Optimal Algorithms for the Path Cover
Problem on P,-sparse Graphs

Katerina Asdre Stavros D. Nikolopoulos Charis Papadopoulos

Department of Computer Science, University of loannina
P.0.Box 1186, GR-45110 Ioannina, Greece

{asdre, stavros, charis}@cs.uoi.gr

Abstract

In this paper we present optimal algorithms for finding the smallest number of
vertex-disjoint paths that cover the vertices of a Py-sparse graph. Specifically, given
the modular decomposition tree of a Ps-sparse graph G on n vertices and m edges,
we first present an O(n)-time simple sequential algorithm for the path cover problem
and, then, using standard tree contraction and bracket matching techniques [9], we
describe an optimal parallel algorithm which runs in O(logn) time with O(n/logn)
processor on the EREW PRAM mode. Our results generalize previous results [9],
and extend the family of perfect graphs admitting optimal solutions for the path
cover problem.

Key words: Py-sparse graphs, modular decomposition, path cover, algorithms.

1 Theoretical Framework

The modular decomposition tree T(G) of a graph G (or md-tree for short) is a
unique labeled tree associated with the modular decomposition of G in which
the leaves of T'(G) are the vertices of G and the set of leaves associated with
the subtree rooted at an internal node induces a strong module of G. Thus,
the md-tree T'(G) represents all the strong modules of G. An internal node
is labeled by either P (for parallel module), S (for series module), or N (for
neighborhood module). It is shown that for every graph G the md-tree T'(G)
is unique up to isomorphism, it has O(V(G)) nodes and it can be constructed
sequentially in linear time [1,8].

Let ¢ be an internal node of the md-tree T(G) of a graph G. We denote by
M(t) the module corresponding to ¢ which consists of the set of vertices of
G associated with the subtree of T'(G) rooted at node ¢; note that M (t) is a

Preprint submitted to CTW 2005 25 March 2005

strong module for every (internal or leaf) node t of T'(G). Let uy, us, ..., u,
be the children of the node t of T'(G). We denote by G(t) the representative
graph of the module M (t) defined as follows: V(G(t)) = {uy,us,...,u,} and
u;u; € E(G(t)) if there exists an edge vyv, € E(G) such that v, € M(u;) and
vy € M(uj). G(t) is an edgeless graph if ¢ is a P-node, G(t) is a complete graph
if ¢ is an S-node, and G(t) is a prime graph if ¢ is an N-node (see also [2]).

A graph G is called a spider if its vertex set V(G) admits a partition into sets
S, K, and R; the triple (S, K, R) is called spider-partition [2,5]. A graph G is a
prime spider if G is a spider with |R| < 1. If the condition of case P3(i) holds
then the spider G is called thin spider, whereas if the condition of case P3(ii)
holds then G is called thick spider; note that the complement of a thin spider is
a thick spider and vice versa. For the class of Py-sparse graphs [3], Giakoumakis
and Vanherpe [2] showed the following result:

Lemma 1.2. (Giakoumakis and Vanherpe [2]): Let G be a graph and let T(G)
be its modular decomposition tree. The graph G is Py-sparse iff for every N-
node t of T(G), G(t) is a prime spider with a spider-partition (S, K, R) and
no vertex of SU K is an internal node in T(G).

Based on the structural properties of a prime spider, it is not difficult to see
that the following result holds:

Lemma 1.3. Let G be a Py-sparse graph on n vertices and let T(G) be its mod-
ular decomposition tree. The spider partitions (S;, K;, R;) of all the internal
N-nodes t; of T(G) can be found in O(n) time.

Let T(G) be the md-tree of a Pj-sparse graph G. We compute in each N-
node t; € T(G), the sets S;, K;, R; of G(t;), we check if G(¢;) is a thin or
a thick spider and we set appropriate labels in each N-node ¢; € T(G); we
denote T*(G) the resulting md-tree. Based on the techniques described in
[7,9], we modify further the md-tree 7*(G): we binarize the tree T*(G) in
such a way that each of its internal nodes labelled by either P or S has exactly
two children; we denote T} (G) the resulting tree. The left and right child of an
internal P-node or S-node u of T (G) will be denoted by v and w, respectively.

Let G[M(u)] denote the subgraph induced by the leaf descendants of u in
T;(G), and let L(u) denote the number of leaf descendants of u in T,/ (G), that
is, the number of vertices in G[M (u)]. We say that T, (G) is leftist, denoted
by T;;(G), if for every internal node u labelled by either P or S, the condition
L(v) > L(w) is satisfied. For every S-node u of T};(G), we replace the subtree
rooted at node w (the right child of u) with the L(w) leaves and call the
resulting tree the reduced leftist binary tree of T};(G); we denote it by T} .(G).

Let A(u) denote the number of paths in the minimum path cover of the graph
G[M (u)]. It is easy to see that, in order to construct the path cover using the

tree T},.(G), we need to know the number of paths A(u) of each internal node
u € Tp,(G). Recall that, if u is a P-node or S-node then it has a left child v
and a right child w; otherwise, u is an N-node and it has at least 4 children
which induce a prime spider G(u) = (S, K, R) with either R =0 or R = {r}.
Based on the results of [7] and [4], we obtain the following formula for the
number of paths of a P,-sparse graph.

Aw) + AMw) if u is a P-node,
max{1, \(v) — L(w)} if v is an S-node,

A(u) = K|-22()\] : L (1)
A(r) + [max {0, fﬂ if G(u) is a thin spider,

max {1, \(r)} if G(u) is a thick spider.

Lemma 1.5. Let G be a Py-sparse graph on n vertices and let T(G) be its
modular decomposition tree. The reduced leftist binary tree Ty, (G) and the
number of paths in a minimum path cover of G can be computed in O(n) time.

2 Minimum path cover in P,-sparse graphs

In this section we review some ideas for finding a minimum path cover of a
Py-sparse graph G. We suppose that the reduced leftist binarized tree T}, (G)
of the graph G is given. We focus on the internal N-nodes since the cases of
the P-nodes and S-nodes have already been established [6].

Let u be an internal N-node of T}, (G). Let P be the minimum path cover of the
graph G[M (u)] and let A\(u) be the number of paths in P, that is, A(u) = |P|;
recall that, M (u) is the module which corresponds to u and consists of all the
vertices of GG associated with the subtree of T(G) rooted at node w.

Let a prime spider G(u) = (S, K, R) with S = {s1,89,...,8} and K =
{ki, ko, ... k¢}, where |S| = |K| = (. If R is empty, in Eq. (1) we set A\(r) = 0;
otherwise, R = {r} and d = \(r), and let @ = {Q1,Q2, ..., Qq} be a minimum
path cover of G[M(r)]. For every i, 1 < i < d, let ¢; and ¢; be the endpoints
of @;. Then, for the computation of the minimum path cover P of G[M (u)]
we distinguish the following two cases.

Case 1: G(u) = (S, K, R) is a thin spider. The prime spider G(u) has 2¢ + 1
vertices and there exists a bijection f such that f(s;) = k;;1 < i < {. By
Eq. (1), we have that the number of paths in a minimum path cover of G[M (u)]

are \(r) + [max {0, %H If R is empty, then the graph G[SU K] contains
t = [£] paths and the minimum path cover of G[M (u)] is:

P = {[31]‘31]*3252]; [53k3k454], SO [36—11‘3571]*3354]}- (2)

If R = {r}, then the paths of G[M (u)] are obtained by joining the end-points
of some paths @Q; of G[M(r)] with the vertices of the ¢ paths of G[S U K].
Thus, if t < d we have:

P =A{lsikiqr ... ¢ k252, .., [Se—1ko—1qe . . ikese), Qui1, Qeray -, Qat. (3)

Otherwise, if ¢ > d then the paths that occur in a minimum path cover of
G[M (u)] are:

P =A{lsikiq1 ... q\k2s2], ..., [S2a—1k2d-1Ga---Qyk2aS2d], - - - [Se—1ke—1kese]}. (4)

Case 2: G(u) = (S, K, R) is a thick spider. Let t = [£]. If R is empty, then the
graph G[S U K] is a hamiltonian graph and every edge in a hamiltonian path
has one end-vertex in S and the other in K (i.e., there exists no hamiltonian
path which contains an edge with both end-vertices in K'). Thus, if ¢ is an odd
number we have,

P = {[81/?452]‘3371 oSk 1S kesioki—o .. 5471/?255]‘31]}, (5)
otherwise,
P = {[81/?452]‘3371 oSk Sepokisiik . 5471/?255]*31]}- (6)

If R = {r}, then the hamiltonian path of G[S U K] is connected to the path
(), of G[M(r)]. Thus, the paths that occur in a path cover P of G[M (u)] are:

P = {[s1kesake_1 ... 50 1kasekiq1 ... q1], Q2, Qs ..., Qa}. (7)

In both cases, the paths in P form a minimum path cover of G[M (u)]. Thus,
given the paths Q of G[M(r)], it is easy to describe a function that computes
a minimum path cover in an N-node u of T}, (G); we call such a function
Path_Spider(u, Q). We store the paths of P in a doubly linked list which
contains pointers to the first and last element of each path. Then, using basic
list operations and based on the Egs. (2)—(7), we can merge the minimum
path cover Q of G[M(r)] with a minimum path cover of the graph G[S U K]|.

3 A simple optimal algorithm

Let G be a Ps-sparse graph on n vertices and m edges and let T'(G) be its
md-tree. We note that the tree T(G) can be computed in linear time, i.e.,
in O(n + m) time, by using one of the well-known algorithms of [1,8]. The
following algorithm is based on the function Path_Spider which is applied on
an N-node. For a P-node or an S-node the algorithm uses appropriate functions
proposed in [6]. Our path cover algorithm is the following:

Algorithm Minimum_Path_Cover

1. Compute the md-tree T'(G) of G and, then, compute the tree T} (G);
2. For each internal node u of T},.(G), compute recursively the minimum
path cover of the graph G(u) as follows:
if wis a P-node or an S-node then
use the function described in [6] and compute a minimum path cover
of G(u);
else { uisa N-node }
use the function Path_Spider(u, Q) and merge the paths of the minimum
path cover Q of G[R] with the paths of the minimum path cover of
G[S U K];

Theorem 3.1. Let G be a Py-sparse graph on n vertices and m edges. The
minimum path cover of G can be computed in O(n + m) time.

4 An optimal parallel algorithm

Although the sequential algorithm is quite simple, a naive parallelization of
this algorithm needs time proportional to the height of the md-tree T(G),
which is O(n). In order to obtain an efficient parallel algorithm, we make use
of the path tree structures and bracket matching technique introduced in [9].

A path tree is a rooted binary tree whose nodes are exactly the vertices of a
path P in . The path P can be efficiently obtained by the path tree using
the inorder traversal. Thus, the corresponding path of a path tree can be
constructed in parallel by applying the Euler tour technique.

In order to construct the path trees efficiently in a parallel process environmen-
t, we generate a sequence of square/round brackets for each node of T}, (G).
The path trees are constructed by finding matching pairs of square brack-
ets and matching pairs of round brackets independently. Note that, given a
bracket sequence corresponding to the vertices of a graph G, the path trees
and consequently the path cover of GG can be constructed efficiently.

Let G be a Py-sparse graph on n vertices, and let 7}, (G) be the reduced leftist
binary tree of T'(G); the tree T}, (G) can be constructed in O(logn) time using
O(n/logn) processors on the EREW PRAM model. We next describe the
bracket sequence assigned to an N-node u of T} (G); the bracket assignment
corresponding to a P-node or to an S-node has been described in [9]. Suppose
that G(u) = (S, K, R) is a thin spider. If R = (), then the path trees of G[SUK]
are constructed from a bracket sequence verifying Eq. (2). In the case where
R = {r}, the graph G[M (r)] contains A(r) paths, which are merged with the

path trees of G[S U K] as described in Eq. (3) and Eq. (4). Suppose now that
G(u) = (S, K, R) is a thick spider. Then, the hamiltonian path of G[S U K]
described by Eq. (5) and Eq. (6) is constructed from a specific path tree,
rooted at a vertex of K, say ki; each internal node of this path tree has only a
left child. According to Eq. (7), we merge the path trees of the graph G[M (r)]
with the path tree of the graph G[S U K]J; to this end, we set the root of the
path tree of the path @1 of G[M(r)] to be the right child of k;. Concluding,
in a parallel environment we have the following result.

Theorem 4.1. Let G be a Py-sparse graph on n vertices and let T(G) be its
modular decomposition tree. The minimum path cover of G can be computed
in O(logn) time using O(n/logn) processors on the EREW PRAM model.

References

[1] E. Dalhaus, J. Gustedt and R.M. McConnell, Efficient and practical algorithms
for sequential modular decomposition, J. Algorithms 41 (2001) 360-387.

[2] V. Giakoumakis and J-M. Vanherpe, On extended Pj-reducible and Pj-sparse
graphs, Theoretical Comp. Science 180 (1997) 269-286.

[3] C. Hoéng, Perfect graphs, Ph.D.thesis, McGill University, Montreal, Canada,
1985.

[4] W. Hochstétler and G. Tinhofer, Hammiltonicity in graphs with few Py’s ,
Computing 54 (1995) 213-225.

[5] B. Jamison and S. Olariu, Linear-time optimization algorithms for Pj-sparse
graphs, Discrete Appl. Math. 61 (1995) 155-175.

[6] R.Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for cographs,
Comput. Math. Appl. 30 (1995) 75-83.

[7] R. Lin, S. Olariu, J.L. Schwing and J. Zhang, A fast EREW algorithm for
minimum path cover and hamiltonicity for cographs, Parallel Algorithms Appl.
2 (1994) 99-113.

8] R.M. McConnell and J. Spinrad, Modular decomposition and transitive
orientation, Discrete Math. 201 (1999) 189-241.

9] K. Nakano, S. Olariu and A.Y. Zomaya, A time-optimal solution for the path
cover problem on cographs, Theoretical Comp. Science 290 (2003) 1541-1556.

