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A complete characterisation of the

linear clique-width of path powers∗

Pinar Heggernes† Daniel Meister† Charis Papadopoulos‡

Abstract

A k-path power is the k-power graph of a simple path of arbitrary length. Path powers
form a non-trivial subclass of proper interval graphs. Their clique-width is not bounded by
a constant, and no polynomial-time algorithm is known for computing their clique-width or
linear clique-width. We show that k-path powers above a certain size have linear clique-width
exactly k + 2, providing the first complete characterisation of the linear clique-width of a
graph class of unbounded clique-width. Our characterisation results in a simple linear-time
algorithm for computing the linear clique-width of all path powers.

1 Introduction

Clique-width is a graph parameter that describes the structure of a graph and its behaviour
with respect to hard problems [6]. Many NP-hard graph problems become solvable in poly-
nomial time on graphs whose clique-width is bounded by a constant [21, 26]. If the problem,
in addition, is expressible in a certain type of monadic second order logic, it becomes fixed
parameter tractable when parameterised by clique-width and a corresponding clique-width ex-
pression is given [7]. Clique-width can be viewed as a generalisation of the more widely studied
parameter treewidth, since there are graphs of bounded clique-width but unbounded treewidth
(e.g., complete graphs), whereas graphs of bounded treewidth have bounded clique-width [9].
As pathwidth is a restriction on treewidth, linear clique-width is a restriction on clique-width,
and hence graphs of bounded clique-width might have unbounded linear clique-width (e.g.,
cographs [16]). Both clique-width and linear clique-width are NP-hard to compute [11]. These
two closely related graph parameters have received much attention recently, and the interest in
them is increasing [4, 7, 9, 13, 8, 1, 10, 23, 24, 2, 5, 16, 3, 11, 14, 15, 22, 20, 17, 12].

In this paper, we give a complete characterisation of the linear clique-width of path pow-
ers, which form a subclass of proper interval graphs. Hereditary subclasses of proper interval
graphs have bounded clique-width [22], however path powers are not hereditary, and they have
unbounded clique-width [13] and thus unbounded linear clique-width. This is the first graph
class of unbounded clique-width whose linear clique-width is hereby completely characterised.
More precisely, we show that k-path powers above a certain size have linear clique-width exactly
k + 2. A k-path power is the k-power graph of a simple path. We also characterise the linear
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clique-width of smaller k-path powers. Our characterisation results in a simple linear-time al-
gorithm for computing the linear clique-width of path powers, making this the first graph class
on which clique-width or linear clique-width is unbounded, and linear clique-width can be com-
puted in polynomial time. In addition, we give a characterisation of the linear clique-width of
path powers through forbidden induced subgraphs. The main difficulty to overcome in obtaining
these results has been to prove a tight lower bound on the linear clique-width of path powers.

To review related results, we can mention that graphs of clique-width at most 2 [9] and
at most 3 [4] can be recognised in polynomial time. Also graphs of linear clique-width at
most 2 [14] and at most 3 [20] can be recognised in polynomial time. Several graph classes
have been studied with respect to whether or not their clique-width is bounded by a constant
[1, 2, 3, 10, 13, 17, 22, 23, 24]. For specific graph classes of unbounded clique-width and thus
unbounded linear clique-width, little is known on the computation of their clique-width or linear
clique-width. So far the only result that computes either of these parameters exactly is given
by Golumbic and Rotics [13], who show that a k × k grid has clique-width k + 1. (Notice that
for fixed k, there are infinitely many k-path powers, but only one k × k grid.) Other than
this, mainly some upper [11, 17] and lower [13, 5] bounds have been given some of which are
mentioned below. Typical for lower bounds is that they are not tight, and therefore they do not
lead to exact computation of the clique-width or the linear clique-width efficiently. For lower
bounds, Golumbic and Rotics gave lower bounds on the clique-width of some subclasses of proper
interval graphs and permutation graphs [13], and Corneil and Rotics showed an exponential gap
between clique-width and treewidth [5].

Specifically for path powers, the results of Gurski and Wanke on the linear clique-width of
power graphs imply that the linear clique-width of a k-path power is at most (k + 1)2 [17].
Fellows et al. showed that the linear clique-width of a graph is bounded by its pathwidth plus 2
[11], which gives k +2 as an upper bound on the linear clique-width of k-path powers. For lower
bounds, Golumbic and Rotics showed that the clique-width and thus the linear clique-width
of a k-path power on (k + 1)2 vertices is at least k + 1 [13]. The authors conjecture that the
clique-width of k-path powers on (k + 1)2 vertices is exactly k + 2 [13]. This conjecture is still
open. The same upper and lower bounds are still the best known bounds also on the linear
clique-width of k-path powers on (k + 1)2 vertices. In this paper, we prove the conjecture to be
true for linear clique-width.

The results that we present in this paper contribute to better understanding of linear clique-
width and clique-width. The knowledge on these graph parameters is still limited, and there is
no general intuition on what makes a graph structurally more complicated (larger clique-width)
than other graphs. To prove the lower bound k + 2 on the above mentioned k-path powers
(in Section 5), the technique we apply is through identifying maximal k-path powers of linear
clique-width at most k + 1 (in Section 4).

2 Basic definitions, notation and linear clique-width

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E),
we denote its vertex and edge set by V (G) = V and E(G) = E, respectively. Two vertices u
and v of G are called adjacent if uv ∈ E; if uv 6∈ E then u and v are non-adjacent. A path in
G is a sequence of vertices (v1, v2, . . . , vl) such that vivi+1 ∈ E for 1 ≤ i ≤ l − 1. For a vertex
set S ⊆ V , the subgraph of G induced by S is denoted by G[S]. Moreover, we denote by G−v
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the graph G[V \ {v}]. The neighbourhood of a vertex x in G is NG(x) = {v | xv ∈ E} and its
degree is |NG(x)|. For two vertices x and y, if another vertex z is adjacent to exactly one of
them then we say that z distinguishes x and y.

Let G and H be two vertex-disjoint graphs. The disjoint union of G and H is the graph
with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The notion of clique-width was first
introduced in [6]. The clique-width of a graph G is the minimum number of labels needed to
construct G using the following four operations: create new vertex with label i, disjoint union,
change all labels i to j, add all edges between vertices with label i and vertices with label j where
i 6= j. The linear clique-width of a graph, denoted by lcwd(G), is introduced in [16] and defined
by the same operations as above with the restriction that at least one of the operands of the
disjoint union operation must be a graph on a single vertex. This results in a linear structure,
and linear clique-width can be viewed as a graph layout problem [15, 19].

A layout for a graph G = (V, E) is a linear ordering of its vertices, usually defined as a
bijective mapping from the set {1, . . . , |V |} to V . For A ⊆ V , a group in A is a maximal set
of vertices with the same neighbourhood in V \ A. Note that two groups in A are either equal
or disjoint, implying that the group relation defines a partition of A. By νG(A), we denote the
number of groups in A. Let β be a layout for G. Let x be a vertex of G and let p be the
position of x in β, i.e., p = β−1(x). The set of vertices to the left of x with respect to β is
{β(1), . . . , β(p− 1)} and denoted as Lβ(x), and the set of vertices to the right of x with respect
to β is {β(p + 1), . . . , β(|V |)} and denoted as Rβ(x). We write Lβ[x] and Rβ[x] if x is included.
Function adβ is a {0, 1}-valued function on the vertex set of G with respect to β. Given a
vertex x of G, if one of the following conditions is satisfied then adβ(x) = 1; if none of the
conditions is satisfied then adβ(x) = 0:

(1) all (other) vertices in the group in Lβ[x] that contains x are neighbours of x

(2) {x} is not a group in Lβ[x], and there are a non-neighbour y of x in the group of Lβ[x]
containing x and a neighbour z of x in Lβ(x) such that y and z are non-adjacent

The groupwidth of a graph G with respect to a layout β for G, denoted as gw(G, β), is the
smallest number k such that νG(Lβ(x)) + adβ(x) ≤ k for all x ∈ V (G). The groupwidth of
a graph G, denoted as gw(G), is the smallest number k such that there is a layout β for G
satisfying gw(G, β) ≤ k.

Theorem 2.1 ([19]) For every graph G, lcwd(G) = gw(G).

For a given graph G, the k-power graph of G is the graph that has the same vertex set as G
such that two vertices are adjacent if and only if the distance (length of a shortest path) between
them is at most k in G. For a given l ≥ 1, Pl is the graph with vertex set {x1, x2, . . . , xl} and
edge set {x1x2, x2x3, . . . , xl−1xl}. A k-path power is a graph that is the k-power graph of Pl for
some l. Notice that the k-power graph of Pl for any k ≥ l − 1 is a complete graph. Observe
that for a k-path power that is not complete, a largest clique contains exactly k + 1 vertices.
A path power is a k-path power for some k. For a path power, a vertex of smallest degree
is called endvertex. A path power that is not complete has exactly two endvertices, that are
non-adjacent.

Lemma 2.2 Let P be a path power and let β be a layout for P . If adβ(x) = 0 for a vertex x of
P then x is an endvertex of P .
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Proof. Let P be the k-power graph of Pl for appropriate k and l. Let (x1, . . . , xn) be the
underlying path of P . Let x be a vertex of P such that adβ(x) = 0. Let K be the group in Lβ[x]
that contains x. By definition of function ad, |K| ≥ 2. Since K \ {x} does not contain only
neighbours of x, there is a vertex y in K \ {x} that is non-adjacent to x. Suppose that there is
a vertex z of P that is adjacent to x and non-adjacent to y. If z 6∈ Lβ[x] then z distinguishes
x and y and x and y cannot belong to the same group in Lβ[x], if z ∈ Lβ[x] then K contains a
vertex that is non-adjacent to a neighbour of x in Lβ[x]. Both cases contradict the assumption
about adβ(x) = 0. Hence, all neighbours of x in P are neighbours of y. Let i, j be such that
x = xi and y = xj . If 1 < i < j then xi−1 is a neighbour of x and non-adjacent to y by the
distance condition for k-power graphs and xy 6∈ E(P ), if j < i < n then xi+1 is a neighbour of
x and non-adjacent to y. Both cases contradict the neighbourhood inclusion property. Hence,
i = 1 or i = n, and x is an endvertex of P .

3 Groups in induced subgraphs of path powers

The linear clique-width bounds that we present in this paper are all proved by applying The-
orem 2.1. The main technique is to count groups in subgraphs. As a main tool, we use a
representation of path powers that arranges vertices into rows and columns of a 2-dimensional
array.

Let G be a graph. A bubble model for G is a 2-dimensional structure B = 〈Bi,j〉1≤j≤s,1≤i≤rj

such that the following conditions are satisfied:

– for 1 ≤ j ≤ k and 1 ≤ i ≤ rj , Bi,j is a (possibly empty) set of vertices of G

– the sets B1,1, . . . , Brk,k are pairwise disjoint and cover V (G)
– two vertices u, v of G are adjacent if and only if there are 1 ≤ j ≤ j′ ≤ s and 1 ≤ i ≤ rj

and 1 ≤ i′ ≤ rj′ such that u, v ∈ Bi,j ∪Bi′,j′ and (a) j = j′ or (b) j + 1 = j′ and i > i′.

A similar structure is given by Golumbic and Rotics [13]. The sets Bi,j are called bubbles. If
every bubble Bi,j contains exactly one vertex, we also write 〈bi,j〉1≤j≤s,1≤i≤rj . A graph is a
proper interval graph if and only if it has a bubble model [18]. For 1 ≤ j ≤ s, we combine the
sets B1,j , . . . , Brj ,j to the jth column, also denoted as Bj . We say that B is a bubble model on a
columns and b rows if s = a and r1 = · · · = rs−1 = max{r1, . . . , rs} = b.

Theorem 3.1 Let k ≥ 1. A graph G is a k-path power if and only if there is s ≥ 1 such that G
has a bubble model on s columns and k + 1 rows and all bubbles contain exactly one vertex.

Proof. Let G be a k-path power. Let G be the k-power graph of Pl. We rename the vertices of
the path as follows. For 1 ≤ i ≤ l, let bb,a =def xi where a and b are such that i = a(k+1)+b and
1 ≤ b ≤ k + 1. Let s be smallest such that l ≤ s(k + 1), and let r1 =def · · · =def rs−1 =def k + 1
and rs =def n− (s− 1)(k + 1). Let B =def 〈bi,j〉1≤j≤s,1≤i≤rj . We show that B is a bubble model
for G. Let u and v be two vertices of G. There are xi and xi′ such that u = xi and v = xi′ ;
without loss of generality, we may assume i < i′. Let a, a′, b, b′ be such that 1 ≤ b, b′ ≤ k + 1
and i = a(k + 1) + b and i′ = a′(k + 1) + b′. Clearly, if a = a′ then b′ − b ≤ k and therefore
i′ − i ≤ k. If a < a′ then i′ − i ≤ k if and only if b > b′. Hence, B is a bubble model for G. And
by construction, B is a bubble model on k + 1 rows and all bubbles contain exactly one vertex.

For the converse, let B = 〈bi,j〉1≤j≤s,1≤i≤rj be a bubble model for G of the assumed form.
By definition, r1 = · · · = rs−1 ≥ rs. Let k =def r1 − 1. We show that G is the k-power graph
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of the path with edge set {b1,1b1,2, . . . , bk,1bk+1,1, bk+1,1b1,2, . . . , bk+1,s−1b1,s, . . . , brs−1,sbrs,s}. Let
bi,j and bi′,j′ be vertices of G where j ≤ j′. Observe that the distance of bi,j and bi′,j′ in the
path is equal to |(j′ − j)(k + 1) + i′ − i|. With the definition of bubble model, bi,j and bi′,j′ are
adjacent in G if and only if j = j′ or j + 1 = j′ and i > i′. This means that bi,j and bi′,j′ are
adjacent in G if and only if they are at distance at most k in the path.

We call the bubble model of a path power that is constructed in the proof of Theorem 3.1
canonical. Observe that the proof of Theorem 3.1 gives a simple linear-time algorithm for
constructing a canonical bubble model for a given path power.

Lemma 3.2 Let G be a graph. Let A ⊆ B ⊆ V (G) and C ⊆ V (G) \ B. Then νG[B](A) ≤
νG(A ∪ C).

Proof. Let u, v ∈ A be such that u and v are not in the same group in A with respect to G[B].
By definition of group, there is a vertex w ∈ B \A that distinguishes u and v. Since w 6∈ A∪C,
w distinguishes u and v in G, hence, u and v are not in the same group in A ∪ C with respect
to G.

In our lower bound proofs, we will heavily make use of Lemma 3.2. The main task is to
identify appropriate sets B and A and determine the number of groups. Let G be a graph with
bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj . Let A ⊆ V (G) and let 1 ≤ ̂ ≤ s. The ̂-boundary of B[A]
is the set Φ̂(B[A]) of pairs (i, ti) that satisfy one of the following conditions:

– ti = ̂ and i < r̂ and Bi,ti ⊆ A and Bi′,̂ 6⊆ A for all i < i′ ≤ r̂

– ti < ̂ and 1 ≤ i ≤ min{rti , . . . , r̂} and Bi,ti ⊆ A and Bi,j 6⊆ A for all ti < j ≤ ̂.

Lemma 3.3 Let G be a graph with bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj on s ≥ 2 columns and
l ≥ 2 rows. Let A ⊆ V (G) and let 1 ≤ ̂ ≤ s. The bubbles in Φ̂(B[A]) appear in pairwise
different groups in A.

Proof. For the following considerations, it is important to remember that all vertices in the
bubbles in the ̂-boundary are contained in A. Let (i, ti) ∈ Φ̂(B[A]). Let bi′,j′ 6∈ Bi,ti be in
the same group as a vertex b from Bi,ti in A. By definition of group, all vertices of G that are
adjacent to exactly one of b and bi′,j′ are contained in A. Let ti = ̂. Since Br̂,̂ 6⊆ A, j′ ≥ ̂.
If j′ > ̂ then bi′,j′ is not in the ̂-boundary, and if j′ = ̂ then i′ = i. Hence, no vertex from
Bi,ti for ti = ̂ is in the same group as a vertex from another bubble of the ̂-boundary. Now,
let ti < ̂. If ti < j′ then Bi,j′ ⊆ A, which contradicts the definition of ti and (i, ti) ∈ Φ̂(B[A]).
If ti = j′ and i < i′ then Bi,ti+1 ⊆ A, in contradiction to the definition of ti; if ti = j′ and i′ < i
then Bi′,j′+1 ⊆ A, and bi′,j′ is not a ̂-boundary vertex. If j′ < ti then Bi′,ti ⊆ A, and bi′,j′ is
not a ̂-boundary vertex. We conclude also for the case ti < ̂ that no vertex from Bi,ti is in
the same group as a vertex from another bubble of the ̂-boundary. Hence, the bubbles in the
̂-boundary appear in pairwise different groups in A.

4 Maximal k-path powers of linear clique-width k + 1

In the next section we will show that the linear clique-width of a k-path power containing
k(k + 1) + 2 vertices is at least k + 2. In fact they will turn out to be the smallest k-path
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powers of maximum linear clique-width. This result is achieved by showing that a k-path power
containing k(k + 1) + 1 vertices has layouts of groupwidth at most k + 1 of only very restricted
type. This is exactly what we prove in this section, through a series of results. More precisely,
we concentrate on the beginning of a possible layout of groupwidth at most k + 1, identify the
earliest point where the maximum group number is reached, and we show that the two vertices
on either side of this point are uniquely defined, hence the restriction on the layout. This
restriction in the layouts is used in the next section to show that it is not possible to extend
such a k-path power by even a single vertex without increasing the linear clique-width.

The main result of this section is given in Lemmas 4.5 and 4.6. To make the statements of
the results shorter, we avoid repeating the following definitions. Throughout this section, let

• P be a k-path power on k(k + 1) + 1 vertices, with k ≥ 3,

• β be a layout for P such that gw(P, β) ≤ k + 1,

• B = 〈bi,j〉1≤j≤k+1,1≤i≤rj be a canonical bubble model for P (Theorem 3.1) such that
b1,1 ≺β b1,k+1.

Note that the restriction b1,1 ≺β b1,k+1 on the bubble model can be assumed without loss of
generality, since it can always be achieved by renaming the vertices due to symmetry of path
powers. Also note that β indeed exists, which is shown later (Lemma 5.3). Finally, note that
r1 = · · · = rk = k + 1. For A ⊆ V (P ) and 1 ≤ j ≤ k, we say that column Bj is full with respect
to A if b1,j , . . . , bk+1,j ∈ A. Let xf be the leftmost vertex of P with respect to β such that there
is an index jf between 1 and k with Bjf

full with respect to Lβ[xf ]. By the choice of xf , jf

is uniquely defined. Let L−f =def Lβ(xf ) and Lf =def Lβ[xf ]. Denote by xf+1, xf+2, xf+3 the
three vertices that follow xf in β. When we use these vertices, they always exist.

By Lemma 2.2 and the fact that non-complete path powers have at most two endvertices,
there are at most two vertices for which function ad can have value 0. We can be even more
specific.

Lemma 4.1 1) If adβ(b1,1) = 0 then b1,1 and b1,2 are in the same group in Lβ[b1,1].
2) If adβ(b1,k+1) = 0 then b1,k+1 and b1,k are in the same group in Lβ[b1,k+1].

Proof. For the first statement, assume that adβ(b1,1) = 0. Let K be the group containing
b1,1 in Lβ[b1,1]. By the first condition of the definition of function ad, K contains a non-
neighbour y of b1,1. Suppose that there is z ∈ NP (b1,1) \ NP (y). If z ∈ Rβ(b1,1) then b1,1

and y are distinguished by z and thus cannot be in the same group in Lβ[b1,1], if z ∈ Lβ(b1,1)
then adβ(b1,1) = 1 according to the second condition of the definition of function ad. Thus,
NP (b1,1) \NP (y) = ∅, i.e., NP (b1,1) = {b2,1, . . . , bk+1,1} ⊆ NP (y). This only holds for y = b1,2.

The second statement holds by symmetry.

Lemma 4.2 Let u ∈ V (P ). Let K be a group in Lβ[u]. Let bi,j and bi′,j′ be two vertices in K.
Then, NP (bi,j)4NP (bi′,j′) ⊆ Lβ[u]. In particular, if |j − j′| ≥ 2 then Bj and Bj′ are full with
respect to Lβ[u].

Proof. Let y ∈ NP (bi,j)4NP (bi′,j′). If y 6∈ Lβ[u] then y distinguishes bi,j and bi′,j′ , so that
they cannot be in the same group in Lβ[u]. Since this contradicts the assumption, y ∈ Lβ[u].
If |j − j′| ≥ 2 then bi,j is non-adjacent to every vertex in Bj′ and bi′,j′ is non-adjacent to every
vertex in Bj , so that (V (Bj) ∪ V (Bj′)) \ {bi,j , bi′,j′} ⊆ NP (bi,j)4NP (bi′,j′).
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From Lemma 4.2, it follows that a group in Lf can contain vertices from only the same
column or from two consecutive columns, since exactly one column is full with respect to Lf .

Lemma 4.3 There is no 1 ≤ j ≤ k such that b1,j , . . . , bk+1,j 6∈ Lf .

Proof. Suppose for a contradiction that there is 1 ≤ j ≤ k with b1,j , . . . , bk+1,j 6∈ Lf . As the
first case, let jf < j. We apply Lemma 3.3 and obtain that Lf contains at least k + 1 groups.
According to Lemma 2.2 and the groupwidth assumption for β, xf+1 is an endvertex of P . Since
xf+1 is not vertex from Bj , Lβ[xf+1] contains k + 1 groups. Then, xf+2 is an endvertex of P
and Lβ[xf+2] contains k + 1 groups. Then, adβ(xf+3) = 1, since P has only two endvertices,
which gives gw(P, β) ≥ νP (Lβ(xf+3)) + adβ(xf+3) > k + 1. This contradicts the groupwidth
assumption for β.

As the second case, let j < jf . Let B′ be the bubble model that is obtained from B by
reversing the columns and turning each column upside down. It is not hard to see that also B′
is a bubble model for P , however not canonical, since the first k bubbles in the first column of
B′ are empty. We apply Lemma 3.3 to B′ and obtain νP (Lf ) ≥ k + 1. By assumption, xf+1

is an endvertex of P . If j ≥ 2, which also includes the case xf+1 = b1,k+1, we can continue
as above and obtain a contradiction. So, j = 1 and xf+1 = b1,1. Since adβ(b1,1) = 0, we can
apply Lemma 4.1 and conclude that b1,1 and b1,2 are in the same group in Lβ[b1,1], and due to
Lemma 4.2, B2 is full with respect to Lβ[b1,1]. Thus, jf = 2, and Lβ[xf+1] has k + 1 groups.
Since xf+2 not endvertex contradicts the groupwidth assumption for β, so xf+2 = b1,k+1 and
Lβ[xf+2] has k + 1 groups: k groups with vertices from B1 and B2 only and one group that
contains other vertices and possibly bk+1,2. Then, xf+3 is not an endvertex of P and yields a
contradiction to the groupwidth assumption for β. This completes the proof.

Let A ⊆ V (P ). For every 1 ≤ j ≤ k, we denote by gj(A) the number of groups in A that
contain a vertex from column Bj but not from any of the columns Bj+1, . . . ,Bk+1. Note that if
there is at most one column that is full with respect to A then it suffices to forbid vertices from
Bj+1 due to Lemma 4.2.

Lemma 4.4 Let u ∈ L−f be such that for every 1 ≤ j ≤ k, there is 1 ≤ i ≤ k+1 with bi,j ∈ Lβ[u].
Then, g1(Lβ[u]), . . . , gk−1(Lβ[u]) ≥ 1.

Proof. Note that no group in Lβ[u] contains vertices from non-consecutive columns. Let
1 < j ≤ k be such that there are i, i′ with bi,j−1 and bi′,j are in the same group in Lβ[u]. Due to
Lemma 4.2, b1,j−1, bi,j , . . . , bk+1,j ∈ Lβ[u]. If b1,j−1 is in the same group as a vertex from Bj then
Bj is full with respect to Lβ[u], which contradicts u ≺β xf and the choice of xf . Now, suppose
that there is 1 ≤ j ≤ k − 1 such that gj(Lβ[u]) = 0. Since Lβ[u] contains a vertex from Bj by
assumption, this vertex is in the same group as a vertex from Bj+1 according to the definition
of gj(Lβ[u]). Then, b1,j ∈ Lβ[u] and the group containing b1,j contains no vertex from Bj+1.
Hence, gj(Lβ[u]) ≥ 1, a contradiction, and the lemma follows.

Lemma 4.5 The vertices b1,k and b1,k+1 are not in Lf .

Proof. By definition of xf , we know that b1,k+1 6= xf . We have two possibilities: b1,k+1 ∈ Lf

and b1,k+1 6∈ Lf .
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First case: b1,k+1 ∈ Lf

Let b be the leftmost vertex with respect to β such that there is a vertex from every column
(including Bk+1) in Lβ[b]. Let Lb =def Lβ[b]. Let b′ be the vertex following b in β. Since
b1,1 ≺β b1,k+1 by definition and since b1,k+1 ∈ Lb, b′ is not endvertex of P . Lemma 2.2 shows
that νP (Lb) ≥ k + 1 implies νP (Lβ(b′)) + adβ(b′) > k + 1. Thus, νP (Lb) ≤ k. We show that this
assumption leads to a contradiction.

Consider g1(Lb), . . . , gk(Lb). Since there is no full column with respect to Lb, b1,k+1 is not
in the same group as any vertex from B1, . . . ,Bk−1 due to Lemma 4.2. We apply Lemma 4.4
and obtain νP (Lb) ≥ g1(Lb) + · · ·+ gk−1(Lb) + 1 ≥ k. Hence, g1(Lb) = · · · = gk−1(Lb) = 1 and
gk(Lb) = 0. Let K be the group in Lb that contains b1,k+1. By gk(Lb) = 0, all vertices from
Bk in Lb are contained in K. If b1,k 6∈ Lb then b1,k distinguishes the vertices of Bk in Lb from
b1,k+1, so that K cannot contain a vertex from Bk. Since this contradicts Lemma 4.3, b1,k ∈ Lb,
in particular, b1,k ∈ K. Due to Lemma 4.2, b2,k−1, . . . , bk+1,k−1 ∈ Lb. Since Bk−1 is not full
with respect to Lb, b1,k−1 6∈ Lb. By assumption gk−1(Lb) = 1 and the fact that K contains all
vertices from Bk and Bk+1 that are in Lb, b2,k−1, . . . , bk+1,k−1 are in the same group in Lb. For
an induction, assume the following for 1 < j < k:

(1) bk−j+1,j , . . . , bk+1,j ∈ Lb

(2) the vertices from Bj in Lb form a group in Lb.
Note that the statements hold for j = k−1 by the above considerations. We consider Bj−1. Since
bk−j+1,j and bk+1,j are in the same group in Lb, bk−j+2,j−1, . . . , bk+1,j−1 ∈ Lb due to Lemma 4.2.
And since bk+1,j is not adjacent to any of the vertices in Bj−1 and since bi,j−1 6∈ Lb for some
1 ≤ i < k − j + 2, no vertex from Bj−1 is in the same group as a vertex from Bj . Thus, the
statements hold for j − 1. Note that all vertices from Bj−1 in Lb are in the same group by the
assumption gj−1(Lb) = 1. It follows that bk+1,1 ∈ Lb and that bk+1,1 is not in the same group
as any vertex from another column. By assumption b1,1 ≺β b1,k+1 and the choices of xf and b,
b1,1 ∈ Lb. However, b1,1 and bk+1,1 are distinguished by all vertices from B2 except for bk+1,2, so
that b1,1 and bk+1,1 cannot be in the same group in Lb. Since we have shown that no vertex from
B1 in Lb is in the same group as a vertex from another column, we finally conclude g1(Lb) ≥ 2.
This means νP (Lb) > k, which yields the contradiction. Hence, b1,k+1 ∈ Lf cannot hold.

Second case: b1,k+1 6∈ Lf

Suppose for a contradiction that b1,k ∈ Lf . Suppose that jf = k. Let 1 ≤ i ≤ k + 1 be such
that xf = bi,k. We consider L−f . With Lemma 4.4 and b1,k+1 6∈ L−f , g1(L−f ), . . . , gk(L−f ) ≥ 1. If
there is 1 ≤ j ≤ k such that gj(L−f ) ≥ 2 then νP (L−f ) ≥ k + 1, and since bi,k is not endvertex of
P , gw(P, β) > k + 1. Therefore, g1(L−f ) = · · · = gk(L−f ) = 1. If i ≥ 2 then L−f contains b1,k and
another vertex from Bk. Since they are distinguished by b1,k+1, this gives gk(L−f ) ≥ 2, which is
a contradiction. Thus, i = 1, i.e., xf = b1,k. In particular, b1,k 6∈ L−f . As an auxiliary result, we
show the following by induction. For every 2 ≤ j ≤ k:

(1) bk+2−j,j , . . . , bk+1,j ∈ L−f and b1,j 6∈ L−f
(2) the vertices from Bj in L−f form a group in L−f .

The two statements are correct for the case j = k: b2,k, . . . , bk+1,k ∈ L−f and {b2,k, . . . , bk+1,k}
is a group in L−f by the considerations above and b1,k+1 6∈ L−f . Now, consider j < k. No
vertex from Bj in L−f is in the same group as a vertex from Bj+1 by induction hypothesis, so
gj(L−f ) = 1 implies that all vertices from Bj in L−f are in the same group. Since bk+2−(j+1),j+1
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and bk+1,j+1 are in the same group in L−f by induction hypothesis, bk+2−(j+1)+1,j , . . . , bk+1,j ∈ L−f
due to Lemma 4.2. Note that b1,j+1 is a common neighbour of bk+2−j,j , . . . , bk+1,j . Since
b1,j+1 6∈ L−f by induction hypothesis, no vertex that is non-adjacent to b1,j+1 is in the same
group as bk+2−j,j , . . . , bk+1,j . In particular, bk+2−j,j , . . . , bk+1,j are not in the same group as b1,j

or a vertex from any of the columns B1, . . . ,Bj−1. This also means b1,j 6∈ L−f . This completes
the proof of the auxiliary result.

Now, consider the groups in Lf . Observe that b1,k is in a singleton group in Lf , since it
cannot be in the same group as vertices b2,k, . . . , bk+1,k because of b1,k+1, or with the vertices
from Bk−1 because of b1,k−1, or with vertices from any other column because of a missing
vertex. Furthermore, every group in L−f is a group in Lf : if there are two groups in L−f that
are distinguished by only b1,k then one group contains the vertices from Bk−1 and the other
group contains the vertices from a column Bj with j < k − 1. However, since a vertex from
Bj is not contained in Lf by the definition of xf , bk+1,k−1 and the vertices from Bj in Lf are
distinguished by a second vertex. We conclude νP (Lf ) = k+1 and g1(Lf ) = · · · = gk−1(Lf ) = 1
and gk(Lf ) = 2. Then, adβ(xf+1) = 0, i.e., xf+1 is an endvertex of P . Suppose xf+1 = b1,1.
By Lemma 4.1, adβ(b1,1) = 0 requires b1,2 ∈ Lf , which is a contradiction to the above auxiliary
result. Thus, xf+1 = b1,k+1, and therefore, b1,1 ∈ Lf . If there are two vertices from B1 in Lf

then there is 2 ≤ i ≤ k + 1 such that b1,1, bi,1 ∈ L−f . Since these two vertices are distinguished
by b1,2, we obtain g1(L−f ) ≥ 2, which is a contradiction. Hence, b1,1 is the only vertex from B1

in Lf . We show that νP−b1,k+1
(Lf ) = k + 1. Consider B[Lf \ {b1,1}]. Let B′ be defined as in the

proof of Lemma 4.3. We apply Lemma 3.3 to B′[Lf \ {b1,1}] and its (k + 1)-boundary: there are
(at least) k boundary vertices. Suppose that b1,1 is in the same group as a boundary vertex in
Lf . Since no other vertex from B1 is in Lf , b1,1 can be in group only with b1,2. This, however,
contradicts b1,2 6∈ Lf due to the auxiliary result. Hence, b1,1 is not in the same group as any
vertex from the boundary, and therefore νP−b1,k+1

(Lf ) = k +1. Applying Lemma 3.2, we obtain
νP (Lβ[xf+1]) = k + 1, and since xf+2 is not an endvertex of P , we conclude a contradiction
to the groupwidth assumption for β. Since we have constructed contradictions for all cases, we
conclude jf < k.

Suppose that there is 2 ≤ i ≤ k + 1 such that bi,k ∈ L−f . Since b1,k and bi,k are dis-
tinguished by b1,k+1, gk(L−f ) ≥ 2. Due to Lemma 4.3, we can apply Lemma 4.4 and obtain
g1(L−f ), . . . , gk−1(L−f ) ≥ 1, which yields νP (L−f ) ≥ k + 1. Thus, adβ(xf ) = 0, i.e., xf is an
endvertex of P , i.e., xf = b1,1. Since no column except for B1 is full with respect to Lf and
since all neighbours of b1,1 are in B1, the group in Lf containing b1,1 contains only vertices
from B1. Since these vertices are adjacent to b1,1, adβ(xf ) = 1, which gives a contradiction.
Hence, b1,k is the only vertex from Bk in L−f . The k-boundary of B[Lf ] contains k vertices,
and due to Lemma 3.3, they are in pairwise different groups in Lf . Since no vertex in columns
B1, . . . ,Bk−1 is adjacent to bk+1,k, which is not contained in Lf , b1,k is vertex in a singleton
group, and therefore νP (Lf ) ≥ k + 1 and adβ(xf+1) = 0. According to Lemma 2.2, xf+1 is
endvertex of P . If xf+1 = b1,1 then jf > 1, and no vertex from B1 is in the same group as a
vertex from another column in Lf because of b1,1. Then, the above arguments show that Lf

has at least k + 2 > k + 1 groups, which is a contradiction to the groupwidth assumption for
β. Thus, xf+1 = b1,k+1. Then, νP (Lβ[xf+1]) ≥ k + 1, since no vertex in Lf is adjacent to
b1,k+1. However, xf+2 is no endvertex of P , which yields νP (Lβ(xf+2)) + adβ(xf+2) > k + 1,
a contradiction to the groupwidth assumption for β. Hence, the assumption b1,k ∈ Lf is false,
and we conclude the lemma.
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Lemma 4.6 The following holds for layout β:

– νP (Lf ) = k + 1 and xf = b1,2 and xf+1 = b1,1

– b3,1, . . . , bk+1,1 ∈ Lf and b2,k, b3,k ∈ Lf

– the vertices from B1 in Lf are in the same group and the vertices from Bk in Lf are in
the same group in Lf .

Proof. Suppose that νP (L−f ) = k + 1. By our groupwidth assumption for β, adβ(xf ) = 0, i.e.,
xf is an endvertex of P due to Lemma 2.2. Since b1,k+1 6∈ Lf due to Lemma 4.5, xf = b1,1. Due
to Lemma 4.1, b1,1 and b1,2 are in the same group in Lf , and due to Lemma 4.2, B2 is full with
respect to Lf . This means jf = 2, which contradicts xf = b1,1. Hence, νP (L−f ) ≤ k.

We show by induction that b1,1, . . . , b1,k+1 6∈ L−f and that every group in L−f corresponds to
the vertices in L−f from a single column. According to Lemma 4.5, b1,k, b1,k+1 6∈ L−f . Therefore,
no vertex from Bk in L−f is in the same group as a vertex from the columns B1, . . . ,Bk−1. Hence,
gk(L−f ) ≥ 1, and thus g1(L−f ), . . . , gk(L−k ) ≥ 1 by application of Lemma 4.4. With νP (L−f ) ≤ k,
we conclude g1(L−f ) = · · · = gk(L−k ) = 1. Assume for some 1 ≤ j < k that b1,j+1 6∈ L−f and the
vertices from Bj+1 in L−f form a group in L−f . If b1,j , bi,j ∈ L−f for some 2 ≤ i ≤ k+1 then b1,j and
bi,j are not in the same group in L−f since they are distinguished by b1,j+1. Since neither b1,j nor
bi,j is in the same group as a vertex from Bj+1, gj(L−f ) ≥ 2, which is a contradiction. We consider
two cases. Suppose that b1,j ∈ L−f . Then, b2,j , . . . , bk+1,j 6∈ L−f . We have two possibilities: jf < j

and j < jf . Note that jf 6= j, since Bj misses at least three vertices in L−f . Let jf < j. We
consider Lf . The j-boundary of B[Lf ] contains k + 1 vertices, that are in pairwise different
groups in Lf due to Lemma 3.3. By induction hypothesis, the vertices from Bj+1 form a group
in Lf , so that we obtain νP (Lf ) ≥ k +2, which is a contradiction to the groupwidth assumption
for β. Now, let j < jf . Note that the induction hypothesis shows that xf = b1,jf

. Let B′ be
defined as in the proof of Lemma 4.3. We consider the (k + 2 − j)-boundary in B′[L−f ]. Note
that the boundary contains k vertices, among which is not b1,j . Because of b1,j+1, . . . , b1,k 6∈ L−f ,
b1,j is not in the same group as any vertex from the boundary. Furthermore, jf < k due to
b1,k 6∈ Lf , so that no vertex from Bk is in the same group as b1,j or a vertex from the boundary.
Hence, νP (L−f ) ≥ k + 1, which yields a contradiction with adβ(xf ) = 1 by xf not endvertex of
P . Thus, b1,j 6∈ L−f . And because of b1,j , b1,j+1 6∈ L−f , no vertex from Bj in L−f is in the same
group as a vertex from another column, and by assumption gj(L−f ) = 1, the vertices from Bj in
L−f form a group in L−f .

We determine jf . Observe that xf = b1,jf
and xf is vertex in a singleton group in Lf . The

latter is true since every other vertex in Lf is adjacent to a vertex b1,j that is not in Lf . And
since pairs of groups in L−f are distinguished by at least two vertices, no group in Lf contains
vertices from two different columns. Hence, νP (Lf ) = k + 1, and adβ(xf+1) = 0. Suppose that
jf = 1, i.e., xf = b1,1. Then, xf+1 = b1,k+1, and Lemma 4.1 implies b1,k ∈ Lf , which is a
contradiction to Lemma 4.5. Suppose jf ≥ 3, i.e., 3 ≤ jf ≤ k − 1. Then, xf+1 = b1,1, and
Lemma 4.1 implies b1,2 ∈ Lf , which is a contradiction to the auxiliary result. Hence, jf = 2
and xf = b1,2 and νP (Lf ) = k + 1 and xf+1 = b1,1. And since b2,2 and bk+1,2 are in the same
group in Lf , b3,1, . . . , bk+1,1 ∈ Lf due to Lemma 4.2. Finally, we apply the auxiliary result and
Lemma 4.2 and conclude from b2,2 and bk+1,2 in the same group in L−f that b2,3, . . . , bk,3 ∈ L−f .
By induction, we obtain b2,k, b3,k ∈ L−f , which concludes the proof.

10



5 The linear clique-width of path powers

In this section, we are finally ready to give a complete characterisation of the linear clique-width
of path powers of all sizes. We start with the previously mentioned lower bound.

Lemma 5.1 Let G be a k-path power on k(k+1)+2 vertices, with k ≥ 1. Then, lcwd(G) ≥ k+2.

Proof. For k = 1, G is a 1-path power on four vertices, i.e., G = P4. It holds that lcwd(P4) = 3.
For k = 2, G is a 2-path power on eight vertices. It can be checked that lcwd(G) = 4. So, let
k ≥ 3. Suppose for a contradiction that there is a layout β for G such that gw(G, β) ≤ k + 1.
Let a be an endvertex of G. Then, G−a is a k-path power on k(k + 1) + 1 vertices. Let β′ be
obtained from β by deleting a. Then, gw(G−a, β′) ≤ k + 1, and the results of Section 4 can be
applied to G−a and β′. Let B = 〈bi,j〉1≤j≤k+1,1≤i≤ri be a canonical bubble model for G−a such
that b1,1 ≺β′ b1,k+1. Let xf and Lf and L−f for G−a and β′ be defined as in Section 4. Due to
Lemma 4.6, bk,1, bk+1,1 ∈ Lf , and b2,k, b3,k ∈ Lf , and bk,1 and bk+1,1 are in the same group in Lf ,
and b2,k and b3,k are in the same group in Lf . Furthermore, b1,1, b1,2 6∈ L−f and b1,k, b1,k+1 6∈ Lf

(Lemma 4.5). By the choice of a as an endvertex of G, a is adjacent to bk,1 and non-adjacent to
bk+1,1 or a is adjacent to b3,k and non-adjacent to b2,k in G. If xf ≺β a then a distinguishes bk,1

and bk+1,1 in the former case, and b2,k and b3,k in the latter case. With νG−a(Lf ) = k +1 due to
Lemma 4.6, it follows that νG(Lf ) ≥ k + 2, which is a contradiction to our assumption. Hence,
a ≺β xf . Since νG−a(Lf ) = k + 1 and adβ′(xf ) = 1, νG−a(L−f ) = k. Note also that adβ(xf ) = 1
due to Lemmata 2.2 and 4.6, so that νG(Lβ(xf )) = k by our assumptions. Remember that
there is a vertex for every column of B that is not in L−f . If the neighbours of a are in B1 then
a is vertex in a singleton group in Lβ(xf ), particularly because of b1,1, b1,2 6∈ Lβ(xf ). If the
neighbours of a are in Bk and Bk+1 then a is vertex in a singleton group in Lβ(xf ), particularly
because of b1,k, b1,k+1 6∈ Lβ(xf ). Hence, νG(Lβ(xf )) > k, which yields a contradiction to our
assumption together with xf = b1,2 and adβ(b1,2) = 1. Therefore, gw(G) ≥ k + 2.

Now we give the upper bounds. It is known that lcwd(G) ≤ pw(G) + 2 for G an arbitrary
graph [11], where pw(G) is the pathwidth of G. For path powers, the pathwidth is equal to the
maximum clique size minus 1, which implies the next result.

Lemma 5.2 ([11]) Let G be a k-path power, with k ≥ 1. Then, lcwd(G) ≤ k + 2.

For path powers on few vertices, we can show an even better bound.

Lemma 5.3 Let G be a k-path power on l(k +1)+1 vertices, with 2 ≤ l ≤ k. Then, lcwd(G) ≤
l + 1.

Proof. Let B = 〈bi,j〉1≤j≤l+1,1≤i≤rj be a canonical bubble model for G. Note that r1 = · · · =
rl = k + 1 and rl+1 = 1. Let

β = 〈bk+1,l, . . . , bk+1,1, bk,l, . . . , b2,1, b1,2, b1,1, b1,3, . . . , b1,l+1〉 ,
i.e., the vertices in B appear in β row by row, starting from the bottom row, and within a row,
from right to left, except for the first row. We show that gw(G, β) ≤ l + 1. Let x = bi,j be a
vertex of G. If i ≥ 2 then νG(Lβ[x]) ≤ l. To see this, observe that bi+1,j′ , . . . , bk+1,j′ ∈ Lβ[x]
and b1,j′ , . . . , bi,j′ 6∈ Lβ[x] for all j′ < j and bi,j′ , . . . , bk+1,j′ ∈ Lβ[x] and b1,j′ , . . . , bi−1,j′ 6∈ Lβ[x]
for all j′ ≥ j. Hence, the vertices of every column that are in Lβ[x] are in the same group. Since
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there are l columns in B with vertices in Lβ[x], the claim holds. Now, let i = 1. It holds that
b2,j′ , . . . , bk+1,j′ ∈ Lβ[x] for all 1 ≤ j′ ≤ l. If x = b1,2 then Lβ[x] has exactly l + 1 groups, since
b1,2 is not in the same group as any other vertex. It holds that adβ(b1,1) = 0, which is easy to
check with the definition of function ad. Thus, νG(Lβ(b1,1))+adβ(b1,1) = l+1+0 ≤ l+1. Now,
let j ≥ 3. Then, b1,1, . . . , bk+1,1, b1,2, . . . , bk+1,j−2, b1,j−1 are in the same group, and in Lβ[x],
and νG(Lβ[x]) ≤ l. We conclude that gw(G, β) ≤ l + 1.

With the lower and upper linear clique-width bounds, we are ready to give the complete
characterisation.

Theorem 5.4 Let G be a k-path power on n vertices, with k ≥ 1 and n ≥ k + 2.
– If n ≥ k(k + 1) + 2 then lcwd(G) = k + 2.
– If k + 2 ≤ n ≤ k(k + 1) + 1 then lcwd(G) = dn−1

k+1e+ 1.

Proof. If n ≥ k(k + 1) + 2 then lcwd(G) ≤ k + 2 due to Lemma 5.2 and lcwd(G) ≥ k + 2
due to Lemma 5.1 and since the k-path power on k(k + 1) + 1 vertices is an induced subgraph
of G. Let k + 2 ≤ n ≤ k(k + 1) + 1. Let B be a canonical bubble model for G. Note that
dn−1

k+1e is equal to the number of columns of B with at least two vertices. Let d be the number
of (non-empty) columns of B. If the rightmost column of B contains exactly one vertex then G
is a k-path power on (d − 1)(k + 1) + 1 vertices. Then, dn−1

k+1e = d − 1, and lcwd(G) ≤ d due
to Lemma 5.3 and lcwd(G) ≥ d since for the case d = 2, G contains two adjacent vertices, and
for the case d ≥ 3, the (d− 2)-path power on (d− 2)(d− 1) + 2 vertices is an induced subgraph
of G and due to Lemma 5.1. If the rightmost column of B contains at least two vertices then
(d− 1)(k +1)+2 ≤ n ≤ d(k +1) and G contains a (d− 1)-path power on (d− 1)d+2 vertices as
induced subgraph. Then, dn−1

k+1e = d, and lcwd(G) ≤ d+1 due to Lemma 5.3 and lcwd(G) ≥ d+1
due to Lemma 5.1.

Note that k-path powers on at most k + 1 vertices are complete graphs and therefore have
linear clique-width at most 2.

Corollary 5.5 Let k ≥ 1 and let G be a path power on at least two vertices. Then, lcwd(G) ≤
k + 1 if and only if G does not contain the k-path power on k(k + 1) + 2 vertices as induced
subgraph.

Proof. If G has a k-path power on k(k+1)+2 vertices as induced subgraph then lcwd(G) ≥ k+2
due to Theorem 5.4. Let G not have a k-path power on k(k+1)+2 vertices as induced subgraph.
If G is a k′-path power for some k′ < k then lcwd(G) ≤ k + 1 due to Lemma 5.2. Now, let G
be a k′′-path power for some k′′ ≥ k. Then, G contains at most k(k + 1) + 1 vertices. Since
dk(k+1)

k′′+1 e ≤ k, lcwd(G) ≤ k + 1 due to Theorem 5.4.

With the characterisation in Corollary 5.5, we can construct a simple algorithm that com-
putes the linear clique-width of path powers.

Theorem 5.6 There is a linear-time algorithm that computes the linear clique-width of path
powers.

Proof. Let G be a path power. A canonical bubble model for G can be computed in linear
time. Applying Corollary 5.5, lcwd(G) = l + 1 where l is the smallest number such that G does
not contain an l-path power on l(l + 1) + 2 vertices as induced subgraph. This number is easy
to determine from the computed bubble model.
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6 Conclusions

We have given a complete characterisation of the linear clique-width of path powers. We have
seen that the linear clique-width of a path power is a function of the size of the largest clique and
the number of vertices. In a second result, we have characterised the path powers of bounded
linear clique-width by forbidden induced subgraphs. In fact, there is exactly one minimal such
forbidden induced subgraph. Note that every class of path powers of bounded linear clique-
width contains infinitely many graphs, if the bound is larger than 1. All results are based on a
thorough analysis of layouts of bounded groupwidth.

Path powers are an interesting graph class to study properties of linear clique-width. As
mentioned in the Introduction, the linear clique-width of path powers is between the known
upper and lower bound on the clique-width of path powers. Does equality hold, at least for path
powers on sufficiently many vertices?
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