
A Fully Dynamic Algorithm for the Recognition

of P4-sparse Graphs

Stavros D. Nikolopoulos1 Leonidas Palios1 Charis Papadopoulos2,∗

1Department of Computer Science, University of Ioannina
P.O.Box 1186, GR-45110 Ioannina, Greece

{stavros, palios}@cs.uoi.gr

2Department of Informatics, University of Bergen
P.B. 7800, N-5020 Bergen, Norway

charis@ii.uib.no

Abstract: In this paper, we solve the dynamic recognition problem for the class of P4-
sparse graphs: the objective is to handle edge/vertex additions and deletions, to recognize
if each such modification yields a P4-sparse graph, and if yes, to update a representation
of the graph. Our approach relies on maintaining the modular decomposition tree of the
graph, which we use for solving the recognition problem. We establish properties for each
modification to yield a P4-sparse graph and obtain a fully dynamic recognition algorithm
which handles edge modifications in O(1) time and vertex modifications in O(d) time for a
vertex of degree d. Thus, our algorithm implies an optimal edges-only dynamic algorithm
and a new optimal incremental algorithm for P4-sparse graphs. Moreover, by maintaining
the children of each node of the modular decomposition tree in a binomial heap, we can
handle vertex deletions in O(log n) time, at the expense of needing O(log n) time for each
edge modification and O(d log n) time for the addition of a vertex adjacent to d vertices.

Keywords: fully dynamic algorithm, P4-sparse graph, modular decomposition, recognition.

1 Introduction

A dynamic graph algorithm for a class Π of graphs is an algorithm that handles a series of on-line
modifications (i.e., insertions or deletions of vertices or edges) on a graph in Π; if the modification result
in a graph in Π, the algorithm performs it (updating an internal representation), otherwise it outputs
false and does nothing. Such algorithms are categorized depending on the modification operations
they support: an incremental (decremental) algorithm supports only vertex insertions (deletions);
an additions-only (deletions-only) algorithm supports only edge additions (deletions); an edges-only
fully dynamic algorithm supports both edge additions and edge deletions; a fully dynamic algorithm
supports all edge as well as all vertex modifications.

Several authors have studied the dynamic recognition problem for graphs of specific families. Incre-
mental recognitions algorithms have been proposed by Hsu [12] for interval graphs and by Deng et al.
[8] for connected proper interval graphs. Ibarra [13] has given an edges-only fully dynamic algorithm
for chordal graph recognition which handles each edge operation in O(n) time and an edges-only fully
dynamic algorithm for split graph recognition which handles each edge operation in O(1) time. More
recently, Hell et al. [10] have given a fully dynamic algorithm for recognizing proper interval graphs
which works in O(d+log n) time per modification, where d is the degree of a vertex in case of a vertex
modification; Shamir and Sharan [19] have developed a fully dynamic algorithm for the recognition

∗ Work by Charis Papadopoulos was carried while he was a graduate student at the University of Ioannina.

1

P5 C5 P5 F1 F2 F1 F2

Figure 1: The seven forbidden subgraphs for the class of P4-sparse graphs.

of cographs, threshold graphs and trivially perfect graphs which handles edge modifications in O(1)
time and vertex modifications in O(d) time; finally, Crespelle and Paul have presented fully dynamic
algorithms for directed cographs [5] and permutation graphs [6] which require O(d) time if d arcs are
involved, and O(n) time, respectively. For the class of P4-sparse graphs, an incremental algorithm
for recognizing a P4-sparse graph has been proposed by Jamison and Olariu [15] which handles the
insertion of a vertex of degree d in O(d) time.

Researchers have also considered the problem of the dynamic maintenance of the modular decom-
position tree of a graph (the modular decomposition tree of a graph G is a unique (up to isomorphism)
labeled tree which records all the partitions of the vertex set of G into modules and can be constructed
in time and space linear in the size of the graph [4, 7, 17]): Muller and Spinrad [18] have given an
incremental algorithm for the modular decomposition, which handles each vertex insertion in O(n)
time; Corneil et al. [3] have given an optimal incremental algorithm for the recognition and modular
decomposition of cographs, which handles the insertion of a vertex of degree d in O(d) time.

Our work in this paper focuses on P4-sparse graphs; the P4-sparse graphs are defined as the graphs
for which every set of five vertices induces at most one chordless path on four vertices [11] (Figure 1
depicts the 7 forbidden subgraphs for the class of P4-sparse graphs). They are perfect and also perfectly
orderable [11], and properly contain many graph classes, such as, the cographs, the P4-reducible graphs,
etc. (see [1, 15, 16]). The P4-sparse graphs have received considerable attention in recent years and they
find applications in applied mathematics and computer science (e.g., communications, transportation,
clustering, scheduling, computational semantics) in problems that deal with graphs featuring “local
density” properties. Indeed, the structure of P4-sparse graphs incorporates such local density properties
since they are graphs that are unlikely to have more than a few P4s; we note that the notion of local
density is often associated with the absence of P4s.

In this paper, we describe a fully dynamic algorithm for the class of P4-sparse graphs. Our algorithm
maintains the modular decomposition tree of the graph; it checks whether the requested edge/vertex
operations yield a P4-sparse graph, and if yes, it updates the modular decomposition tree. Edge
operations are handled in O(1) time while vertex operations are handled in O(d) time. As a result,
we obtain an optimal edges-only dynamic algorithm and a new optimal incremental algorithm for
P4-sparse graphs. Moreover, in order to improve the time complexity of the vertex deletion operation,
we can maintain the children of each node of the modular decomposition tree in a binomial heap [2].
Then, we can handle vertex deletions in O(log n) time; the drawback is that then the time required
for each edge modification becomes O(log n) and for the addition of a vertex adjacent to d vertices
becomes O(d log n).

2 Theoretical Framework

Let G be a simple graph; we denote by V (G) and E(G), the vertex and edge set of G. The subgraph
of G induced by a set S ⊆ V (G) is denoted by G[S]. If a vertex u is adjacent to a vertex v, we say
that u sees v, otherwise, we say that it misses v; more generally, a vertex set A sees (misses resp.) a
vertex set B, if every vertex in A sees (misses resp.) every vertex in B.

A graph class Π is called complement-invariant if G ∈ Π implies G ∈ Π. We note that for the
P4-sparse graphs the following holds:

Lemma 2.1. Let G be a P4-sparse graph. Then (i) G has the complement-invariant property, and
(ii) for every v ∈ G, G′ = G− v is a P4-sparse graph.

2

v1

v6

v11

v2

v7

v12

v3

v8

v4
v9

v13

v5

v10

P t1Nt2

b

v1

b

v2

b

v3

b

v6

b

v7

b

v8

P t4

b

v11

b

v12

S t3

b

v13

N t5

b

v4

b

v5

b

v9

b

v10

Figure 2: A disconnected P4-sparse graph on 13 vertices and its md-tree.

Modular Decomposition and P4-sparse Graphs. A subset M of vertices of a graph G is said
to be a module of G, if every vertex outside M is either adjacent to all vertices in M or to none of
them. The emptyset, the singletons, and the vertex set V (G) are trivial modules and whenever G
has only trivial modules it is called a prime (or indecomposable) graph. A module M of G is called a
strong module if, for any module M ′ of G, either M ′∩M = ∅ or one module is included into the other.
Furthermore, a module in G is also a module in G.

The modular decomposition of a graph G is a linear-space representation of all the partitions of V (G)
where each partition class is a module. The modular decomposition tree T (G) of the graph G (or md-
tree for short) is a unique (up to isomorphism) labeled tree associated with the modular decomposition
of G in which the leaves of T (G) are the vertices of G and the set of leaves associated with the subtree
rooted at an internal node induces a strong module of G (Figure 2). Thus, the md-tree T (G) represents
all the strong modules of G. It is known that for every graph G the md-tree T (G) can be constructed
in linear time [4, 7, 17].

Let t be an internal node of the md-tree T (G) of a graph G. We denote by M(t) the module corre-
sponding to t which consists of the set of vertices of G associated with the subtree of T (G) rooted at
node t. The node t is labeled by either P (for parallel module) if the subgraph G[M(t)] is disconnected,
S (for series module) if the complement of G[M(t)] is disconnected, or N (for neighborhood module)
otherwise. Let u1, u2, . . . , up be the children of the node t of T (G). We denote by G(t) the represen-
tative graph of the module M(t) defined as follows: V (G(t)) = {u1, u2, . . . , up} and uiuj ∈ E(G(t)) if
there exists edge vkv` ∈ E(G) such that vk ∈M(ui) and v` ∈M(uj); by the definition of a module, if a
vertex of M(ti) is adjacent to a vertex of M(tj) then every vertex of M(ti) is adjacent to every vertex
of M(tj). Thus, G(t) is isomorphic to the graph induced by a subset of M(t) consisting of a single
vertex from each maximal strong submodule of M(t) in the modular decomposition of G. Depending
on whether an internal node t of T (G) is a P-, S-, or N-node, the following result holds (see also [9]):

◦ if t is a P-node, G(t) is an edgeless graph;
◦ if t is an S-node, G(t) is complete graph;
◦ if t is an N-node, G(t) is a prime graph.

In particular, for the class of P4-sparse graphs, Giakoumakis and Vanherpe [9] showed that:

Lemma 2.2. Let G be a graph and let T (G) be its modular decomposition tree. The graph G is
P4-sparse iff for every N-node t of T (G), G(t) is a prime spider with a spider-partition (S, K, R) and
no vertex of S ∪K is an internal node in T (G).

A graph G is called a spider if the vertex set V (G) of the graph G admits a partition into sets S, K,
and R such that:

C1: |S| = |K| ≥ 2, the set S is an independent (stable) set, and the set K is a clique;
C2: all the vertices in R are adjacent to all the vertices in K and to no vertex in S;
C3: there exists a bijection f : S −→ K such that exactly one of the following statements holds:

(i) for each vertex v ∈ S, N(v) ∩K = {f(v)};
(ii) for each vertex v ∈ S, N(v) ∩K = K − {f(v)}.

3

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if G is a spider with
|R| ≤ 1. If the condition of case C3(i) holds, then the spider G is called a thin spider, whereas if the
condition of case C3(ii) holds then G is a thick spider ; note that the complement of a thin spider is a
thick spider and vice versa. A prime spider with |S| = |K| = 2 is simultaneously thin and thick.

3 The Fully-Dynamic Algorithm

As mentioned, our algorithm maintains the modular decomposition tree T (G) of the P4-sparse graph.

3.1 Adding an Edge

Let uv be the edge to be added and let G′ = G ∪ {uv}. For the two vertices u, v ∈ G we denote by
tuv the least common ancestor of u and v in T (G). Since u, v are non-adjacent in G, node tuv is either
a P-node or an N-node. Let tu and tv be the children of tuv such that M(tu) and M(tv) contain the
vertices u and v respectively. Note that if |M(tu)| = 1 (resp. |M(tv)| = 1) then tu = u (resp. tv = v).
Without loss of generality, we make the following assumption:

Assumption 3.1. We assume that |M(tv)| ≥ |M(tu)|.

We distinguish three cases, namely, (i) |M(tu)| ≥ 2, (ii) |M(tu)| = 1 and tuv is a P-node, and
(iii) |M(tu)| = 1 and tuv is an N-node; we prove the following lemmata.

Lemma 3.1. Let |M(tu)| ≥ 2. Then G′ is a P4-sparse graph if and only if tuv is a P-node and
|M(tu)| = |M(tv)| = 2.

Proof. Since |M(tv)| ≥ |M(tu)| ≥ 2, the node tuv cannot be an N-node because at most one child
of any N-node is an internal node (not a leaf) in T (G) (see Figure 2). Thus, tuv is a P-node; then it
follows that the subgraphs G[M(tu)] and G[M(tv)] are both connected.

The “if”-part of the lemma follows from Figure 3 since the resulting graph G′ is indeed P4-sparse.
For the “only if”-part, we have that G′ is P4-sparse and assume for contradiction that at least one
of M(tu), M(tv) has 3 elements; then, Assumption 3.1 implies that |M(tv)| ≥ 3. The connectivity
of G[M(tu)] and G[M(tv)] implies that there exist vertices u′ ∈ M(tu) and v′ ∈ M(tv) such that
uu′, vv′ ∈ E(G). Then, by adding the edge uv in G, the resulting graph G′ contains the P4 u′uvv′.
Since G[M(tv)] is connected and |M(tv)| ≥ 3, there exists a vertex x in M(tv) such that x sees at least
one of v, v′. But then, the five vertices u′, u, v, v′, x induce in G′ one of the following graphs: P5, F1,
or F2; thus, G′ is not P4-sparse, a contradiction.

Lemma 3.2. Let |M(tu)| = 1 (i.e., M(tu) = {u}) and suppose that tuv is a P-node. Then G′ is a
P4-sparse graph if and only if one of the following (mutually exclusive) cases holds:

(i) vertex v sees all the vertices in M(tv);

(ii) vertex v misses exactly one vertex y ∈ M(tv) such that y sees only one vertex x ∈ M(tv), and
only the vertex x sees every vertex in M(tv);

T (G): P tuvS
b

u′

b

u

S
b

v

b

v′

AAA
=⇒

T (G′): PN
b

u′

︸ ︷︷ ︸

S

b

v′
b

u
︸ ︷︷ ︸

K

b

v

AAA

Figure 3: Illustrating the case of Lemma 3.1 and the corresponding updates of the md-tree.

4

T (G): P tuv

b

u
S

b

x
P

b

y

b

v

AAA =⇒

T (G′): PN
b

y
︸ ︷︷ ︸

S

b

u

b

v
︸ ︷︷ ︸

K

b

x

AAA

T (G): P tuv

b

u
S

b

x
P

b

y
S

b

v
BBB

AAA =⇒

T (G′): PN
b

y
︸ ︷︷ ︸

S

b

u

b

v
︸ ︷︷ ︸

K

b

x
S
BBB

AAA

Figure 4: Illustrating case (ii) of Lemma 3.2 and the corresponding updates of the md-tree.

T (G): P tuv

b

u
thin N

S K
S

b

v
BBB

AAA

=⇒

T (G′): Pthin N
S ∪ {u} K ∪ {v}

S
BBB

AAA

Figure 5: Illustrating case (iii) of Lemma 3.2 and the corresponding updates of the md-tree.

(iii) vertex v misses ` > 1 vertices in M(tv) such that G(tv) is a thin spider (S, K, R) with |S| =
|K| = `, R = {r} and the vertex v belongs to the set M(r) and sees all the vertices of M(r).

Lemma 3.3. Let |M(tu)| = 1 (i.e., M(tu) = {u}) and suppose that tuv is an N-node such that
(S, K, R) is the spider partition of G(tuv). Then G′ is a P4-sparse graph if and only if either S = {u, v}
and R = ∅ or u ∈ S, v ∈ K, and G(tuv) is a thick spider.

Proof. The definition of the spider implies that the cases to consider are for u, v to belong both to
S, or to S and K, or if R = {r} to S and M(r). Suppose that u, v ∈ S and let u′, v′ ∈ K such that
uu′v′v is a P4 of G; then, G′ contains the C4 uu′v′v. If R = {r} then the vertices u, v, u′, v′ and any
vertex in M(r) induce a P 5 in G′; thus, R = ∅. If |S| = |K| > 2, then if the spider is thin, the vertices
u, v, u′, v′, y, where y ∈ K−{u′, v′} induce a P 5, whereas if the spider is thick, the vertices u, v, u′, v′, z,
where z ∈ S − {u, v} induce a P 5 in G′. Now, let us consider the case that u ∈ S, v ∈ K and suppose
that G(tuv) is a thin spider such that |S| > 2 (note that the spiders with |S| = 2 are also considered
thick); R may or may not be ∅. Then, v 6= f(u). Let z ∈ K be such that z 6= v and z 6= f(u); then,
the vertices u, v, f(u), z, f−1(z) induce a graph F 1 in G′. Finally, suppose that u ∈ S and v ∈ M(r),
and let x ∈ S − {u}. If z, z′ ∈ K are the vertices such that uzz′x is a P4 in G(tuv) (and in G), then
the vertices u, v, z, z, z′ induce an F1 in G′, which thus is not P4-sparse.

5

T (G): N tuv

b

u
︸ ︷︷ ︸

S

b

v

b

f(u)
︸ ︷︷ ︸

K

b

f(v)

=⇒

T (G′): SP
b

u

b

f(v)

P
b

v

b

f(u)

T (G): N tuv

b

u
︸ ︷︷ ︸

S

b

f−1(v)

b

f(u)
︸ ︷︷ ︸

K

b

v
A

=⇒

T (G′): S
b

v
P

b

f−1(v)
S

b

f(u)
P

b

u
A

T (G): thick N tuv

b

u
︸ ︷︷ ︸

S

S − {u}

b

v
︸ ︷︷ ︸

K

K − {v}
A

=⇒

T (G′): S
b

v
thick N

S − {u} K − {v}
P

b

u
A

Figure 6: Illustrating the cases of Lemma 3.3 and the corresponding updates of the md-tree.

3.2 Removing an Edge

Since P4-sparse graphs have a complement-invariant property (see Lemma 2.1), we take advantage of
the following theorem [19]:

Theorem 3.1. (Shamir and Sharan [19]): Let Π be a complement-invariant graph property. Let Alg
be a dynamic algorithm for Π-recognition, which supports either edge additions only or edge deletions
only, and is based on modular decomposition. Then Alg can be extended to support both operations
with the same time complexity.

3.3 Adding a Vertex

Let G be a P4-sparse graph and a vertex x /∈ V (G) which is adjacent to d vertices in V (G), where d ∈
{0, 1, . . . , |V (G)|}. In this section, we show how to recognize if the graph G′ with vertex set V (G)∪{x}
is a P4-sparse graph, and if so, we show how to obtain the md-tree T (G′) of G′ from the md-tree T (G)
in O(d) time. Let us classify the internal nodes of the md-tree T (G) with respect to the vertex x into
the following three categories: an internal node t is x-fully-adjacent, x-partly-adjacent, x-non-adjacent
iff x is adjacent to all, some but not all, and none, respectively, of the vertices in the module M(t).
The above classification is extended to leaf-nodes: a leaf-node a is x-fully-adjacent or x-non-adjacent
iff x is adjacent or non-adjacent respectively to a. For the number of x-fully-adjacent nodes of T (G),
we can show the following observation:

Observation 3.1. The number of x-fully-adjacent nodes of T (G) is less than d − 1, where d is the
number of vertices of T (G) which are adjacent to x.

Proof. The x-fully-adjacent nodes form a forest of subtrees of T (G) whose total number of leaves is
d. The observation follows from the fact that every internal node in T (G) and in these subtrees has
at least two children.

6

In turn, for the x-partly-adjacent nodes, the fact that the module of an S-node induces a connected
graph, the module of a P-node induces a graph whose complement is connected, and the module of an
N-node induces a graph which is connected and whose complement is also connected implies:

P1: if an internal node t of the md-tree T (G) is x-partly-adjacent, then all its ancestors in T (G) are
x-partly-adjacent;

P2: for every x-partly-adjacent P-node tP of T (G), the subgraph of G induced by the module M(tP)
contains two non-adjacent vertices a, b such that a is adjacent and b is not adjacent to x;

P3: for every x-partly-adjacent S-node tS of T (G), the subgraph of G induced by the module M(tS)
contains an edge ab such that a is adjacent and b is not adjacent to x;

P4: for every x-partly-adjacent N-node tN of T (G), the subgraph of G induced by the module M(tN)
contains both an edge ab such that a is adjacent and b is not adjacent to x and a pair of non-
adjacent vertices a′, b′ such that a′ is adjacent and b′ is not adjacent to x.

Additionally, the following very important property holds:

Theorem 3.2. For any two x-partly-adjacent nodes of T (G), the graph G′ is P4-sparse only if one of
them is an ancestor of the other.

Let ρx = t0t1 · · · tk denote the path in T (G) containing all the x-partly-adjacent nodes (Theo-
rem 3.2) where t0 is the root of T (G) and tk is the x-partly-adjacent node farthest away from the root.
Then, Theorem 3.2 implies that for each node ti, 0 ≤ i < k, each of ti’s children, other than ti+1, is
either x-fully-adjacent or x-non-adjacent; for the node tk, each of tk’s children is either x-fully-adjacent
or x-non-adjacent and there is at least one child of each kind. Additionally, for the x-partly-adjacent
N-nodes, the following holds:

Lemma 3.4. Let t be an x-partly-adjacent N-node of T (G) whose corresponding spider partition of
M(t) is (S, K, R), and suppose that the vertex x is adjacent to a vertex in S ∪K. Then, the graph G′

is P4-sparse only if x is adjacent to S ∪K, or is adjacent to K and is not adjacent to S.

Let us consider the partition of the vertex set M(t0)−M(tk) ⊂ V (G) into the following four sets:

VP =
⋃

ti is a P-node

(M(ti)−M(ti+1)) , VS =
⋃

ti is an S-node

(M(ti)−M(ti+1)) ,

VNS
=

⋃

ti is an N-node

S(ti), VNK
=

⋃

ti is an N-node

K(ti),

where for an N-node ti, S(ti) and K(ti) are the independent set and the clique of the spider induced
by the module M(ti). Then, every vertex in VP (in VS resp.) is non-adjacent (adjacent resp.) to the
vertices in M(tk) since their least common ancestor ti in T (G) is a P-node (S-node resp.), while the
structural properties of a spider imply that every vertex in K(tj) (S(tj) resp.) for an N-node tj is
adjacent (non-adjacent resp.) to the vertices in M(tk).

Our vertex-addition procedure relies on the following lemmata:

Lemma 3.5. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on a path t0t1 · · · tk,
where tk is the x-partly-adjacent node farthest away from the root t0 of T (G). If tk is a P-node then
G′ is P4-sparse if and only if one of the following four (mutually exclusive) cases holds:

(i) Vertex x sees VS and VNK
, and misses VP and VNS

.

(ii) Vertex x sees VS, VNK
, and exactly one vertex, say, y, in VP , and misses VNS

where
(ii.1) vertex y is a child of node tk−2 (which is a P-node),
(ii.2) node tk−1 is an S-node with two children, the node tk and one vertex, say, u (which is

adjacent to x), and
(ii.3) vertex x sees all the vertices in M(tk) except for a single vertex, say, b, which is a child

of tk.

7

T (G): P tk−2

CCC

b

y
S tk−1

b

u
P tk

AAA

b

b

=⇒

T (G′): P
CCC

N
b

y
︸ ︷︷ ︸

S

b

b

b

x
︸ ︷︷ ︸

K

b

u
P
AAA

T (G): S tk−1

CCC

b

z
P tk

b

a

b

b

=⇒

T (G′): S
CCC

N
b

x
︸ ︷︷ ︸

S

b

b

b

z
︸ ︷︷ ︸

K

b

a

T (G): thick N tk−1

S K
P tk

AAA

b

b

=⇒

T (G′): thick N
S ∪ {b} K ∪ {x}

P
AAA

Figure 7: Illustrating cases (ii), (iii), (iv) of Lemma 3.5 and the corresponding updates of the md-tree.

(iii) Vertex x sees VNK
, all but one vertex, say, z, in VS, and misses VP and VNS

where
(iii.1) vertex z is a child of node tk−1 (which is an S-node), and
(iii.2) node tk has two children a, b, which are leaf-nodes such that a is adjacent and b is

non-adjacent to x.

(iv) The node tk−1 is an N-node corresponding to a thick spider with independent set S(tk−1), vertex x
sees VS, VNK

, S(tk−1), and all but one vertex, say, b, in M(tk), and misses VP and VNS
−S(tk−1).

The case where tk is an S-node is precisely the complement version of Lemma 3.5: we need to exchange
P- and S-nodes, thin and thick spiders, their cliques and independent sets, and what x sees/misses in
the conditions of Lemma 3.5.

Lemma 3.6. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on a path t0t1 · · · tk,
where tk is the x-partly-adjacent node farthest away from the root t0 of T (G). If tk is an S-node then
G′ is P4-sparse if and only if one of the following four (mutually exclusive) cases holds:

(i) Vertex x sees VS and VNK
, and misses VP and VNS

.

(ii) Vertex x sees VNK
, all but one vertex, say, y, in VS, and misses VP and VNS

where
(ii.1) vertex y is a child of node tk−2 (which is an S-node),
(ii.2) node tk−1 is a P-node with two children, the node tk and one vertex, say, u (which is

non-adjacent to x), and
(ii.3) vertex x sees only a single vertex of M(tk), which is a child of tk.

(iii) Vertex x sees VS, VNK
, and exactly one vertex, say, z, in VP , and misses VNS

where
(iii.1) vertex z is a child of node tk−1 (which is a P-node), and
(iii.2) node tk has two children a, b, which are leaf-nodes such that a is adjacent and b is

non-adjacent to x.

8

T (G): thick N tk

S K

b

r

=⇒

T (G′): thick N
S ∪ {r} K ∪ {x}

T (G): P tk−1

CCC

b

y
thin N tk

S K
A

=⇒

T (G′): P
CCC

thin N
S ∪ {y} K ∪ {x}

A

Figure 8: Illustrating cases (i) and (ii.2) of Lemma 3.7 and the corresponding updates of the md-tree.

(iv) The node tk−1 is an N-node corresponding to a thin spider with clique K(tk−1), vertex x misses
VP , VNS

, K(tk−1), and all but one vertex, say, b, in M(tk), and sees VS and VNK
−K(tk−1).

Lemma 3.7. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on a path t0t1 · · · tk,
where tk is the x-partly-adjacent node farthest away from the root t0 of T (G). If tk is an N-node and
the partition of the spider G(tk) is (S, K, R), then G′ is P4-sparse if and only if the conditions in one
of the following three (mutually exclusive) cases hold:

(i) Vertex x sees S ∪K (and misses M(r) where R = {r}): vertex x sees VS and VNK
, and misses

VP and VNS
, the spider corresponding to tk is a thick spider, and the node r is a leaf.

(ii) Vertex x sees K (and misses S): one of the following three cases holds:
(ii.1) vertex x sees VS and VKN

, and misses VP and VNS
;

(ii.2) vertex x sees VS, VNK
, and exactly one vertex, say, y, in VP , and misses VNS

where y
is a child of tk−1, the spider corresponding to tk is thin, and all the elements of M(r)
(if R = {r}) are adjacent to x;

(ii.3) vertex x sees VNK
, all but one vertex, say, y, in VS, and misses VP and VNS

where y is
a child of tk−1, the spider corresponding to tk is thick, and all the elements of M(r) (if
R = {r}) are non-adjacent to x.

(iii) Vertex x misses S ∪K (and sees M(r) where R = {r}): vertex x sees VS and VNK
, and misses

VP and VNS
, the spider corresponding to tk is a thin spider, and the node r is a leaf.

The procedure that handles the addition of vertex x finds the node tk and takes advantage of
Lemmata 3.5–3.7 to check and modify the tree T (G). It starts form the leaves of the md-tree T (G)
which correspond to the neighbors of x and moving in a bottom-up fashion constructs the set A
of internal nodes of T (G) having at least one x-fully-adjacent child. Then, it splits A obtaining the
set Full of x-fully-adjacent nodes of T (G) and a subset Partial of x-partly-adjacent nodes, from which
it determines tk and all the x-partly-adjacent nodes by noting that in each case of Lemmata 3.5–3.7,
x sees VNK

and all but at most one of the elements of VS , i.e., all the x-partly-adjacent N-nodes and
all (but at most one) x-partly-adjacent S-nodes belong to Partial. Then, since the father of a P-node
(S-node resp.) cannot be a P-node (S-node resp.), the following holds:

Observation 3.2. For each node t ∈ Partial at distance at least 3 from the root of the tree T (G),
if none of t’s father, grandfather, and great-grandfather belongs to Partial, then the graph G′ is not
P4-sparse.

In detail, the procedure to add a vertex x works as follows:

9

Procedure Vertex Add(vertex x)

1. A← ∅;
construct a queue Q whose elements are pointers to each of the leaf-nodes of T (G) which corre-
spond to the neighbors of x;
while the queue Q is not empty do

remove from Q an element (i.e., a pointer to a node, say, t, of T (G));
increment the counter-field of the father p(t) of t by 1 and let its new value by val;
if val = 1
then insert in A a pointer to p(t);
if val = number of p(t)’s children
then insert in Q a pointer to p(t); {t is x-fully-adjacent}

2. Full← set of pointers to each of the leaf-nodes of T (G) which correspond to the neighbors of x;
Partial← ∅;
for each element a of the set A do

let t be the node of T (G) pointed by a;
if the value of t’s counter-field is equal to the number of t’s children
then insert a in Full; {t is x-fully-adjacent}

set t’s counter-field equal to 0;
else insert a in Partial; {t is x-partly-adjacent}

3. for each element a of the set Partial do

let t be the node of T (G) pointed by a;
if none of t’s father, grandfather, and great-grandfather (if they exist) ∈ Partial
then output false (i.e., G′ is not P4-sparse); return;
mark t’s father, grandfather, and great-grandfather (if they exist) as “covered;”

traverse the set Partial and check the following:
if there exist two or more elements of Partial pointing to nodes which are not “covered”
then output false (i.e., G′ is not P4-sparse); return;
let the unique node in Partial which is not “covered” be t′;

4. Depending on whether t′ is a P-node, S-node, or N-node, we check whether one of the cases of
Lemma 3.5, 3.6, and 3.7, respectively, holds, and we appropriately modify T (G);
if none of the cases of the corresponding lemma applies
then output false (i.e., G′ is not P4-sparse); return;

5. for each element a of the set Partial do

unmark the node of T (G) pointed to by a and set its counter-field to 0;

The correctness of the procedure follows from Lemmata 3.5–3.7, Observation 3.2, and from the following
facts:
◦ the set of nodes of the tree T (G) pointed to by the elements of the set Full is precisely the set of

x-fully-adjacent nodes;
◦ the set of nodes of the tree T (G) pointed to by the elements of the set Partial are the x-partly-

adjacent nodes of T (G) with at least one x-fully-adjacent child (note that tk ∈ Partial);
◦ the node t′ found in Step 3 is precisely the x-partly-adjacent node tk farthest away from the root.

3.4 Deleting a Vertex

Let v ∈ V (G) be a vertex with d incident edges in G which has to be deleted. Clearly, the graph G′

which results after the deletion of v is a P4-sparse graph as it is an induced subgraph of G (see
Lemma 2.1). Hence we focus on properly updating the md-tree T (G) so that we obtain the md-
tree T (G′).

Let us first consider the case that v ∈ S ∪K for some N-node t such that the spider partition of
G(t) is (S, K, R). We distinguish the following cases:

10

(i) v ∈ S: First suppose that S = {v, v′}, K = {k, k′}, and let v be adjacent to k: then, the spider
is replaced by an S-node with children the vertex k′ and a P-node; if R = ∅, then this P-node
has as children the vertices v′ and k, else if R = {r}, it has as children the vertex v′ and an
S-node with children the vertex k and the node r. Now, suppose that |S| = |K| ≥ 3 and let
f(v) = k ∈ K. If the spider is thin then: if R = ∅, then after the removal of v, k is removed
from K and is linked at the pointer for R; if R = {r}, then k is removed from K and if r is an
S-node then k is linked as a child, otherwise the place of r is taken by an S-node with k and r
as children. If the spider is thick, then after the removal of v, vertex k sees all the remaining
vertices in M(t); thus, the N-node t is replaced by an S-node with children the vertex k and the
node t after we have removed the vertices v, k.

(ii) v ∈ K: Since the complement of a thin spider is a thick spider (and vice versa) with the clique
and independent sets swapped (and if R = {r}, the P- and S-nodes in the subtree rooted at r
swapped as well), this is the complement version of the previous case and takes the same time
to handle.

(iii) R = {v}: In this case, v is deleted, and we obtain a spider with R = ∅.

Next, we consider the case where the father-node p(v) of v in T (G) is a P- or S-node; if p(v) has more
than 2 children, it suffices to simply delete v. However, caution is needed if p(v) has only two children,
in which case the sibling u of v needs to be linked to the grandfather p(p(v)) of v; furthermore, if u
and p(p(v)) are both P- or S-nodes, then the children of u are placed as children of p(p(v)). Finally,
in either of the remaining two cases when the father-node p(v) has 2 children, i.e., if the sibling u of v
is an N-node or if the grandfather p(p(v)) is an N-node, then u is linked as a child of p(p(v)) (there is
no problem having an N-node with R = {r} where r is an N-node as well).

3.5 Time complexity

Lemmata 3.1–3.3 and Figures 3–6 show that the addition of an edge requires local changes in at most
4 levels higher than v or u. For the vertex addition, we observe that the size of the set A as well as the
length of the path t0 · · · tk are O(d), while Lemmata 3.5–3.7 and Figures 7 and 8 also show that local
changes are needed; note that the value of the counter-field of a node at the end of Step 2 is equal to
the number of its children that are x-fully-adjacent. Finally, the vertex deletion requires O(1) local
changes except when we union the children of two P- or S-nodes.

Therefore, in addition to the auxiliary fields counter and mark (initialized to 0), we store in each
node of the md-tree T (G) its type (P, S, or N) and the number of its children, as well as ways to
access its parent and its children. Additionally, each N-node stores the type of spider (thin or thick);
the independent set S and the clique K of the spider are stored in pairs of corresponding (through the
function f) vertices, while there exists a separate pointer to R which is null if R = ∅. Moreover:

• If each P- or S-node stores pointers to its parent and to a list of its children, then edge additions
(and deletions, by Theorem 3.1) are handled in O(1) time, whereas vertex additions/deletions
are handled in O(d) time.

• Alternatively, the children of a P- or S-node may be in a binomial heap [2] in which the pointer
to the parent of these children in T (G) is stored at the minimum element (which appears in the
root list) of the heap. Then, finding the parent of such a child requires moving to the root list
of the heap and visiting its elements; unioning the children of two nodes requires merging two
heaps. Since all these operations, as well as additions and deletions, take time logarithmic in
the size of the heap [2], then edge additions (and deletions) and vertex deletions are handled in
O(log n) time, whereas vertex additions are handled in O(d log n) time.

Our results are summarized in the following theorem.

Theorem 3.3. We have described a fully dynamic algorithm for recognizing P4-sparse graphs and
maintaining their modular decomposition tree, which handles additions and deletions of vertices and
edges. Edge modifications can be handled in O(1) time while vertex modifications can be handled in
O(d) time; alternatively, edge modifications and vertex deletions can be handled in O(log n) time and
vertex additions in O(d log n) time.

11

References

[1] A. Brandstädt, V.B. Le, and J. Spinrad, Graph Classes – a Survey, SIAM Monographs in Discrete Math-
ematics and Applications, SIAM, Philadelphia, 1999.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd edition), MIT
Press, Inc., 2001.

[3] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput.
14 (1985) 926–984.

[4] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, Proc. 19th Int’l Colloquium
on Trees in Algebra and Programming (CAAP’94), LNCS 787 (1994) 68–84.

[5] C. Crespelle and C. Paul, Fully-dynamic recognition algorithm and certificate for directed cographs, Proc.
30th Int’l Workshop on Graph-Theoretic Concepts in Computer Science (WG’04), LNCS 3353 (2004) 93–
104.

[6] C. Crespelle and C. Paul, Fully-dynamic algorithm for modular decomposition and recognition of permu-
tation graphs, Proc. 31st Int’l Workshop on Graph-Theoretic Concepts in Computer Science (WG’05),
LNCS 3787 (2005) 38–48.

[7] E. Dalhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algorithms for sequential modular
decomposition, J. Algorithms 41 (2001) 360–387.

[8] X. Deng, P. Hell, and J. Huang, Linear time representation algorithms for proper circular arc graphs and
proper interval graphs, SIAM J. Comput. 25 (1996) 390–403.

[9] V. Giakoumakis and J.-M. Vanherpe, On extended P4-reducible and P4-sparse graphs, Theoret. Comput.
Sci. 180 (1997) 269–286.

[10] P. Hell, R. Shamir, and R. Sharan, A fully dynamic algorithm for recognizing and representing proper
interval graphs, SIAM J. Comput. 31 (2002) 289–305.

[11] C. Hoàng, Perfect graphs, Ph.D. Thesis, McGill University, Montreal, Canada, 1985.

[12] W.-L. Hsu, On-line recognition of interval graphs in O(m + n log n) time, Combinatorics and Computer
Science 1995, LNCS 1120 (1996) 27–38.

[13] L. Ibarra, Fully dynamic algorithms for chordal graphs, Proc. 10th Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA’99), (1999) 923–924.

[14] L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph,
Technical Report, DCS-263-IR, University of Victoria, 2001.

[15] B. Jamison and S. Olariu, Recognizing P4-sparse graphs in linear time, SIAM J. Comput. 21 (1992)
381–406.

[16] B. Jamison and S. Olariu, A tree representation for P4-sparse graphs, Discrete Appl. Math. 35 (1992)
115–129.

[17] R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201

(1999) 189–241.

[18] J.H. Muller and J. Spinrad, Incremental modular decomposition, J. ACM 36 (1989) 1–19.

[19] R. Shamir and R. Sharan, A fully dynamic algorithm for modular decomposition and recognition of
cographs, Discrete Appl. Math. 136 (2004) 329–340.

[20] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263–291.

12

Appendix: Proofs of Lemmas

(To assist the reviewers)

Lemma 3.2. Let |M(tu)| = 1 (i.e., M(tu) = {u}) and suppose that tuv is a P-node. Then G′ is a
P4-sparse graph if and only if exactly one of the following statements is satisfied:

(i) vertex v sees all the vertices in M(tv).

(ii) vertex v misses exactly one vertex y ∈M(tv)−{v} where y sees only one vertex x ∈M(tv), and
only the vertex x sees every vertex in M(tv).

(iii) vertex v misses ` > 1 vertices in M(tv)− {v} where G(tv) is a thin spider (S, K, R) with |S| =
|K| = `, R = {r} and the vertex v belongs to the set M(r) and sees all the vertices of M(r).

Proof. The “if”-part of the lemma follows from Figures A1, and 4 and 5, since the resulting graph G′ is
indeed P4-sparse. For the “only if”-part, we have that G′ is P4-sparse; the proof relies on the following
facts.

Fact A.1. Let M(tu) = {u}, tuv be a P-node, and suppose that the path from tv to p(v) in the md-
tree T (G) does not contain any N-node. If there is no vertex x ∈ M(tv) such that x sees every vertex
in M(tv) then G′ is not a P4-sparse graph.

Proof of Fact A.1. Since tuv is a P-node, the graph G[M(tv)] is connected. Moreover, since there is no
N-node in the path from tv to p(v) in T (G), the vertex v neither participates in any P4 in G[M(tv)]
nor is adjacent to some but not all the vertices of such a P4 (note that v may very well be adjacent to
all the vertices of such a P4). This implies that the vertex set M(tv) can be partitioned into three sets
A, B, and C, where A = {v}, B contains the neighbors of v, and C contains the non-neighbors of v.
Since no vertex in M(tv) sees the entire M(tv), the set C contains at least one vertex; let y be such a
vertex. Since G[M(tv)] is connected and v does not participate in a P4, there exists a vertex, say, z,
in B such that z, y are adjacent. Then, y misses all other vertices in B; otherwise, G′ would contain
either an F 1 or an F 2 as an induced subgraph. Since v does not participate in any P4, z sees every
vertex in B. But because no vertex in M(tv) sees all vertices in M(tv), z misses a vertex, say, y′ ∈ C.
The vertex y′ misses y, for otherwise, v would participate in the P4 vzyy′. Again, as with y, y′ sees
a vertex z′ ∈ B. But then, v sees some but not all the vertices of the P4 yzz′y′, which is impossible.
Thus, in the only possible cases, the graph G′ is not P4-sparse. 2

Fact A.2. Let M(tu) = {u}, tuv be a P-node, and suppose that the path from tv to p(v) in the md-
tree T (G) does not contain any N-node; suppose further that vertex v misses at least one vertex in
M(tv). If G′ is a P4-sparse graph, then vertex v misses exactly one vertex, say, y, in M(tv), and y
only sees the unique vertex x in M(tv) that sees all other vertices in M(tv).

Proof of Fact A.2. We first show that there is no vertex x′ ∈M(tv)−{x} that sees all other vertices in
M(tv). If there were such a vertex x′, then, the five vertices u, v, x, y, and x′ induce in G′ the graph F 1,
a contradiction. Thus, only vertex x in M(tv) sees all other vertices in M(tv).

T (G): P tuv

b

u
S

b

v
BBB

AAA =⇒

T (G′): PS
b

v
P

b

u
BBB

AAA

Figure A1: Illustrating case (i) of Lemma 3.2 and the corresponding updates of the md-tree.

13

Next, suppose that there exists another vertex y′ ∈ M(tv)− {y} such that v misses y′. Then, the
five vertices u, v, x, y, and y′ induce in G′ the graphs F1 or F2, a contradiction. Therefore, v misses
exactly one vertex in M(tv), the vertex y.

Moreover, if y saw a vertex, say, z ∈ M(tv), other than x, then the five vertices u, v, x, y, and z
would induce in G′ the graphs F2 or F 1, a contradiction again. 2

Suppose now that the path from tv to p(v) contains at least one N-node t of T (G). Recall that the
representative graph G(t) is a prime spider and let (S, K, R) be its spider partition. Note that v ∈M(t)
and thus v belongs to the set S, or to the set K, or if R = {r} to the set M(r).

Fact A.3. Let M(tu) = {u}, tuv be a P-node, and suppose that the path from tv to p(v) in the
md-tree T (G) contains at least one N-node t. Let (S, K, R) be the spider partition of G(t). If either
v ∈ S ∪K or v ∈M(r) and v misses a vertex in M(r), then G′ is not a P4-sparse graph.

Proof of Fact A.3. Let t be the first N-node in the path from p(v) to tv. Suppose that the vertex v
belongs to the set S of the prime spider G(t). Since |S| = |K| ≥ 2, there exists a vertex v′ ∈ S−{v}. If
the P4 of G(t) to which v, v′ belong is vyy′v′, then the addition of the edge uv implies that G′ contains
the P5 uvyy′v′. Now consider that v ∈ K; let v′ ∈ K − {v} and let zvv′z′ be the P4 of G(t) to which
v, v′ belong. Then, the five vertices z, v, v′, z′, u induce in G′ the graph F1. Thus, in the case where
v ∈ S ∪K, the graph G′ is not P4-sparse.

Suppose now that v ∈ M(r) and let z ∈ M(r) be such that v misses z. If x ∈ S and y ∈ K such
that x, y are adjacent in G, then by adding the edge uv, the five vertices u, v, x, y, and z induce the
graph F1 in G′. 2

Fact A.4. Let M(tu) = {u}, tuv be a P-node, and suppose that the path from tv to p(v) in the md-
tree T (G) contains at least one N-node t. Let (S, K, R) be the spider partition of G(t) with R = {r}.
If either the path from tv to p(v) contains more than one N-node or t 6= tv, then G′ is not a P4-sparse
graph.

Proof of Fact A.4. Suppose that there exists another N-node, say, t′, in the path and let (S′, K ′, R′) be
the spider partition of G(t′) with R′ = {r′}. Then, v misses at least one vertex of M(r′) if M(r) ⊂M(r′)
or one vertex of M(r) if M(r′) ⊂M(r), and thus G′ is not a P4-sparse graph (see Fact A.3). Suppose
now that t 6= tv. Since tuv is a P-node and t 6= tv, it follows that tv is an S-node (if tv were an N-node,
then the path would contain two N-nodes). Then, at least one vertex z ∈ M(tv) sees all the vertices
of M(t). Let x, y ∈ S be two vertices of the spader G(t). By adding the edge uv in G, the five vertices
u, v, x, y, and z of G′ induce the graph F1 in G′. 2

Fact A.5. Let M(tu) = {u}, tuv be a P-node, and suppose that tv is the N-node in the path from tv
to p(v) in the md-tree T (G). Let (S, K, R) be the spider partition of G(tv) with R = {r}. If G(tv) is
not a thin spider, then G′ is not a P4-sparse graph.

Proof of Fact A.5. Since G(tv) is not a thin spider, then |S| = |K| ≥ 3. Let x1, x2 ∈ S and let y ∈ K
such that y sees both x1 and x2. By Fact A.3, v /∈ S ∪K, and thus v ∈ M(r). Then, the addition of
the edge uv implies that the vertices x1, x2, y, v, u induce the graph F1 in G′. 2

Then, from Facts A.1–A.5, we have: If the path from tv to p(v) in the md-tree T (G) contains no
N-nodes, then by Fact A.1, there exists a vertex in M(tv) which sees all other vertices in M(tv). If v is
such a vertex, then we get Case (i). If v is not so, i.e., v misses at least one vertex in M(tv)−{v}, then
Fact A.2 implies that Case (ii) holds. If now the path from tv to p(v) in the md-tree T (G) contains
N-nodes, then by Fact A.3, we have that v ∈ M(r) and v sees all other vertices in M(r). Moreover,
Fact A.4 implies that there exists exactly one N-node in the path from tv to p(v) and this is in fact
tv. Then, Fact A.5 implies that G(tv) is a thin spider. Facts A.3–A.5 imply that Case (iii) holds.

Theorem 3.2. For any two x-partly-adjacent nodes of T (G), the graph G′ is P4-sparse only if one of
them is an ancestor of the other.

14

Proof. Suppose that T (G) contains two x-partly-adjacent nodes t, t′ such that none is an ancestor of
the other. Then, t, t′ are internal nodes of T (G) and let ti be the least common ancestor of t, t′, and
tj and tk be the children of ti which are ancestors of t and t′ respectively. Clearly, by Property P1, tj
and tk are x-partly-adjacent nodes. Additionally, the node ti is either a P-node or an S-node (recall
that at most one child of an N-node is an internal node). Thus, we distinguish the following two cases:

◦ the node ti is a P-node: Then, tj , tk are either S- or N-nodes; in either case, there are vertices
aj , bj ∈ M(tj) and ak, bk ∈ M(tk) such that in G, aj , bj are adjacent, ak, bk are also adjacent,
and x is adjacent to aj , ak but not to bj , bk (see Properties P3, P4). But then, G′ would contain
the P5 bjajxakbk, and thus would not be P4-sparse.

◦ the node ti is an S-node: This case is the complement version of the previous case. The nodes
tj , tk are either P- or N-nodes; in either case, there are vertices aj , bj ∈M(tj) and ak, bk ∈M(tk)
such that in G, aj , bj are non-adjacent, ak, bk are also non-adjacent, and x sees aj , ak and misses
bj , bk (see Properties P2, P4). But then, G′ would not be P4-sparse as it would contain the P 5

induced by aj , bj , x, ak, bk.

Lemma 3.4. Let t be an x-partly-adjacent N-node of T (G) whose corresponding spider partition of
M(t) is (S, K, R), and suppose that the vertex x is adjacent to a vertex in S ∪K. Then, the graph G′

is P4-sparse only if x is adjacent to S ∪K, or is adjacent to K and is not adjacent to S.

Proof. First, suppose that x does not see S but sees ki ∈ K. Then, x sees every kj ∈ K, otherwise
the vertices x, ki, kj , s, s

′ induce an F1, where skikjs
′ is the (unique) P4 of the spider which has kikj

as an edge.

Suppose now that x sees si ∈ S. Then, x sees every sj ∈ S, otherwise the vertices x, k, k′, si, sj

induce an F 1 if x is adjacent to both k, k′, or a P5 if x is adjacent neither to k nor to k′ (note that
in light of our result for K, we do not need to consider the case where x is adjacent to exactly one of
k, k′), where sikk′sj is the (unique) P4 of the spider with si, sj in its vertex set. Thus, x sees S. Then,
x sees K as well. If x missed ki ∈ K then it would miss K altogether; then, by our result for K, the
vertices x, ki, kj , s, s

′ would induce a C5, where skikjs
′ is the (unique) P4 of the spider which has kikj

as an edge.

Lemma 3.5. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on a path t0t1 · · · tk,
where tk is the x-partly-adjacent node farthest away from the root t0 of T (G). If tk is a P-node then
G′ is P4-sparse if and only if one of the following four (mutually exclusive) cases holds:

(i) Vertex x sees VS and VNK
, and misses VP and VNS

.

(ii) Vertex x sees VS, VNK
, and exactly one vertex, say, y, in VP , and misses VNS

where
(ii.1) vertex y is a child of node tk−2 (which is a P-node),
(ii.2) node tk−1 is an S-node with two children, the node tk and one vertex, say, u (which is

adjacent to x), and
(ii.3) vertex x sees all the vertices in M(tk) except for a single vertex, say, b, which is a child

of tk.

(iii) Vertex x sees VNK
, all but one vertex, say, z, in VS, and misses VP and VNS

where
(iii.1) vertex z is a child of node tk−1 (which is an S-node), and
(iii.2) node tk has two children a, b, which are leaf-nodes such that a is adjacent and b is

non-adjacent to x.

(iv) The node tk−1 is an N-node corresponding to a thick spider with independent set S(tk−1), vertex x
sees VS, VNK

, S(tk−1), and all but one vertex, say, b, in M(tk), and misses VP and VNS
−S(tk−1).

Proof. It is not difficult to see that the graph G′ is P4-sparse if Case (i) of the lemma holds: in the md-
tree of G′, x and the x-fully-adjacent children of tk in T (G) are children of an S-node which is a child
of tk. For the remaining cases, Figure 7 gives the md-tree T (G′) (it is easy to check the adjacencies),
which establishes that the graph G′ is P4-sparse in these cases as well. Thus, we need to show that if
G′ is P4-sparse exactly one of Cases (i)–(iv) holds.

15

Since the node tk is an x-partly-adjacent P-node then by Property P2 there exist two vertices
a, b ∈ M(tk) which are non-adjacent in G and such that x is adjacent to a and non-adjacent to b (in
Figure 7, A denotes all the subtrees rooted at children of tk which are x-fully-adjacent).

First, we note that, for G′ to be P4-sparse:

A1: x must be adjacent to all but at most one vertex in VS ∪ VNK
: if x were not adjacent to vertices

y, y′ ∈ VS ∪ VNK
, then the vertices x, a, b, y, y′ would induce in G either a F 1 or a F 2 (see

Figure 1) depending on whether y, y′ are adjacent or not, and thus G′ would not be P4-sparse.
Additionally, Lemma 3.4 and the fact that the clique of a spider is of size at least 2 imply that
x sees all of VNK

; thus, if x does not see a vertex y ∈ VS ∪ VNK
, then y ∈ VS .

A2: x must be adjacent to at most one vertex in VP : suppose that x were adjacent to vertices
z, z′ ∈ VP ; since the father-node of tk is either an S- or an N-node, there exists a vertex y which
is adjacent to a, b and is non-adjacent to z, z′; then, if y is adjacent to x, the vertices x, y, b, z, z′

would induce an F1, whereas if y is non-adjacent to x, the vertices x, y, a, b, z would induce a P5.

A3: x must miss the independent sets of all the N-nodes in the subpath t0t1 · · · tk−2: suppose that x
were adjacent to a vertex z belonging to the independent set S(ti) of the spider associated with
ti (0 ≤ i ≤ k − 2); then, there exists k ∈ K(ti) such that k is adjacent to z, and since x sees
VNK

, k is adjacent to x as well; moreover, no matter whether tk−1 is an S- or an N-node, there
exists u ∈M(tk−1)−M(tk) such that u is adjacent to both a, b; then, if x is adjacent to u, the
vertices x, z, k, u, b would induce an F 1, otherwise, the vertices x, z, k, u, a would induce a P 5.

From Properties A1–A3, it follows that if tk is the root of the tree T (G), or if x sees VS and misses
VP and tk−1 is not an N-node, then Case (i) applies. Suppose next that tk is not the root and that x
sees y ∈ VP , or misses z ∈ VS , or tk−1 is an N-node, and that G′ is P4-sparse; since tk is a P-node, we
distinguish the following cases:

(a) tk−1 is an S-node: then, there exists u ∈M(tk−1)−M(tk) such that u is adjacent to both a, b.

◦ Suppose that x sees y ∈ VP . Then, x sees u, otherwise x, y, u, a, b would induce a P5. Moreover,
y is a child of tk−2: if y were a child of ti, where i < k−2, then ti+1 would be an S- or an N-node
and thus there would exist a vertex v such that v would see u, a, b; then, the vertices x, y, u, v, b or
x, y, u, v, a would induce an F 1 depending on whether x is adjacent to v or not. Next, u is tk−1’s
only child other than tk; if there existed u, u′ ∈ M(tk−1) −M(tk), then the vertices x, y, u, u′, b
would induce an F 1 or an F 2 depending on whether u, u′ are adjacent or not. Finally, x cannot
miss two vertices b, b′ ∈ M(tk) since then the vertices x, y, u, b, b′ would induce either an F1 or
an F2. This is precisely Case (ii).

◦ Suppose that x misses z ∈ VS . Because z ∈ VS , z is adjacent to u, a, b. If z is not a child of tk−1,
then x is adjacent to u (note that u ∈ VS), and because tk−2 is a P- or N-node, there exists
v ∈M(tk−2) such that v misses both a, b, whereas v is adjacent to z; then, if x is adjacent to v,
the vertices x, z, u, v, b induce a P 5 otherwise the vertices x, z, u, v, a induce an F 1. Thus, z is a
child of tk−1. Furthermore, x misses exactly one vertex in M(tk); if it missed b, b′ ∈M(tk), then
the vertices x, z, a, b, b′ would induce an F1 or an F2. Finally, if x saw a, a′ ∈ M(tk), then the
vertices x, z, a, a′, b would induce an F 1 or an F 2. This is precisely Case (iii).

(b) tk−1 is an N-node: then, by Property A1, x sees the clique K(tk−1) of the spider G(tk−1). Let
k ∈ K(tk−1); clearly, k is adjacent to x, a, b.

◦ Suppose that x does not see the independent set S(tk−1) of G(tk−1). Then x misses VNS
. Vertex x

misses VP as well: if it saw y ∈ VP , then the vertices x, y, k, s, b would induce an F1, where
s ∈ S(tk−1) is a neighbor of k. Additionally, x sees VS : if it missed z ∈ VS , then the vertices
x, y, k, s′, b would induce an F 1, where s′ ∈ S(tk−1) is a non-neighbor of k. This is covered by
Case (i).

◦ Suppose that x sees S(tk−1). Then, x sees VS : if it missed z ∈ VS , then the vertices x, z, s, a, b
would induce an F 2, where s ∈ S(tk−1). Additionally, x misses VP : if it saw y ∈ VP , then the
vertices x, y, s, k, b induce an F1, where the vertices s ∈ S(tk−1) and k ∈ K(tk−1) are non-
adjacent. This is precisely Case (iv).

16

Lemma 3.6. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on a path t0t1 · · · tk,
where tk is the x-partly-adjacent node farthest away from the root t0 of T (G). If tk is an S-node then
G′ is P4-sparse if and only if one of the following four (mutually exclusive) cases holds:

(i) Vertex x sees VS and VNK
, and misses VP and VNS

.

(ii) Vertex x sees VNK
, all but one vertex, say, y, in VS, and misses VP and VNS

where
(ii.1) vertex y is a child of node tk−2 (which is an S-node),
(ii.2) node tk−1 is a P-node with two children, the node tk and one vertex, say, u (which is

non-adjacent to x), and
(ii.3) vertex x sees only a single vertex of M(tk), which is a child of tk.

(iii) Vertex x sees VS, VNK
, and exactly one vertex, say, z, in VP , and misses VNS

where
(iii.1) vertex z is a child of node tk−1 (which is a P-node), and
(iii.2) node tk has two children a, b, which are leaf-nodes such that a is adjacent and b is

non-adjacent to x.

(iv) The node tk−1 is an N-node corresponding to a thin spider with clique K(tk−1), vertex x misses
VP , VNS

, K(tk−1), and all but one vertex, say, b, in M(tk), and sees VS and VNK
−K(tk−1).

Proof. Since the P4-sparse graphs are complement-invariant (Lemma 2.1), we consider the graph G:
its md-tree T (G) is identical in structure to T (G) except that P-nodes have become S-nodes and vice
versa, thin spiders have become thick and vice versa, and their cliques and independent sets have been
swapped. Since a node in T (G) is x-partly-adjacent iff its corresponding node in T (G) is x-partly-
adjacent, Lemma 3.5 applies and gives us necessary and sufficient conditions for G′ to be P4-sparse.
By exchanging P- and S-nodes, thin and thick spiders, their cliques and independent sets, and what x
sees/misses in these conditions, we obtain the conditions of the lemma, which are the necessary and
sufficient conditions for G′ to be P4-sparse.

17

