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Strongly chordal and chordal bipartite graphs

are sandwich monotone∗

Pinar Heggernes† Federico Mancini† Charis Papadopoulos‡ R. Sritharan§

Abstract

A graph class is sandwich monotone if, for every pair of its graphs G1 = (V, E1) and
G2 = (V,E2) with E1 ⊂ E2, there is an ordering e1, . . . , ek of the edges in E2 \E1 such that
G = (V, E1 ∪ {e1, . . . , ei}) belongs to the class for every i between 1 and k. In this paper
we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone,
answering an open question by Bakonyi and Bono from 1997. So far, very few classes have
been proved to be sandwich monotone, and the most famous of these are chordal graphs.
Sandwich monotonicity of a graph class implies that minimal completions of arbitrary graphs
into that class can be recognized and computed in polynomial time. For minimal completions
into strongly chordal or chordal bipartite graphs no polynomial-time algorithm has been
known. With our results such algorithms follow for both classes. In addition, from our
results it follows that all strongly chordal graphs and all chordal bipartite graphs with edge
constraints can be listed efficiently.

1 Introduction

A graph class is hereditary if it is closed under induced subgraphs, and monotone if it is closed
under subgraphs that are not necessarily induced. Every monotone graph class is also hereditary,
since removing any edge keeps the graph in the class, but the converse is not true. For example
perfect graphs are hereditary but not monotone, since we can create chordless odd cycles by
removing edges. Some of the most well-studied graph properties are monotone [1, 3] or hereditary
[12]. Between hereditary and monotone graph classes are sandwich monotone graph classes.
Monotonicity implies sandwich monotonicity (if we can remove any edge, we can also remove
the edges in a particular order), which again implies being hereditary for graph classes that
allow isolated vertices (if we can reach any subgraph in the class by removing edges, we can
also reach induced subgraphs leaving the desired vertices isolated), but none of the reverse chain
of implications holds. In this paper we study hereditary graph classes that are not monotone,
and we resolve the sandwich monotonicity of two of them: strongly chordal graphs and chordal
bipartite graphs.

Chordal graphs are the most famous class of graphs that are sandwich monotone [23]. Be-
sides this, split [13], chain [15], and threshold [15] graphs are the only known sandwich monotone
classes. On the other hand we know that cographs, interval, proper interval, comparability, per-
mutation, and trivially perfect graphs are not sandwich monotone [15]. The following graph
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classes have been candidates of sandwich monotonicity since an open question in 1997 [2]:
strongly chordal, weakly chordal, and chordal bipartite. Among the graph classes known to
be sandwich monotone, chordal graphs are the only ones that are not characterized by a finite
set of forbidden induced subgraphs. Similarly, strongly chordal and chordal bipartite graphs
have an infinite set of forbidden induced subgraphs. Thus, we can say that after the chordal
graphs, they are the first non-trivial graph classes for which sandwich monotonicity is proved.

Our main motivation for studying sandwich monotonicity comes from the problem of com-
pleting a given arbitrary graph into a graph class, meaning adding edges so that the resulting
graph belongs to the desired class. For example, a chordal completion is a chordal supergraph on
the same vertex set. A completion is minimum if it has the smallest possible number of added
edges. The problem of computing minimum completions are applicable in several areas such
as molecular biology, numerical algebra and, more generally, to areas involving graph modeling
with some missing edges due to lacking data [11, 19, 22]. Unfortunately minimum completions
into most interesting graph classes, including strongly chordal graphs [26, 16], are NP-hard to
compute [19]. However, minimum completions are a subset of minimal completions, and hence
we can search for minimum among the set of minimal. A completion is minimal if no subset of
the added edges can be removed from it without destroying the desired property.

If a graph class is sandwich monotone then a completion into the class is minimal if and only
if no single added edge can be removed from it [23, 13, 15], making minimality of a completion
much easier to check. For a graph class that can be recognized in polynomial time, sandwich
monotonicity implies that minimal completions into this class can be computed in polynomial
time. More importantly, it implies that whether a given completion is minimal can be decided
in polynomial time, which is a more general problem. This latter problem is so far solvable for
completions into only two non sandwich monotone classes: interval graphs [14] and cographs [18].
As an example of usefulness of a solution of this problem, various characterizations of minimal
chordal completions [16, 6] have made it possible to design approximation algorithms [19] and
fast exact exponential time algorithms [10] for computing minimum chordal completions. A
solution of this problem also allows the computation of minimal completions that are not far
from minimum in practice [5]. With the results that we present in this paper, we are able
to characterize minimal strongly chordal completions of arbitrary graphs and minimal chordal
bipartite completions of arbitrary bipartite graphs.

In a cocoon 2008 paper, Kijima et al. give an efficient algorithm for the following problem
[17]. Given two graphs on the same vertex set such that one is chordal and one is a subgraph
of the other, list all chordal graphs that are sandwiched between the two graphs. In fact for the
solution of this problem the only necessary property of chordal graphs is sandwich monotonicity.
Hence, with our results this problem can also be solved efficiently for strongly chordal and chordal
bipartite graphs.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V, E),
we denote its vertex and edge set by V (G) = V and E(G) = E, respectively, with n = |V |
and m = |E|. For a vertex subset S ⊆ V , the subgraph of G induced by S is denoted by G[S].
Moreover, we denote by G − S the graph G[V \ S] and by G−v the graph G[V \ {v}]. In this
paper, we distinguish between subgraphs and induced subgraphs. By a subgraph of G we mean

2



a graph G′ on the same vertex set containing a subset of the edges of G, and we denote it by
G′ ⊆ G. If G′ contains a proper subset of the edges of G, we write G′ ⊂ G. We write G− uv to
denote the graph (V, E \ {uv}).

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighborhood of x
is defined as NG[x] = NG(x) ∪ {x}. If S ⊆ V , then the neighbors of S, denoted by NG(S), are
given by

∪
x∈S NG(x) \S. We will omit the subscript when there is no ambiguity. The length of

a path or a cycle is the number of edges on the path or the cycle. A chord of a cycle is an edge
between two nonconsecutive vertices of the cycle. A chordless cycle on k vertices is denoted by
Ck. A graph is chordal if it does not contain an induced Ck for k > 3. A perfect elimination
ordering of a graph G = (V, E) is an ordering v1, . . . , vn of V such that for each i, j, k, if i < j,
i < k, and vivj , vivk ∈ E then vjvk ∈ E. Rose has shown that a graph is chordal if and only if
it admits a perfect elimination ordering [21].

A clique is a set of vertices that are pairwise adjacent, and an independent set is a set of
vertices that are pairwise non-adjacent. A vertex is called simplicial if the subgraph induced
by its neighborhood is a clique. Observe that a perfect elimination ordering is equivalent to
removing a simplicial vertex repeatedly until the graph becomes empty. For a vertex v, the
deficiency D(v) is the set of non-edges in N(v); more precisely, D(v) = {xy | vx, vy ∈ E, xy /∈
E}. Thus if D(v) = ∅, v is simplicial.

A strong elimination ordering of a graph G = (V, E) is an ordering of the vertices v1, . . . , vn

of V such that for each i, j, k, l with i ≤ k and i < l, if i < j, k < l, vivk, vivl ∈ E and vjvk ∈ E
then vjvl ∈ E. A graph is strongly chordal if it admits a strong elimination ordering. It is known
that every induced subgraph of a strongly chordal graph is strongly chordal [8]. Moreover every
strong elimination ordering is a perfect elimination ordering (by setting i = k) but the converse
is not necessarily true. Thus all strongly chordal graphs are chordal.

Two vertices u and v of a graph G are called compatible if N [u] ⊆ N [v] or N [v] ⊆ N [u];
otherwise they are called incompatible. Given two incompatible vertices u and v the u-private
neighbors are exactly the vertices of the set N [u] \ N [v]. A vertex v of G is called simple if the
neighbors of the vertices of N [v] are linearly ordered by set inclusion, that is, the vertices of N [v]
are pairwise compatible. Clearly, any simple vertex is simplicial but not necessarily vice versa.
An ordering v1, . . . , vn of a graph G is called simple elimination ordering if for each 1 ≤ i ≤ n,
vi is simple in the graph Gi ≡ G[{vi, . . . , vn}].

Theorem 2.1 ([8]). A graph is strongly chordal if and only if it has a simple elimination
ordering.

A k-sun (also known as trampoline), for k ≥ 3, is the graph on 2k vertices obtained from
a clique {c1, . . . , ck} on k vertices and an independent set {s1, . . . , sk} on k vertices and edges
sici, sici+1, 1 ≤ i < k, and skck, skc1.

Theorem 2.2 ([8]). A chordal graph is strongly chordal if and only if it does not contain a
k-sun as an induced subgraph.

Based on the above theorem we prove the following which can also be derived by using some
known results.

Lemma 2.3. Let G be a k-sun with K = {c1, . . . , ck} and I = {s1, . . . , sk} as its clique and
independent set, respectively. If any set of edges is removed among the vertices of K, the resulting
graph is still not strongly chordal.
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Proof. Proving the statement is equivalent to proving that there is no strongly sandwich graph
between the chordless cycle C = {c1, s1, c2, s2, . . . , ck, sk}, and the k-sun; i.e., there is no strongly
chordal H such that C ⊆ H ⊆ G. We assume that all indices are always taken modulo k. Assume
for the sake of contradiction that a strongly chordal sandwich graph H exists. Then H has at
least one simple vertex. However none of the vertices si for 1 ≤ i ≤ k can ever be simple since
they have two incompatible vertices in their neighborhood, i.e., ci and ci+1. Each of them has
in fact a private neighbor with respect to the other one, namely si−1 and si+1. Neither of the
vertices ci for 1 ≤ i ≤ k can be simple as well, since they can never be simplicial either in H
because si−1 and si are non-adjacent for any H.

For our studies of strongly chordal graphs, we will need the following definitions regarding
the neighborhood of a simple vertex x. We partition the sets N(x) and S(x) ≡ N(N(x)) \ {x}.
(N0, N1, . . . , Nk) is a partition of N(x) such that N0 = {y ∈ N(x) | N [x] = N [y]} and N(N0) ⊂
N(N1) · · · ⊂ N(Nk) where k is as large as possible.

These sets are also used to partition S(x) into (S1, . . . , Sk) where S1 = N(N1) \ N [x] and
Si = N(Ni) \ (N(Ni−1) ∪ N [x]), for 2 ≤ i ≤ k. We call the above partition a simple partition
with respect to x.

a c

zy

b

x

Figure 1: The left graph is a 3-sun. It has no simple vertices. In the right graph, x and c are
simple vertices, whereas a is a simplicial vertex but not simple. For the graph on the right side a
simple partition with respect to x is given by the sets N(x) = ({y}, {z}) and S(x) = ({a, b}, {c}).

In the context of a minimal completion of a given graph into a graph belonging to a given
class, we say that a completion G′ = (V,E ∪ F ) of an arbitrary graph G = (V, E) is any
supergraph G′ of G on the same vertex set with the property that G′ belongs to the given graph
class. If C is a graph class, then we refer to G′ as a C completion of G. For instance, a strongly
chordal completion of any graph G = (V, E) is the complete graph on V . The edges that are in
G′ but not in G are called added edges. A C completion is minimal if no proper subset of the
added edges, when added to the input graph G, results in a graph in the class.

Although sandwich monotonicity has been a well studied property since 1976 [23], it was
first given a name and a proper definition in a cocoon 2007 paper [15]:

Definition 2.4 ([15]). A graph class C is sandwich monotone if the following is true for any
pair of graphs G = (V,E) and H = (V, E ∪ F ) in C with E ∩ F = ∅: There is an ordering
f1, f2, . . . , f|F | of the edges in F such that in the sequence of graphs G = G0, G1, . . . , G|F | = H,
where Gi−1 is obtained by removing edge fi from Gi, every graph belongs to C.

Observation 2.5 ([23, 15]). The following are equivalent on any graph class C:
(i) C is sandwich monotone.
(ii) A C completion is minimal if and only if no single added edge can be removed without

leaving C.
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Although sandwich monotonicity implies a polynomial-time algorithm for problems related
to minimal completions [15], there are other problems for which such a notion is applicable.
Motivated by the work of Kijima et al. we give a connection to the problem of listing all graphs
of a certain graph class under edge constraints that has been introduced in a 2008 COCOON
paper [17]. In such a problem we are given two graphs G1 and G2 on the same vertex set such
that G1 ⊂ G2, at least one of G1, G2 belongs to a graph class, and the task is to list (output)
all graphs of the given graph class that contain G1 and are contained in G2. Such an algorithm
has been explicitly given for chordal graphs that runs in polynomial time per output and in
polynomial space [17]. However such an algorithm can be easily adopted for any sandwich
monotone class by using Definition 2.4 and a simple binary partition method.

Proposition 2.6 ([17]). Let C be a sandwich monotone graph class and let G1 and G2 be two
graphs such that G1 ⊂ G2 and either G1 ∈ C or G2 ∈ C. Given a polynomial-time algorithm for
the recognition of C, there is an algorithm for listing all graphs G in C such that G1 ⊆ G ⊆ G2

and the running time is polynomial in the input size per output and the memory usage is bounded
by a polynomial in the input size.

Proof. We describe such an algorithm which is actually a generalization of the algorithm given
for chordal graphs [17]. Assume that we are given a pair of boundary graphs (G1, G2) such that
G1 = (V, E), G2 = (V, E∪F ) and G2 ∈ C; the case for which G1 ∈ C is symmetric. If there is an
edge f ∈ F such that G2−f ∈ C then we output G2−f and run recursively the algorithm on the
pairs of graphs (G1+f, G2) and (G1, G2−f); note that in both recursive calls the bigger graph
belongs to C. If such an edge does not exist then by the sandwich monotonicity of C we know
that there is no other graph that belongs to C. The correctness of the algorithm comes from
Definition 2.4 and the fact that the set of the desired graphs having the edge f are output by
(G1+f,G2) whereas the sets of the desired graphs that do not have the edge f are considered
in the call (G1, G2−f). Furthermore the running time is polynomial per output by |F | calls of
the recognition algorithm for finding an appropriate edge f in G2.

3 Strongly chordal graphs are sandwich monotone

In this section we prove that strongly chordal graphs are sandwich monotone, and using this
result we will characterize minimal strongly chordal completions of arbitrary graphs.

It is easy to see that if a single edge is added to a Ck with k ≥ 5, then a Ck′ is created with
k′ ≥ 4. First we show that a similar result holds for k-suns.

Observation 3.1. For k ≥ 4, if a single edge is added to a k-sun to produce a chordal graph,
then a k′-sun with k > k′ ≥ 3 is created.

Proof. Let G be a k-sun with K = {c1, . . . , ck} and I = {s1, . . . , sk} as its clique and independent
set, respectively. Adding an edge between vertices of I results in a C4, since there are always
two private neighbors for any two vertices of S. Any other added edge must be between a
vertex of I, say si, and a non-neighbor of si in K, say cj , j 6= i, i + 1. Assume first that i < j.
Removing the set of vertices {ci+1, si+1, . . . , cj−1, sj−1} results in k′-sun with k′ = k− (j− i−1).
Similarly if j < i then removing the set of vertices {sj , cj+1, . . . , si−1, ci} results in k′-sun with
k′ = k − (i − j − 1).
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Next, we show that when a new vertex is added to a strongly chordal graph ensuring that
the new vertex is simple in the larger graph, the larger graph is also strongly chordal.

Lemma 3.2. Let x be a simple vertex in a graph G = (V, E). If G−x is strongly chordal then
G is strongly chordal.

Proof. As G−x is a strongly chordal graph, it admits a simple elimination ordering α. Choosing
x first and then processing the vertices in order α results in a simple elimination ordering for
G.

The following lemma is well-known for chordal graphs, and we want to show a similar result
for strongly chordal graphs.

Lemma 3.3 ([23]). Let G be a chordal graph and let x be a simplicial vertex of G. Removing
an edge incident to x results in a chordal graph.

Let G be a strongly chordal graph and let x be a simplicial vertex of G. A vertex y of
N(x) is a guard if there exist at least two incompatible vertices u, v of N(x) \ {y} such that y
is adjacent to at least one of u-private neighbors with respect to v, and y is adjacent to at least
one of v-private neighbors with respect to u. The u-private neighbors and v-private neighbors
with respect to v and u, respectively, that are adjacent to y are called guarded vertices. If a
vertex of N(x) is not a guard then it is a non-guard.

Lemma 3.4. Let G be a strongly chordal graph. Let x be a simplicial vertex of G and let xy be
an edge of G. G−{xy} is strongly chordal if and only if y is not a guard vertex for x.

Proof. Let G′ = G−{xy}. By Lemma 3.3 G′ is chordal. By Theorem 2.2 and Observation 3.1
G′ is not strongly chordal if and only if it contains a 3-sun. Vertices x and y are in the 3-sun
in G′ since G is a strongly chordal graph. In particular x belongs to the independent set of the
3-sun, since NG′(x) is a clique in G′. If y belongs to the independent set of the 3-sun then G is
not chordal. Thus y belongs to the clique of the 3-sun. Therefore only if y is adjacent to at least
two private neighbors of two incompatible vertices of NG(x) there is a 3-sun in G′, meaning that
y must be a guard in order to obtain a 3-sun in G′.

Corollary 3.5. Let G be a strongly chordal graph and let x be a simple vertex of G. Removing
an edge incident to x results in a strongly chordal graph.

Proof. Since x is a simple vertex, none of the vertices in N(x) are guards by their inclusion
ordered property. Thus by Lemma 3.4 the result follows.

Let G = (V, E) and G′ = (V,E ∪ F ) be two strongly chordal graphs such that E ∩ F = ∅
and F 6= ∅. Let x be a simple vertex of G′ and let (N0, N1, . . . , Nk) and (S1, . . . , Sk) be a
simple partition with respect to x. Let u ∈ Si, 1 ≤ i < k. We denote by pu the smallest index
i ≤ pu < k such that v ∈ Npu and vu ∈ E. We define the following set of edges:

C(x) = {uv | u ∈ Si, v ∈ Nj , i ≤ pu < j ≤ k}.

Observe that C(x) does not contain any edge of the form uv where u ∈ Si and v ∈ Ni, 1 ≤ i ≤ k.

Lemma 3.6. Let G = (V, E) and G′ = (V,E ∪ F ) be two strongly chordal graphs such that
E ∩ F = ∅ and F 6= ∅. There exists a simple vertex x of G′ such that F * D(x) ∪ C(x).

6



Proof. Let x be a simple vertex in G′, but not necessarily simple in G. If F * D(x)∪C(x) then
we are done; so assume that F ⊆ D(x)∪C(x). In this case we show that any vertex y 6= x that
is simple both G, is also simple in G′ and that F * D(y) ∪ C(y).

First we show by contradiction that if a vertex y is simple both in G and G′, then F *
D(y) ∪ C(y). Assume F ⊆ D(y) ∪ C(y), then D(y) = ∅. If not, since y is simplicial in G, we
would have NG(y) 6= NG′(y). Hence there would be at least one edge of F incident to y, i.e.,
not in D(y) ∪ C(y). However, if F ⊆ C(y), we show that y cannot be simple in G. Let us take
a simple partition (N0, N1, . . . , Nk) and (S1, . . . , Sk) in G′ with respect to y. We assumed that
F 6= ∅, so there exists at least one edge uv ∈ C(y) that belongs to F , such that u ∈ Si and
v ∈ Nj with i < j. By the definition of C(y), there exists also a vertex w ∈ Npu with pu < j
such that uw ∈ E, and therefore i 6= j. This implies that Sj 6= ∅ and every edge vz with z ∈ Sj

belongs to E. Hence w and v are two incompatible neighbors of y in G, which gives the desired
contradiction concluding this part of the proof.

Now we prove that y is indeed simple in G′ by distinguishing two cases. For the following
arguments we define (N0, N1, . . . , Nk) and (S1, . . . , Sk) as a simple partition of N(x) and S(x)
in G′. Observe also that NG(x) = NG′(x).

• y ∈ N(x): First we show that y ∈ N0. As F ⊆ D(x) ∪ C(x), all edges between vertices of
Ni and Si are also in G, for every 1 ≤ i ≤ k. This implies that if y is in Ni for any i 6= 0,
it must have a neighbor a ∈ Si such that ya ∈ E. However this implies that also xa ∈ E
since y is simplicial in G, giving a contradiction. Now, if y ∈ N0, then NG′(y) = NG′(y),
hence y is simple in G′ because x is.

• y /∈ N(x): In this case let us define NF (y) = NG′(y) \ NG(y). Then it is easy to notice
that NF (y) ⊆ N(x) and ya ∈ C(x) for every a ∈ NF (y). This implies that both NF (y)
and NG(y) are cliques, and if there are two incompatible vertices in NG′(y), then either
one of them belongs to NF (y) and the other one to NG(y), or they both belong to NG(y).

First we prove that for any two vertices a ∈ NF (y) and b ∈ NG(y), the edge ab is in E∪F ,
i.e, that NG′(y) is a clique in G′, and that they are compatible. If both a and b are in
N(x), then they are both adjacent and compatible, so we can assume that a ∈ Nj and
b /∈ N(x), implying that y ∈ Si with i < j. Then, by the definition of C(x), there exists
a vertex c ∈ Npy such that yc ∈ E, and, by the fact that y is simplicial in G, we know
that cb ∈ E as well. This implies that a is adjacent to b because NG(c) ⊂ NG(a) by the
inclusion property of the neighborhood of x. Besides c and b are compatible in G because
they are both in NG(y). Thus, either NG(c) ⊆ NG(b) or NG(b) ⊆ NG(c). In the first case x
would be adjacent to b since xc ∈ E, which is a contradiction. For the second case observe
that NG′(b) is the union of NG(b) with the endpoints of all edges in F incident to b. Since
b ∈ S(x), all such endpoints are in NG′(x) and we can conclude that NG′(b) ⊂ NG′(a)
since NG′(b) ⊆ NG(c) ∪ NG′(x) ⊆ NG′(c) ⊂ NG′(a).

If both a and b are in NG(y), then we only need to prove that they are compatible in G′.
By using the same arguments as the previous case and replacing c with a, we can show
that if either a, b ∈ N(x) or a ∈ N(x) and b ∈ S(x), they are compatible. What is left is
when both a and b are in S(x). Assume there is a neighbor a′ of a that is not adjacent
to b, and a neighbor b′ of b that is not adjacent to a. We show that this cannot happen,
by proving the existence of the edge a′b. Clearly, if both aa′ or bb′ belonged to E, then y
would not be simple in G. So let us assume that at least one of them, let us say aa′, is
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in F , so that a′ ∈ Nh and a ∈ Sg with 1 ≤ g < h ≤ k. Then there is a vertex c ∈ Npa so
that ca ∈ E. If bb′ ∈ E then cb ∈ E because y is simple in G, implying that a′b ∈ E ∪ F
since NG′(c) ⊆ NG′(a′). If bb′ /∈ E then b′ ∈ NG′(x), in particular b′ ∈ Nf , for f < g since
b′ and a are non-adjacent. Then by NG′(b′) ⊆ NG′(c) ⊆ NG′(a′) we obtain a′b ∈ E ∪ F .

Therefore no two vertices adjacent to y are incompatible in G′ which implies that y is a simple
vertex in both graphs G and G′ such that F * D(y) ∪ C(y).

The following lemma describes that in a strongly chordal graph we can turn the neighborhood
of any vertex into a clique by adding edges so that the strongly chordal property is preserved.
It is known that a perfect elimination ordering of a chordal graph G = (V, E) is also a perfect
elimination ordering for G′ = (V,E ∪D(x)) where x is any vertex of G [23]. One might suspect
that a similar result holds for strongly chordal graphs with respect to strong elimination order-
ings. Unfortunately this is not the case. However by considering simple elimination orderings
we are able to prove the following lemma.

Lemma 3.7. Let G = (V, E) be a strongly chordal graph and let x be a vertex of G. Then
G′ = (V, E ∪ D(x)) is a strongly chordal graph.

Proof. Since G is strongly chordal it admits a simple elimination ordering. Let β be any simple
elimination ordering of G. We prove that β is also a simple elimination ordering of G′. Observe
first that β is a perfect elimination ordering of G′ [23].

Assume for contradiction that β is not a simple elimination ordering of G′. Then there exist
two adjacent vertices w1, w2 that are incompatible in G′

i, for some 1 ≤ i ≤ n. This means that
there exist at least two vertices z1 and z2 such that w1z1, w2z2 ∈ E(G′

i) and w1z2, w2z1 /∈ E(G′
i).

Since β is simple for G and we only add edges in G′, at least one of the edges w1z1 w2z2 is
added because of x. If both of them are added because of x then all four vertices w1, w2, z1, z2

are adjacent to x in G and w1, w2 are compatible in G′
i.

Without loss of generality assume that xw1, xz1 ∈ E(G) so that w1z1 ∈ E(G′
i). Now if

xw2 ∈ E(G) or xz2 ∈ E(G) then z1w2 ∈ E(G′
i) or z2w1 ∈ E(G′

i), respectively, meaning that
w1, w2 are incompatible in G′

i. Thus xw2, xz2 /∈ E(G). Remember that by assumption we
have β−1(w1), β−1(w2), β−1(z1), β−1(z2) ≥ i. We consider now the position of x in the ordering
β. If β−1(x) < i then β is not a perfect elimination ordering for G since xw1, xz1 ∈ E(G),
β−1(x) < β−1(w1) and β−1(x) < β−1(z1). Hence we are left with the case of β−1(x) ≥ i. But
then in such a case β is not a simple elimination ordering for Gi since w1, w2 are incompatible
in Gi because w1x,w2z2 ∈ E(G) and w2x, z2x /∈ E(G).

Therefore in all cases we get a contradiction and thus β is a simple elimination ordering of
G′ which implies that G′ is strongly chordal.

In the following two statements we let G = (V, E) and G′ = (V, E ∪ F ) be two strongly
chordal graphs such that E ∩ F = ∅ and F 6= ∅. Let x be simple vertex of G′ such that
F * D(x) ∪ C(x). By Lemma 3.6 such a vertex exists. We denote by (N0, N1, . . . , Nk) and
(S1, . . . , Sk) a simple partition with respect to x in G′.

Observation 3.8. Let H = (V, E ∪ D(x) ∪ C(x)).

1. For any two vertices u ∈ Ni and v ∈ Nj, 1 ≤ i < j ≤ k, NH [u] ⊆ NH [v].

2. Let u ∈ Ni and v ∈ Nj be two incompatible vertices in H, 1 ≤ i, j ≤ k. Then i = j and
their private neighbors in H are exactly their private neighbors in G.
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3. For every edge yu ∈ C(x) such that u ∈ Si and y ∈ Nj, i < j, there is a vertex w ∈ Npu

such that i ≤ pu < j, wu ∈ E and NH [w] ⊆ NH [y].

Proof. First observe that because of D(x), the set NH(x) is a clique and contains exactly the
vertices of the sets N0, N1, . . . , Nk. Assume that the first statement does not hold. Let u′ be a
vertex adjacent to u and non-adjacent to v in H. If u′u ∈ C(x), then pu′ < i and u′ is adjacent
to every vertex of Ni, . . . , Nj , . . . , Nk. If u′u /∈ C(x), then it must be pu′ = i, and u′ is adjacent
to every vertex of Ni+1, . . . , Nj , . . . , Nk, proving the first statement and that the only case for
which NH [u] * NH [v], can be when i = j. Assume then that u, v ∈ Nj are incompatible in
H, and let u′ and v′ be two private neighbors in H with respect to v and u, respectively; that
is, uu′, vv′ are edges of H and u′v, v′u are non-edges of H. We show that both uu′ and vv′

are in E. Assume for the sake of contradiction that uu′ in F (the case for vv′ ∈ F is purely
symmetric). Then uu′ ∈ C(x), and u′ ∈ Si such that i ≤ pu′ < j. This implies that u′ must
be adjacent to all vertices of Nj in H, including v, giving the desired contradiction and proving
the second statement. For showing the third, notice that by the definition of C(x) we have that
i ≤ pu < j, and that there is always a vertex w ∈ Npu such that wu ∈ E. Hence by applying
the first statement it follows that NH [w] ⊆ NH [y], concluding the proof.

For the next statement observe that any simple (or strong) elimination ordering of G is not
necessarily a simple (or strong) elimination ordering for H.

Lemma 3.9. The graph H = (V, E ∪ D(x) ∪ C(x)) is a strongly chordal graph.

Proof. First notice that by Lemma 3.7 the graph H ′ = (V, E∪D(x)) is strongly chordal. Because
the vertices adjacent to x are the same in all considered graphs, we denote them by N(x). To
what follows we denote by G the graph H ′. Also notice that every added edge in H is incident
to vertices of N(x). Finally we need to point out that the set S(x) is defined in G′, but we will
use it in H, so that the vertices are the same, but the edges between N(x) and S(x) are those
defined in H.

We start by proving that H is chordal. Assume for a contradiction that H has an induced
chordless cycle C of length greater than 3, then we show that there exists a chordless cycle also
in G. Since both G′ and H[V \N(x)] = G[V \N(x)] are chordal, and x is simplicial, a chordless
cycle in H must have at least one vertex in N(x), but not more than two since N(x) is a clique.
The rest of the cycle consists in a chordless path P completely contained outside N(x), so that
H[P ] = G[P ].

1. C ∩ N(x) = {u, v}: As part of the cycle, u and v must be incompatible in H. By the
second statement of Observation 3.8 we know that u, v ∈ Ni for some 1 ≤ i ≤ k and their
private neighbors are the same in H and in G. Then a chordless cycle that contains u and
v in H results in a chordless cycle in G, which is a contradiction since G is chordal.

2. C ∩N(x) = {y}: In this case, let us define a ∈ S(x) and b ∈ S(x) as the neighbors of y in
C. If both ya and yb are in E, then we get a contradiction as the cycle exists in G as well.
So we need to distinguish two more cases, where at least one of the two edges is in F .

(a) ya ∈ F and yb ∈ E: This implies that ya ∈ C(x), and, by the third statement of
Observation 3.8, there exists a vertex w ∈ Npa such that wa ∈ E. As wy ∈ E, if a
and b are private neighbors of w and y respectively, we get the same case as when C
intersects N(x) in two vertices. Therefore w must be adjacent to b both in H and G.
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Furthermore w is non-adjacent to any other vertex of P , since NH [w] ⊆ NH [y] and
by assumption y is non-adjacent to any other vertex of P . However this implies the
existence of the cycle P ∪ {w} in H as well as in G, since both wa and wb are in E.

(b) ya ∈ F and yb ∈ F : In this case, by the third statement of Observation 3.8, there are
two vertices w1 ∈ Npa and w2 ∈ Npb

, such that w1a and w1b are in E. If w1 = w2 we
know that P ∪{w1} is a chordless cycle both in G and in H because NH [w1] ⊂ NH [y]
and therefore w1 is not adjacent to any vertex of P \ {a, b}. If w1 6= w2 and at
least one of w1b or w2a is in E, then P forms a chordless cycle with either w1 or
w2, respectively. Finally, if w1 6= w2 and neither of w1b and w2a are in H, then
P ∪ {w1, w1} is a chordless cycle in G. Notice that all these cycles exist in G as all
their edges belong to E, and neither w1 nor w2 are incident to any vertex of P \{a, b}
as we observed for the case w1 = w2.

Next we show that H is strongly chordal. This part of the proof makes use of Lemma 2.3
and Observation 3.8. The underlying idea is to assume for contradiction that there is a l-sun in
H, and then, by using Observation 3.8, find a partial sun where all edges between the vertices of
the independent set and the vertices of the clique of the sun are also in G. At this point we apply
Lemma 2.3 and show that G is not strongly chordal, getting the desired contradiction. As we
proved that H is chordal, we can assume that, if H is not strongly chordal, it must contain an
l-sun, with l ≥ 3. Let K = {c1, . . . , cl} and I = {s1, . . . , sl} be the vertices of the clique and the
independent set, respectively, of the l-sun. Recall that all vertices of an l-sun are incompatible
and thus no vertex is simple.

Let us start by showing that x cannot be part of the l-sun. Assume that x belongs to
the l-sun. Then it must belong to I because its neighborhood is a clique, and in particular
N(x) ∩ K = {ci, cj} for some 1 ≤ i < j ≤ l. Hence, it must also be that N(x) ∩ I = ∅. Since
ci and cj must be incompatible, by the second statement of Observation 3.8 they both belong
to the same Nh for some 1 ≤ h ≤ k and their private neighbors are the same in G and H. At
this point it is important to notice that the neighbors of ci and cj in I \ {x}, are, in fact, among
such private neighbors. Since the rest of the l-sun must be completely contained in V \ N [x],
we conclude that the only edges of the l-sun that might not be in G, are those from ci and cj to
the rest of K. Therefore applying Lemma 2.3 we obtain that G is not strongly chordal.

Now we continue by assuming that x is not part of the l-sun and observing that at least one
vertex of K ∪ I belongs to N(x). In particular, if I ∩ N(x) 6= ∅, then |I ∩ N(x)| = 1 and thus
|K ∩N(x)| ≤ 2. Otherwise, if I ∩N(x) = ∅, then 1 ≤ |K ∩N(x)| ≤ l. Based on this observation
we will distinguish the following cases.

1. |K ∩ N(x)| ≥ 2: Let us start by considering |K ∩ N(x)| > 2 or {ci, cj} ∈ K ∩ N(x) such
that ci and cj are not consecutive in K, i.e., they do not have a common neighbor in I and
therefore I ∩N(x) = ∅. Let CN = K ∩N(x). Observe that every vertex in N(CN )∩ I is a
private neighbor in H. By the second statement of Observation 3.8, all edges between CN

and I are also in G. Since the rest of the l-sun is completely contained in V \N [x], we apply
Lemma 2.3 and reach a contradiction that G is not strongly chordal. If {ci, cj} ∈ K∩N(x)
such that ci and cj are consecutive and have a common neighbor s in I, we might have a
problem because we cannot guarantee that sci and scj are in E. However, in this case, we
can create another l-sun by replacing s with x and get a contradiction because x cannot
be part of a sun.
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2. I ∩ N(x) = {s} and K ∩ N(x) = ∅: Let us define c1 and c2 as the two neighbors of s in
K. If both sc1 and sc2 are in E, then the whole l-sun is also in G, so at least one of them
must belong to F and therefore to C(x).

(a) sc1 ∈ F and sc2 ∈ E: Using the third statement of Observation 3.8 there exists
w ∈ Npc1

such that wc1 ∈ E and NH [w] ⊆ NH [s]. Notice that c1c2 ∈ E, so that
wc2 ∈ E or we have a chordless cycle {w, s, c2, c1} in G. Then replacing s with w in
the l-sun, we get a new l-sun, where all edges belong to E, reaching a contradiction
to the strongly chordal graph G. Notice that w is not adjacent to any other vertex
of the l-sun than c1 and c2 because s is not and NH [w] ⊆ NH [s].

(b) sc1 ∈ F and sc2 ∈ F : By the third statement of Observation 3.8 there exist w1 and
w2 such that w1c1 ∈ E, w2c2 ∈ E, NH [w1] ⊆ NH [s] and NH [w2] ⊆ NH [s]. If w1 = w2,
then we get the same situation as the previous case. Otherwise let us point out that
{w1, w2, c2, c1} forms a chordless cycle in G unless either w1c2 or w2c1 or both are in
E. In each case we can choose either w1 or w2, accordingly, to replace s in the l-sun
and create a new one that is completely contained also in G.

3. I ∩ N(x) = {s1} and K ∩ N(x) = {c2}: We define c1 as the other neighbor of s1 in K, s2

as the other neighbor of c2 in I and c3 as the second neighbor of s2 in K. In this case if
both s1c1 ∈ E and c2s2 ∈ E we apply Lemma 2.3 and reach a contradiction. Otherwise
we distinguish three cases.

(a) s1c1 ∈ F and c2s2 ∈ E: By the third statement of Observation 3.8, there exists
w ∈ N(x) such that wc1 ∈ E and NH [w] ⊆ NH [s1]. Then we replace s1 with w in
the l-sun and notice that all edges between K and I \ {s} ∪ {w} are in E. Thus by
Lemma 2.3 we reach a contradiction.

(b) s1c1 ∈ E and c2s2 ∈ F : By the third statement of Observation 3.8, there exists
w ∈ N(x) such that ws2 ∈ E and NH [w] ⊆ NH [c2]. Since w ∈ N(x), we know
that ws1 ∈ E. Then we replace c2 with w in the l-sun, so that all edges between
K \ {c2} ∪ {w} and I are in E and use Lemma 2.3 to get the desired contradiction.

(c) s1c1 ∈ F and c2s2 ∈ F : By the third statement of Observation 3.8, there exist w1 ∈
N(x) such that w1c1 ∈ E and NH [w1] ⊆ NH [s1] and w2 ∈ N(x) such that w2s2 ∈ E
and NH [w2] ⊆ NH [c2]. Observe that w1w2 ∈ E. If w1 6= w2 then we can replace
s1 with w1 and c2 with w2 in the l-sun, so that we create a new (possibly partial)
l-sun where all the edges between the vertices of the independent set I \ {s} ∪ {w1}
and the vertices of the clique K \ {c2} ∪ {w2} are in E. Hence we apply Lemma 2.3
and obtain that G is not strongly chordal. If w1 = w2, then the independent set
I \ {s1, s2}∪{w1} and the clique K \ {c2} induce an (l− 1)-sun that is also contained
in G since all its edges are in E, concluding the proof of this case.

4. I ∩N(x) = ∅ and K ∩N(x) = {c2}: We define s1 and s2 the two neighbors of c2 in I, and
c1 and c3 the other neighbor of s1 and s2, respectively, in K. Notice that the whole l-sun
except c2 is in V \N [x]. If the two edges c2s1 and c2s2 are in E, we apply Lemma 2.3 and
obtain a contradiction. We then distinguish the two cases in which exactly one of them is
in F , does not matter which, or both of them are.

(a) c2s1 ∈ F and c2s2 ∈ E: By the third statement of Observation 3.8, there exists
w ∈ N(x) such that ws1 ∈ E and NH [w] ⊆ NH [c2]. Observe that wc2 ∈ E. Now,
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according to whether c1c2 and c3c2 belong to F or not, we have different chordless
cycles in G involving w,c2 and s1, and some or all of c1, c3 and s2. However, in each
case, such cycle cannot exist in G, so at least the edge wc1 must be in E.
If w is not adjacent to neither c3 nor s2, then both c2c3 and c2c1 must be in G
not to have a chordless cycle. However now there is a 3-sun in G involving x with
{w, c2, c1} as its clique and {x, s1, c3} as its independent set, which is a contradiction.
If w is adjacent to c1 and c3 in G, but not to s2, then c2c3 ∈ E or {c2, w, c3, s2} is
a C4 in G. In this case, if c2c1 /∈ E, then we get a 3-sun in G with {w, c2, c3} its
clique and {c1, x, s2} its independent set. Thus c2c1 ∈ E. Now if c2ci /∈ E for any
4 ≤ i ≤ l or l = 3 then we have a 4-sun with clique {w, c2, c1, c3} and independent
set {x, s1, s2, ci} or {x, s1, s2, s3}. We conclude that c2ci ∈ E for every 4 ≤ i ≤ l,
that is, K is a clique also in G. Observe that at this point we also have wci ∈ E
for every 1 ≤ i ≤ l. In fact, if there is an i for which wci /∈ E then we have a
3-sun with clique {w, c1, c2} and independent set {x, s1, ci}. Then since ws2 /∈ E, we
have that {w, c1, c2, . . . , cl} and {x, s1, s2, . . . , sl} form an (l + 1)-sun in G reaching
a contradiction. Hence as a final contradiction in this case we consider that w being
adjacent to s1 and s2 in G. Observe that w is not adjacent to any other vertex in I
than s1 and s2 since NH [w] ⊆ NH [c2]. In this case we replace c2 with w in the l-sun
and apply Lemma 2.3 to obtain that G is not strongly chordal because now all edges
between I and K \ {c2} ∪ {w} are in E.

(b) c2s1 ∈ F and c2s2 ∈ F : By the third statement of Observation 3.8, there exist
w1 ∈ N(x) such that w1s1 ∈ E and NH [w1] ⊆ NH [c2], and w2 ∈ N(x) such that
w2s1 ∈ E and NH [w2] ⊆ NH [c2]. If w = w1 = w2, then wc1 and wc2 are in E or
w, s1, c1, c2, s2 is a chordless cycle in G. Hence we replace c2 with w in the l-sun
and apply Lemma 2.3 to reach a contradiction. If w1 6= w2 then we know that w1c1,
w2c3 and at least one of w1c3 or w2c1 must be in E. If not, because w1w2 ∈ E,
{w1, w2, s2, c3, c2, s1} induces a chordless cycle in G. Also notice that if w1c3 ∈ E
then w1s2 /∈ E, and if w2c1 ∈ E then w2s1 /∈ E, for otherwise w1 or w2, respectively,
can be used as w in the case when w1 = w2 = w in order to yield a contradiction.
Given this, if w1c3 ∈ E then w2s1 /∈ E and if w2c1 ∈ E then w1s2 /∈ E, for otherwise
{w2, s1, c1, c3} and {w1, c1, c3, s2}, respectively, would induce chordless cycles in G.
We can therefore reduce ourselves to three cases, two of which are equivalent. (i)
w1c3 ∈ E and w2c1 /∈ E (symmetric to w1c3 /∈ E and w2c1 ∈ E): In this case we
have a 3-sun in G, with {w1, w2, c3} its clique and {x, c1, s2} its independent set.
(ii) w1c3 ∈ E and w2c1 ∈ E: If l = 3, then let I = {s1, s2, s3}. We know that
neither w1 nor w2 is adjacent to s3 because c2 is not and NH [w1] ⊆ NH [c2] and
NH [w2] ⊆ NH [c2]. Hence there is a 4-sun in G with {w1, w2, c2, c3} its clique and
{x, s1, s2, s3} its independent set. Now we consider the case for l ≥ 4. If there exists
a vertex ci ∈ K such that ciw1 /∈ E and ciw2 /∈ E, then we can use ci as we used
s3 in the previous case. If every vertex ci ∈ K is adjacent to both w1 and w2 in G,
then we get an (l + 1)-sun in G, with K \ {c2} ∪ {w1, w2} its clique and I ∪ {x} its
independent set. Finally, if there is at least one vertex ci ∈ K such that ciw1 /∈ E
and ciw2 ∈ E (or vice-versa), then we get a 3-sun with {w1, w2, c1} its clique and
{x, s1, ci} its independent set.

In all cases we reach a contradiction to the existence of an l-sun in H implying that H is strongly
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chordal.

Now we are occupied with the necessary tools for proving the next important property of
strongly chordal graphs.

Lemma 3.10. Let G = (V,E) and G′ = (V,E ∪ F ) be two strongly chordal graphs such that
E ∩ F = ∅ and F 6= ∅. Then there exists an edge f ∈ F such that G′ − f is a strongly chordal
graph.

Proof. We prove the statement by induction on the number of vertices |V |. If |V | ≤ 3 all graphs
are strongly chordal and the statement holds. Assume that the statement is true for |V | − 1
vertices. Let x be a simple vertex of G′ such that F * D(x) ∪ C(x). By Lemma 3.6 such a
vertex always exist in G′. If there is an edge f of F incident to x then by Corollary 3.5 G′ − f
is strongly chordal. Otherwise, no edge of F is incident to x and by Lemma 3.6 there is always
an edge of F incident to a vertex of V \ NG′ [x].

Now let Gx = (V \ {x}, E ∪ D(x) ∪ C(x)). Gx is strongly chordal by Lemma 3.9. Also the
graph G′

x = G′[V \ {x}] is strongly chordal as an induced subgraph of a strongly chordal graph.
Notice that the added edges of G′

x are given by the set F \ (D(x) ∪ C(x)) which by Lemma 3.6
is non-empty. Furthermore it is important to notice that Gx is a subgraph of G′

x since the set
of edges D(x), C(x), and P (x) are edges of G′. Both graphs Gx and G′

x are on |V | − 1 vertices
and by the induction hypothesis there is always an edge f ∈ F \ (D(x)∪C(x)) such that G′

x − f
is strongly chordal.

Let (N0, N1, . . . , Nk) and (S1, . . . , Sk) be a simple partition with respect to x in G′. Let
us now show if the edge that is picked at the induction step is between vertices of N(x) and
S(x) then there is an edge f = uv ∈ F \ (D(x) ∪ C(x)) such that u ∈ Ni and v ∈ Si and
G′

x − f is strongly chordal. If at the induction step uv is picked in such a way then we are done.
Thus assume that u ∈ Nj and v ∈ Si for i < j. We show first that there is an edge of the
form v′v ∈ F \ (D(x) ∪ C(x)) where v′ ∈ Ni. By definition of C(x), we know that pv ≥ j > i
because uv ∈ F \ (D(x) ∪ C(x)). Then by the smallest choice of pv, every edge incident to
v and the vertices of Ni, . . . , Npv−1 belongs to F \ (D(x) ∪ C(x)). Hence there is an edge of
the form v′v ∈ F \ (D(x) ∪ C(x)) where v′ ∈ Ni. Now we show that the graph G′

x − {v′v} is
strongly chordal by using the fact that G′

x − {uv} is strongly chordal. Assume for the sake of
contradiction that G′

x − {v′v} is not strongly chordal. Since we remove only a single edge from
a strongly chordal graph G′

x, there is a chordless cycle on four vertices or by Observation 3.1
there is a 3-sun in G′

x − {v′v}. If there is a chordless cycle in G′
x − {v′v} then let va and vb

be the two non-adjacent vertices that are both adjacent to v′ and v in G′
x. By the fact that

NG′
x
[v′] ⊆ NG′

x
[u] (v′ ∈ Ni and u ∈ Nj), u is adjacent to both vertices in G′

x and then we reach a
contradiction to the chordal graph G′

x −{uv}. If there is a 3-sun in G′
x −{v′v} then we consider

two cases: (i) if v′ belongs to the clique of the 3-sun then by NG′
x
[v′] ⊆ NG′

x
[u] we know that u

is also adjacent to the vertices of the clique of the 3-sun; thus we reach a contradiction to the
strongly chordal graph G′

x − {uv}. (ii) If v′ belongs to the independent set of the 3-sun then
by NG′

x
[v′] ⊆ NG′

x
[u], u is adjacent to the two vertices of the clique. If u is adjacent to at least

one further vertex of the 3-sun then G′
x − {uv} is not chordal. Otherwise the graph G′

x − {uv}
has a 3-sun and thus in both cases we reach a contradiction. Therefore if the edge f of the
graph G′

x − f is between vertices of N(x) and S(x) then there is an edge f ′ = uv such that
f ′ ∈ F \ (D(x) ∪ C(x)), u ∈ Ni, v ∈ Si and the graph G′

x − {uv} is strongly chordal.
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Next we show that G′−f is strongly chordal by constructing the graph according to G′
x−f .

We prove that G′ − f is strongly chordal by using Lemma 3.2 and showing that x is a simple
vertex in G′ − f . If f is not between N(x) and S(x) then x is simple in G′ − f since x is simple
in G′. Otherwise because of the previous result there is an edge f ∈ F \ (D(x) ∪ C(x) ∪ P (x))
such that the endpoints of f belong to the sets Ni and Si for some 1 ≤ i ≤ k. Let u and v be the
endpoints of f such that u ∈ Ni and v ∈ Si. Remember that in G′ we have NG′(Ni−1) ⊆ NG′(Ni).
In the graph G′ − f we have that NG′−f (Ni−1) ⊆ NG′−f (u) ⊂ NG′−f (Ni \ {u}) meaning that
there is an inclusion set property for N(x). Therefore x is a simple vertex of G′ − f and thus
G′ − f is strongly chordal which completes the proof.

Theorem 3.11. Strongly chordal graphs are sandwich monotone.

Proof. Given G and G′ as in the premise of Lemma 3.10 we know that G′−f is strongly chordal
graph. The same argument can be applied to G and G′′ = G′ − f repeatedly, until we get the
smaller graph G.

By the previous theorem and Observation 2.5 we have the following property of minimal
strongly chordal completions.

Corollary 3.12. Let G = (V,E) be an arbitrary graph and let G′ = (V, E ∪ F ) be a strongly
chordal graph such that E∩F = ∅ and F 6= ∅. G′ is a minimal strongly chordal completion if and
only if no edge of F can be removed from G′ without destroying the strongly chordal property.

It is known that an edge f can be removed from a chordal graph if and only if f is not the
unique chord of a C4 [23]. We prove a similar characterization for strongly chordal graphs. We
call a chord of a 3-sun an edge between a vertex of the independent set and a vertex of the
clique.

Lemma 3.13. Let G be a strongly chordal graph and let f be an edge of G. G− f is a strongly
chordal graph if and only if f is not the unique chord of a C4 or the unique chord of a 3-sun.

Proof. Let G−f be a non-strongly chordal graph. Assume first that G−f has a chordless cycle
of length greater than 4. Then adding back f is not sufficient to kill the cycle. If G−f has a
k-sun, for k > 3, as an induced subgraph then adding back the edge f would create another
k′-sun, k′ ≥ 3, by Observation 3.1 and thus it wouldn’t be strongly chordal. Thus we conclude
that G is not a strongly chordal graph reaching a contradiction.

The previous lemma leads to the following characterization of minimal strongly chordal
completions.

Theorem 3.14. Let G = (V,E) be a graph and G′ = (V, E∪F ) be a strongly chordal completion
of G. G′ is a minimal strongly chordal completion if and only if every f ∈ F is the unique chord
of a C4 or a 3-sun in G′.

Proof. If G′ is a minimal strongly chordal completion of G then G′ − f is not strongly chordal
for any edge f ∈ F by definition of minimality. Thus G′ − f contains either a chordless cycle
or a chordless 3-sun as an induced subgraph by Lemma 3.13. If every edge f ∈ F is the unique
chord of a C4 or a 3-sun in G′ then G′ − f is not strongly chordal and by Corollary 3.12 G′ is
minimal.

14



4 Chordal bipartite graphs are sandwich monotone

A bipartite graph B = (X, Y, E) is chordal bipartite if it does not contain an induced Ck for k ≥ 6.
In this section we show that chordal bipartite graphs are sandwich monotone, answering an open
question of Bakony and Bono [2]. Our approach is to make use of a well known relationship
between the classes of strongly chordal graphs and chordal bipartite graphs and Lemma 3.10.
Using our result, we are able to characterize minimal chordal bipartite completions of arbitrary
bipartite graphs.

Theorem 4.1 ([7]). Given bipartite graph B = (X, Y, E), let G be the graph obtained from B
by adding edges between pairs of vertices in X so that X becomes a clique. Then, B is chordal
bipartite if and only if G is strongly chordal.

Lemma 4.2. Let B = (X, Y, E) and B′ = (X,Y,E∪F ) be chordal bipartite graphs with E∩F = ∅
and F 6= ∅. Then, there exists an edge f ∈ F such that B′ − f is chordal bipartite.

Proof. Let C = {vw | v ∈ X, w ∈ X, v 6= w}. First construct the following graphs: G =
((X ∪ Y ), (E ∪ C)) and G′ = ((X ∪ Y ), (E ∪ C ∪ F )). By Theorem 4.1, G and G′ are strongly
chordal. By, Lemma 3.10, there exists f ∈ F such that G′ − f is strongly chordal. The desired
chordal bipartite graph B′ − f is obtained from G′ − f , via Theorem 4.1, by simply deleting all
the edges in C.

Hence the next theorem follows.

Theorem 4.3. Chordal bipartite graphs are sandwich monotone.

From the theorem above and Observation 2.5 we have the following corollary.

Corollary 4.4. Let B = (X, Y,E) be an arbitrary bipartite graph and let B′ = (X, Y, E ∪F ) be
a chordal bipartite graph such that E ∩ F = ∅. B′ is a minimal chordal bipartite completion of
B if and only if for any f ∈ F , B′ − f is not chordal bipartite.

Lemma 4.5. Let B be a chordal bipartite graph and f be an edge of B. B − f is a chordal
bipartite graph if and only if f is not the unique chord of a C6 in B.

Proof. If f is the unique chord of a C6 in B, then B − f contains a C6 and hence is not chordal
bipartite. For the other direction, observe that if the deletion of a single edge from a chordal
bipartite graph creates an induced cycle on six or more vertices, then the created induced cycle
must have exactly six vertices. Thus, if B−f is not chordal bipartite, then f must be the unique
chord of a C6 in B.

Finally, we have the following characterization of minimal chordal bipartite completions:

Theorem 4.6. Let B = (X, Y, E) be a bipartite graph and let B′ = (X,Y, E ∪ F ) be a chordal
bipartite completion of B. B′ is a minimal chordal bipartite completion if and only if every
f ∈ F is the unique chord of a C6 in B′.

Proof. Follows from Corollary 4.4 and Lemma 4.5.
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5 Concluding remarks

We have proved that strongly chordal graph and chordal bipartite graphs are sandwich mono-
tone. The best running time for recognizing those graphs is O(min{m log n, n2}) [20, 25]. Hence
by applying a simple algorithm proposed in [15] we obtain algorithms for computing minimal
completions into both graph classes of arbitrary graphs with running time O(n4(min{m log n, n2})).
We strongly believe that such a running time can be improved. Furthermore problems that in-
volve listing all strongly chordal graphs (or chordal bipartite graphs) between a given pair of
graphs where at least one of the input pair is strongly chordal (or chordal bipartite) can be
efficiently solved by generalizing the results in [17] and applying Proposition 2.6.

A graph is weakly chordal if neither the graph nor its complement contains a chordless cycle
longer than 4. Despite their somewhat misleading name, chordal bipartite graphs are exactly the
graphs that are both weakly chordal and bipartite. Minimum weakly chordal completions are
NP-hard to compute [4], and we do not yet know whether minimal weakly chordal completions
can be computed or recognized in polynomial time. We would like to know whether weakly
chordal graphs are sandwich monotone. The resolution of this question in the affirmative would
answer the above questions about minimal weakly chordal completions. Another interesting
question to resolve is whether minimum chordal bipartite completions are NP-hard to compute.
This is widely believed, but no proof of it exists to our knowledge. Note that the related sandwich
problem was solved only quite recently [9, 24].
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