
Optimal Algorithms for the Path CoverProblem on P4-sparse GraphsKaterina Asdre Stavros D. Nikolopoulos Charis PapadopoulosDepartment of Computer Science, University of IoanninaP.O.Box 1186, GR-45110 Ioannina, Greecefasdre, stavros, charisg@cs.uoi.grAbstractIn this paper we present optimal algorithms for �nding the smallest number ofvertex-disjoint paths that cover the vertices of a P4-sparse graph. Speci�cally, giventhe modular decomposition tree of a P4-sparse graph G on n vertices and m edges,we �rst present an O(n)-time simple sequential algorithm for the path cover problemand, then, using standard tree contraction and bracket matching techniques [9], wedescribe an optimal parallel algorithm which runs in O(log n) time with O(n= log n)processor on the EREW PRAM mode. Our results generalize previous results [9],and extend the family of perfect graphs admitting optimal solutions for the pathcover problem.Key words: P4-sparse graphs, modular decomposition, path cover, algorithms.1 Theoretical FrameworkThe modular decomposition tree T (G) of a graph G (or md-tree for short) is aunique labeled tree associated with the modular decomposition of G in whichthe leaves of T (G) are the vertices of G and the set of leaves associated withthe subtree rooted at an internal node induces a strong module of G. Thus,the md-tree T (G) represents all the strong modules of G. An internal nodeis labeled by either P (for parallel module), S (for series module), or N (forneighborhood module). It is shown that for every graph G the md-tree T (G)is unique up to isomorphism, it has O(V (G)) nodes and it can be constructedsequentially in linear time [1,8].Let t be an internal node of the md-tree T (G) of a graph G. We denote byM(t) the module corresponding to t which consists of the set of vertices ofG associated with the subtree of T (G) rooted at node t; note that M(t) is aPreprint submitted to CTW 2005 25 March 2005



strong module for every (internal or leaf) node t of T (G). Let u1; u2; : : : ; upbe the children of the node t of T (G). We denote by G(t) the representativegraph of the module M(t) de�ned as follows: V (G(t)) = fu1; u2; : : : ; upg anduiuj 2 E(G(t)) if there exists an edge vkv` 2 E(G) such that vk 2M(ui) andv` 2M(uj). G(t) is an edgeless graph if t is a P-node, G(t) is a complete graphif t is an S-node, and G(t) is a prime graph if t is an N-node (see also [2]).A graph G is called a spider if its vertex set V (G) admits a partition into setsS, K, and R; the triple (S;K;R) is called spider-partition [2,5]. A graph G is aprime spider if G is a spider with jRj � 1. If the condition of case P3(i) holdsthen the spider G is called thin spider, whereas if the condition of case P3(ii)holds then G is called thick spider ; note that the complement of a thin spider isa thick spider and vice versa. For the class of P4-sparse graphs [3], Giakoumakisand Vanherpe [2] showed the following result:Lemma 1.2. (Giakoumakis and Vanherpe [2]): Let G be a graph and let T (G)be its modular decomposition tree. The graph G is P4-sparse i� for every N-node t of T (G), G(t) is a prime spider with a spider-partition (S;K;R) andno vertex of S [K is an internal node in T (G).Based on the structural properties of a prime spider, it is not diÆcult to seethat the following result holds:Lemma 1.3. Let G be a P4-sparse graph on n vertices and let T (G) be its mod-ular decomposition tree. The spider partitions (Si; Ki; Ri) of all the internalN-nodes ti of T (G) can be found in O(n) time.Let T (G) be the md-tree of a P4-sparse graph G. We compute in each N-node ti 2 T (G), the sets Si, Ki, Ri of G(ti), we check if G(ti) is a thin ora thick spider and we set appropriate labels in each N-node ti 2 T (G); wedenote T �(G) the resulting md-tree. Based on the techniques described in[7,9], we modify further the md-tree T �(G): we binarize the tree T �(G) insuch a way that each of its internal nodes labelled by either P or S has exactlytwo children; we denote T �b (G) the resulting tree. The left and right child of aninternal P-node or S-node u of T �b (G) will be denoted by v and w, respectively.Let G[M(u)] denote the subgraph induced by the leaf descendants of u inT �b (G), and let L(u) denote the number of leaf descendants of u in T �b (G), thatis, the number of vertices in G[M(u)]. We say that T �b (G) is leftist, denotedby T �bl(G), if for every internal node u labelled by either P or S, the conditionL(v) � L(w) is satis�ed. For every S-node u of T �bl(G), we replace the subtreerooted at node w (the right child of u) with the L(w) leaves and call theresulting tree the reduced leftist binary tree of T �bl(G); we denote it by T �blr(G).Let �(u) denote the number of paths in the minimum path cover of the graphG[M(u)]. It is easy to see that, in order to construct the path cover using the2



tree T �blr(G), we need to know the number of paths �(u) of each internal nodeu 2 T �blr(G). Recall that, if u is a P-node or S-node then it has a left child vand a right child w; otherwise, u is an N-node and it has at least 4 childrenwhich induce a prime spider G(u) = (S;K;R) with either R = ; or R = frg.Based on the results of [7] and [4], we obtain the following formula for thenumber of paths of a P4-sparse graph.�(u) = 8>>>>><>>>>>:�(v) + �(w) if u is a P-node;maxf1; �(v)� L(w)g if u is an S-node;�(r) + lmaxn0; jKj�2�(r)2 om if G(u) is a thin spider;max f1; �(r)g if G(u) is a thick spider: (1)Lemma 1.5. Let G be a P4-sparse graph on n vertices and let T (G) be itsmodular decomposition tree. The reduced leftist binary tree T �blr(G) and thenumber of paths in a minimum path cover of G can be computed in O(n) time.2 Minimum path cover in P4-sparse graphsIn this section we review some ideas for �nding a minimum path cover of aP4-sparse graph G. We suppose that the reduced leftist binarized tree T �blr(G)of the graph G is given. We focus on the internal N-nodes since the cases ofthe P-nodes and S-nodes have already been established [6].Let u be an internal N-node of T �blr(G). Let P be the minimum path cover of thegraph G[M(u)] and let �(u) be the number of paths in P, that is, �(u) = jPj;recall that, M(u) is the module which corresponds to u and consists of all thevertices of G associated with the subtree of T (G) rooted at node u.Let a prime spider G(u) = (S;K;R) with S = fs1; s2; : : : ; s`g and K =fk1; k2; : : : ; k`g, where jSj = jKj = `. If R is empty, in Eq. (1) we set �(r) = 0;otherwise, R = frg and d = �(r), and letQ = fQ1; Q2; : : : ; Qdg be a minimumpath cover of G[M(r)]. For every i, 1 � i � d, let qi and q0i be the endpointsof Qi. Then, for the computation of the minimum path cover P of G[M(u)]we distinguish the following two cases.Case 1: G(u) = (S;K;R) is a thin spider. The prime spider G(u) has 2`+ 1vertices and there exists a bijection f such that f(si) = ki; 1 � i � `. ByEq. (1), we have that the number of paths in a minimum path cover ofG[M(u)]are �(r)+ lmaxn0; `�2�(r)2 om. If R is empty, then the graph G[S [K] containst = d 2̀e paths and the minimum path cover of G[M(u)] is:P = f[s1k1k2s2]; [s3k3k4s4]; : : : ; [s`�1k`�1k`s`]g: (2)3



If R = frg, then the paths of G[M(u)] are obtained by joining the end-pointsof some paths Qi of G[M(r)] with the vertices of the t paths of G[S [ K].Thus, if t � d we have:P = f[s1k1q1 : : : q01k2s2]; : : : ; [s`�1k`�1qt : : : q0tk`s`]; Qt+1; Qt+2; : : : ; Qdg: (3)Otherwise, if t > d then the paths that occur in a minimum path cover ofG[M(u)] are:P = f[s1k1q1 : : : q01k2s2]; : : : ; [s2d�1k2d�1qd:::q0dk2ds2d]; : : : ; [s`�1k`�1k`s`]g: (4)Case 2: G(u) = (S;K;R) is a thick spider. Let t = d 2̀e. If R is empty, then thegraph G[S [K] is a hamiltonian graph and every edge in a hamiltonian pathhas one end-vertex in S and the other in K (i.e., there exists no hamiltonianpath which contains an edge with both end-vertices in K). Thus, if t is an oddnumber we have,P = f[s1k`s2k`�1 : : : stkt�1st+1ktst+2kt�2 : : : s`�1k2s`k1]g; (5)otherwise, P = f[s1k`s2k`�1 : : : stkt+1st+2ktst+1kt�1 : : : s`�1k2s`k1]g: (6)If R = frg, then the hamiltonian path of G[S [K] is connected to the pathQ1 of G[M(r)]. Thus, the paths that occur in a path cover P of G[M(u)] are:P = f[s1k`s2k`�1 : : : s`�1k2s`k1q1 : : : q01]; Q2; Q3; : : : ; Qdg: (7)In both cases, the paths in P form a minimum path cover of G[M(u)]. Thus,given the paths Q of G[M(r)], it is easy to describe a function that computesa minimum path cover in an N-node u of T �blr(G); we call such a functionPath Spider(u;Q). We store the paths of P in a doubly linked list whichcontains pointers to the �rst and last element of each path. Then, using basiclist operations and based on the Eqs. (2){(7), we can merge the minimumpath cover Q of G[M(r)] with a minimum path cover of the graph G[S [K].3 A simple optimal algorithmLet G be a P4-sparse graph on n vertices and m edges and let T (G) be itsmd-tree. We note that the tree T (G) can be computed in linear time, i.e.,in O(n + m) time, by using one of the well-known algorithms of [1,8]. Thefollowing algorithm is based on the function Path Spider which is applied onan N-node. For a P-node or an S-node the algorithm uses appropriate functionsproposed in [6]. Our path cover algorithm is the following:4



Algorithm Minimum Path Cover1. Compute the md-tree T (G) of G and, then, compute the tree T �blr(G);2. For each internal node u of T �blr(G), compute recursively the minimumpath cover of the graph G(u) as follows:if u is a P-node or an S-node thenuse the function described in [6] and compute a minimum path coverof G(u);else f u is a N-node guse the function Path Spider(u;Q) and merge the paths of the minimumpath cover Q of G[R] with the paths of the minimum path cover ofG[S [K];Theorem 3.1. Let G be a P4-sparse graph on n vertices and m edges. Theminimum path cover of G can be computed in O(n+m) time.4 An optimal parallel algorithmAlthough the sequential algorithm is quite simple, a naive parallelization ofthis algorithm needs time proportional to the height of the md-tree T (G),which is O(n). In order to obtain an eÆcient parallel algorithm, we make useof the path tree structures and bracket matching technique introduced in [9].A path tree is a rooted binary tree whose nodes are exactly the vertices of apath P in G. The path P can be eÆciently obtained by the path tree usingthe inorder traversal. Thus, the corresponding path of a path tree can beconstructed in parallel by applying the Euler tour technique.In order to construct the path trees eÆciently in a parallel process environmen-t, we generate a sequence of square/round brackets for each node of T �blr(G).The path trees are constructed by �nding matching pairs of square brack-ets and matching pairs of round brackets independently. Note that, given abracket sequence corresponding to the vertices of a graph G, the path treesand consequently the path cover of G can be constructed eÆciently.Let G be a P4-sparse graph on n vertices, and let T �blr(G) be the reduced leftistbinary tree of T (G); the tree T �blr(G) can be constructed in O(logn) time usingO(n= logn) processors on the EREW PRAM model. We next describe thebracket sequence assigned to an N-node u of T �blr(G); the bracket assignmentcorresponding to a P-node or to an S-node has been described in [9]. SupposethatG(u) = (S;K;R) is a thin spider. If R = ;, then the path trees ofG[S[K]are constructed from a bracket sequence verifying Eq. (2). In the case whereR = frg, the graph G[M(r)] contains �(r) paths, which are merged with the5



path trees of G[S [K] as described in Eq. (3) and Eq. (4). Suppose now thatG(u) = (S;K;R) is a thick spider. Then, the hamiltonian path of G[S [ K]described by Eq. (5) and Eq. (6) is constructed from a speci�c path tree,rooted at a vertex of K, say k1; each internal node of this path tree has only aleft child. According to Eq. (7), we merge the path trees of the graph G[M(r)]with the path tree of the graph G[S [K]; to this end, we set the root of thepath tree of the path Q1 of G[M(r)] to be the right child of k1. Concluding,in a parallel environment we have the following result.Theorem 4.1. Let G be a P4-sparse graph on n vertices and let T (G) be itsmodular decomposition tree. The minimum path cover of G can be computedin O(logn) time using O(n= logn) processors on the EREW PRAM model.References[1] E. Dalhaus, J. Gustedt and R.M. McConnell, EÆcient and practical algorithmsfor sequential modular decomposition, J. Algorithms 41 (2001) 360{387.[2] V. Giakoumakis and J-M. Vanherpe, On extended P4-reducible and P4-sparsegraphs, Theoretical Comp. Science 180 (1997) 269{286.[3] C. Ho�ang, Perfect graphs, Ph.D.thesis, McGill University, Montreal, Canada,1985.[4] W. Hochst�atler and G. Tinhofer, Hammiltonicity in graphs with few P4's ,Computing 54 (1995) 213{225.[5] B. Jamison and S. Olariu, Linear-time optimization algorithms for P4-sparsegraphs, Discrete Appl. Math. 61 (1995) 155{175.[6] R. Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for cographs,Comput. Math. Appl. 30 (1995) 75{83.[7] R. Lin, S. Olariu, J.L. Schwing and J. Zhang, A fast EREW algorithm forminimum path cover and hamiltonicity for cographs, Parallel Algorithms Appl.2 (1994) 99{113.[8] R.M. McConnell and J. Spinrad, Modular decomposition and transitiveorientation, Discrete Math. 201 (1999) 189{241.[9] K. Nakano, S. Olariu and A.Y. Zomaya, A time-optimal solution for the pathcover problem on cographs, Theoretical Comp. Science 290 (2003) 1541{1556.
6


