)
is a permutation graphif and only if there exists
a permutationr = (w1, 72,...,7,) ON vertex set
V ={1,2,...,n} such that(i, j) € E if and only if
(i — )@ 10 —n71()) <0, foralli, j € V, where
n~1(i) is the index of the elementin 7 [1,8,9].

Many researchers have extensively studied on-line
coloring algorithms [2-5]. Most of their work is
devoted to the proof of upper bounds for the-(G);
that is, the worst-case behaviour of the coloring
algorithm FF [2,4]. We mention here some of them
in the case of subfamilies of perfect grapfss(G) <
»(G) + 1 if G is a split grapher(G) < 30(G) if
G is the complement of a bipartite grapfr(G) <
20(G) — 1if G is the complement of a chordal graph;
XxFr(G) < 40w (G) if G is an interval graph [5], where
»(G) denotes the cligue number 6f. (Kierstead and
Trotter [7] presented an on-line algorithm for coloring
an interval graplG with at most 2 (G) — 2 colors and
showed that no on-line algorithm could do better; their
algorithm was almost, but not quite, the FF algorithm.)
These results say that the on-line coloring algorithm
FF can color all these subfamilies of perfect graphs
by a number of colors that is linearly bounded in
respect to the off-line optimum. It is well known that
for perfect graphg (G) = w(G); hereaftery (G) = x.

The main result of this paper is summarized in the
following theorem:

Theorem 1. For any integersy > 0 andk > 0, there
exists a permutation grap&f such that the chromatic
number ofG is equal tox and the on-line First-Fit
coloring algorithm uses

1 -1
CFF(G):X(X2+ )+kx(x2 )

colors to colorG.
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A class of graphg is First-Fit x-bounded (or, FF
x -bounded) if there exists a functiofi such that for
all graphsG € G, xrr(G) < f(w(G)) [4,6]. In this
paper we show that, contrary to known results for other
graph classes, the class of permutation graphs is not
FF x-bounded. In Theorem %, may be any function
of x. Thus, we obtain:

Corollary 1. The class of permutation graphs is not
FF x-bounded that is, there exists no functiogf
such that for all permutation graph€, xrr(G) <

F(x(G)).

2. A(n) and B(n) permutations

In this section we define two types of permuta-
tions A(m) and B(n) of lengthsn andn, respectively,
which we shall use as tools for constructing a per-
mutation graphG on which xgr(G) is greater than
or equal to the values given in Theorem 1. We rep-
resent a permutation of lengthas a rearrangement of
N,=(1,2,...,n).

Moreover, we define two operations on permuta-
tions which we call-insertionand y-insertion Each
of these operations is applied on two permutations,
say, A and B of lengthsm andn, respectively, and
produces a permutation of length+ n, by inserting
the permutatiorB into A in a specific manner.

2.1. Construction ofA(n) and B(n)

Let A = (a1,a2,...,a,) and B = (b1, b>, ..., by)
be two sequences of lengthsand m, respectively,
whose elements are drawn from a linearly ordered
setS. We shall use the notatiofi = [A, B] to denote
the sequenc€ = (a1, az, ..., a,,b1,b2,...,by).

We construck sequenced, Ao, ..., A, oflengths
n,2n—1),3(n—2),...,n, respectively. Let

A1 =[A11,A12,..., A1(n—1), A,
Ap=[A21, A2, ..., Aopu—1)],
Ap=[Anl

be these sequences, wherg; is a sequence of
lengthi, 1 <i <n. The elements ofi;; are denoted
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by al"j, wherek = 1,2,...,i; thatis, A;; = (a}

.,ak).
Firlsjt we compute the sequeneg = [A11, A12,

, A1(n—1), A1,], whose elements are sequences of -
Iength 1 each; that idy = (aly, al,, ..., a}), where
Ay = (al ). The elements of the sequenda are
defined as follows:

ij’ l]’

afy=n
and
a%j =n—-j+1

+% Y m—in—i+0,

i=0..j—2
j=2,3,....n

Next we compute the sequendge = [A;1, Aj2, ...,

Am-i+pl, for i =2,3,...,n. The elements of the

sequencel;; = (a 121 cal), 1< j<n—i+1,

are defined as follows ‘

a»l~ _al/ i+1

and

afj:afjfl—i—(n—j—}—l)—

k=2,3,...,i

(k—=2),

Having computed the sequencas, Ao, ..., A,, let
us now define the following three sequences:

A(n) =[A11, A12, ..., A1n-1), A,
A21, A22, ..., A2(n1), -, Ant],
A*(”l) = [Al}‘l’ AZ(n—l), cet Anl]a

B(n)=(1,2,...,n).

It follows from the definitions that the sequence@:)
and A*(n) containm =n(n + 1)(n + 2)/6 andm™ =
n(n + 1)/2 elements, respectively. Moreover, by con-
struction the sequencé(n) is a permutation omv,,.
For example, let us consider the sequence8)
and A*(3). By definition A(3) = [A1, A2, A3] and
A*(3) =[A13, A2, Az1l, WhereA; =[A11, A12, Az3l,
Ao = [A21, A22] and A3z = [A31]. It is easy to see
that, A11 = (3), A1 = (8), Az = (10), A =
(2,5), A= (7,9), A3z1= (1,4,6), and therefore
A1=(3,8,10),A2=(2,5,7,9), A3=(1,4,6). Thus,
AB) =(3,8,10,2,5,7,9,1,4,6) and A*(3) = (10,
7.9,1,4,6).
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2.2. Insertion operations

Let A = (a1,a2,...,a*,...,a,) and B = (b1, b»,
, b,y) be two permutations ow, andN,,, respec-
tlvely We define an operation oft and B which pro-
duces a permutatioA, on N, as follows:

al, by, by, ..., b)),

sz(a/l,a’z,..., -
where

() a =a; foralla; <a*,

(i) a/ =a; +mforalla; >a*,
(i) by =a*+i, 1<i<m.
The above operation is calledinsertionand denoted
by x-inseri{(A; a*, B). The element™* is called gpivot
Additionally, we define the-insertionoperation o
andB, denoted by-inser(A; a*, B), which produces
a permutatiord, on N,,.4,,, as follows:

A, —(al,az,...,ai,b’l,b’z,...,b;,l,
Ai41,Aid2, .-, an),
where
(i) aj =a*,
(i) bi=n+i, 1<i<
Let A be a permutatlon orN,,, and letA* = (af, a3,
.,ay) and B = (b1, by, ..., by) be two sequences
such thatA* € A, and ||A*|| = ||B]. In such a

case, we shall use the notatiorinser{A; A*, B) to
denote the sequence of operatigrsiser(A; a*, (1)),
fori =1,2,...,m; recall that, (1) is a permutation
on N1. In a similar manner, we shall use the notation
y-inser{A; A*, B).

3. The input (G, <) of the FF algorithm

In this section we construct a permutation graph
G and an orderingc of its vertices such that the al-
gorithm FF with input(G, <) usescee(G) colors to
color G, wherecgr(G) equals the values givenin The-
orem 1. We first describe a strategy which transforms
a permutationr of lengthn into a geometric scheme,
which is a set of: planar points with specifie- and
y-coordinates, and then we show how a permutation
graph is defined by such a scheme.

3.1. Permutations and schemes

A set P of n points{p1, p2, ..., pn} in the plane
such thate(p;) # x(p;) andy(p;) # y(p;) for every
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Fig. 1. The three basic schemé¢4)-scheme B(10)-scheme andi (3)-scheme.

pi,pj € P (1<i,j<nandi#j),is calledscheme
and denoted bys(P). Let S(P) and S(Q) be two
schemes of: and m points, respectively, such that
x(pi) # x(q;) and y(p;) # y(q;) for every p; € P
andg; € Q (1 <i <n and 1< j < m). Theunion
of the schemes(P) and S(Q) is defined to be the
schemeS(P U Q) of n + m points. The number of
points in a scheme, sa§(P), is denoted by S(P)|.
A point p; € S(P) is said to bedominatedby p; €
S(P) (or p; dominatesp;) if x(p;) < x(p;) and
y(pi) <y(pj).

Let 7 be a permutation omv,. A w-scheme(or
permutation schemas defined to be a scheme of
points {p1, p2,..., pa} such that(x(p;), y(pi)) =
G, -7~ 1)), 1<i<n.

The A(n)-schemeand theB(n)-schemeare called
basic schemegswhere A(n) and B(n) are the two
permutations which we defined in Section 2. Re-
call that, A(n) and B(n) are permutations of lengths
nn+1)(n+ 2)/6 andn(n + 1)/2, respectively. The
parameten: of the A(n)-scheme (respectivelg(n)-
scheme) is calledegreeof the A(n)-scheme (respec-
tively B(n)-scheme). For notation convenience we
shall omit the parameter of the basic schema (n)-
scheme (respectivel®(n)-scheme) and we shall de-
note it by S(A) (respectivelyS(B)).

In Fig. 1 there are three basic schemes:San)
scheme of degree 4, &tB) scheme of degree 10 and
an S(A) scheme of degree 3; that is, dri4)-scheme,
a B(10)-scheme and aA (3)-scheme.

We next show how a permutation graph is defined
by a m-scheme. Letr be a permutation onv,

and let G be a graph withV(G) = {1,2,...,n}
and (i, j) € E(G) if and only if (i — j)(mw () —
771(j)) < 0. Let S) = {p1, p2, ..., pa} be therx-
scheme of the permutatiom. Then, we define the
graphG|[r] as follows:

V(G[n]) ={p1, p2,...
(pi, pj) € E(G[r]) if and only if p; dominatesp;.

’ pn}, and

By definitionG is a permutation graph ar@[z] = G.
Thus, given a permutation on N,,, the combinatorial
objectG[x] and the geometric objeSir) are in one-
to-one correspondence; by definitianand G[x] are
also in one-to-one correspondence.

3.2. Construction o6 [7rr]

Let us now construct a permutation scheme, say,
Ser := S(7gp), and an ordering< of its points (we
shall define it in Section 3.3) such that the algorithm
FF with input(G, <) usescrr(G) colors to colorG,
where G = G[ngr]. Recall that the graplG[mre]
and the permutation schenSérrr) are in one-to-one
correspondence.

Given an integery > 0, we first construct the
basic schemes(A), S(B) and S(C) by using the
permutationsA(y), B(x(x +1)/2) and A(x — 1),
respectively. Then we construct the schesg U B U
C) of Fig. 2. This construction can be done by first
y-inserting the schem&(B) into S(A) using A*(x)
as pivot; that is,y-inser{A; A*(x), B), and thenx-
inserting the schem&(C) into S(A U B) with pivot
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Fig. 2. The permutation scheny¢ A U B U C).

the first element] of A*(x); that is, x-inser(A U
B;aj, C).

permutation schemegg is the union of Sgg with
S(Cit1)-

We next show the way we can extend the scheme Clearly, we can extend the permutation scheipe
S(A U B U C), by creating and inserting various basic by repeatedly applying the above construction process

schemes intaS(A U B U C), so that the resulting
scheme isSgr. In order to do that we first set
Ser := S(A U Bg U Cp), where Bo = B and Cg =

C. Then, we construct the schen$¢B;) by using
the permutatiorB(b) of lengthb = | B;| andx-insert

it into the schemeSgr using B; as pivot,i > 0.
The result of ther-insertion operation is an updated
schemeSgr which is the union ofSgr with S(B;).
Next, we construct the schen$&B; 1) by using the
permutations3(b), whereb = |C; U B/|, andy-insert

it into the schemeSrr usingC;* U B! as pivot. Now,
the result of they-insertion operation is an updated
schemeSgg which is the union ofSgr with S(B;+1).
Finally, we construct the schem®&C;11) by using
the permutationA(x — 1) and x-insert this scheme
into the schemeSgg with pivot the pointb;, where
b} is a point of the schem&(B/) such thatx (b)) =
|Ser| + 1S(Bi+1)| and y(b;) = [Skrl. The resulting

fori =1,2,...,k—1(see Fig. 3). Again, the resulting
schemeSgr and the graplG[zgg] are in one-to-one
correspondence.

We are now in a position to give a formal descrip-
tion of the way we can construct a permutation scheme
Seg for which we shall define an ordering such that
the algorithm FF with inpu(G, <) usesceg(G) colors
to color G, whereG = G[zgg]. In the proposed algo-
rithm we shall use the notationc*inser{A; B, C) =
S(Q)” to denote that the schen$& Q) is produced by
x-inserting the permutatio@ into A usingB as pivot.
The construction algorithm is formally presented (see
Algorithm Scheme_SFF).

By construction, the geometric objeSir consists
of the three basic schemegA), S(B) and S(C)
of degreesy, x(x + 1)/2 andx — 1, respectively,
and some number of basic schens¢s;), S(B;) and
S(C;) of various degrees, wherg is a fixed positive
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Algorithm Scheme_SFF:
Step 1. Construct the schem$&(A) by using the permutation$(x);
Step 2. Construct the schem® B) = S(Bg) by using the permutation8(b) whereb = x(x + 1)/2, and
apply the operation-inser{A; A*(x), Bg) = S(A U Bg);
Step 3. Construct the schem®&(C) = S(Cg) by using the permutatioA (x — 1), and
apply the operation-inser{A U B; aj, Co) = S(AU BgU Co);
SetSpp:= S(AU BgU Cp);
Step 4. fori=0,1,...,k—2
4.1 Construct the schen&{Bi’) by using the permutatioB(b) whereb = | B;|, and
apply x-inser(Ser; B;, B)) = Sé,:;
4.2 Construct the schen$& B, 1) by using the permutation8(b) whereb = \C;* U B{\, and
apply y-inser(Ste: € U B, Bi11) = S2p;
4.3 Construct the schen$#&C; 1) by using the permutatioA(x — 1),
select the poin; from B/ such thate(b}) = |SFr| + [S(B;11)| andy(b}) = |SFrl, and
apply x-inser(Sgg; b7, Ciy1) = SEF;
4.4  SetSpg:= SEF;
end;
end

integer andi > 0. The scheme$(A) and S(C;) are Scheme_SFF after two iterations of Step 4; that is,
constructed by using the permutatieny while the fork =3.

schemesS(B/) and S(B;) are constructed by using

the permutationB (see Section 2). We say that the 3.3. An ordering oV (G[7Fg])

schemesS(A), S(C;), S(B)) and S(B;) are of A-

type C-type B’-type and B-type respectively. The We are interested in finding an orderirgof then
geometric object of Fig. 3 is produced by Algorithm points of the schem&r; thatis,p1 < p2 < --- < pu
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Fig. 4. The orderings of the points of the three basic schefnas, S(B) andS(C), and the FF coloring of the schen§¢A U B U C).

such that the coloring algorithm FF with inp(@, <)
usescrr(G) colors to colorG, whereG = G[ngg] and
crr(G) = 3((x% + x) + k(x? = x)). To this end, we

have defined an ordering on the points ofSgg. In
Fig. 4 we show the orderings of the points of the basic
schemes(A), S(B) andS(C); left figure, and the FF

order the points of the two basic schemes as shown in coloring of the schem&(A U B U C); right figure. We

Fig. 4; that is, we order the points of the schefi{€;)
in the same way a$(C), sinceS(C;) andS(C) have
the same structure,> 0. Finally, the points of the
schemeS(B/) (respectivelyS(B;)) are ordered such
that p; < p; if and only if x(p;) < x(p;) for every
pi- pj € S(B)) (respectivelyS(B;)).

Having defined an ordering of the points of each
individual scheme of the geometric objesitr (see
Fig. 4), let us now define an ordering,; on its
schemes. Suppose th&kr consists of anA-type
schemek C-type schemesk B-type schemes and
k — 1 B’-type schemes. The orderirg, on the com-
ponents ofSgr (i.e., S(A), S(B;), S(B;) and S(C;),
0<i <k—1)isdefined as follows:

(1) S(A) <5 S(Bo) <5 S(Co);

(i) S(C;) <y S(B)) <5 S(Bi+1) <s S(Ciz1), i =0,
..., k—1.

Let S(P), S(Q) be two schemes afrr and letp, ¢

be two points such thap € S(P) and g € S(Q).

Then,p < ¢ if and only if S(P) <5 S(Q). Thus, we

note that,S(A) <; S(B) <, S(C).

4. The performance of the FF algorithm

Let Ser be a permutation scheme of degree
constructed by Algorithrdcheme_SFF. Let x be the
degree of the basic schen§éA) of Sgr and letk be
the number of schemeX Cop), S(C1), ..., S(Ck—1) in
See. Consider the permutation gragh[zeg] which
corresponds to the permutation scheffie and let
(Glreg], <) be the input of the algorithm FF, where
< is the ordering constructed in Section 2. Then, the
following statements hold:

(i) x(x +21)/2 colors are assigned to scheS1el);

(i) zero new colors are assigned to schef&);
the schemeS(B) is colored with they (x + 1)/2
colors ofS(A);

(i) x(x —1)/2 new colors are assigned to scheme
S(C), i=0,1,...,k—1;
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(iv) zero new colors are assigned to schesii®,);
the schemeS(B;) is colored with the colors of
S(Bi), i=0,1,...,k—2;

(v) zero new colors are assigned to schefiis,;);
the schemeS(B;) is colored with the colors of
S(Ci-1UB]_}), i=0,1,...,k—1;

Thus,crr(Glrre]) = x(x + D /2+kx(x — 1D/2,
wherey = x(G[ngg]). Thus, Theorem 1 is proved.

We now compute the number= n(y, k) of ver-
tices of the graplG[zgr] as a function ofy andk,
wherey is the chromatic number of the graghrg]
(or, equivalently, the degree of the scheel) of
Sep) andk is the number of schemes 6ttype in the
permutation schemggg.

Let

i x(x+D +ix(x—1)
XFE= 2 2 )

Notice thaty/ is the number of colors of the scheme
S(AUBgUC1U---UCji_1), 1<i <k.Recall that
ng,np and n. denote the number of points in the
schemesS(A), S(B) and S(C), respectively. Then, it
is easy to see that the minimum numhbetrof vertices
of a graphG[zgr] on which FF usesxgF colors is
no = n, (we note that the algorithm FF with input
(SFr, <) also usesxgF colors to color the scheme
S(C U B) which consists ofi, + n, > ng points); the
minimum number, of vertices of G[rr] on which
FF uses(2r colorsisny = ng +nyp, + n.; the minimum
numbem of vertices ofG[mrg] on which FF usegé,:
colors isnz = n1 + xPr + x& + ne; and so on. Thus,

0<i<k.

nip=ng +np+ne,

n2=n1+ x% + xte + ne,

k=2 k=1
Ng=nk—1+ Xpg~ + X~ + e

Then we have,

ng =ng +np+ne
+ OB+ afe o+ xEED
+ (XEe+ XEF"‘"""XéEl)
+ (k — Dn,
=ng+np+kn.+2k—Dx(x+1)/2
+ (k=12 (x - /2.

We have shown that the schen§éA) consists of
ng = x(x + D(x + 2)/6 points, the schemé&(B)
consists ofn, = x(x + 1)/2 points and the scheme
S(C) consists ofi. =n, — x(x +1)/2 points. Thus,

(k+Dng + (k= Dkx —k+2)x/2,
n(x, k)= fork > 1,

ng, fork=0,
wheren, = x(x + 1)(x + 2)/6.

Thus, we have proved that the largest number of
colors xee(G) that the on-line coloring algorithm FF
needs on permutation graplis with n vertices and
chromatic numbery when taken over all possible
vertex orderings is no less thai(x? + x) + k(x2 —

X)), wherek is a nonnegative integer. The graph we
constructed for which the algorithm FF uses that many
colorshas: =n(x,k) > x(x + 1)(x + 1)/6 vertices.

5. Conclusions

In this paper we studied the behaviour of the on-
line coloring algorithm FF on the class of permutation
graphs. We used a simple graphical representation
of such graphs in the plane which makes possible
intuitive description of the construction of the “bad”
permutation graptG[nrr]. Based on this graph, we
showed that the class of permutation graphs is not FF
x-bounded: for any integerg > 0 andk > 0, there
exists a permutation grapfi onn vertices such that
X(G) = x and xrr(G) = 3((x% + x) + k(x* = X)),
for sufficiently largen. Recall that, a class of perfect
graphspP is FF x-bounded if there exists a functigh
such that for all graph& € P, xrr(G) < f(x(G)).
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