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Abstract

In the Cluster Deletion problem the goal is to remove the minimum number of
edges of a given graph, such that every connected component of the resulting graph
constitutes a clique. It is known that the decision version of Cluster Deletion is
NP-complete on (P5-free) chordal graphs, whereas Cluster Deletion is solved in poly-
nomial time on split graphs. However, the existence of a polynomial-time algorithm of
Cluster Deletion on interval graphs, a proper subclass of chordal graphs, remained
a well-known open problem. Our main contribution is that we settle this problem in
the affirmative, by providing a polynomial-time algorithm for Cluster Deletion on
interval graphs.

Moreover, despite the simple formulation of a polynomial-time algorithm on split
graphs, we show that Cluster Deletion remains NP-complete on a natural and slight
generalization of split graphs that constitutes a proper subclass of P5-free chordal graphs.
Although the later result arises from the already-known reduction for P5-free chordal
graphs, we give an alternative proof showing an interesting connection between edge-
weighted and vertex-weighted variations of the problem. To complement our results,
we provide faster and simpler polynomial-time algorithms for Cluster Deletion on
subclasses of such a generalization of split graphs.

1 Introduction

In graph theoretic terms, clustering is the task of partitioning the vertices of the graph
into subsets, called clusters, in such a way that there should be many edges within each
cluster and relatively few edges between the clusters. In many applications, the clusters are
restricted to induced cliques, as the represented data of each edge corresponds to a similarity
value between two objects [18, 19]. Under the term cluster graph, which refers to a disjoint
union of cliques, one may find a variety of applications that have been extensively studied
[1, 7, 26]. Here we consider the Cluster Deletion problem which asks for a minimum
number of edge deletions from an input graph, so that the resulting graph is a disjoint union
of cliques. In the decision version of the problem, we are also given an integer k and we want
to decide whether at most k edge deletions are enough to produce a cluster graph.
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Although Cluster Deletion is NP-hard on general graphs [27], settling its complexity
status restricted on graph classes has attracted several researchers. Regarding the maximum
degree of a graph, Komusiewicz and Uhlmann [22] have shown an interesting dichotomy
result: Cluster Deletion remains NP-hard on C4-free graphs with maximum degree four,
whereas it can be solved in polynomial time on graphs having maximum degree at most
three. Quite recently, Golovach et al. [14] have shown that it remains NP-hard on planar
graphs. For graph classes characterized by forbidden induced subgraphs, Gao et al. [12]
showed that Cluster Deletion is NP-hard on (C5, P5, bull, fork, co-gem, 4-pan, co-4-pan)-
free graphs and on (2K2, 3K1)-free graphs. Regarding H-free graphs, Grüttemeier et al. [16],
showed a complexity dichotomy result for any graph H consisting of at most four vertices.
In particular, for any graph H on four vertices with H /∈ {P4, paw}, Cluster Deletion is
NP-hard on H-free graphs, whereas it can be solved in polynomial time on P4- or paw-free
graphs [16]. Interestingly, Cluster Deletion remains NP-hard on P5-free chordal graphs
[3].

On the positive side, Cluster Deletion has been shown to be solved in polynomial
time on cographs [12], proper interval graphs [3], split graphs [3], and P4-reducible graphs [2].
More precisely, iteratively picking maximum cliques defines a clustering on the graph which
actually gives an optimal solution on cographs (i.e., P4-free graphs), as shown by Gao et al. in
[12]. In fact, the greedy approach of selecting a maximum clique provides a 2-approximation
algorithm, though not necessarily in polynomial-time [9]. As the problem is already NP-
hard on chordal graphs [3], it is natural to consider subclasses of chordal graphs such as
interval graphs and split graphs. Although for split graphs there is a simple polynomial-time
algorithm, restricted to interval graphs only the complexity on proper interval graphs was
determined by giving a solution that runs in polynomial-time [3]. Settling the complexity of
Cluster Deletion on interval graphs, was left open [3, 2, 12].

For proper interval graphs, Bonomo et al. [3] characterized their optimal solution by
consecutiveness of each cluster with respect to their natural ordering of the vertices. Based
on this fact, a dynamic programming approach led to a polynomial-time algorithm. It is
not difficult to see that such a consecutiveness does not hold on interval graphs, as potential
clusters might require to break in the corresponding vertex ordering. Here we characterize an
optimal solution of interval graphs whenever a cluster is required to break. In particular, we
take advantage of their consecutive arrangement of maximal cliques and describe subproblems
of maximal cliques containing the last vertex. One of our key observations is that the
candidate clusters containing the last vertex can be enumerated in polynomial time given
two vertex orderings of the graph. We further show that each such candidate cluster separates
the graph in a recursive way with respect to optimal subsolutions, that enables to define our
dynamic programming table to keep track about partial solutions. Thus, our algorithm for
interval graphs suggests to consider a particular consecutiveness of a solution and apply a
dynamic programming approach defined by two vertex orderings. The overall running time
of our algorithm is O(n6) for an interval graph on n vertices and, thus, exploiting the first
polynomial-time such algorithm.

Furthermore, we complement the previously-known NP-hardness of Cluster Deletion
on P5-free chordal graphs, by providing a proper subclass of such graphs for which we prove
that the problem remains NP-hard. This result is inspired and motivated by the very simple
characterization of an optimal solution on split graphs: either a maximal clique constitutes
the only non-edgeless cluster, or there are exactly two non-edgeless clusters whenever there
is a vertex of the independent set that is adjacent to all the vertices of the clique except one
[3]. Due to the fact that true twins belong to the same cluster in an optimal solution, it is
natural to extend split graphs by allowing two vertices that do not belong to the clique to
be adjacent only if they are true twins, as they are expected not to influence the solution
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characterization. Surprisingly, we show that Cluster Deletion remains NP-complete
even on such a slight generalization of split graphs. This is achieved by observing that
the constructed graphs given in the reduction for P5-free graphs [3], constitute such split-
related graphs. However, here we give a different reduction that highlights an interesting
connection between edge-weighted and vertex-weighted split graphs. In fact, the resulting
split-related graphs are known as starlike graphs which are exactly the intersection graphs
of subtrees of a star [6]. We then study two different classes of starlike graphs that can be
viewed as the parallel of split graphs that admit disjoint clique-neighborhood (that we call
stable-like graphs) and nested clique-neighborhood (that we call threshold-like graphs). For
Cluster Deletion we provide polynomial-time algorithms on both classes of graphs. In
particular, for the former case, a polynomial-time algorithm is already known and is achieved
through computing a minimizer of submodular functions [3]. Here we provide a simpler and
faster (linear-time) algorithm for Cluster Deletion on such graphs that avoids the usage
of submodular minimization. In order to unify both classes, we also consider the starlike
graphs that are obtained from disjoint threshold-like graphs with a common clique (that we
call laminar-like graphs). Our general approach that uses both subroutines on stable-like
and threshold-like graphs, results in a quadratic-time algorithm for Cluster Deletion on
laminar-like graphs.

2 Preliminaries

All graphs considered here are simple and undirected. A graph is denoted by G = (V,E)
with vertex set V and edge set E. We use the convention that n = |V | and m = |E|. The
neighborhood of a vertex v of G is N(v) = {x | vx ∈ E} and the closed neighborhood of v is
N [v] = N(v) ∪ {v}. For S ⊆ V , N(S) =

⋃
v∈S N(v) \ S and N [S] = N(S) ∪ S. A graph H

is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G), the subgraph of
G induced by X, G[X], has vertex set X, and for each vertex pair u, v from X, uv is an
edge of G[X] if and only if u 6= v and uv is an edge of G. For R ⊆ E(G), G \ R denotes
the graph (V (G), E(G) \R), that is a subgraph of G and for S ⊆ V (G), G− S denotes the
graph G[V (G)− S], that is an induced subgraph of G. For two set of vertices A and B, we
write E(A,B) to denote the edges that have one endpoint in A and one endpoint in B. Two
adjacent vertices u and v are called true twins if N [u] = N [v], whereas two non-adjacent
vertices x and y are called false twins if N(u) = N(v).

A clique of G is a set of pairwise adjacent vertices of G, and a maximal clique of G is a
clique of G that is not properly contained in any clique of G. An independent set of G is a set
of pairwise non-adjacent vertices of G. For k ≥ 2, the chordless path on k vertices is denoted
by Pk and the chordless cycle on k vertices is denoted by Ck. For an induced path Pk, the
vertices of degree one are called endvertices. A vertex v is universal in G if N [v] = V (G)
and v is isolated if N(v) = ∅. A graph is connected if there is a path between any pair of
vertices. A connected component of G is a maximal connected subgraph of G. For a set of
finite graphs H, we say that a graph G is H-free if G does not contain an induced subgraph
isomorphic to any of the graphs of H. Contracting a set of vertices S is the operation of
substituting the vertices of S by a new vertex w with N(w) = N(S).

The problem of Cluster Deletion is formally defined as follows: given a graph G =
(V,E), the goal is to compute the minimum set F ⊆ E(G) of edges such that every connected
component of G \F is a clique. A cluster graph is a P3-free graph, or equivalently, any of its
connected components is a clique. Thus, the task of Cluster Deletion is to turn the input
graph G into a cluster graph by deleting the minimum number of edges. Let S = C1, . . . , Ck

be a solution of Cluster Deletion such that G[Ci] is a clique. In such terms, the problem
can be viewed as a vertex partition problem into C1, . . . , Ck. Each Ci is simple called cluster.
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Edgeless clusters, i.e., clusters containing exactly one vertex, are called trivial clusters. The
edges of G are partitioned into internal and external edges: an internal edge uv has both its
endpoints u, v ∈ Ci in the same cluster Ci, whereas an external edge uv has its endpoints
in different clusters u ∈ Ci and v ∈ Cj , for i 6= j. Then, the goal of Cluster Deletion
is to minimize the number of external edges which is equivalent to maximize the number of
internal edges. We write S(G) to denote an optimal solution for Cluster Deletion of the
graph G, that is, a cluster subgraph of G having the maximum number of edges. Given a
solution S(G), the number of edges incident only to the same cluster, that is the number of
internal edges, is denoted by |S(G)|.

For a clique C, we say that a vertex x is C-compatible if C \ {x} ⊆ N(x). We start with
few preliminary observations regarding twin vertices. Notice that for true twins x and y, if
x belongs to any cluster C then y is C-compatible.

Lemma 2.1 ([3]). Let x and y be true twins in G. Then, in any optimal solution x and y
belong to the same cluster.

The above lemma shows that we can contract true twins and look for a solution on a
vertex-weighted graph that does not contain true twins. Even though false twins cannot be
grouped into the same cluster as they are non-adjacent, we can actually disregard one of the
false twins whenever their neighborhood forms a clique.

Lemma 2.2. Let x and y be false twins in G such that N(x) = N(y) is a clique. Then,
there is an optimal solution such that x constitutes a trivial cluster.

Proof. Let Cx and Cy be the clusters of x and y, respectively, in an optimal solution such
that |Cx| ≥ 2 and |Cy| ≥ 2. We construct another solution by replacing both clusters by
Cx ∪ Cy \ {y} and {y}, respectively. To see that this indeed a solution, first observe that x
is adjacent to all the vertices of Cy \ {y} because N(x) = N(y), and Cx ∪ Cy \ {y} ⊆ N [x]
forms a clique by the assumption. Moreover, since |Cx| ≥ 2 and |Cy| ≥ 2, we know that
|Cx|+ |Cy| ≤ |Cx||Cy|, implying that the number of internal edges in the constructed solution
is at least as the number of internal edges of the optimal solution.

Moreover, we prove the following generalization of Lemma 2.1.

Lemma 2.3. Let C and C ′ be two clusters of an optimal solution and let x ∈ C and y ∈ C ′.
If y is C-compatible then x is not C ′-compatible.

Proof. Let S be an optimal solution such that C,C ′ ∈ S. Assume for contradiction that x
is C ′-compatible. We show that S is not optimal. Since y is C-compatible, we can move y
to C and obtain a solution Sy that contains the clusters C ∪ {y} and C ′ \ {y}. Similarly, we
construct a solution Sx from S, by moving x to C ′ so that C \{x}, C ′∪{x} ∈ Sx. Notice that
the Sx forms a clustering, since x is C ′-compatible. We distinguish between the following
cases, according to the values |C| and |C ′|.

� If |C| ≥ |C ′| then |Sy| > |S|, because
(|C|+1

2

)
+
(|C′|−1

2

)
>
(|C|

2

)
+
(|C′|

2

)
.

� If |C| < |C ′| then |Sx| > |S|, because
(|C|−1

2

)
+
(|C′|+1

2

)
>
(|C|

2

)
+
(|C′|

2

)
.

In both cases we reach a contradiction to the optimality of S. Therefore, x is not C ′-
compatible.

Corollary 2.4. Let C be a cluster of an optimal solution and let x ∈ C. If there is a vertex
y that is C-compatible and N [y] ⊆ N [x], then y belongs to C.

Proof. Assume for contradiction that y belongs to a cluster C ′ different than C. Then,
observe that x is C ′-compatible. Indeed, for any vertex u of C ′, we know xu ∈ E(G), since
u is adjacent to y and N [y] ⊆ N [x]. Thus, by Lemma 2.3 we reach a contradiction, so that
y ∈ C.
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3 Polynomial-time algorithm on interval graphs

Here we present a polynomial-time algorithm for the Cluster Deletion problem on in-
terval graphs. A graph is an interval graph if there is a bijection between its vertices and a
family of closed intervals of the real line such that two vertices are adjacent if and only if the
two corresponding intervals intersect. Such a bijection is called an interval representation
of the graph, denoted by I. We identify the intervals of the given representation with the
vertices of the graph, interchanging these notions appropriately. Whether a given graph is
an interval graph can be decided in linear time and if so, an interval representation can be
generated in linear time [11]. Notice that every induced subgraph of an interval graph is an
interval graph.

Let G be an interval graph. Instead of working with the interval representation of G, we
consider its sequence of maximal cliques. It is known that a graph G with p maximal cliques
is an interval graph if and only if there is an ordering K1, . . . ,Kp of the maximal cliques of
G, such that for each vertex v of G, the maximal cliques containing v appear consecutively in
the ordering (see e.g., [4]). A path P = K1 · · ·Kp following such an ordering is called a clique
path of G. Notice that a clique path is not necessarily unique for an interval graph. Also note
that an interval graph with n vertices contains at most n maximal cliques. By definition, for
every vertex v of G, the maximal cliques containing v form a connected subpath in P.

Given a vertex v, we denote by Ka(v), . . . ,Kb(v) the maximal cliques containing v with
respect to P, where Ka(v) and Kb(v) are the first (leftmost) and last (rightmost) maximal
cliques containing v. Notice that a(v) ≤ b(v) holds. Moreover, for every edge of G there is a
maximal clique Ki of P that contains both endpoints of the edge. Thus, two vertices u and
v are adjacent if and only if a(v) ≤ a(u) ≤ b(v) or a(v) ≤ b(u) ≤ b(v).

For a set of vertices U ⊆ V , we write a- minU and a- maxU to denote the minimum and
maximum value, respectively, among all a(u) with u ∈ U . Similarly, b- minU and b- maxU
correspond to the minimum and maximum value, respectively, with respect to b(u).

With respect to the Cluster Deletion problem, observe that for any cluster C of a
solution, we know that C ⊆ Ki where Ki ∈ P, as C forms a clique. A vertex y is called
guarded by two vertices x and z if

min{a(x), a(z)} ≤ a(y) and b(y) ≤ max{b(x), b(z)}.

For a clique C, observe that y is C-compatible if and only if there exists a maximal clique
Ki such that C ⊆ Ki with a(y) ≤ i ≤ b(y).

Lemma 3.1. Let x, y, z be three vertices of G such that y is guarded by x and z. If x and z
belong to the same cluster C of an optimal solution and y is C-compatible then y ∈ C.

Proof. To ease the presentation, for three non-negative numbers i, j, k we write i ∈ [j, k] if
j ≤ i ≤ k holds. Without loss of generality, assume that a(y) ∈ [a(x), a(z)]. Assume for
contradiction that y belongs to another cluster C ′. We apply Lemma 2.3 to either x and y
or z and y. To do so, we need to show that x is C ′-compatible or z is C ′-compatible, as y
is already C-compatible. Since C ′ is a cluster that contains y, there is a maximal clique Ki

such that C ′ ⊆ Ki with i ∈ [a(y), b(y)].
We show that i ∈ [a(x), b(x)] or i ∈ [a(z), b(z)]. If i /∈ [a(x), b(x)] then b(x) < i ≤ b(y),

because a(x) ≤ a(y) ≤ i. As y is guarded by x and z, we know that i ≤ b(y) ≤ b(z).
Now observe that if i < a(z) then b(x) < a(z), implying that x and z are non-adjacent,
reaching a contradiction to the fact that x, z ∈ C. Thus, a(z) ≤ i ≤ b(z) which shows that
i ∈ [a(z), b(z)]. This means that i ∈ [a(x), b(x)] or i ∈ [a(z), b(z)].

Hence, x or z belong to the maximal clique Ki for which C ′ ⊆ Ki. Therefore, at least
one of x or z is C ′-compatible and by Lemma 2.3 we conclude that y ∈ C.
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Let v1, . . . , vn be an ordering of the vertices such that b(v1) ≤ · · · ≤ b(vn). For every
vi, vj with b(vi) ≤ b(vj), we define the following set of vertices:

Vi,j = {v ∈ V (G) : min{a(vi), a(vj)} ≤ a(v) and b(v) ≤ b(vj)} .

That is, Vi,j contains all vertices that are guarded by vi and vj . We write a(i, j) to denote
the value of min{a(vi), a(vj)} and we simple write Ka(j) and Kb(j) instead of Ka(vj) and
Kb(vj). Notice that for a neighbor u of vj with u ∈ Vi,j , we have either a(vj) ≤ a(u) or
a(vi) ≤ a(u) ≤ a(vj). This means that all neighbors of vj that are totally included (i.e., all
vertices u such that a(vj) ≤ a(u) ≤ b(u) ≤ b(vj)) belong to Vi,j for any vi with b(vi) ≤ b(vj).
To distinguish such neighbors of vj , we define the following sets:

� U(j) contains the neighbors u ∈ Vi,j of vj such that a(u) < a(vj) ≤ b(u) ≤ b(vj)
(neighbors of vj in Vi,j that partially overlap vj).

� M(j) contains the neighbors w ∈ Vi,j of vj such that a(vj) ≤ a(w) ≤ b(w) ≤ b(vj)
(neighbors of vj that are totally included within vj).

In the forthcoming arguments, we restrict ourselves to the graph induced by Vi,j . It is
clear that the first maximal clique that contains a vertex of Vi,j is Ka(i,j), whereas the last
maximal clique is Kb(j).

We now explain the necessary sets that our dynamic programming algorithm uses in
order to compute an optimal solution of G.

Definition 3.2 (Optimal solutions Ai,j). For two vertices vi, vj with b(vi) ≤ b(vj),

� Ai,j is the value of an optimal solution for Cluster Deletion of the graph G[Vi,j ].

To ease the notation, when we say a cluster of Ai,j we mean a cluster of an optimal solution
of G[Vi,j ]. Notice that A1,n is the desired value for the whole graph G, since V1,n = V (G).

Our task is to construct the values for Ai,j by taking into account all possible clusters
that contain vj . To do so, we show that (i) the number of clusters containing vj in Ai,j

is polynomial and (ii) each such candidate cluster containing vj separates the graph in a
recursive way with respect to optimal subsolutions.

Observe that if vivj ∈ E(G) then vi ∈ U(j) if and only if a(vi) < a(vj), whereas vi ∈M(j)
if and only if a(vj) ≤ a(vi); in the latter case, it is not difficult to see that Vi,j = M(j)∪{vj},
according to the definition of Vi,j . Thus, whenever vi ∈ M(j) holds, we have Vi,j = Vj,j .
The candidates of a cluster of Ai,j containing vj lie among U(j) and M(j). Let us show
with the next two lemmas that we can restrict ourselves into a polynomial number of such
candidates. To avoid repeating ourselves, in the forthcoming statements we let vi, vj be two
vertices with b(vi) ≤ b(vj).

Lemma 3.3. Let C be a cluster of Ai,j containing vj. If there is a vertex w ∈ M(j) such
that w ∈ C then there is a maximal clique Kt with a(vj) ≤ t ≤ b(vj) such that Kt∩M(j) ⊆ C
and C ∩M(j) ⊆ Kt.

Proof. Since vj , w ∈ C, we know that there is a maximal clique Kt for which C ⊆ Kt with
a(vj) ≤ a(w) ≤ t ≤ min{b(vj), b(w)}. We show that all other vertices of Kt ∩M(j) are
guarded by vj and w. Notice that for every vertex y ∈ M(j) we already know that a(vj) ≤
a(y) and b(y) ≤ b(vj). Thus, for every vertex y ∈M(j) we have a(vj) = min{a(vj), a(w)} ≤
a(y) and b(y) ≤ max{b(vj), b(w)}. This means that all vertices of Kt ∩ M(j) \ {w} are
guarded by vj and w. Moreover, since C ⊆ Kt, we know that all vertices of Kt ∩M(j) are
C-compatible. Therefore, we apply Lemma 3.1 to every vertex of Kt ∩M(j), showing that
Kt ∩M(j) ⊆ C. Furthermore, there is no vertex of M(j) \Kt that belongs to C, because
C ⊆ Kt.
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vj

M [t]
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u1

U [t]
U(j)

vi

Ka(i) Ka(j) Kt Kb(j)

M(j)

Figure 1: Illustrating the sets M(j) and U(j) for vj . The left part shows the case in which
vi ∈ M(j) (or, equivalently, Vi,j = Vj,j), whereas the right part corresponds to the case in
which a(vi) < a(vj).

By Lemma 3.3, we know that we have to pick the entire set Kt ∩M(j) for constructing
candidates to form a cluster that contains vj and some vertices of M(j). As there are at
most n choices for Kt, we get a polynomial number of such candidate sets. We next show
that we can construct polynomial number of candidate sets that contain vj and vertices of
U(j). For doing so, we consider the vertices of U(j) increasingly ordered with respect to
their first maximal clique. More precisely, let U(j)≤a = (u1, . . . , u|U(j)|) be an increasingly
order of the vertices of U(j) such that a(u1) ≤ · · · ≤ a(u|U(j)|). The right part of Figure 1
illustrates the corresponding case.

Lemma 3.4. Let C be a cluster of Ai,j containing vj and let uq ∈ U(j)≤a.If uq ∈ C then
every vertex of {uq+1, . . . , u|U(j)|} that is C-compatible belongs to C.

Proof. Let u be a vertex of {uq+1, . . . , u|U(j)|}. We show that u is guarded by uq and vj .
By the definition of U(j)≤a, we know that a(uq) < a(u) < a(vj). Moreover, observe that
b(u) ≤ b(vj) holds by the fact that u ∈ Vi,j and b(uq) ≤ b(vj). Thus, we apply Lemma 3.1 to
u, because uq, vj ∈ C and u is C-compatible, showing that u ∈ C as desired.

For a(vj) ≤ t ≤ b(vj), let M [t] = Kt ∩M(j). Observe that each M [t] may be an empty
set. On the part M(j), all vertices are grouped into the sets M [a(vj)], . . . ,M [b(vj)]. Similar
to M [t], let U [t] = U(j) ∩ Kt. Then, all vertices of U [t] are {vj ,M [t]}-compatible and all
vertices of M [t] are {vj , U [t]}-compatible. Figure 1 depicts the corresponding sets.

Lemma 3.5. Let C be a cluster of Ai,j containing vj. Then, there is a(vj) ≤ t ≤ b(vj) such
that M [t] ⊆ C.

Proof. Assume for contradiction that no set M [t] is contained in C. Let UC = U(j) ∩ C
and let i′ = b- min(UC). Notice that C = {vj} ∪ UC because of the assumption as there are
no other neighbors of vj in Vi,j . Then, a(vj) ≤ i′ ≤ b(vj) holds, because vj ∈ C. We show
that M [i′] ⊆ C. Observe that C ⊆ Ki′ . If M [i′] = ∅ then clearly M [i′] ⊂ C. Assume that
M [i′] 6= ∅ and let C ′ be a non-empty subset of M [i′] that forms a cluster in Ai,j . Then, all
vertices of C are C ′-compatible and all vertices of C ′ are C-compatible, because C,C ′ ∈ Kt.
Thus, we reach a contradiction by Lemma 2.3 to the optimality of Ai,j . This means that
there is a vertex w ∈M(j) that is contained in C together with vj . Therefore, by Lemma 3.3,
there is a set M [t] = Kt ∩M(j) that is included in C.

All vertices of a cluster C containing vj belong to U(j) ∪M(j). Thus, C \ {vj} can be
partitioned into C∩U(j) and C∩M(j). Also notice that C ⊆ Kt for some a(vj) ≤ t ≤ b(vj).
Combined with the previous lemmas, we can enumerate all such subsets C of U(j)∪M(j) in
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polynomial-time. In particular, we first build all candidates for C ∩M(j), which are exactly
the sets M [t] by Lemma 3.3 and Lemma 3.5. Then, for each of such candidate M [t], we
apply Lemma 3.4 to construct all subsets containing the last q vertices of U [t]≤a. Thus,
there are at most n2 number of candidate sets from the vertices of U(j) ∪M(j) that belong
to the same cluster with vj .

3.1 Splitting into partial solutions

We further partition the vertices of M(j). Given a pivot group M [t], we consider the vertices
that lie on the right part of M [t]. More formally, for a(vj) ≤ t < b(vj), we define the set

Bj(t) =
((
Kt+1 ∪ · · · ∪Kb(j)

)
\Kt

)
∩M(j).

The reason of breaking the vertices of the part M(j) into sets Bj(t) is the following.

Lemma 3.6. Let C be a cluster of Ai,j such that {vj} ∪M [t] ⊆ C, for a(vj) ≤ t ≤ b(vj).
Then, for any two vertices x ∈ Vi,j \ Bj(t) and y ∈ Bj(t), there is no cluster of Ai,j that
contains both of them.

Proof. First observe that y ∈ (M [t + 1] ∪ · · · ∪M [b(j)]) \M [t]. We consider two cases for
x, depending on whether x ∈ M(j) or not. Assume that x ∈ M(j). Then, we show that
xy /∈ E(G). To see this, observe that by the definition of each group M [t] = Kt∩M(j), there
is no maximal clique that contains both x and y. Thus, there is no cluster that contains
both of them.

Now assume that x ∈ U(j). If x ∈ C, then y does not belong to Kt, so that y /∈ C. If
x /∈ C, then we show that x does not belong to a cluster with any vertex of Bj(t). Assume
for contradiction that x belongs to a cluster C ′ such that C ′ ∩ Bj(t) 6= ∅. This means that
x ∈ Ki′ with t < i′ ≤ b(vj) and C ′ ⊆ Ki′ . Then vj is C ′-compatible and x is C-compatible,
as both x and vj belong to Kt ∩Ki′ . Therefore, by Lemma 2.3 we reach a contradiction to
x and vj belonging to different clusters.

Definition 3.7 (Optimal solution A(S)). For a non-empty set S ⊆ V (G), we write A(S) to
denote the following solutions:

� A(S) = Ai′,j′, where vi′ is the vertex of S having the smallest a(vi′) and vj′ is the vertex
of S having the largest b(vj′).

Having this notation, observe that Ai,j = A(Vi,j), for any vi, vj with b(vi) ≤ b(vj).
However, it is important to notice that A(S) does not necessarily represent the optimal
solution of G[S], since the vertices of S may not be consecutive with respect to Vi′,j′ , so that
S is only a subset of Vi′,j′ in the corresponding solution Ai′,j′ for A(S). Under the following
assumptions, with the next result we show that for the chosen sets we have S = Vi′,j′ .

Observation 3.8. Let vi, vj be two vertices with b(vi) ≤ b(vj) and let Vt = Kt∩Vi,j, for any
maximal clique Kt of P with a(vj) ≤ t ≤ b(vj).

(i) If SL =
(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt then SL = Vi′,j′,

where i′ = a- min(SL) and j′ = b- max(SL).

(ii) If SR =
(
Vt+1 ∪ · · · ∪ Vb(vj)

)
\ Vt then SR = Vi′,j′,

where i′ = a- min(SR) and j′ = b- max(SR).
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Proof. We prove the case for SL =
(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt. As each Vt contains vertices of

Vi,j , we have Vi′,j′ ⊆ Vi,j . Observe that either a(vi′) < a(vj′) or a(vj′) ≤ a(vi′). In both cases
we show that b(vj′) = t− 1. Assume that there is a vertex w ∈ SL with t− 1 < b(w). Then
a(w) ≤ t− 1 as w ∈ SL, and w ∈ Kt by the consecutiveness of the clique path. This shows
that w /∈ SL because w ∈ Vt. Thus, b(vj′) = t− 1. We show that a(vi′) = min{a(vi), a(vj)}.
If there is a vertex w in SL with a(w) < min{a(vi), a(vj)} then w /∈ Vi,j leading to a
contradiction that Vi′,j′ ⊆ Vi,j . Hence we have a(vi′) = min{a(vi), a(vj)} and b(vj′) = t− 1.
Moreover, observe that by the definition of SL, we already know that SL ⊆ Vi′,j′ . Now it
remains to notice that for every vertex w with min{a(vi), a(vj)} ≤ a(w) and b(w) ≤ t− 1 we
have w ∈ SL. This follows from the fact that w ∈ Va(w) ∪ · · · ∪ Vb(w) and w /∈ Vt. Therefore
we get SL = Vi′,j′ . Completely symmetric arguments along the previous lines, shows the case
for SR.

Given the clique path P = K1 · · ·Kp, a clique-index t is an integer 1 ≤ t ≤ p. Let
`(j), r(j) be two clique-indices such that a(i, j) ≤ `(j) ≤ a(vj) and a(vj) ≤ r(j) ≤ b(vj).
We denote by `r(j) the minimum value of a(v) among all vertices of v ∈ Kr(j) ∩ Vi,j having
`(j) ≤ a(v). Clearly, `(j) ≤ `r(j) ≤ r(j) holds.

Definition 3.9 (Admissible pair and crossing). A pair of clique-indices (`(j), r(j)) is called
admissible pair for a vertex vj, if both

� a(i, j) ≤ `(j) ≤ a(vj) and

� a(vj) ≤ r(j) ≤ b(vj) hold.

Given an admissible pair (`(j), r(j)), we define the following set of vertices:

� C(`(j), r(j)) = {z ∈ Vi,j : `r(j) ≤ a(z) ≤ r(j) ≤ b(z)}.

We say that a vertex u crosses the pair (`(j), r(j)) if we have a(u) < `r(j) and r(j) ≤ b(u).

Observe that all vertices of C(`(j), r(j)) induce a clique in G, because C(`(j), r(j)) ⊆
Kr(j). It is not difficult to see that for a vertex u that crosses (`(j), r(j)), we have u /∈
C(`(j), r(j)). We prove the following properties of C(`(j), r(j)).

Lemma 3.10. Let vi′ , vj′ be two vertices with b(vi′) ≤ b(vj′) and let (`, r) be an admissible
pair for vj′. Moreover, let vi, vj be the vertices of Vi′,j′ \C(`, r) having the smallest a(vi) and
largest b(vj), respectively. If the vertices of C(`, r) form a cluster in Ai′,j′ then the following
statements hold:

1. Vi,j = Vi′,j′ \ C(`, r).

2. If a(x) ≤ r ≤ b(x) holds for a vertex x ∈ Vi,j, then x crosses (`, r).

3. Every vertex of Bj(r) does not belong to the same cluster with any vertex of Vi,j \Bj(r).

4. Every vertex that crosses (`, r) does not belong to the same cluster with any vertex
y ∈ Vi,j having `r ≤ a(y).

Proof. First we show that Vi,j = Vi′,j′ \C(`, r). Assume that there is a vertex v ∈ Vi,j \Vi′,j′ .
Then v /∈ C(`, r) and v is distinct from vi, vj because, by definition, vi, vj ∈ Vi′,j′ . Also
notice that v ∈ Vi,j implies a(i, j) ≤ a(v) and b(v) ≤ b(vj). By the second inequality, we get
b(v) ≤ b(vj) ≤ b(vj′). Suppose that a(v) < a(i′, j′). As we already know that a(i, j) ≤ a(v),
we conclude that a(i, j) < a(i′, j′) leading to a contradiction that vi, vj ∈ Vi′,j′ . Thus we
have a(i′, j′) ≤ a(v) and b(v) ≤ b(vj′), showing that v ∈ Vi′,j′ . This means that Vi,j ⊂ Vi′,j′ ,
so that Vi,j = Vi′,j′ \ C(`, r).
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For the second statement, observe that if `r ≤ a(x) then x ∈ C(`, r). Since x ∈ Vi,j ,
we conclude that x /∈ C(`, r) by the first statement. Thus a(x) < `r holds, implying that x
crosses (`, r).

With respect to the third statement, observe that no vertex of Bj(r) belongs to the clique
Kr. This means that all vertices of Bj(r) belong to both sets Vi,j and Vi′,j′ . Thus Lemma 3.6
and the first statement show that no two vertices x ∈ Vi,j \ Bj(r) and y ∈ Bj(r) belong to
the same cluster.

For the fourth statement, let x be a vertex that crosses (`, r). By the first statement we
know that x ∈ Vi,j . If r < a(y) then y ∈ Bj(r) and the third statement show that x and y
do not belong to the same cluster. Suppose that `r ≤ a(y) ≤ r. If r ≤ b(y) then y ∈ C(`, r)
contradicting the fact that y ∈ Vi,j . Putting together, we have `r ≤ a(y) ≤ b(y) < r. Now
assume for contradiction that x and y belong to the same cluster Cxy. By the fact that
a(x) < a(y), observe that a(y) ≤ a- min(Cxy) ≤ b- min(Cxy) ≤ min{b(vj), b(y)}. We consider
the graph induced by Vi′,j′ . We show that there is a vertex of Cxy that is C(`, r)-compatible
and there is a vertex of C(`, r) that is Cxy-compatible. Notice that x is C(`, r)-compatible,
because x crosses (`, r) so that x ∈ Kr. To see that there is a vertex of C(`, r) that is Cxy-
compatible, choose z to be the vertex of C(`, r) having the smallest a(z). This means that
a(z) = `r. Then z is adjacent to every vertex of Cxy because a(z) ≤ a(y) and b(y) < r ≤ b(z).
Thus, z ∈ C(`, r) is Cxy-compatible. Therefore, Lemma 2.3 shows the desired contradiction,
implying that x and y do not belong to the same cluster.

Notice that the number of admissible pairs (`(j), r(j)) for vj is polynomial because there
are at most n choices for each clique-index. Moreover, if vi ∈M(j) then we have `(j) = a(vj).

Definition 3.11 (Bounding pair). A pair of clique-indices (`, r) with ` ≤ r is called bounding
pair for vj if either b(vj) < r holds, or vj crosses (`, r). Given an bounding pair (`, r) for vj,
we write (`(j), r(j)) ≺ (`, r) to denote the set of admissible pairs (`(j), r(j)) for vj such that

� r(j) ≤ b(vj), whenever b(vj) < r holds, and

� r(j) < `, otherwise.

Observe that if b(vj) < r holds, then (`(j), r(j)) ≺ (`, r) describes all admissible pairs
for vj with no restriction, regardless of `. On the other hand, if ` < a(vj) and r ≤ b(vj)
hold, then (`, r) is not a bounding pair for vj . In fact, we will show that the latter case will
not be considered in our partial subsolutions. For any admissible pair (`(j), r(j)) and any
bounding pair (`, r) for vj , observe that vj ∈ C(`(j), r(j)) and vj /∈ C(`, r). Intuitively, an
admissible pair (`(j), r(j)) corresponds to the cluster containing vj , whereas a bounding pair
(`, r) forbids vj to select certain vertices as they have already formed a cluster that does not
contain vj .

Our task is to construct subsolutions over all admissible pairs for vj with the property
that the vertices of C(`(j), r(j)) form a cluster. To do so, we consider a vertex vj′ with
b(vj) ≤ b(vj′) and a cluster containing vj′ . Let (`, r) be an admissible pair for vj′ such that
a(vj) ≤ r ≤ b(vj). The previous results suggest to consider solutions in which the vertices of
C(`, r) form a cluster in an optimal solution. It is clear that if ` ≤ a(vj) then vj ∈ C(`, r).
Moreover, if b(vj) < r, then no vertex of Vi,j belongs to C(`, r). Thus, we need to construct
solutions for Ai,j , whenever (`, r) is a bounding pair for vj and the vertices of C(`, r) form a
cluster. Such an idea is formally described in the following restricted solutions.

Definition 3.12 ((`, r)-restricted solution). Let (`, r) be a bounding pair for vj. We call the
following solution, (`, r)-restricted solution:

� Ai,j [`, r] is the value of an optimal solution for Cluster Deletion of the graph
G[Vi,j ]− (C(`, r) ∪Bj(r)) such that the vertices of C(`, r) form a cluster.
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vj

CL

C(`(j), r(j))

L

CR

C(`, r)

R

Bj(r)

K`(j) Ka(j) Kr(j) K` Kr Kb(j)

Figure 2: A partition of the set of vertices given in Ai,j [`, r], where VL = CL ∪ L and
VR = CR ∪R. Observe that Bj(r(j)) = R ∪ CR ∪ (C (`, r) ∩ Vi,j) ∪Bj(r).

Hereafter, we assume that Bj(t) with t ≥ b(vj) corresponds to an empty set. Figure 2
illustrates a partition of the vertices with respect to Ai,j [`, r]. Notice that an optimal solution
Ai,j without any restriction is described in terms of Ai,j [`, r] by Ai,j [1, b(vj) + 1], since no
vertex of Vi,j belongs to C(1, b(vj) + 1). Therefore, A1,n[1, n+ 1] corresponds to the optimal
solution of the whole graph G. As base cases, observe that if Vi,j contains at most one
vertex then Ai,j [`, r] = 0 for all bounding pairs (`, r), since there are no internal edges. For

a set C, we write |C|2 to denote the number
(|C|

2

)
. With the following result, we describe

a recursive formulation for the optimal solution Ai,j [`, r], which is our central tool for our
dynamic programming algorithm.

Lemma 3.13. Let (`, r) be a bounding pair for vj. Then,

Ai,j [`, r] = max
(`(j),r(j))≺(`,r)

(A(VL)[`(j), r(j)] + |C(`(j), r(j))|2 + A(VR)[`, r]) ,

where VL = Vi,j \ (C(`(j), r(j)) ∪Bj(r(j))) and VR = Bj(r(j)) \ (C(`, r) ∪Bj(r)).

Proof. We first argue that C(`(j), r(j)) corresponds to the correct cluster C containing vj .
Observe that vj /∈ C(`, r), because (`, r) is a bounding pair for vj , so that a(vj) < ` whenever
a(vj) ≤ r ≤ b(vj) holds. By Lemmas 3.4 and 3.3, there are r(j) = t and `(j) = k, where
a(vj) ≤ t ≤ b(vj) and k = a- min(Kt ∩ C), such that C = C(`(j), r(j)). We show that
such a set C(`(j), r(j)) is obtained from a correct choice among the described (`(j), r(j)).
Assume first that b(vj) < r. Then Ai,j [`, r] = Ai,j , because for every vertex u of C(`, r) we
know the b(vj) < b(u), so that Vi,j ∩ C(`, r) = ∅. This means that a(vj) ≤ r(j) ≤ b(vj)
for every admissible pair (`(j), r(j)), as described in the given formula. Now assume that
r ≤ b(vj). Since vj crosses (`, r), Lemma 3.10 (4) shows that vj is not contained in a cluster
with a vertex y having ` < a(y). Thus, for any vertex y ∈ C we know that y ∈ Kt where
a(vj) ≤ t < `. This means that there is a set C(`(j), r(j)) that contains exactly the vertices
of C such that a(vj) ≤ r(j) < `. Therefore, (`(j), r(j)) ≺ (`, r) holds, as desired.

Next, we consider the sets VL and VR. We show that A(VL)[`(j), r(j)] and A(VR)[`, r]
correctly store the optimal values of each part. To do so, we show first that the vertex
sets of each part correspond to the correct sets and, then, each pair (`(j), r(j)) and (`, r) is
indeed a bounding pair for the last vertex of VL and VR, respectively. We start with some
preliminary observations. Notice that Bj(r) ⊆ Bj(r(j)), because r(j) < r, which means that
every vertex Bj(r) does not belong to VL ∪ VR. Since C(`(j), r(j)) contains only vertices of
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Kr(j) and r(j) < `, no vertex of Bj(r) is considered in the described formula, as required in
Ai,j [`, r]. By the properties of C(`(j), r(j)) and C(`, r), we have the following:

� Let x ∈ Kr(j) ∩ Vi,j . Then, either x ∈ C(`(j), r(j)) or x crosses the pair (`(j), r(j)).
Moreover, if a vertex v crosses (`(j), r(j)) then v ∈ VL.

� Let y ∈ Kr ∩ Vi,j . Then, either y ∈ C(`, r) or y crosses the pair (`, r). Moreover, if a
vertex v crosses (`, r) but does not cross (`(j), r(j)) then v ∈ VR.

Let CL be the set of vertices of Vi,j that cross (`(j), r(j)) and let CR be the set of vertices
of Vi,j \ CL that cross (`, r). The previous properties imply that we can partition VL to the
vertices of CL and the vertices of Vi,j that belong to L = (Ka(i,j) ∪ · · · ∪ Kr(j)−1) \ Kr(j).
Similarly, VR is partitioned to the vertices of CR and the vertices of Vi,j that belong to
R = (Kr(j)+1∪· · ·∪Kr−1)\ (Kr(j)∪Kr). See Figure 2 for an exposition of the corresponding
sets. Thus, we have the following partitions for VL and VR:

� VL = CL ∪ L, where L =
(
(Ka(i,j) ∪ · · · ∪Kr(j)−1) \Kr(j)

)
∩ Vi,j .

� VR = CR ∪R, where R =
(
(Kr(j)+1 ∪ · · · ∪Kr−1) \ (Kr(j) ∪Kr)

)
∩ Vi,j .

Let vi′ , vj′ be the vertices of VL with i′ = a- min(VL) and j′ = b- max(VL). We now
show that A(VL)[`(j), r(j)] corresponds to the optimal solution of the graph G[Vi′,j′ ] −(
Bj′(r(j)) ∪ C(`(j), r(j))

)
such that the vertices of C(`(j), r(j)) form a cluster. Assume for

contradiction that there is a vertex x of Vi′,j′\
(
C(`(j), r(j)) ∪Bj′(r(j))

)
that does not belong

to VL = Vi,j \ (Bj(r) ∪ C(`, r)). First notice that Kr(j)∩Vi,j = C(`(j), r(j)) if and only if CL

is an empty set. In such a case, by Observation 3.8, we have Vi′,j′ = Vi,j\
(
Kr(j) ∪ · · · ∪Kb(j)

)
,

contradicting the existence of such a vertex x. Suppose that vi′ 6= vi. Then vi ∈ M(j) or
vi ∈ C(`(j), r(j)), because min{a(vi), a(vj)} is the first maximal clique of all vertices of Vi,j .
If vi ∈M(j) then U(j) = ∅ and `(j) = a(j). This means that for every a(vj) ≤ r(j) ≤ b(vj),
we have Kr(j) ∩ Vi,j = C(`(j), r(j)), reaching a contradiction. If vi ∈ C(`(j), r(j)) then
`(j) = a(vi) and CL is empty, reaching again a contradiction. Suppose now that i′ = i. It is
clear that x 6= vj′ . If vj′ ∈ L then CL = ∅, so that Kr(j) ∩ Vi,j = C(`(j), r(j)). Assume that
vj′ ∈ CL. Now observe that if x ∈ L∪CL, then x is a vertex of Vi,j \ (Bj(r) ∪ C(`, r)). Thus,
x /∈ L ∪ CL. If b(x) < r(j) then x ∈ L because a(vi) ≤ a(x). This means that r(j) ≤ b(x).
If `(j) ≤ a(x) ≤ r(j) then x ∈ C(`(j), r(j)), leading to a contradiction that x ∈ VL, and
if a(x) < `(j) then x ∈ CL, leading to a contradiction that x /∈ L ∪ CL. Thus, we know
that r(j) < a(x) and b(x) ≤ b(vj′). This, however, implies that x ∈ Bj′(r(j)), reaching a
contradiction to the fact that x ∈ Vi′,j′ \ Bj′(r(j)). Therefore, we have shown that an op-
timal solution of the vertices of Vi′,j′ \

(
Bj′(r(j)) ∪ C(`(j), r(j))

)
corresponds to an optimal

solution of the vertices of VL.
Furthermore, we argue that (`(j), r(j)) is a bounding pair for vj′ in A(VL)[`(j), r(j)].

Assume that r(j) ≤ b(vj′). If r(j) ≤ a(vj′) then vj′ ∈ Bj(r(j)), because a(vj) ≤ r(j). As
vj′ ∈ VL, we have a(vj′) < r(j) ≤ b(vj′). Then, if `(j) ≤ a(vj′), we get vj′ ∈ C(`(j), r(j)),
which implies that a(vj′) < `(j), showing that (`(j), r(j)) is a bounding pair for vj′ . Assume
next that b(vj′) < r(j). Then, vj′ /∈ CL, implying that CL = ∅. Thus, for any value of `(j)
we know that (`(j), r(j)) is a bounding pair for vj′ . Therefore, A(VL)[`(j), r(j)] corresponds
to the optimal solution of the graph G[Vi′,j′ ]−

(
Bj′(r(j)) ∪ C(`(j), r(j))

)
.

Next we consider the vertices of VR, in order to show that A(VR)[`, r] corresponds to
an optimal solution of the graph G[VR]. Let vi′′ , vj′′ be the vertices of VR with i′′ =
a- min(VR) and j′′ = b- max(VR). Assume for contradiction that there is a vertex x of
Vi′′,j′′ \

(
C(`, r) ∪Bj′′(r)

)
that does not belong to VR = Bj(r(j)) \ (C(`, r) ∪Bj(r)). Every

vertex of R∪CR belongs to VR, so that x /∈ R∪CR. This means that b(x) > r, since x /∈ R,
and a(x) > r, since x /∈ CR∪C(`, r). Then we obtain r < a(x) ≤ b(x) ≤ b(vj′′), showing that
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x ∈ Bj′′(r). Thus we reach a contradiction, because Bj′′(r) ⊆ Bj(r). Hence, the vertices
described in A(VR)[`, r] correspond to the vertices of VR, as desired.

With respect to A(VR)[`, r], it remains to show that (`, r) is a bounding pair for vj′′ . If
b(vj′′) < r then CR = ∅, which means that (`, r) is a bounding pair for vj′′ . Next suppose
that r ≤ b(vj′′). If r ≤ a(vj′′) then vj′′ ∈ Bj(r), contradicting the fact that vj′′ ∈ VR. Thus,
we know that a(vj′′) < r ≤ b(vj′′). If further ` ≤ a(vj′′), then vj′′ ∈ C(`, r), contradicting
vj′′ ∈ VR. Hence, we conclude that vj′′ crosses (`, r), showing that (`, r) is indeed a bounding
pair for vj′′ .

To complete the proof, observe that no vertex of VL belongs to the same cluster with a
vertex of VR by Lemma 3.10 (3). Thus, the optimal solutions described by A(VL)[`(j), r(j)]
and A(VR)[`, r] do not overlap in Ai,j [`, r]. Therefore, the claimed formula holds.

Now we are ready to obtain our main result, namely a polynomial-time algorithm for
Cluster Deletion on interval graphs.

Theorem 3.14. Cluster Deletion is polynomial-time solvable on interval graphs.

Proof. We describe a dynamic programming algorithm that computes A1,n based on Lemma
3.13. In a preprocessing step, we first compute two orderings of the vertices according to
their first a(v) and last b(v) maximal cliques. Then we visit all vertices in ascending order
with respect to b(vj) and for each such vertex vj we consider the vertices vi with b(vi) ≤ b(vj)
in descending order with respect to b(vi). In such a way, we construct the sets Vi,j . We use
a table T [i, j, `, r] to store the values of each Ai,j [`, r]. At the end, we output the maximum
value of T [1, n, n + 1, n + 1] that corresponds to A1,n[n + 1, n + 1], as already explained.
Regarding the running time, observe that the number of our table entries is at most n4,
as each table index is bounded by n. Moreover, computing a single table entry requires
O(n2) time, since we take the maximum of at most (`, r) table entries. Therefore, the overall
running time of the algorithm is O(n6).

4 Cluster Deletion on a generalization of split graphs (starlike
graphs)

A graph G = (V,E) is a split graph if V can be partitioned into a clique C and an inde-
pendent set I, where (C, I) is called a split partition of G. Split graphs are characterized as
(2K2, C4, C5)-free graphs [10]. They form a subclass of the larger and widely known graph
class of chordal graphs, which are the graphs that do not contain induced cycles of length
4 or more as induced subgraphs. In general, a split graph can have more than one split
partition and computing such a partition can be done in linear time [17].

Hereafter, for a split graph G, we denote by (C, I) a split partition of G in which C is a
maximal clique. It is known that Cluster Deletion is polynomial-time solvable on split
graphs [3]. In fact, the algorithm given in [3] is characterized by its simplicity due to the
following elegant characterization of an optimal solution: if there is a vertex v ∈ I such that
N(v) = C \ {w} and w has a neighbor v′ in I then the non-trivial clusters of an optimal
solution are C \ {w} ∪ {v} and {w, v′}; otherwise, the only non-trivial cluster of an optimal
solution is C [3]. Here we study whether such a simple characterization can be extended into
more general classes of split graphs. Due to Lemma 2.1, it is natural to consider true twins
of V \ C, as they are grouped together in an optimal solution and they are expected not
to influence the solution characterization1. Surprisingly, we show that Cluster Deletion
remains NP-complete even on such a slight generalization of split graphs. Before presenting

1Note that the class of split graphs is closed under the addition of true twins in the clique.
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C4 C5 P5 2P3 Ā X

Figure 3: The list of forbidden induced subgraph characterization for starlike graphs.

our NP-completeness proof, let us first show that such graphs form a proper subclass of
P5-free chordal graphs. We start by giving the formal definition of such graphs that were
introduced in [6].

Definition 4.1. A graph G = (V,E) is called starlike graph if its vertex set can be partitioned
into C and I such that G[C] is a clique and every two vertices of I are either non-adjacent
or true twins in G.

It is clear that in a starlike graph G with vertex partition (C, I) the following holds:

(i) each connected component of G[I] is a clique and forms a true-twin set in G, and

(ii) contracting the connected components of G[I] results in a split graph, denoted by G∗.

Starlike graphs are exactly the intersection graphs of subtrees of a star [6]. In fact, a forbidden
induced subgraph characterization was already given in [6]; figure 3 illustrates the induced
subgraphs that are forbidden in a starlike graph. Despite the known forbidden subgraph
characterization, here we give a shorter and different proof of such a characterization.

Proposition 4.2. A graph G is starlike if and only if it does not contain any of the graphs
C4, C5, P5, 2P3, Ā,X as induced subgraphs.

Proof. Let F be the list of such subgraphs, i.e., F = {C4, C5, P5, 2P3, Ā,X}. We show that
starlike graphs are exactly the F-free graphs. It is clear that any subgraph of F does not
contain true twins. Moreover, each subgraph of F \{C4, C5} contains an induced 2K2, which
implies that all such subgraphs of F are not starlike graphs. Thus, if a graph G contains one
of the subgraphs of F then G is not a starlike graph.

We show that any F-free graph G is starlike. If G is a split graph then, by definition,
G is starlike. Assume that G is not a split graph. Since G does not contain C4 or C5 and
split graphs are exactly the (2K2, C4, C5)-free graphs, there is an induced 2K2 in G. Let
x1x2 and y1y2 be the two edges of an induced 2K2. We show that the endpoints of at least
one of the two edges are true twins. Assume for contradiction that neither x1, x2 nor y1, y2
are true twins in G. Let a be a neighbor of x1 that is non-adjacent to x2, and let b be a
neighbor of y1 that is non-adjacent to y2. We show that the vertices of {a, x1, x2, b, y1, y2}
induce one of the subgraphs of F , contradicting the fact that no pair of vertices form true
twins. If b /∈ N({x1, x2}) and a /∈ N({y1, y2}) then there is an induced P5 or 2P3 depending
on whether a and b are adjacent or not. Thus, b ∈ N({x1, x2}) or a ∈ N({y1, y2}). Observe
that if a is adjacent to at least one of y1 or y2 then a is adjacent to both y1 and y2; otherwise,
{x1, x2, a, y1, y2} induce a P5. By symmetric arguments we know that either b is adjacent to
both x1, x2 or to none. Without loss of generality, assume that bx1, bx2 ∈ E(G).

� Suppose that a and b are non-adjacent. If a /∈ N({y1, y2}) then there is a P5 induced by
{a, x1, b, y1, y2}. Moreover, by the previous argument, we know that if a ∈ N({y1, y2})
then ay1, ay2 ∈ E(G), which implies a C4 in G induced by {a, x1, b, y1}. Thus if
ab /∈ E(G) we obtain a induced subgraph of F .
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� Suppose that a and b are adjacent. If a /∈ N({y1, y2}), then all six vertices induce an X
graph. Otherwise, we know that ay1, ay2 ∈ E(G), showing that all six vertices induce
a graph Ā, where a and b are the degree four vertices.

Thus in all cases we obtain an induced subgraph of F , reaching to a contradiction that G
being an F-free graph. This means that for any 2K2 we know that at least one of the two
edges contains true twin vertices in G. By iteratively picking such true twins and contracting
them into a new vertex, results in a graph G∗ that does not contain 2K2. Therefore G∗ is a
split graph, implying that G is a starlike graph.

Thus by Proposition 4.2, starlike graphs form a proper subclass of P5-free chordal graphs,
i.e., of (C4, C5, P5)-free graphs. Now let us show that decision version of Cluster Dele-
tion is NP-complete on starlike graphs. This is achieved by observing that the constructed
graphs given in the reduction for P5-free graphs [3], constitute such split-related graphs. In
particular, the reduction shown in [3] comes from the X3C problem: given a universe X of
3q elements and a collection C = {C1, . . . , C|C|} of 3-element subsets of X, asks whether
there is a subset C ′ ⊆ C such that every element of X occurs in exactly one member of C ′.
The constructed graph G is obtained by identifying the elements of X as a clique KX and
there are |C| disjoint cliques K1, . . . ,K|C| each of size 3q corresponding to the subsets of C
and a vertex x of KX is adjacent to all the vertices of Ki if and only if x belongs to the
corresponding subset Ci of Ki. Then, it is not difficult to see that the vertices of each Ki are
true twins and the contracted graph G∗ is a split graph, showing that G is indeed a starlike
graph. Therefore, by the NP-completeness given in [3], we have:

Theorem 4.3. Cluster Deletion is NP-complete on starlike graphs.

However, here we give a different reduction that highlights an interesting connection
between edge-weighted and vertex-weighted split graphs. In the Edge Weighted Cluster
Deletion problem, each edge of the input graph is associated with a weight and the objective
is to construct a clustered graph having the maximum total (cumulative) weight of edges. As
already explained, we can contract true twins and obtain a vertex-weighted graph as input
for the corresponding Cluster Deletion. Similarly, it is known that for edge-weighted
graphs the corresponding Edge Weighted Cluster Deletion remains NP-hard even
when restricted to particular variations on special families of graphs [3]. In fact, it is known
[3] that Edge Weighted Cluster Deletion remains NP-hard on split graphs even when

(i) all edges inside the clique have weight one,

(ii) all edges incident to a vertex w ∈ I have the same weight q, and

(iii) q = |C|.

We abbreviate the latter problem by EWCD and denote by (C, I, k) an instance of the
problem where (C, I) is a split partition of the vertices of G and k is the total weight of
the edges in a cluster solution for G. With the following result, we show an interesting
connection between the two variations of the problem when restricted to starlike graphs.

Theorem 4.4. There exists a polynomial time algorithm that, given an instance (C, I, k)
for EWCD, produces an equivalent instance for Cluster Deletion on starlike graphs.

Proof. Let (C, I, k) be an instance of EWCD, where G = (C ∪ I, E) is a split graph. From
G, we build a starlike graph G′ = (C ′ ∪ I ′, E′) by keeping the same clique C ′ = C, and for
every vertex wj ∈ I we apply the following:
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� We replace wj by q = |C| true twin vertices I ′j (i.e., by a q-clique) such that for any
vertex w′ ∈ I ′j we have NG′(w′) = NG(wj)∪(I ′j \{w′}). That is, their neighbors outside
I ′j are exactly NG(wj). Moreover, the set of vertices I ′1, . . . , I

′
|I| form I ′.

By the above construction, it is not difficult to see that G′ is a starlike graph, since the
graph induced by I ′ is a disjoint union of cliques and two adjacent vertices of I ′ are true
twins in G′. Also observe that the construction takes polynomial time because q is at most
n = |V (G)|. We claim that there is an edge weighted cluster solution for G with total weight
at least k if and only if there is a cluster solution for G′ having at least k + |I| ·

(
q
2

)
edges.

Assume that there is a cluster solution S for G with total weight at least k. From S, we
construct a solution S′ for G′. There are three types of clusters in S:

(a) Cluster formed only by vertices of the clique C, i.e., Y ∈ S, where Y ⊆ C. We keep
such clusters in S′. We denote by ta the total weight of clusters of type (a). Notice
that since the weight of edges having both endpoints in C are all equal to one, ta
corresponds to the number of edges in Y .

(b) Cluster formed only by one vertex wj ∈ I, i.e., {wj} ∈ S. In S′ we replace such cluster
by the corresponding clique I ′j having exactly

(
q
2

)
edges. It is clear that the total weight

of such clusters do not contribute to the value of S.

(c) Cluster formed by the vertices y1, . . . , yp, wj , where yi ∈ C and wj ∈ I. As the weights
of the edges between the vertices of yi is one, the total number of weights in such a
cluster is

(
p
2

)
+ p · q. Let tc be the total weight of clusters of type (c). In S′ we replace

wj by the vertices of I ′j and obtain a cluster S′ having
(
p
2

)
+p · q+

(
q
2

)
number of edges.

Now observe that in S we have ta + tc total weight, which implies ta + tc ≥ k. Thus, in S′

we have at least ta + tc + |I| ·
(
q
2

)
edges, giving the desired bound.

For the opposite direction, assume that there is a cluster solution S′ of G′ having at least
k + |I| ·

(
q
2

)
edges. All vertices of I ′j are true twins and, by Lemma 2.1, we know that they

belong to the same cluster in S′. Thus, any cluster of S′ has one of the following forms:

(i) Y ′, where Y ′ ⊆ C ′,

(ii) I ′j ,

(iii) I ′j ∪ {y′1, . . . , y′p}, where y′i ∈ C ′.

This means that all internal edges having both endpoints in I ′ contribute to the value of S′

by |I| ·
(
q
2

)
. Moreover, observe that for any internal edge of S′ of the form y′w′ with y′ ∈ C ′

and w′ ∈ I ′j , we know that there are exactly q internal edges incident to y′ and the q vertices
of I ′j . Thus, internal edges y′w′ of S′ correspond to exactly one internal edge ywj of S having
weight q, where y = y′ (recall that C = C ′) and wj is the vertex of I associated with Ij .
Hence, all internal edges outside each I ′j in S′ correspond to either a weighted internal edge in
S or to the same unweighted edge of the clique C in S. Therefore, there is an edge weighted
solution S having weight at least k.

4.1 Polynomial-time algorithms on subclasses of starlike graphs

Due to the hardness result given in Theorem 4.4, it is natural to consider subclasses of
starlike graphs related to their analogue subclasses of split graphs. We consider two such
subclasses. The first one corresponds to the starlike graphs in which the vertices of I have
no common neighbor in the clique, unless they are true or false twins. The second one is
related to the true twin extension of threshold graphs (i.e., split graphs in which the vertices
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gem dart

Figure 4: Forbidden induced subgraphs of stable-like graphs that are starlike graphs.

of the independent set have nested neighborhood) and form the starlike graphs in which the
vertices of the I have nested neighborhood. The third one comprises a generalization of the
formers and consists of the starlike graphs that are obtained from vertex-disjoint threshold
graphs with a common clique. We formally define such graphs and give polynomial-time
algorithms for Cluster Deletion on the considered graph classes. For a vertex x ∈ I we
write NC(x) to denote the set N(x) ∩ C and for a vertex a ∈ C we write NI(a) to denote
the set N(a) ∩ I.

Definition 4.5. A starlike graph G with partition (C, I) on its vertices is called stable-like
graph if

� ∀x, y ∈ I: either NC(x) ∩NC(y) = ∅ or NC(x) = NC(y).

It is not difficult to see that in a stable-like graph, any two vertices of I having a common
neighbor in C have exactly the same neighborhood in C. Before presenting our linear-time
algorithm, we first give a forbidden induced subgraph characterization for the class of stable-
like graphs. The graphs gem and dart are shown in Figure 4.

Proposition 4.6. A graph G is stable-like if and only if it does not contain any of the graphs
C4, C5, P5, 2P3, gem, dart as induced subgraphs.

Proof. We first show that if G is stable-like then it does not contain any graph of the given
list as an induced subgraph. Since G is a starlike graph, by Proposition 4.2 G does not
contain any of C4, C5, P5, 2P3 as induced subgraphs. Moreover, it is not difficult to see that
in any proper partition (C, I) of a gem or a dart there are no two vertices x, y ∈ I for
which NC(x)∩NC(y) = ∅ or NC(x) = NC(y). Thus, the claimed list is indeed forbidden for
stable-like graphs.

For the opposite direction, we show that any starlike graph that is not stable-like contains
a gem or a dart as an induced subgraph. Then, by Proposition 4.2 we obtain the claimed
list of forbidden induced subgraphs. Let G be a starlike graph that is not stable-like, with
partition (C, I) such that |C| is maximum. By definition, we know that there are two vertices
x, y ∈ I such that NC(x) ∩NC(y) 6= ∅ and NC(x) 6= NC(y).

� Assume that NC(x) * NC(y) and NC(y) * NC(x). Let a ∈ NC(x) \ NC(y), b ∈
NC(y) \NC(x), and c ∈ NC(x)∩NC(y). Notice that all three vertices exist because of
our assumptions. Then, xy /∈ E(G) because there is no C4 in a starlike graph which
means that the vertices of {x, y, a, b, c} induce a gem in G.

� Assume that NC(x) ( NC(y). There are two vertices b, c ∈ C such that b ∈ NC(y) \
NC(x) and c ∈ NC(x)∩NC(y). We show that y is non-adjacent to all the vertices of C.
For this, observe that if C ⊆ NC(y) then (C ∪ y, I \ {y}) is a partition of the vertices
of G that respects Definition 4.1 and properties (i) and (ii). By the maximality of C,
we obtain that there is a vertex z ∈ C such that z /∈ NC(y). Since NC(x) ( NC(y),
we know that z /∈ NC(x). Thus the vertices of {x, y, b, c, z} induce a gem whenever
xy ∈ E(G) or a dart whenever xy /∈ E(G).
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Therefore, in all cases we obtain a gem or a dart as an induced subgraph.

Theorem 4.7. Cluster Deletion can be solved in time O(n + m) for a stable-like graph
on n vertices and m edges.

Proof. Let G be a stable-like graph with partition (C, I). First observe that if G is discon-
nected then I contains isolated cliques, i.e., true twins having no neighbor in C. Thus we
can restrict ourselves to a connected graph G, since by Lemma 2.1 each isolated clique is
contained in exactly one cluster of an optimal solution. We now show that all vertices of C
that have a common neighbor in I are true twins. Let u and v be two vertices of C such
that x ∈ N(u) ∩N(v) ∩ I. All vertices of C \ {u, v} are adjacent to both u and v. Assume
that there is a vertex y ∈ I that is adjacent to u and non-adjacent to v. If xy ∈ E(G)
then by the definition of starlike graphs x and y are true twins which contradicts the as-
sumption of xv ∈ E(G) and yv /∈ E(G). Otherwise, x and y are non-adjacent and since
NC(x) ∩ NC(y) 6= ∅ we reach a contradiction to the definition of stable-like graphs. Thus,
all vertices of C that have a common neighbor in I are true twins.

We partition the vertices of C into true twin classes C1, . . . , Ck, such that each Ci contains
true twins of C. From the previous discussion, we know that any vertex of I is adjacent to
all the vertices of exactly one class Ci; otherwise, there are vertices of different classes in C
that have common neighbor. For a class Ci, we partition the vertices of N(Ci) ∩ I into true
twin classes I1i , . . . , I

q
i such that |I1i | ≥ · · · ≥ |I

q
i |.

We claim that in an optimal solution S, the vertices of each class Iji with j ≥ 2 constitute

a cluster. To see this, observe first that the vertices of Iji , 1 ≤ j ≤ q, are true twins, and by
Lemma 2.1 they all belong to the same cluster of S. Also, by Lemma 2.1 we know that all the
vertices of Ci belong to the same cluster of S. Moreover, all vertices between different classes

Iji ,Ij
′

i are non-adjacent and are Ci-compatible. Since every vertex of Iji is non-adjacent to

all the vertices of V (G) \ (Iji ∪ Ci), we know that any cluster of S that contains Iji is of the

form either Iji ∪ Ci or Iji . Assume that there is a cluster that contains Iji ∪ Ci with j ≥ 2.

Then, we substitute the vertices of Iji by the vertices of I1i and obtain a solution of at least

the same size, because |I1i | ≥ |I
j
i | implies

(|Ci|+|I1i |
2

)
≥
(|Ci|+|Iji |

2

)
. Thus, all vertices of each

class Iji with j ≥ 2 constitute a cluster in an optimal solution S.

This means that we can safely remove the vertices of Iji with j ≥ 2, by constructing

a cluster that contains only Iji . Hence, we construct a graph G∗ from G, in which there
are only matched pair of k classes (Ci, Ii) such that (i) all sets Ci, Ii are non-empty except
possibly the set Ik, (ii) N(Ci) ∩ I = Ii, (iii) N(Ii) = Ci, (iv) G∗[Ci ∪ Ii] is a clique, and
(v) G∗[C1 ∪ · · · ∪ Ck] is a clique. Our task is to solve Cluster Deletion on G∗, since for
the rest of the vertices we have determined their cluster. By Lemma 2.1, observe that if the
vertices of Ci ∪ Cj belong to the same cluster then the vertices of each Ii and Ij constitute
two respectively clusters. Thus, for each set of vertices Ii we know that either one of Ci ∪ Ii
or Ii constitutes a cluster in S. This boils down to compute a set M of matched pairs (Ci, Ii)
from the k classes, having the maximum value∑

(Ci,Ii)∈M

(
|Ci|+ |Ii|

2

)
+

(∑
Cj /∈M |Cj |

2

)
+
∑
Ij /∈M

(
|Ij |
2

)
.

Let (Ci, Ii) and (Cj , Ij) be two pairs of classes such that |Ci| + |Ii| ≤ |Cj | + |Ij |. We show
that if (Cj , Ij) /∈ M then (Ci, Ii) /∈ M . Assume for contradiction that (Cj , Ij) /∈ M and
(Ci, Ii) ∈ M . Observe that |Ij | <

∑
Ct /∈M\Cj

|Ct|, because Ij is Cj-compatible. Similarly,

we know that
∑

Ct /∈M\Cj
|Ct| + |Cj | ≤ |Ii|. This however, shows that |Cj | + |Ij | < |Ii|,

contradicting the fact that |Ci|+ |Ii| ≤ |Cj |+ |Ij |. Thus (Cj , Ij) /∈M implies (Ci, Ii) /∈M .
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This means that we can consider the k pair of classes (Ci, Ii) in a decreasing order
according to their number of vertices |Ci| + |Ii|. With a simple dynamic programming
algorithm, starting from the largest ordered pair (C1, I1) we know that either (C1, I1) belongs
to M or not. In the former, we add

(|C1|+|I1|
2

)
to the optimal value of (C2, I2), . . . , (Ck, Ik)

and in the latter we know that no pair belongs to M giving a total value of
(∑ |Ci|

2

)
+
∑(|Ii|

2

)
.

By choosing the maximum between the two values, we construct a table of size k needed
for the dynamic programming. Computing the twin classes and the partition (C, I) takes
linear time in the size of G and sorting the pair of classes can be done O(n) time, since∑

(|Ci| + |Ii|) is bounded by n. Thus, the total running time is O(n + m), as the dynamic
programming for computing M requires O(n) time. Therefore, all steps can be carried out
in linear time for a stable-like graph G.

We next define the analogue of threshold graphs in terms of starlike graphs.

Definition 4.8. A starlike graph G with partition (C, I) on its vertices is called threshold-
like graph if

� ∀x, y ∈ I: NC(x) ⊆ NC(y).

It is not difficult to see that the class of threshold-like graphs and stable-like graphs
are unrelated. Threshold-like graphs are also known as starlike-threshold graphs under the
notions of intersection graphs [6]. Although the absence of an induced P4 follows from the
results of [6], we give the following short proof for completeness.

Lemma 4.9. Let G be a threshold-like graph. Then G is a P4-free graph.

Proof. We show that there is no induced path on four vertices, P4, in G. Assume for
contradiction that there is a P4 = v1v2v3v4 in G. Since G[C] is a clique and G[I] is a disjoint
union of cliques, at least one of v1, v4, say v1, belongs to I. If v4 ∈ C then v2 ∈ I because
v4v2 /∈ E(G), which gives a contradiction as v1v2 ∈ E(G) and v1, v2 are not true twins.
Otherwise, we have v4 ∈ I, so that v2, v3 ∈ C because v1, v2 and v3, v4 are not true twins G.
The latter, results again in a contradiction because NC(v1) * NC(v4) and NC(v4) * NC(v1).
Therefore, G is a P4-free graph.

By Lemma 4.9 and the O(n2)-time algorithm on P4-free graphs (also known as cographs)
[12, 23], Cluster Deletion is polynomial-time solvable on threshold-like graphs.

Next we proceed with a subclass of starlike graphs that generalizes the previous two
classes, as it contains both the class of stable-like graphs and the class of threshold-like
graphs.

Definition 4.10. A starlike graph G with partition (C, I) on its vertices is called laminar-like
graph2 if

1. ∀x, y ∈ I: either NC(x) ∩NC(y) = ∅ or NC(x) ⊆ NC(y), and

2. ∀a, b ∈ C: either NI(a) ∩NI(b) = ∅ or NI(a) ⊆ NI(b).

We start by characterizing the laminar-like graphs in terms of disjoint threshold-like
graphs.

Lemma 4.11. A graph G = (V,E) is a laminar-like graph with partition (C, I) if and only
if V (G) can be partitioned into vertex-disjoint threshold-like graphs Gi = (Ci ∪ Ii, Ei) such
that C = ∪Ci, I = ∪Ii, and E(G) = E(C) ∪ (∪Ei).

2The term laminar comes from the notion of laminar family of sets: a family of sets is called laminar if
any two of its sets are either disjoint or one includes the other.
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Proof. Given a laminar-like graph G with partition (C, I), we partition the vertices of G
according to whether the vertices of I have a common neighbor in C. Let Ii be a subset of I
that contains all vertices x, y ∈ I such that NC(x)∩NC(y) 6= ∅ or NC(x) = NC(y). Let also
Ci = NC(Ii). We claim that Gi = G[Ci ∪ Ii] is a threshold-like graph. By the first property
of Definition 4.10, for any two vertices x, y ∈ Ii we have NC(x) ⊆ NC(y). Let z ∈ Ii. Then
NC(z) ⊆ NC(y) by the construction of Ii. Assume for contradiction that NC(x) * NC(z)
and NC(z) * NC(x). Let a ∈ NC(x) \ NC(z) and b ∈ NC(z) \ NC(x). Then observe that
y ∈ NI(a) ∩NI(b). Thus by the second property of Definition 4.10 we reach a contradiction
to NI(a) ⊆ NI(b). Therefore the vertices of Ii can be ordered as w1, . . . , w|Ii| such that
NC(w1) ⊆ · · · ⊆ NC(w|Ii|) which means that Gi is indeed a threshold-like graph. Moreover
consider any two subgraphs Gi = (Ci, Ii) and Gj = (Cj , Ij) that are constructed as explained
above. Then it is clear that Ii ∩ Ij = ∅ and Ci ∩ Cj = ∅, since the construction partitions I
into equivalent classes of I. In particular, for every two vertices w ∈ Ii and w′ ∈ Ij we have
NC(w) ∩NC(w′) = ∅. What is left to show is that there are no edges between the vertices
of Ii and Ij . For this, observe that if there is an edge between w ∈ Ii and w′ ∈ Ij then w
and w′ are true twins, as G is a starlike graph. Therefore we have NC(w) = NC(w′) which
means that both w,w′ belong to the same set Ii.

For the opposite direction, assume that we are given vertex-disjoint threshold-like graphs
Gi = (Ci ∪ Ii, Ei). We consider the graph G obtained from the union of Gi by adding all
edges among the vertices of ∪Ci. As there are all the edges among the vertices of Ci and
Cj , we have that C = ∪Ci is a clique. Moreover, each class of true twins of Ii remains a
class of true twins in G. Thus G is starlike graph. We show that G is indeed a laminar-like
graph by verifying the two properties of Definition 4.10. For any two vertices x, y ∈ Ii we
have NC(x) ⊆ NC(y) by Definition 4.8. If x ∈ Ii and y ∈ Ij then NC(x) ∩NC(y) = ∅, since
there are no edges between the vertices of Ii and Ij . Similarly, for any two vertices a, b ∈ Ci

we have NIi(a) ⊆ NIi(b) which means that NI(a) ⊆ NI(b) because every vertex of G−Gi is
either adjacent to both a and b or non-adjacent to both a and b. Moreover, for two vertices
a ∈ Ci and b ∈ Cj , we have NI(a) ∩ NI(b) = ∅ because Ii ∩ Ij = ∅ and both a and b are
adjacent to every vertex of C. Therefore G is a laminar-like graph.

We next show a polynomial-time algorithm for solving Cluster Deletion on laminar-
like graphs which form the more general subclass of the considered subclasses of starlike
graphs. Towards this, we apply Lemma 4.11, obtain an optimal solution in each Gi, and
then apply the algorithm given in Theorem 4.7.

Theorem 4.12. Cluster Deletion can be solved in time O(n2) for a laminar-like graph
on n vertices.

Proof. Let G be a laminar-like graph. We first compute the true twin classes and the partition
(C, I) of G which can be done in linear time. By the true twin classes and Lemma 4.11,
we compute the threshold-like induced subgraphs Gi of G. For doing so, all vertices of I,
denoted by Ii, having a common neighbor in C belong to the same graph Gi, whereas all
vertices of I having no neighbor in C belong to the same graph, that we denote by G0.
Observe that the vertices of Ii define the set Ci = NC(Ii). Moreover, all adjacent vertices of
I0 are true twins in G and NC(I0) = ∅. Thus each connected component of G0 is already a
clique in G and forms a cluster in any optimal solution.

Consider a threshold-like graph Gi with partition (Ci, Ii). To ease the notation, we let
H = Gi and (A,B) be the partition (Ci, Ii). By Lemma 4.9, H is a P4-free graph. For
P4-free graphs, it is known that greedily selecting maximum cliques results in an optimal
solution for Cluster Deletion [12]. Let S(H) = (S1, . . . , Sk) be the clusters of an optimal
solution of H such that Si is a maximum clique of the graph H − (S1 ∪ · · · ∪ Si−1), for
1 ≤ i ≤ k with S0 = ∅. We call S(H) a greedy-optimal solution of H. Observe that all true
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twins of H belong to the same cluster Si by the greedy choice of a maximum clique. We
partition the vertices of each cluster Si ∈ S(H) with respect to (A,B). In particular, for
every 1 ≤ i ≤ k, we define Ai = Si ∩ A and Bi = Si ∩ B. Due to the construction of H, in
which NC(B) = A, notice that all sets Bi are non-empty, whereas a set Ai may be empty.
We prove the following claim.

Claim 4.13. Let S(H) = (S1, . . . , Sk) be a greedy-optimal solution of the threshold-like graph
H. For every Si = (Ai, Bi), 1 ≤ i ≤ k, the following hold:

1. Bi constitutes a class of true twins.

2. For every i < j ≤ k with Sj = (Aj , Bj), we have |Ai| + |Bi| ≥ |W | + |Bj |, where
W = (Ai ∪ · · · ∪Ak) ∩NH(Bj).

3. Removing all edges with one endpoint in Ai and the other endpoint in Bj, for j 6= i,
results in a stable-like graph.

Proof: Let C(H) = A1 ∪ · · · ∪Ak and I(H) = B1 ∪ · · · ∪Bk. For the first statement, observe
that every pair of adjacent vertices in I(H) are true twins since H is a starlike graph. Thus,
by Lemma 2.1, every set Bi constitutes a class of true twins.

For the second statement, let H ′ be the graph obtained from H by removing the vertices
of (A1, B1), . . . , (Ai−1, Bi−1). As (Ai, Bi) is a maximum clique in H ′ by the greedy choice
for Si, |Ai| + |Bi| is greater or equal than the size of any other (maximal) clique in H ′.
Any maximal clique containing Bj in H ′, consists of Bj together with adjacent vertices of
Ai ∪ · · · ∪Ak. Therefore the second statement follows.

For the third statement we consider the graph H ′′ with vertex set C(H)∪ I(H) and edge
set formed by making C(H) and each (Ai, Bi) a clique, for 1 ≤ i ≤ k. In order to show
that H ′′ is a stable-like graph, observe that every pair of adjacent vertices in I(H) are true
twins since they belong to the same set Bi. Thus H ′′ is a starlike graph. To conclude, we
need to prove that for any two vertices x, y of I(H) either NC(H)(x) ∩ NC(H)(y) = ∅ or
NC(H)(x) = NC(H)(y). If x, y ∈ Bi then NC(H)(x) = NC(H)(y) = Ai by construction, and if
x ∈ Bi and y ∈ Bj then NC(H)(x) = Ai and NC(H)(y) = Aj so that Ai ∩Aj = ∅. Therefore,
H ′′ is indeed a stable-like graph. ♦

Next we show that there is an optimal solution for G that respects the internal clusters
of a greedy-optimal solution of H. That is, every cluster (Ai, Bi) in H remains a cluster in
G, or is split into two clusters Ai ∪ Z and Bi where Z is a set of vertices of C.

Claim 4.14. Let S(H) = (S1, . . . , Sk) be a greedy-optimal solution of H and let Si = (Ai, Bi)
be a cluster of S(H), 1 ≤ i ≤ k. There is an optimal solution S(G) of G such that either
Ai ∪Bi ∈ S(G), or Ai ∪ Y,Bi ∈ S(G), where Y ⊆ C.

Proof: Let (C, I) be the partition of the vertices of G into a clique C and a union of cliques
I. Let also C(H) = A1∪ · · ·∪Ak and I(H) = B1∪ · · ·∪Bk. Recall that every vertex of Bi is
non-adjacent to any vertex of G−H, whereas every vertex of Ai is adjacent to every vertex
of C. Thus for any vertex z ∈ V (G) \ V (H) we know that the vertices {z} ∪Ai ∪Bi do not
induce a clique in G. If there is no cluster of S(G) that contains vertices of both G − H
and H, then every cluster (Ai, Bi) of H is a cluster of G, since S(H) is an optimal solution
of H. In what follows, we assume that a set Z of vertices of G −H together with a set X
of vertices of H constitutes a cluster in S(G). It is clear Z ⊆ C \ C(H) and X ⊆ C(H).
Observe also that all the vertices of Z are adjacent to every vertex of C(H) = A1 ∪ · · · ∪Ak

and non-adjacent to any vertex of I(H) = B1 ∪ · · · ∪Bk by Lemma 4.11. First we claim that
there is no cluster Z ′ ∪X ′ in S(G) with Z ′ ⊆ C \ (V (H) ∪ Z) and X ′ ⊆ C(H) \X. To see
this, notice that all the vertices of Z are (Z ′ ∪X ′)-compatible and all the vertices of Z ′ are
(Z ∪X)-compatible which by Lemma 2.3 is not possible.
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We consider the graph F = G[Z ∪ V (H)]. It is not difficult to see that F is a threshold-
like graph, since H is a threshold-like graph and all the vertices of Z are adjacent to every
vertex of C(H) and non-adjacent to any vertex of I(H). In particular, (C(H), I(H) ∪ Z) is
a partition of the vertices of F where the vertices of Z are true twins. Let S` be the cluster
of S(H) with the smallest 1 ≤ ` ≤ k such that |A`|+ |B`| < |Z|+ |A`|+ · · ·+ |Ak|. We show
that there is a greedy-optimal solution (S′1, . . . , S

′
k+1) of F such that:

� S′i = Si, for every 1 ≤ i ≤ `− 1,

� S′` = (A` ∪ · · · ∪Ak, Z), and

� S′j+1 = (∅, Bj), for every ` ≤ j ≤ k.

For this, observe that for any Si, 1 ≤ i ≤ `−1, we have |Ai|+ |Bi| ≥ |Z|+ |Ai|+ · · ·+ |Ak| by
the choice of S`. Thus, by Claim 4.13 (2), Si is a maximum clique of F − (S1∪ · · ·∪Si−1), so
that S′i = Si. Due to the greedy choice and Claim 4.13 (2), we know that the described S′` is
the maximum clique of F − (S1∪ · · · ∪S`−1). Thus S′` is indeed a cluster of a greedy-optimal
solution of F . Moreover all vertices of Bj , ` ≤ j ≤ k, form true twins by Claim 4.13 (1).
Since the vertices of each Bj have no neighbors in F−(S′1∪· · ·∪S′`∪Bj), every Bj constitutes
a cluster. Therefore there is a greedy-optimal solution of F with the claimed properties. As
the clusters in F remain clusters in G, we conclude the claim. ♦

Let us now describe the remaining steps of our algorithm. Assume that every graph Gi

is an induced threshold-like subgraph of G as given in Lemma 4.11.

1. For every Gi, compute a greedy-optimal solution S(Gi) = (Si
1, . . . , S

i
ki

).

2. Construct the graph G′ from G by removing all edges among the vertices of Si
p and Si

q,
for every Gi and 1 ≤ p, q ≤ ki with p 6= q.

3. Run the algorithm described in Theorem 4.7 on G′ and return the obtained solution.

For the correctness, observe that Claim 4.13 (3) shows that every induced subgraph of
G′ on the vertices of V (Gi) is indeed a stable-like graph. Since the vertices of each set Ii
and Ij of Gi and Gj , respectively, have no common neighbor in G′, we conclude that G′

is indeed a stable-like graph. Moreover Claim 4.14 implies that the constructed solution is
an optimal solution of G, as required. Regarding the running time, observe that a greedy-
optimal solution on each P4-free graph Gi can be computed in O(n2

i ) time where ni = |V (Gi)|
[12, 23]. The removal of the described edges and the algorithm given in Theorem 4.7 takes
linear time. Therefore the total running of the algorithm is O(n2).

5 Concluding remarks

It is notable that our algorithm for interval graphs, heavily relies on the linear structure
obtained from their clique paths. Such an observation, leads us to consider few open questions
regarding two main directions. On the one hand, it seems tempting to adjust our algorithm
for other vertex partitioning problems on interval graphs within a more general framework,
as already have been studied for particular graph properties [5, 13, 20, 21, 28]. On the other
hand, it is reasonable to ask whether our approach works for Cluster Deletion on graphs
admitting similar linear structure such as permutation graphs, or graphs having bounded
linear related parameter. Towards the latter direction, observe that Cluster Deletion
can be solved in linear time on graphs of bounded treewidth [8, 25].

Although for other structural parameters it seems rather difficult to obtain a similar
result, it is still interesting to settle the complexity of Cluster Deletion on distance
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hereditary graphs that admit constant clique-width [15]. In fact, we would like to settle the
case in which from a given cograph (P4-free graph) we can append degree-one vertices. This
comes in conjunction with the starlike graphs, as they can be seen as a degree-one extension
of a clique.
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