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Pinar Heggernes† Daniel Meister† Charis Papadopoulos†
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Abstract

In this paper we give the first characterisation of graphs with linear clique-width at most
3, and we give a polynomial-time recognition algorithm for such graphs. In addition, we
give a new characterisation of graphs with linear clique-width at most 2 and a new layout
characterisation of linear clique-width in general. Among our results is also a decomposition
scheme that preserves the linear clique-width of the decomposable subgraph.

1 Introduction

Clique-width is an important graph parameter that is useful for measuring the computational
complexity of generally NP-hard problems on specific graph classes. In particular, all problems
that can be expressed in a certain kind of monadic second order logic can be solved in linear
time on graphs whose clique-width is bounded by a constant [5]. The clique-width of a graph
is defined as the smallest number of labels that are needed for constructing the graph using the
graph operations ‘vertex creation’, ‘union’, ‘join’ and ‘relabel’. The related graph parameter lin-
ear clique-width is obtained by restricting the allowed clique-width operations to only ‘vertex
creation’, ‘join’ and ‘relabel’. Both parameters are NP-hard to compute, even on complements
of bipartite graphs [8]. A graph class can have bounded clique-width but unbounded linear
clique-width. Examples of such graph classes are cographs and trees [11].

The relationship between clique-width and linear clique-width is similar to the relationship
between treewidth and pathwidth, and the two pairs of parameters are related [8, 11, 12]. How-
ever, clique-width can be viewed as a more general concept than treewidth since there are graphs
of bounded clique-width but unbounded treewidth, whereas graphs of bounded treewidth have
bounded clique-width. While treewidth is widely studied and well understood the knowledge on
clique-width is still limited. The study of the more restricted parameter linear clique-width is a
step towards a better understanding of clique-width. For example, NP-hardness is obtained by
showing that linear clique-width is NP-hard to compute [8].

In this paper, we contribute to the study of linear clique-width with several results. The
main result that we report is the first characterisation of graphs that have linear clique-width at
most 3 and the first polynomial time algorithm (O(n2m)) to decide whether a graph has linear
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clique-width at most 3. We also show that such graphs are both cocomparability and weakly
chordal graphs, and we present a decomposition scheme for them. For bounded linear clique-
width, until now only graphs of linear clique-width at most 2 could be recognised in polynomial
time [9, 3]. For bounded clique-width, graphs of clique-width at most 2 [6] and at most 3 [2] can
be recognized in polynomial time (O(n2m)). Whereas clique-width 2 graphs are characterised as
the class of cographs [6], no characterisation is known for clique-width 3 graphs. Furthermore,
even from the proposed algorithm in [2] there is no straightforward way of deciding whether a
graph of clique-width at most 3 has linear clique-width at most 3.

Our main motivation for characterising graphs of a given linear clique-width is to obtain
decomposition results for these graphs that are useful for designing algorithms on them. De-
composition means a recursive scheme that partitions the vertex set into smaller sets such that
edges between vertices in different sets are determined immediately and not influenced by ear-
lier or later partitions. For this purpose, we also study graphs of linear clique-width at most 2,
although a forbidden subgraph characterisation for them is already known. Gurski [9] showed
that a graph has linear clique-width at most 2 if and only if it contains no induced copy of a
2K2, P4, or co-(2P3). As an additional result and independently of the results of [9], we give an
alternative characterisation of graphs of linear clique-width at most 2, which is needed for the
understanding of our first mentioned result, and which we find interesting on its own because it
gives a decomposition scheme for these graphs.

Before giving the above mentioned results, we start with more general results on linear clique-
width. First we present and demonstrate the use of a new layout characterisation of linear
clique-width. Treewidth and pathwidth have algorithmically useful characterisations through
vertex layouts and embeddings into particular graph classes, but no such result is known about
clique-width. Recently Gurski [10] gave a layout characterisation of linear clique-width. In this
paper, we give a similar but independent layout characterisation of linear clique-width, which
has a simpler statement and proof. Second, we give a characterisation of the linear clique-
width of a graph through a decomposition scheme that preserves the linear clique-width of each
decomposable subgraph. Note that even the trivial decomposition into connected components
does not have this property, as the linear clique-width of the given graph can be larger than
the linear clique-width of any of its connected components. Going back to clique-width, several
graph operations have been proposed that maintain the clique-width of a graph [6, 12]. For
that purpose, one of the most famous and applicable operations is obtained through the prime
induced graphs of a given graph with respect to its modular decomposition. Motivated by this
operation for clique-width, we give a similar decomposition scheme for the linear clique-width
of a graph by simply disregarding false twins.

Our paper is organised as follows. In the next section we give the necessary background
and notation. Section 3 presents the alternative layout characterisation of linear clique-width,
and Section 4 presents the decomposition scheme that preserves linear clique-width. Section 5
presents the additional characterisations of graphs of linear clique-width at most 2. Sections
6 and 7, which present the main results of the paper, contain the characterisation and some
properties of graphs with linear clique-width at most 3, and how to recognise them in polynomial
time. The paper is concluded in Section 8.
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2 Graph preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E),
we denote its vertex and edge set by V (G) = V and E(G) = E, respectively, with n = |V |
and m = |E|. For a vertex subset S ⊆ V , the subgraph of G induced by S is denoted by G[S].
Moreover, we denote by G − S the graph G[V \ S] and by G − v the graph G[V \ {v}].

The neighbourhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighbourhood of
x is NG[x] = NG(x)∪{x}. Vertex x is isolated in G if NG(x) = ∅ and universal if NG[x] = V (G).
The degree of a vertex x in a graph G is dG(x) = |NG(x)|. A vertex x is called almost-universal
if dG(x) = |V (G)| − 2. For S ⊆ V , NG(S) =

⋃
x∈S NG(x) \ S. Two vertices x, y of G are called

true twins if NG[x] = NG[y] and they are called false twins if NG(x) = NG(y).

For a pair of vertices x, y of G we call xy a non-edge of G if xy /∈ E. The complement G of a
graph G consists of all vertices and all non-edges of G. A chord of a path or a cycle is an edge
between two non-consecutive vertices of the path or the cycle. A chordless cycle on k vertices
is denoted by Ck and a chordless path on k vertices is denoted by Pk. The graph consisting
of only two disjoint edges is denoted by 2K2 while the complement of the graph consisting of
two disjoint P3’s is denoted by co-(2P3). The complement of a P5 is called house. The graph
obtained from a P4 and an additional vertex adjacent only to the two vertices of degree 2 in the
P4 is called bull.

A graph is connected if there is a path between every pair of vertices. If the complement
of a graph is connected then we say that the graph is co-connected. A connected component of
a disconnected graph is a maximal connected subgraph of it. A co-connected component of a
graph G is a connected component of G. A clique is a set of pairwise adjacent vertices, while
an independent set is a set of pairwise non-adjacent vertices.

Let G and H be two vertex-disjoint graphs. The (disjoint) union of G and H, denoted by
G ⊕ H, is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join of G
and H, denoted by G ⊗ H, is the graph obtained from the union of G and H and adding all
edges between vertices of G and vertices of H.

2.1 Known classes of graphs

Here we give an overview of well-known graph classes that will be needed in this paper. For
a set H of graphs, a graph is called H-free if it does not contain a graph from F as induced
subgraph.

The class of cographs, also known as complement reducible graphs, is defined recursively as
follows: a single vertex is a cograph, the disjoint union of two cographs is also a cograph, and
the complement of a cograph is a cograph. It is known that the class of cographs coincide with
the class of P4-free graphs [3].

A treshold graph is a graph that can be de-constructed by repreatedly deleting an isolated
or a universal vertex [1]. Equivalently, threshold graphs are the graphs whose vertices can be
assigned real numbers such that two vertices are adjacent if and only if the sum of their assigned
numbers is not smaller than a given real-valued threshold. In addition, threshold graphs are
exactly the class of {2K2, P4, C4}-free graphs [14]. Note also that threshold graphs are cographs
[1].
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An undirected graph is called comparability if directions can be assigned to its edges so that
the resulting directed graph is (i) acyclic and (ii) whenever there are directed edges from a vertex
a to another vertex b and from b to another vertex c, then there is a directed edge from a to
c. A graph is called cocomparability if it is the complement of a comparability graph. A useful
characterisation of cocomparability graphs is given by the following vertex ordering. For a graph
G, a vertex ordering σ is called a cocomparability ordering if for every triple u, v,w of vertices
such that u ≺σ v ≺σ w, uw ∈ E implies uv ∈ E or vw ∈ E. A graph G is cocomparability if
and only if G admits a cocomparability ordering [13].

A graph is called weakly-chordal if it does not contain a Ck or Ck as an induced subgraph,
with k ≥ 5. Note that cographs are cocomparability graphs and weakly-chordal graphs but
there is no relationship between a cocomparability graph and a weakly-chordal graph. For
further properties on the mentioned graph classes we refer to [1].

2.2 Clique-width and linear clique-width

The notion of clique-width of graphs was first introduced by Courcelle, Engelfriet, and Rozenberg
in [4]. The clique-width of a graph G, denoted by cwd(G), is defined as the minimum number
of labels needed to construct G, using the following operations:

(i) Creation of a new vertex v with label i, denoted by i(v);

(ii) Disjoint union, denoted by ⊕;

(iii) Changing all labels i to j, denoted by ρi→j;

(iv) Adding edges between all vertices with label i and all vertices with label j, i 6= j, denoted
by ηi,j = ηj,i.

An expression built by using the above four operations is called a clique-width expression.
If k labels are used in a clique-width expression then it is called a k-expression. We say that a
k-expression t defines a graph G if G is equal to the graph obtained by using the operations in
t in the order given by t.

The linear clique-width of a graph, denoted by lcwd(G), is introduced in [11] and defined by
restricting the disjoint union operation (ii) of clique-width. In a linear clique-width expression
all clique-width operations are allowed, but whenever the ⊕ operation is used, at least one of
the two operands must be an expression defining a single vertex. The restricted version of
operation (ii) becomes redundant if we allow operation (i) to automatically add the vertex to
the graph as an isolated vertex when it is created. For simplicity, we adopt this notation in
this paper. Hence whenever a vertex v is created with operation i(v), it is added to the graph
as an isolated vertex v with label i, which means that we never use operation ⊕ in our linear
clique-width expressions. With this convention, the linearity of a linear clique-width expression
becomes clearly visible.

Traditionally in a clique-width expression every operation except the disjoint union ⊕ is
followed by their operands, whereas for the disjoint union operation its two operands are placed
side by side. However, as we explained before, in a linear clique-width expression we disregard
the disjoint union operation and for that reason the relabeling and join operations, ρ and η,
follow their operands.
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t1 = η1,2( 2(c) ⊕ ρ2→1( η1,2(1(a) ⊕ 2(b)) ⊕ η1,2(1(d) ⊕ 2(e)) ) )

t2 = 1(a) 2(b) η1,2 ρ2→1 2(c) η1,2 3(d) η2,3 ρ3→2 3(e) η2,3

Figure 1: Two expressions defining the graph on the left side.

In Figure 1 we show a graph G and two expressions t1 and t2 defining G. Note that t1 is
a 2-expression and t2 is a 3-expression since there are 2 and 3 labels used in each expression,
respectively. Moreover both t1 and t2 are clique-width expressions. However only t2 is a linear
clique-width expression, as in t1 there is a disjoint union operation between two non-trivial
graphs.

For every k-expression that defines a graph G there is a parse tree that encodes the com-
position of G starting with single vertices followed by interleaved operations of relabeling, edge
insertion, and disjoint union. If t is a linear clique-width expression then its parse tree is path-
like. Thus one can view the relationship between clique-width and linear clique-width analogous
to the relationship between treewidth and pathwidth. Note that the difference between clique-
width and linear clique-width of a graph can be arbitrarily large. For example cographs and
trees have bounded clique-width [6] but unbounded linear clique-width [11]. It is easy to see
that the edgeless graphs are exactly the graphs of clique-width 1 and linear clique-width 1. To
create an edge, the join operation requires the existence of vertices with different labels.

3 A layout characterisation of linear clique-width

In this section we present a new layout characterisation of linear clique-width. This is indepen-
dent of but coincidentally similar to the layout characterisation of linear clique-width given by
Gurski [10]. However, our layout characterisation has a simpler formulation.

Let G = (V,E) be a graph, and let β be a layout for G. Let x be a vertex of G, where
p =def β−1(x). The vertices to the left of x with respect to β are β(1), . . . , β(p − 1) and denoted
as Lβ(x), and the vertices to the right of x with respect to β are β(p+1), . . . , β(n) and denoted as
Rβ(x). We write Lβ[x] and Rβ[x], if x is included. For a partition (A,B) of the vertex set of G, a
group in A is a maximal set of vertices with the same neighbourhood in B. By νG(A), we denote
the number of groups in A with respect to V (G) \ A. The goal is to define a width measure on
layouts that corresponds to the linear clique-width. To achieve this, we define a function, that
assigns number 0 or 1 to each vertex. We call this function ad, and it is parameterised by β.
For a vertex x of G, adβ(x) = 1 in exactly the following cases (adβ(x) = 0 otherwise):

– x is single vertex in its group in Lβ[x]

– x is not single vertex in its group in Lβ[x] and all (other) vertices in the group are neigh-
bours of x

– x is not single vertex in its group in Lβ[x] and there are a non-neighbour y in its group
and a neighbour z in Lβ(x) such that z is not a neighbour of y.

Note that the first case can be considered a special case of the second. We distinguish the two
cases for convenience and to make the definition more clear.
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ad(d) = 1

Figure 2: Illustrating the groupwidth of a given layout for the graph shown in Figure 1.

Definition 1. Let G = (V,E) be a graph. The groupwidth of a layout β for G, denoted as
gw(G,β), is defined as the maximum over νG(Lβ(x)) + adβ(x) for all x ∈ V . The groupwidth
of G, denoted as gw(G), is the minimum group width taken over all layouts for G.

In Figure 2 we give a specific layout β of the graph shown in Figure 1. If we consider vertex
d then there are two groups in Lβ(d). Moreover adβ(d) = 1 since the group that d belongs to in
Lβ[d] is {c, d} and, thus, the second rule applies to d. It is not difficult to see that for the graph
G shown in the figure, gw(G) = 3.

Theorem 1. For every graph G, lcwd(G) = gw(G).

Proof First we show that lcwd ≥ gw. Let G = (V,E) be a graph on n vertices. Let a be
a linear clique-width k-expression for G, where k ≥ 1. We show that gw(G) ≤ k, which gives
the result choosing an expression for k = lcwd(G). Let β be the vertex layout corresponding
to the order in which the vertices are created by a. Let G1, . . . , Gn be the labelled subgraphs
of G defined by a where Gi is the graph right before the ith vertex is created. We first show
that νG(V (Gi)) ≤ k for all i ∈ {1, . . . , n}. But this directly follows from the definition of
a group, since vertices from different groups must have different labels. Now, we show that
νG(V (Gi)) + adβ(β−1(i)) ≤ k for all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}. If νG(V (Gi)) < k then
νG(V (Gi)) + adβ(β−1(i)) ≤ k, following from adβ(β−1(i)) ≤ 1. So, let νG(V (Gi)) = k. This
means that a creates the next vertex, say x, assigning a label that is assigned also in Gi. We
have to show that adβ(x) = 0. Let A denote the set of vertices of Gi having the same label
as x. By assumption, A 6= ∅. Then, x is not adjacent to any of the vertices in A, and A and
x are contained in the same group in Lβ[x]. Let A′ denote the group in Lβ[x] containing x.
Since vertices in A′ that are not in A can differ from the vertices in A only with respect to x,
all vertices in A′ \ (A ∪ {x}) are neighbours of x. It follows that every neighbour of x in G is a
neighbour of every vertex in A. Thus, adβ(x) = 0, and we conclude this part of the proof.

Next we show that lcwd ≤ gw. Let G = (V,E) be a graph on n vertices. Let β be a layout
for G, where gw(G,β) = k. We show that lcwd(G) ≤ k, which gives the result choosing a layout
of groupwidth gw(G). We define linear clique-width k-expressions a1, . . . , an for G, that create
the labelled subgraphs G1, . . . , Gn of G where Gi corresponds to G[Lβ [β−1(i)]] and is labelled
with exactly νG(Lβ [β−1(i)]) many labels from the labels set {1, . . . , k}. Let β = 〈x1, . . . , xn〉.
Clearly, a1 = 1(x1) defines G1 properly. Now, let i ∈ {1, . . . , n − 1} and assume that ai has
already been defined. Then, Gi corresponds to G[{x1, . . . , xi}] and is labelled with exactly
νG(Lβ [xi]) = νG(Lβ(xi+1)) many labels. Let adβ(xi+1) = 1. Then, νG(Lβ(xi+1)) < k, and there
is a label c in {1, . . . , k} not used in Gi. We define ai+1 iteratively by appending more and more
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operations to ai. We begin with ai+1 =def aic(xi+1). If xi+1 is not adjacent to any of the vertices
in Lβ(xi+1), we are done. Otherwise, let c′ be the label of a group in Lβ(xi+1) that contains
neighbours of xi+1. Append operation ηc,c′ . By definition of group, all vertices with label c′ are
neighbours of x. Repeat this step until xi+1 is adjacent to all its neighbours in Lβ(xi+1). Then,
the labelled graph defined by current ai+1 corresponds to Gi+1. Note that there were exactly
νG(Lβ(xi+1)) + adβ(xi+1) many labels involved to go from Gi to the labelled graph defined by
current ai+1. It might now be that vertices from the same group in Lβ[xi+1] have different labels.
So, we add relabel operations to ai+1. This can be done, since a group in Lβ(xi+1) is completely
contained in a group in Lβ[xi+1]. We then have finished the definition of ai+1, and it is clear
that the labelled graph defined by ai+1, Gi+1, corresponds to G[{x1, . . . , xi+1}] and contains
exactly νG(Lβ[xi+1]) many labels from {1, . . . , k}. For the remaining case of adβ(xi+1) = 0, we
define ai+1 similarly with the only exception for the choice of c. In this case, ai+1 creates xi+1

using a label already assigned in Gi. According to the definition of ad, the group A in Lβ[xi+1]
containing xi+1 contains at least two vertices, and this group can contain at most two groups in
Lβ(xi+1). If the vertices in A \ {xi+1} are all neighbours of xi+1 then adβ(xi+1) = 1 according
to definition. Hence, A contains a group A′ in Lβ(xi+1) of non-neighbours of xi+1. We choose
their label as c. It remains to show that this choice does not add false edges. But again, the
definition of ad ensures that every neighbour of xi+1 in Gi is a neighbour of every vertex in A′.
This completes the proof.

Note that the proof has shown an even stronger result: there is a 1-to-1 correspondence
between linear clique-width expressions using the minimum number of labels and layouts of
smallest groupwidth. Our first result about optimal groupwidth layouts concerns disconnected
graphs. Intuitively, vertices of the same connected component should appear consecutively. We
show that this is indeed true.

Lemma 2. Let G be a graph with connected components G1, . . . , Gl. Let β be a layout for
G. Then, there is a layout β′ for G in which the vertices of each connected component appear
consecutively and in the same order as in β such that gw(G,β) ≥ gw(G,β′).

Proof Let k =def gw(G,β). We prove the statement by induction over the number of con-
nected components. If G has only one connected component, the statement is true using β
as β′. So, let G have at least two connected components. If G is edgeless, every connected
component contains exactly one vertex, and we conclude the statement again by using β as
β′. So, let G not be edgeless. Thus, gw(G,β) ≥ 2. Let β1, . . . , βl be layouts obtained from β
by restricting the vertices of G1, . . . , Gl, respectively. Suppose there is i ∈ {1, . . . , l} such that
gw(Gi, βi) ≤ k − 1. Let layout δ be obtained from β by deleting the vertices of Gi. Then, δ is a
layout for G\V (Gi), and gw(G\V (Gi), δ) ≤ k. We apply the induction hypothesis to G\V (Gi)
and δ and obtain layout δ′. Let β′ be obtained from δ′ and βi by appending βi at the end of
δ′. Note that the vertices of each connected component of G appear consecutively in β′, and
the vertices of Gi are at the end. According to assumption and by construction, gw(G,β′) ≤ k.
Finally, let gw(Gi, βi) = k for every i ∈ {1, . . . , l}. For every i ∈ {1, . . . , l}, determine the
leftmost vertex ui of Gi with respect to βi such that νGi

(Lβi
(ui)) + adβi

(ui) = k. Let Gj be the
connected component with uj rightmost in β among u1, . . . , ul. Similar to the previous case, we
obtain layout δ′ for G\V (Gj). Let β′ be obtained from δ′ and βj by appending βj at the end of
δ′. We show that gw(G,β′) ≤ k. Suppose there is a vertex x such that νG(Lβ′(x))+adβ′(x) > k.
By definition of uj and the construction of β′, x is not to the left of uj in β′. Choose x leftmost
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possible in β′. Then, νG(Lβ′(x)) = k and adβ′(x) = 1. Otherwise, if νG(Lβ′(x)) > k, x would
not be leftmost. We consider the groups in Lβ′(x):

– exactly one group contains the vertices of G \ V (Gj)

– k − 1 many groups contain only vertices of Gj .

According to the construction of β′, the groups of Lβ(x) and Lβ′(x) correspond on the k − 1
many groups containing only vertices of Gj . Hence, all vertices in Lβ(x) of connected components
different from Gj are in the same group, say A. By the choice of uj , every connected component
has a vertex in Lβ(uj), and by assumption, every vertex has a neighbour in G. Suppose the
vertices in A have a neighbour in Rβ(x). Then, no vertex of Gi in Lβ(x) can be in A, which
means that only k − 1 many groups in Lβ(x) contain vertices of Gi. This, however, contradicts
the choice of uj. Thus, no vertex in A has a neighbour in Rβ[x]. Hence, Lβ(x) = Lβ′(x). But
then, adβ(x) = adβ′(x), which contradicts gw(G,β) = k. We conclude that gw(G,β′) ≤ k.

4 A graph reduction operation that preserves linear clique-width

Some graph operations preserve clique-width. Substituting a vertex by a graph is the replacement
of a vertex v of G with a graph H such that every vertex of H is adjacent to its neighbours in H
and the neighbours of v in G. The modular decomposition is the reverse operation of obtaining
a graph recursively by substitution. A module in a graph is a set of vertices that have the same
neighbourhood outside of the module. A prime graph with respect to modular decomposition is
a graph that cannot be obtained by nontrivial substitution. Note that the class of cographs are
completely decomposable with respect to modular decomposition and they have no prime graph
[1]. It is known that the clique-width of a graph G is equal to the maximum of the clique-width
of all prime induced subgraphs of G [6]. Thus for the clique-width it is enough to consider the
prime graphs appearing in the modular decomposition. For the linear clique-width of graphs
this observation is not true, since cographs have unbounded linear clique-width.

In other words modules do not affect the clique-width of a graph and the scheme provided
by modular decomposition gives an efficient way of considering only the clique-width of the
decomposed subgraphs. Motivated by the above property on clique-width, in this section we
give an analogous result for linear clique-width. In particular we are able to show that for certain
types of modules this nice property holds when restricted to linear clique-width of graphs.

Definition 2. Let G be a graph and M be a set of vertices of G. We call M a maximal
independent-set module of G if M is an inclusion maximal set of vertices that is both an inde-
pendent set in G and a module of G.

For a graph G, we define a binary relation for false twins u and v, denoted by u ∼ft v. Since
∼ft is an equivalence relation, the corresponding equivalence classes partition the vertex set. It
is easy to see that the equivalence classes are exactly the maximal independent-set modules of
G. The quotient graph of G with respect to ∼ft, denoted as G/∼ft, is obtained as follows: there
is a vertex for every maximal independent-set module of G, and two vertices are adjacent if and
only if the corresponding maximal independent-set modules contain adjacent vertices. It is clear
that G/∼ft is isomorphic to an induced subgraph of G. An independent-set module is called
trivial if it contains a single vertex.
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Lemma 3. For any graph G, the independent-set modules of G/∼ft are trivial.

Proof Suppose G/∼ft has a non-trivial independent-set module M . Let a and b be vertices in
M , and let Ma and Mb be the maximal independent-set modules of G corresponding to a and b,
respectively. Let u and v be vertices in Ma and Mb, respectively. We show that NG(u) = NG(v).
Since a and b are non-adjacent in G/∼ft, u and v are non-adjacent in G. Let w be a vertex
of G and different from u and v. If w is adjacent to u then w is not contained in Ma and
therefore contained in a maximal independent-set module Mc. By c, we denote the vertex of
G/∼ft corresponding to Mc. According to definition, c then is adjacent to a in G/∼ft and by
assumption to b. Thus, w is adjacent to v in G. With a symmetry argument, every neighbour
of v in G is also a neighbour of u in G. Hence, u ∼ft v, and u and v belong to the same maximal
independent-set module. This contradicts the assumption.

Lemma 4. For any graph G, lcwd(G) = lcwd(G/∼ft).

Proof Since G/∼ft is isomorphic to an induced subgraph of G, the inequality lcwd(G/∼ft) ≤
lcwd(G) is immediate. For showing lcwd(G) ≤ lcwd(G/∼ft), let Mx for x ∈ V (G/∼ft) be
the maximal independent-set module of G corresponding to x. Let a be a linear clique-width
k-expression for G/∼ft where k = lcwd(G/∼ft) and let ℓx be the label of x when adding x in
the expression a. We define a linear clique-width k-expression a′ for G in the following way.
For every vertex x of G/∼ft we place the vertices of Mx at the occurrence of the addition of x
and we give them the same label of x. That is, we replace the appearance of ℓx(x) in a with
ℓx(v1) · · · ℓx(v|Mx|), where vi ∈ Mx. In this way we construct a k-expression a′. Mx is a module
in G and every vertex of Mx will obtain the same neighbourhood as x in the graph defined
by a′. Moreover as every vertex of Mx receives the same label in a′ it follows that Mx is an
independent set in the graph defined by a′. Hence lcwd(G) ≤ lcwd(G/∼ft).

Lemma 3 defines a reduction of a graph G with respect to its false twins, and by Lemma 4
one is able to compute lcwd(G) using the reduced graph G/∼ft, rather than G itself. Hence
the operation of substituting a vertex by a graph H preserves the linear clique-width of a given
graph, provided that H is an edgeless graph. Then the restricted operation of substituting a
vertex by an edgeless graph defines an efficient reduction operation in a close relationship to the
substitution operation and modular decomposition.

5 Graphs of linear clique-width at most 2

Gurski showed that graphs of linear clique-width at most 2 are exactly the {2K2, P4, co-(2P3)}-
free graphs [9]. In this section, we give further characterisations of these graphs, for instance
by a decomposition scheme. We also give an alternative proof of the result by Gurski using the
layout characterisation of linear clique-width.

Definition 3. The class of simple cographs is inductively defined as follows:

(1) an empty graph is a simple cograph

(2) if A is a simple cograph and B is an edgeless graph, then A ⊗ B and A ⊕ B are simple
cographs.
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Note that cographs are exactly the graphs obtained when both A and B can be arbitrary
simple cographs. We will show that simple cographs are exactly the graphs of linear clique-width
at most 2. First, we show a connection to threshold graphs, a known subclass of cographs, that
also illustrates the linearity of simple cographs.

Theorem 5. For any graph G, G is a simple cograph if and only if G/∼ft is a threshold graph.

Proof Let G be a simple cograph. If G is an edgeless graph then G/∼ft is a graph on a single
vertex and therefore a threshold graph. Otherwise, if G contains an edge, there are edgeless
graphs A1, . . . , Ar and operations ⊙i ∈ {⊕,⊗} for i ∈ {2, . . . , r} such that G = (· · · (A1 ⊙2

A2) · · · )⊙r Ar. We assume that r is smallest possible. This particularly means that there is no
i ∈ {3, . . . , r} such that ⊙i−1 = ⊙i = ⊕. Note then that the maximal independent-set modules of
G are exactly the sets V (A1), . . . , V (Ar). Let a1, . . . , ar be vertices from A1, . . . , Ar, respectively.
Then, G/∼ft is isomorphic to G[{a1, . . . , ar}]. Note that G[{a1, . . . , ar}] = (· · · (G[{a1}] ⊙2

G[{a2}]) · · · ) ⊙r G[{ar}], which shows that G[{a1, . . . , ar}] and therefore G/∼ft is a threshold
graph. For the converse, let G/∼ft be a threshold graph, that is, the vertices of G/∼ft can
be enumerated as a1, . . . , ar such that G/∼ft = (· · · (A1 ⊙2 A2) . . .) ⊙r Ar for appropriate ⊙i ∈
{⊕,⊗}, where Ai is the graph on vertex set {ai}. Let Mi be the maximal independent-set module
of G corresponding to ai, i ∈ {1, . . . , r}. Then, G = (· · · (G[M1] ⊙2 G[M2]) · · · ) ⊙r G[Mr], thus
a simple cograph.

By Theorem 5 and the fact that threshold graphs can be recognised in linear time [14] we
obtain the following result.

Corollary 6. Simple cographs can be recognised in linear time.

The following theorem, which is the main theorem of this section, gives further characterisa-
tions of simple cographs, one through a special elimination scheme and one by forbidden induced
subgraphs.

Theorem 7. For a graph G, the following statements are equivalent:

(1) G is a simple cograph

(2) G is {2K2, P4, co-(2P3)}-free

(3) G can be reduced to a graph on a single vertex by repeatedly deleting an isolated vertex, a
universal vertex or a false twin vertex.

Proof We show the theorem in two steps. We first show equivalence of statements (2) and
(3) and then show equivalence of statements (1) and (3).

(2) ⇔ (3) Let σ = 〈x1, . . . , xn〉 be a vertex ordering for G such that xi is an isolated vertex,
a universal vertex or a false twin vertex in Gi =def G[{xi, . . . , xn}], i ∈ {1, . . . , n}. Suppose that
G is not {2K2, P4, co-(2P3)}-free. Let j ∈ {1, . . . , n} be largest such that Gj contains 2K2,
P4 or co-(2P3) as induced subgraph. Then, xj is a vertex in a 2K2, P4 or co-(2P3) in Gj .
However, 2K2, P4 and co-(2P3) do not contain a false twin or isolated or universal vertex, which
contradicts the assumtion. Hence, G is {2K2, P4, co-(2P3)}-free. For the converse, we show that
every graph that does not have an elimination sequence of the kind of statement (3) contains a
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2K2, P4 or co-(2P3) as induced subgraph. Let G = (V,E) be a graph. Since every graph on at
most three vertices admits such an elimination, G contains an induced subgraph G′ on at least
four vertices that does not have an isolated vertex, a universal vertex or a false twin vertex,
but every proper induced subgraph of G′ has such a vertex. Note that G′ is connected, since
otherwise it would contain an isolated vertex or a 2K2 as induced subgraph. Let x be a vertex
of G′. We distinguish three cases.

(a) Let G′−x have an isolated vertex y. Since G′ is connected, x and y are adjacent in
G′. There is a vertex z that is non-adjacent to x; otherwise, x would be universal in G′

contradicting the definition of G′. Let P be a shortest x, z-path in G′. This path has
length at least 2. It can be extended by starting at y to a shortest y, z-path, which is of
length at least 3, and shows that G′ contains a P4 as induced subgraph.

(b) Let G′−x have a universal vertex y. Since y is not universal in G′, x and y are non-
adjacent in G′. Since G′ does not contain false twin vertices, the neighbourhood of x
in G′ is properly contained in the neighbourhood of y. Suppose there are vertices a ∈
NG′(x) and d ∈ NG′(y) \ NG′(x) that are non-adjacent in G′. Then, (x, a, y, d) is a
chordless path of length 3 in G′, that is, G′ contains the P4 as induced subgraph. Now,
assume that every pair a, d of vertices where a ∈ NG′(x) and d ∈ NG′(y) \ NG′(x) is
adjacent in G′. Remember that NG′(y) \ NG′(x) is non-empty. Consider NG′(x). Since
G′ does not have a universal vertex or a false twin vertex, G′[NG′(x)] does not have a
universal vertex or a false twin vertex. By construction, G′[NG′(x)] admits an elimination
scheme repeatedly choosing only isolated, universal or false twin vertices. According to
assumption, G′[NG′(x)] contains an isolated vertex a. Since a is not universal in G′, NG′(x)
contains a second vertex b. Since a and b are not false twins in G′, b has a neighbour c in G′

that is not a neighbour of a, and c can be only in NG′(x). Now consider G′[{x, y, a, b, c, d}],
where d ∈ NG′(y) \NG′(x). The non-neighbours of x are y and d, and the non-neighbours
of a are b and c. Since all other pairs of vertices are adjacent, {x, y, a, b, c, d} induces a
co-(2P3) in G′.

(c) Let G′−x have a false twin vertex pair y, y′. Since G′ does not contain false twin vertices,
we can assume without loss of generality that x and y are adjacent and x and y′ are
non-adjacent in G′. If y′ has a neighbour a that is not a neighbour of x then (x, y, a, y′)
is a chordless path of length 4 in G′, that is, {x, y, y′, a} induces a P4 in G′. Let every
neighbour of y′ be a neighbour of x. If there is no vertex in V \ (NG′(x) ∪ {x, y′}) then
y is a universal vertex in G′−y′, and we can apply case (2). So, let there be a vertex b ∈
V \ (NG′(x) ∪ {x, y′}). Since G′ is connected, we can assume that b is a neighbour of a
neighbour c of x. If c is not a neighbour of y then (y, x, c, b) is a chordless path of length 4
in G′. Thus every neighbour of b that is a neighbour of x must be a neighbour of y. If b
has a neighbour d that is not a neighbour of x then {x, y, b, d} induces a 2K2 in G′. So, if
this is not the case, every vertex in V \ (NG′(x) ∪ {x, y′}) has neighbours only in NG′(y′).
If there are two vertices b, b′ ∈ V \ (NG′(x) ∪ {x, y′}) such that neither NG′(b) ⊆ NG′(b′)
nor NG′(b′) ⊆ NG′(b) then G′ contains a 2K2 or a P4 as induced subgraph. Assume that
this is not the case, which means that the neighbourhoods of every pair of vertices in
V \ (NG′(x) ∪ {x, y′}) is comparable with respect to ⊆, and this means that there is a
vertex z in NG′(y′) which is adjacent to every vertex in V \ (NG′(x) ∪ {x, y′}). Since all
vertices in NG′(x) \ (NG′(y′)∪ {y}) are adjacent to z (otherwise, there was an induced P4
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containing x, z, y′), z is a universal vertex in G′, contradicting the assumption about G′.

We have shown that every graph that does not admit an elimination scheme that repeatedly
deletes isolated, universal or false twin vertices contains a 2K2, P4 or co-(2P3) as induced
subgraph. Hence, {2K2, P4, co-(2P3)}-free graphs admit such elimination schemes.

(1) ⇔ (3) Let G = (V,E) be a graph, and let σ = 〈x1, . . . , xn〉 be a vertex ordering
for G such that xi is an isolated vertex, a universal vertex or a false twin vertex in Gi =def

G[{xi, . . . , xn}], i ∈ {1, . . . , n}. Let σ be chosen such that false twin vertices are deleted earliest
possible, which means that, if possible, a false twin vertex is picked instead of a universal or
isolated vertex. Suppose there is i ∈ {1, . . . , n − 1} such that xi+1 is a false twin vertex and
xi is not. Independent of whether xi is a universal or isolated vertex in Gi, xi+1 is a false
twin vertex also in Gi and xi is a universal or isolated vertex in Gi−xi+1. Hence, xi+1 can
be deleted before xi. We conclude that there is j ∈ {1, . . . , n} such that none of xj , . . . , xn is
deleted as false twin vertex. Thus, Gj is isomorphic to G/∼ft and therefore a threshold graph.
Applying Theorem 5, we conclude that G is a simple cograph. The converse similarly follows
from Theorem 5 and observing that the graph G/∼ft is obtained from G by repeatedly deleting
only false twin vertices.

The characterisation of simple cographs by forbidden induced subgraphs shows that the class
of simple cographs is between the class of threshold graphs ({2K2, P4, C4}-free) and the class
of co-trivially perfect graphs ({2K2, P4}-free). Moreover by the result of [9] and Theorem 7 we
conclude that simple cographs are exactly the graphs of linear clique-width at most 2. However
in [9] no immediate proof is given as it is stated that it follows from arguments similar to another
proof. For completeness we provide the proof of the next theorem.

Theorem 8. A graph has linear clique-width at most 2 if and only if it is a simple cograph.

Proof Our proof shows two implications using the groupwidth characterisation of linear
clique-width. Let G = (V,E) be an arbitrary graph. First, let G not be a simple cograph. Let
β = 〈x1, . . . , xn〉 be a layout for G. We show that gw(G,β) ≥ 3. If there is j ∈ {1, . . . , n} such
that νG(Lβ(xj)) + adβ(xj) ≥ 3, we are done. So, assume the contrary for the proof. Since G is
not a simple cograph, there is i ∈ {2, . . . , n−1} such that G[{x1, . . . , xi}] is a simple cograph and
G[{x1, . . . , xi+1}] is not. This particularly means that xi+1 has a neighbour and a non-neighbour
in {x1, . . . , xi}. Therefore, νG(Lβ(xi+1)) = 2 and adβ(xi+1) = 0. Let A and A′ be the two groups
in Lβ(xi+1). Then, one of the two sets, say A, contains only neighbours and the other set only
non-neighbours of xi+1. From adβ(xi+1) = 0, it follows that the group of xi+1 in Lβ[xi+1]
contains the vertices of A′ and that every vertex in A is adjacent to every vertex in A′. Thus,
G[Lβ(xi+1)] = G[A] ⊗ G[A′]. Let j be smallest such that {x1, . . . , xj} contains a vertex from
A and A′. Since x1, . . . , xj−1 and xj are in different groups, νG(Lβ(xj)) = 1 and adβ(xj) = 1.
Since νG(Lβ(xi′)) = 2, adβ(xi′) = 0 for every i′ ∈ {j + 1, . . . , i}. It follows that A or A′ is an
independent set. If A is an independent set, G[{x1, . . . , xi+1}] = (G[A′] ⊕ G[{xi+1}]) ⊗ G[A] is
a simple cograph, if A′ is an independent set, G[{x1, . . . , xi+1}] = G[A] ⊗ G[A′ ∪ {xi+1}] is a
simple cograph. This, however, contradicts the assumption about G[{x1, . . . , xi+1}] not being a
simple cograph. Hence, gw(G,β) ≥ 3.

For the converse, let G be a simple cograph. According to the definition, there are vertex-
disjoint edgeless graphs A1, . . . , As and operations ⊙i ∈ {⊗,⊕}, i ∈ {2, . . . , s}, such that G1 =def
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A1 and Gi =def Gi−1 ⊙i Ai for all i ∈ {2, . . . , s} and G = Gs. Let xi
1, . . . , x

i
ri

be the vertices of
Ai, i ∈ {1, . . . , s}. We show that β = 〈x1

1, . . . , x
1
r1

, x2
1, . . . , x

s
rs
〉 is a layout for G of groupwidth at

most 2. For every i ∈ {1, . . . , s}, Lβ(xi
1) has exactly one group, and since Ai is edgeless, Lβ(xi

j)

has at most two groups ({x1
1, . . . , x

i−1
ri−1

} and {xi
1, . . . , x

i
j−1}), j ∈ {2, . . . , ri}. So, adβ(xi

j) = 0
for all i ∈ {1, . . . , s} and j ∈ {2, . . . , ri}, and we conclude lcwd(G) ≤ 2 applying Theorem 1.

6 Graphs of linear clique-width at most 3

Graphs of linear clique-width at most 2 were shown to have a quite simple structure, admit-
ting also a number of different characterisations (Theorems 7 and 8). The situation changes
already for graphs of linear clique-width at most 3. We give a characterisation of these graphs
by a decomposition scheme, which will also lead into an efficient recognition algorithm. The
decomposition scheme can be considered a generalisation of the decomposition scheme of simple
cographs. We will apply this characterisation result to show that graphs of linear clique-width
at most 3 are cocomparability graphs and weakly-chordal graphs.

Considering the definition of simple cographs as graphs admitting a certain decomposition us-
ing the join and union operation, we can say that simple cographs are defined in a “1-dimensional
manner”. For graphs of linear clique-width at most 3, we have to add another dimension. We
first define a class of formal expressions, that are interpreted as graph descriptions. These
expressions can be considered as 2-dimensional expressions. An lc3-expression is inductively
defined as follows, where d ∈ {l, r} and all sets A,A1, A2, A3, A4 may be empty:

(d1) (A) is an lc3-expression, where A is a set of vertices.

(d2) Let T be an lc3-expression and let A be a set of vertices not containing a vertex appearing
in T ; then (d[T ], A) is an lc3-expression.

(d3) Let T be an lc3-expression and let A1, A2, A3, A4 be disjoint sets of vertices not containing
a vertex appearing in T ; then (A1|A2, d[T ], A3|A4) is an lc3-expression.

(d4) Let T be an lc3-expression and let A1, A2, A3, A4 be disjoint sets of vertices not containing
a vertex appearing in T , and let p be one of the following number sequences: 123, 132, 312,
321, 12, 32 (not allowed are 213, 231, 21, 23, 13, 31); then T ⊙ (A1|A2, •), T ⊙ (•, A1|A2)
and T ◦ (A1, A2|A3, A4, d[p]) are lc3-expressions where ⊙ ∈ {⊗,⊕}.

This completes the definition of lc3-expressions. According to our intuition, parts (d2) and
(d3) are “2-dimensional”. As mentioned, lc3-expressions are defined for describing graphs. The
graph defined by an lc3-expression is obtained according to the following inductive definition.
An lc3-expression also associates a vertex partition with the defined graph. Let T be an lc3-
expression. Then, G(T ) is the following graph, where T ′ always means an lc3-expression and
A,A1, A2, A3, A4 are sets of vertices and d ∈ {l, r}:

(i1) Let T = (A); then G(T ) is the edgeless graph on vertex set A; the vertex partition
associated with G(T ) is (A, ∅).

(i2) Let T = T ′ ⊙ (A1|A2, •) for ⊙ ∈ {⊗,⊕}, and let G(T ′) with vertex partition (B,C) be
given; then G(T ) is obtained from G(T ′) by adding the vertices of A1 and A2 and executing
two operations: (1) a join or a union (depending on ⊙) between B and A1 ∪A2 and (2) a
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join between A2 and C; that is, B ⊙ (A1 ∪A2) and A2 ⊗C; the vertex partition associated
with G(T ) is ((B ∪ A1 ∪ A2), C).

(i3) The case T = T ′ ⊙ (•, A1|A2) is similar to the previous one, where the operations are
C ⊙ (A1 ∪ A2) and A2 ⊗ B and the vertex partition is (B, (C ∪ A1 ∪ A2)).

(i4) Let T = T ′ ◦ (A1, A2|A3, A4, d[p]), and let G(T ′) with vertex partition (B,C) be given;
then G(T ) is obtained from G(T ′) by adding the vertices of A1 ∪ A2 ∪ A3 ∪ A4; the set
of edges is dependent on p: we have three start sets, A2, B,C, and three additional sets,
A3, A1, A4, that correspond to A2, B,C, respectively; the first join is executed between
the two specified start sets; then the two additional sets are added to the sets involved in
the first join; the second join is executed between a now enlarged set and a start set; then
the third additional set is added to its corresponding start set and the last join operation
(if there is one) is executed; so the result depends on the order of the operations; the
numbers stand for: 1 means A2 ⊗B, 2 means B ⊗C, 3 means A2 ⊗C; note that the start
sets become bigger after each join operation; the vertex partition associated with G(T )
is ((B ∪ A1 ∪ A2 ∪ A3), (C ∪ A4)) or ((B ∪ A1), (C ∪ A4 ∪ A2 ∪ A3)) for d = l or d = r,
respectively.

(i5) Let T = (d[T ′], A), and let G(T ′) with vertex partition (B,C) be given; then G(T ) is the
graph defined by T ′ ⊗ (•, A|∅) or T ′ ⊗ (A|∅, •) for d = l or d = r, respectively; the vertex
partition associated with G(T ) is (B ∪ C,A).

(i6) Let T = (A1|A2, d[T ′], A3|A4), and let G(T ′) with vertex partition (B,C) be given; then
G(T ) is the graph defined by T ′ ◦ (A1, A3|A4, A2, d[p′]) where p′ =def 132 or p′ =def 312 for
d = l or d = r, respectively; the vertex partition associated with G(T ) is ((A1 ∪ A2 ∪ B ∪
C), (A3 ∪ A4)).

This completes the definition of the graph defined by an lc3-expression.

Definition 4. A graph G is an lc3-graph if there is an lc3-expression T such that G = G(T ).

We want to show that lc3-graphs are exactly the graphs of linear clique-width at most 3. The
“difficult” part of this result show that every graph with a linear clique-width 3-expression is an
lc3-graph. We partition the proof of this implication into several lemmata, that are interesting
also on their own.

Lemma 9. Let G = (V,E) be an lc3-graph. Let T be an lc3-expression for G and let (B,C) be
the vertex partition associated with G(T ). Let S ⊆ V . Then, G[S] is an lc3-graph, and there
is an lc3-expression TS for G[S] that associates G(TS) with vertex partition (B ∩ S,C ∩ S) or
(C ∩ S,B ∩ S).

Proof By definition of lc3-expressions, every vertex of G appears in exactly one lc3-expression
operation of T and, thus, in exactly one set of the vertex partition. It is obvious that deleting
a vertex x of G from the set of its appearance in T yields T ′, that is an lc3-expression which
exactly defines G−x and associates G(T ′) with vertex partition (B \ {x}, C \ {x}). Iterated
application of this operation proves the statement.
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Lemma 10. Let T be an lc3-expression, and let (B,C) be the vertex partition associated with
G(T ). The following two statements hold.

(1) The subgraph of G(T ) induced by C is a simple cograph.

(2) There are no four vertices u, v, x, z in G(T ) where u, v ∈ B and x, z ∈ C such that
ux, vz ∈ E(G(T )) and uz, vx 6∈ E(G(T )).

Proof We prove the two statements separately. Both proofs work on a given lc3-expression.
We begin with statement (1). Let GC denote the subgraph of G(T ) induced by C. If T = (A)
for some set A of vertices then GC is an empty graph. Empty graphs are simple cographs.
Let T ′ be an lc3-expression and let A,A1, A2, A3, A4 be sets of vertices. If T = (d[T ′], A) or
T = (A1|A2, d[T ′], A3|A4) for d ∈ {l, r} then GC is an edgeless graph on vertex set A or A3∪A4,
respectively. If T = T ′ ⊙ (A1|A2, •) then C induces GC already in G(T ′), and we obtain the
result by application of the induction hypothesis. Now, let T = T ′ ◦ (A1, A2|A3, A4, l[p]). Let
(B′, C ′) be the vertex partition associated with G(T ′). Then, GC is equal to GC′ ⊕ G(T )[A4],
where GC′ denotes the subgraph of G(T ) induced by C ′. According to induction hypothesis,
GC′ is a simple cograph, and since G(T )[A4] is an edgeless graph, GC is a simple cograph, too.
Using the same definitions for the case T = T ′⊙ (•, A1|A2), GC is equal to GC′ ⊙G(T )[A1 ∪A2],
which is a simple cograph. Finally, let T = T ′ ◦ (A1, A2|A3, A4, r[p]). Depending on p, GC is
one of the following graphs:

– (GC′ ⊗ G(T )[A2 ∪ A3]) ⊕ G(T )[A4]

– (GC′ ⊗ G(T )[A2]) ⊕ G(T )[A3 ∪ A4]

– (GC′ ⊕ G(T )[A4]) ⊗ G(T )[A2 ∪ A3] .

All these graphs are simple cographs, and we conclude the first proof.

For statement (2), assume the contrary, that G contains vertices u, v, x, z such that u, v ∈ B,
x, z ∈ C and ux, vz ∈ E(G(T )) and uz, vx 6∈ E(G(T )). Let T ′ be the minimal subexpression
of T that contains x and z. Hence, (at least) one of the two vertices is contained in the last
operation of T ′. Suppose G(T ′) does not contain u or v; without loss of generality, let u not
be contained in G(T ′). By checking all possibilities, this can only mean that u is adjacent to x
and z in G(T ) or u is non-adjacent to x and z in G(T ). So, G(T ′) already contains u, v, x, z.
It is clear that the last operation of T ′ cannot be of the forms (A) or (d[·], A) or ⊙(A1|A2, •).
If the last operation of T ′ is of the form ⊙(•, A1|A2) then x or z is contained in A2 and must
be adjacent to both u and v. If the last operation of T ′ is of the form (A1|A2, d[·], A3|A4) then
x, z ∈ A3 ∪ A4 and the neighbourhood of one vertex is contained in the neighbourhood of the
other. Finally, let the last operation of T ′ be of the form ◦(A1, A2|A3, A4, d[p]). If d = l then
x, z ∈ C ∪ A4 and the neighbourhood of every vertex in A4 is contained in the neighbourhood
of every vertex in C. Thus d = r must hold. But then u, v ∈ B ∪A1, and we conclude a similar
inclusion property for u and v. Hence, vertices u, v, x, z cannot have the described property, and
we conclude the proof.

The third property of lc3-graphs is a closure property for a special composition operation.
Let G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-graph (in arbitrary assignment)
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G2G3

H2H3

H1G1

Figure 3: The result of an lc3-composition of the graphs G1, G2, G3, H1, H2, H3. The thick lines from graphs G1

and H1 represent joins. The bow tie between G2 ⊕ H2 and G3 ⊕ H3 means either a join or no edge at all.

and let H1,H2,H3 be edgeless graphs. Graphs may be empty but at least two of them are non-
empty. Then, the graph that is obtained from these six graphs and the additional edges as
in Figure 3 is an lc3-graph. The bow tie in Figure 3 means either a join between G2 ⊕ H2

and G3 ⊕ H3 or no edge at all. We call this operation complete or incomplete lc3-composition
depending on whether the bow tie represents a join operation (‘complete’) or a union operation
(‘incomplete’).

Lemma 11. Let G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-graph and let
H1,H2,H3 be edgeless graphs, where at least two of the six graphs are non-empty. Then, both
the complete and the incomplete lc3-compositions of these graphs yield lc3-graphs. Furthermore,
there is an lc3-expression T for every i ∈ {1, 2, 3} and every lc3-composition such that one of
the two partition sets associated with G(T ) is equal to V (Gi) ∪ V (Hi).

Proof We consider complete and incomplete lc3-compositions separately and distinguish
different assignments. Let G′ and G′′ be an lc3-graph and a simple cograph, respectively. Then,
there are lc3-expressions T ′ and T ′′ for G′ ⊗ G′′ and G′ ⊕G′′, respectively, such that G(T ′) and
G(T ′′) are associated with the vertex partition (V (G′), V (G′′)). Such lc3-expressions can be
obtained from an lc3-expression T for G′, starting from (l[T ], ∅) and adding operations of the
forms ⊗(•, ∅|A) and ⊕(•, ∅|A) for G′⊗G′′ and ⊗(•, A|∅) and ⊕(•, A|∅) for G′⊕G′′. The proof of
Lemma 10 describes such a construction in reverse. We distinguish the cases according to which
graph is edgeless. We first consider incomplete lc3-compositions and consider H2 and H3 to be
empty. Let G1 be edgeless, and let T be an lc3-expression for G2⊕G3 where the vertex partition
associated with G(T ) groups into V (G2) and V (G3). Then, the following lc3-expressions

(d[T ], V (H1)) ⊕ (•, ∅|V (G1)), T ⊗ (∅|V (G1), •) ⊕ (∅|V (H1), •), T ⊗ (•, V (H1)|V (G1))

and the complementary versions, where the • symbols change sides, are lc3-expressions for the
incomplete lc3-compositions of G1, . . . ,H3 where H2 and H3 are empty. If these graphs are
non-empty, they are edgeless graphs and the contained vertices are isolated in the composition
graphs. Appropriate lc3-expression operations can be added, which concludes this part. Now,
let G2 be edgeless. Let T be an lc3-expression for G1 ⊗ G3 that groups the vertices into V (G1)
and V (G3). For the following lc3-expressions, we assume that V (G1) is the right partition set.
The other case is similar. Let T ′ =def T ⊕ (•, V (H1)|∅). Then, the following expressions show
the claim where the remaining cases are obtained as described above:

T ′ ⊕ (∅|V (G2), •), (l[T ′], V (G2)), T ′ ⊗ (•, V (G2)|∅) .
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Finally, let G3 be edgeless. Let T be an lc3-expression for G1 ⊗ G2 grouping the vertices into
V (G1) and V (G2). We assume that V (G1) is the left partition set. Then, we conclude with the
following lc3-expressions:

T ◦ (V (H1), V (G3)|∅, ∅, d[12]), (r[T ⊗ (•, V (H1)|∅)], V (G3)) .

For the case of complete lc3-expressions, we similarly list lc3-expressions. We begin with the
case of G1 being edgeless. Let T be an lc3-expression for G2 ⊗ G3 that groups into V (G2) and
V (G3) with V (G3) the left partition set. Then,

(V (H3)|V (H2), l[T ], V (G1)|V (H1)), (V (H3), V (G1)|V (H1), V (H2), d[132])

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . ,H3. Now, let G2 be
edgeless, and let T be an lc3-expression for G1 ⊗ G3 that groups into V (G1) and V (G3) where
V (G3) is the left partition set. Let T ′ =def T ⊕ (V (H3)|∅, •) ⊕ (•, V (H1)|∅). Then,

T ′ ⊗ (V (H2)|V (G2), •), (r[T ′], V (H2)) ⊕ (•, ∅|V (G2)), T ′ ⊗ (•, ∅|V (G2)) ⊕ (•, ∅|V (H2))

are lc3-expressions for the complete lc3-composition of G1, . . . ,H3. Finally, let G3 be edgeless,
and let T be an lc3-expression for G1 ⊗ G2 that groups into V (G1) and V (G2) where v(G1) is
the left partition set. Then,

T ◦ (V (H1), V (G3)|V (H3), V (H2), d[123]), (V (H1)|∅, l[T ], V (G3)|V (H3)) ⊕ (∅|V (H2), •)

for d ∈ {l, r} are lc3-expressions for the complete lc3-composition of G1, . . . ,H3. The remaining
cases are symmetric. This then completes the proof of the lemma.

Next we show that every lc3-graph admits a linear clique-width expression that uses at most
3 labels.

Lemma 12. For an lc3-graph there exists a linear clique-width 3-expression.

Proof Let G be an lc3-graph and let T be an lc3-expression such that G(T ) = G. We
inductively define a linear clique-width 3-expression for G. After every construction step, the
linear clique-width expression will have at most two assigned labels and the two label classes
exactly correspond to the two vertex partition classes of the lc3-expression. For the construction,
we distinguish different cases. In the following, let T ′ be an lc3-expression with defined vertex
partition (B,C), let a′ be a linear clique-width 3-expression that defines G(T ′) and has only two
assigned labels such that the two label classes exactly correspond to (B,C). Let c1 and c2 be
the labels in G(T ′) corresponding to the vertices in B and C, respectively. If C is empty, c2 is
one of the two non-assigned labels. Let c3 be the third label. Finally, let A,A1, A2, A3, A4 be
sets of vertices, d ∈ {l, r} and p an appropriate sequence of numbers. In the following, we will
shorten an expression c(x1) · · · c(xn) to c(X) where X = {x1, . . . , xn}. Note that the order in
which the vertices appear is not important. We consider the lc3-expression operations defined
in (d1) and (d4).

– T = (A): G(T ) is an edgeless graph on vertex set A. Then, a =def 1(A) is a linear
clique-width 3-expression that defines G and respects the vertex partition defined by T .

17



– T = T ′ ⊙ (A1|A2, •): If ⊙ = ⊗, let a =def a′ c3(A2) ηc2,c3 c3(A1) ηc1,c3 ρc3→c1 .

If ⊙ = ⊕, we define an expression similar to the previous one, without the operation ηc1,c3.
It is clear in both cases that a defines G(T ), that c3 is not assigned in G(T ) and that c1

and c2 determine exactly the vertex partition ((B ∪ A1 ∪ A2), C), which is defined by T .

– The case T = T ′ ⊙ (•, A1|A2) is purely symmetric to the previous case.

– T = T ′ ◦ (A1, A2|A3, A4, d[p]): We give a sample expression for d = l and p = 123. The
other cases are obtained in the same way. Let

a =def a′ c3(A2) ηc1,c3 c1(A1) c3(A3) ηc1,c2 c2(A4) ηc2,c3 ρc3→c1 .

In case of d = r, the relabel operation would be ρc3→c2.

For the remaining operations, we can reduce to the cases above. Only the relabel operation is
replaced by ρc2→c1. Thus, we have shown that there is a linear clique-width 3-expression for G,
which means that G has linear clique-width at most 3.

Before showing that lc3-graphs are exactly the graphs of linear clique-width at most 3, we
first show a normalisation result for clique-width expressions. We use the following notation:
Given a linear clique-width k-expression t that defines a graph G, we write t = t1 · · · tr if there
are r clique-width operations involved in t. In other words we partition t into r subexpressions
appearing consecutive in t. Note that the number of operations r must be at least as the
number of labels k used in t. The graph G[t1, . . . , ti] is the subgraph of G induced by the
vertices appearing in t1 · · · ti, 1 ≤ i ≤ r; note that G[t] = G. We say that vertices belong to the
same label class of G[t1, . . . , ti] if they have the same label in t1 · · · ti.

Lemma 13. Let k ≥ 1 and let G be a graph that has a linear clique-width k-expression. Then,
G has a linear clique-width k-expression a = a1 · · · ar such that the following holds for all join
and relabel (η and ρ) operations ai in a:

(1) G[a1 · · · ai] does not contain an isolated vertex

(2) G[a1 · · · ai−1] contains vertices of the two label classes involved in ai .

Proof We show the two properties separately. Let b = b1 · · · bs be a linear clique-width k-
expression for G. Let bi be a join or relabel operation and suppose that G[b1 · · · bi] contains an
isolated vertex, say x. Let c be the label of x in G[b1 · · · bi]. If bi is a join operation then c is not
one of the two join labels. We obtain b′ = b′1 · · · b

′
s from b by deleting the vertex creation operation

for x in b and adding the operation c(x) right after operation bi. Then, G[b′1 · · · b
′
i] = G[b1 · · · bi].

Iterated application of this operation shows existence of a linear clique-width k-expression having
the first property.

For the second property, let d = d1 · · · dt be a linear clique-width k-expression that has the
first property. Let di = ηc,c′ be a join operation. If G[d1 · · · di] does not contain a vertex with
label c or c′ then di does not add an edge to G[d1 · · · , di−1], that is, G[d1 · · · di−1] = G[d1 · · · di].
We obtain d′ from d by deleting operation di. Now, let di = ρc→c′ be a relabel operation,
and suppose that one of the two label classes is empty in G[d1 · · · di−1]. If the label class
corresponding to c is empty then we obtain d′ from d by just deleting operation di. If the class
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corresponding to c is non-empty but the class corresponding to c′ is empty then we obtain d′

from d by first exchanging c and c′ in all operations di+1, . . . , dt and then deleting di. It is clear
that G[d1 · · · dj ] and G[d′1 · · · d

′
j−1] correspond to each other for every j ∈ {i + 1, . . . , t} with the

exception that the classes corresponding to c and c′ are exchanged. Repeated application of the
modification completes the proof. Note that the expressions after the execution of the second
modification still have the first property.

Theorem 14. A graph has linear clique-width at most 3 if and only if it is an lc3-graph.

Proof One direction follows from Lemma 12. For the converse, let G be a graph with linear
clique-width at most 3. We show that G is an lc3-graph by giving an lc3-expression for G. Let
a = a1 · · · ar be a linear clique-width 3-expression for G that has the properties of Lemma 13.
Without loss of generality, we can assume that a1 adds a vertex. We will prove the claim by
induction over the number of relabel operations. The following observations are crucial for the
proof. Given a labelled graph G′, execute only vertex creation and join operations on G′. Then,
only the last join operation between two labels has to be considered, and no vertex that is added
to G′ is adjacent to another vertex assigned the same label. Let Gi =def G[a1 · · · ai] denote the
labelled graph defined by a1 · · · ai. If G is an edgeless graph, which means that a does not contain
a join operation, let the lc3-expression T be defined as (V ). Since G = G(T ), we conclude the
statement. So, let a have a join operation. Without loss of generality, we can assume that a
contains a relabel operation right after the last join operation involving the same labels.

Let ai be the first relabel operation in a. Consider Gi−1. Since ai is the first relabel operation
in a, every label class induces an edgeless graph in Gi−1. Let A1, A2, A3 be the sets of vertices
corresponding to the three different label classes. For defining the lc3-expression, we consider
different cases. If A3 is empty then T1 =def (A1)⊗ (A2|∅, •). So, let A3 be non-empty. Let D1 be
the set of vertices of A1 having at least one neighbour in A2 and A3. Similarly, let D2 be the set
of vertices of A2 having at least one neighbour in A1 and A3, and let D3 be the set of vertices
of A3 having at least one neighbour in A1 and A2. Note that one of the sets D1,D2,D3 must
be non-empty. If exactly one of these sets is non-empty, Gi is the incomplete lc3-composition
of at most four edgeless graphs (involving the graphs G1, G2, G3,H1 of Figure 3). If at least
two of the sets D1,D2,D3 are non-empty then all three sets are non-empty. Then, Gi is the
complete lc3-composition of six edgeless graphs. Let A3 be the set of vertices that corresponds
to the label that is not involved in the relabel operation ai. According to Lemma 11, there is
an lc3-expression for Gi that groups the vertices of Gi into A1 ∪ A2 and A3.

Now, let aj′ be the tth relabel operation in a for t ≥ 2 and let aj be the relabel operation
in a preceding aj′ . By induction hypothesis, there is an lc3-expression Tt−1 that defines Gj in
such a way that vertex partition (B,C) associated with G(Tt−1) corresponds to the labels in Gj .
This particularly means that if two labels are not assigned in Gj then C can be assumed empty.
We show that an lc3-expression for Gj′ exists, whose implied vertex partition corresponds to
the labels in Gj′ . The proof will be done by distinguishing several cases. Let A1, A2, A3 be
the sets of vertices of Gj′−1 corresponding to the three labels, and let B ⊆ A1 and C ⊆ A2.
Let A′

i =def Ai \ (B ∪ C) for i ∈ {1, 2, 3}. Note that since the vertices of A′
1, A

′
2, A

′
3 are

added after operation aj, A′
1, A

′
2, A

′
3 are independent sets in Gj′−1. We consider two basic cases

distinguishing whether there is a join operation involving the labels of A1 and A2 between aj

and aj′ or not. First, let there be such a join operation. If this is the only type of join operations
between aj and aj′ then A3 is empty and Gj′ is a join of the subgraphs induced by A1 and A2.
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Remember that Gj′ does not contain isolated vertices. According to Lemma 9, Gj′ [B] is an
lc3-graph, and according to Lemma 10, Gj′ [C] is a simple cograph, and by construction, A′

1

and A′
2 induce edgeless graphs. Hence, Gj′ is the complete lc3-composition of the subgraphs of

Gj′ induced by B,C,A′
1, A

′
2, which is an lc3-graph according to Lemma 11. Furthermore, there

exists an lc3-expression for Gj′ that groups the vertices into the sets A1 and A2. This completes
the proof of this case. Now, let there be another type of join operations between aj and aj′

involving vertices of A3. If there is exactly one type of join operations involving vertices of A3

then Gj′ is an incomplete lc3-composition. If there are two types of join operations then Gj′ is
a complete lc3-composition. Similar to the first case, we conclude that Gj′ is an lc3-graph by
applying Lemmata 9, 10 and 11.

Now, we consider the second basic case, where there is no join operation involving the vertices
in A1 and A2 between aj and aj′ . Let aj′ involve the label assigned to the vertices of A3. Without
loss of generality assume that aj′ changes the label of A1 to the label of A3 (or aj′ changes the
label of A3 to the label of A1); the other case follows similarly. All vertices of A′

1 and A′
2 have

a neighbour in A3, and there is a join between the vertices of A3 and the vertices of A1 or A2.
Let D3 be the set of vertices of A′

3 with at least one neighbour in the sets A1 and A2. Then,
one of the two lc3-expressions defines Gj′ and associates partition (A1 ∪ A3, A2) with it:

– Tt =def Tt−1 ⊕ (A′
1|∅, •) ⊕ (•, A′

2|∅) ⊗ ((A3 \ D3)|D3, •)

Tt =def Tt−1 ⊕ (A′
1|∅, •) ⊕ (•, A′

2|∅) ⊗ (∅|D3, •) ⊕ (∅|(A3 \ D3), •) .

Now, let aj′ involve only the labels of A1 and A2. Then, depending on the case, the following
lc3-expression defines Gj′ in the desired way:

– Tt =def (d[Tt−1], (A3 \ D3)) ⊕ (•, ∅|D3)

where d ∈ {l, r}. For completing the proof we have to consider vertices that are added after
the last relabel operation. Only vertex creation operations can appear. We then obtain an
lc3-expression for G by adding these last vertices, that are isolated in G, attaching an ⊕(A|∅, •)
operation. Then we conclude the proof.

Towards a better understanding of lc3-graphs, we give interesting connections between them
and cocomparability graphs and weakly chordal graphs.

Proposition 15. Lc3-graphs are cocomparability graphs.

Proof We show the statement by induction over the definition of lc3-expressions. Let G =
(V,E) be an lc3-graph with lc3-expression T . We show that there is a cocomparability ordering
for G that respects the vertex partition associated with G(T ). First, let T = (A, •) for a
set A of vertices. Then, G(T ) is an edgeless graph, and every vertex sequence for G is a
cocomparability ordering for G. Furthermore, every vertex sequence for G respects the vertex
partition (A, ∅). Now, let T be more complex. For the rest of the proof, let T ′ be an lc3-
expression with associated vertex partition (B,C), let σ′ be a cocomparability ordering for G(T ′)
that respects partition (B,C), which means that the vertices of B appear consecutively and the
vertices of C appear consecutively in σ′. Let A,A1, A2, A3, A4 be sets of vertices, d ∈ {l, r} and
p an appropriate number sequence. We distinguish different cases.
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– T = T ′ ⊙ (A1|A2, •) for ⊙ ∈ {⊕,⊗}. We obtain σ from σ′ by adding the vertices of A1 to
the left of the vertices of B and the vertices of A2 between the vertices of B and C. Then,
σ is a cocomparability ordering for G and the vertices of B∪A1∪A2 appear consecutively.

– The case T = T ′⊙ (•, A1|A2) is similar to the previous case where A1 is added to the right
of the vertices of C.

– T = (l[T ′], A). The vertices of A are adjacent to only the vertices of C. We obtain σ from
σ′ by adding the vertices in A to the right of the vertices of C. Then, σ is a cocomparability
ordering for G that respects the partition (B ∪ C,A).

– The case T = (r[T ′], A1, A2) is similar to the previous case where A1 is to the left of B
and A2 is to the left of A1.

– T = T ′ ◦ (A1, A2|A3, A4, l[12]). The vertices of B and A2 are adjacent and the vertices of
B ∪ A1 and C are adjacent. We obtain σ by placing the vertices in the following order:
A3, A2, B,A1, C,A4, and the vertices in B and C appear in order determined by σ′. Then,
σ is a cocomparability ordering for G and respects the vertex partition ((B ∪ A1 ∪ A2 ∪
A3), (C ∪ A4)).

– T = T ′ ◦ (A1, A2|A3, A4, r[12]). We place the vertices in order A4, A3, A2, C,B,A1.

– The cases T = T ′ ◦ (A1, A2|A3, A4, d[32]) are symmetric to the previous ones, where the
roles of B and C are exchanged.

The remaining cases are T = T ′ ◦ (A1, A2|A3, A4, d[p]) where p ∈ {123, 132, 312, 321} and
(A1|A2, d[T ′], A3|A4). We begin with the situation in Figure 3. Suppose cocomparability order-
ings for the graphs G1, G2, G3,H1,H2,H3 are given. We define three vertex orderings for the
depicted graph. The vertices of every partition graph appear consecutively and in order defined
by the given orderings. The order of the partition graphs is as follows:

H2, G3, G2,H3, G1,H1 and H3,H1, G1, G3, G2,H2 and H2, G1, G2,H1, G3,H3 .

It is easy to check that all three vertex orderings actually define cocomparability orderings for the
graph (scheme) depicted in Figure 3. Furthermore, for every i ∈ {1, 2, 3}, there is a cocompara-
bility ordering such that the vertices of Gi ⊕Hi appear consecutively at the end of the ordering.
Depending on p, the pairs (B,A1), (C,A4), (A2, A3) are matched to (G1,H1), (G2,H2), (G3,H3),
and depending on d and the particular case, one of the vertex orderings is chosen to achieve the
correct vertex partition. This then completes the proof.

For the next proof, a chordless cycle of length at least 5 is called a hole, and the complements
of holes are called anti-holes.

Proposition 16. Lc3-graphs are weakly-chordal graphs.

Proof From Proposition 15 and the fact that holes are not cocomparability graphs [1], we
already know that lc3-graphs are hole-free graphs. It remains to show that lc3-graphs do not
contain anti-holes as induced subgraphs. Since the linear clique-width of a graph is not smaller
than the linear clique-width of any of its induced subgraphs, it suffices to show by Theorem 14
that the linear clique-width of anti-holes is at least 4. We apply the layout characterisation of
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linear clique-width given in Theorem 1. Let k ≥ 6 (remember that C5 = C5). Let δ = 〈y1, . . . , yk〉
be a layout for Ck. We distinguish two basic cases. First, let yk−1 and yk be non-adjacent. Then,
Lδ(yk−1) induces a path in the complement of Ck. Furthermore, Lδ(yk−1) has three groups:
vertices that are adjacent to both yk−1 and yk, a vertex that is non-adjacent to yk−1 and adjacent
to yk, a vertex that is non-adjacent to yk and adjacent to yk−1. Thus, νCk

(Lδ(yk−1)) = 3. For
the value of adδ(yk−1), it suffices to observe that yk−1 is not single vertex in its group in Lδ[yk−1]
and that the other vertex in the group, say y, is a neighbour of yk−1. Hence, adδ(yk−1) = 1, and
gw(Ck, δ) ≥ 4.

Now, let yk−1 and yk be adjacent in Ck. Then, both yk−1 and yk have exactly two non-
neighbours in Lδ(yk−1), and at most one vertex can be a common non-neighbour. We consider
several subcases. Let yk−1 and yk have a common non-neighbour. Then, Lδ(yk−1) has the
following groups (note that this requires at least six vertices): vertices adjacent to yk−1 and yk,
vertices non-adjacent to yk−1 and yk, vertices adjacent to yk−1 but not to yk, vertices adjacent
to yk but not to yk−1. Hence, νCk

(Lδ(yk−1)) = 4. Now, let yk−1 and yk not have a common
non-neighbour in Lδ(yk−1). Let k ≥ 7. Then, Lδ(yk−1) has three groups. Furthermore, yk−1 is
not single vertex in its group in Lδ[yk−1] and (at least) one of the two non-neighbours of yk−1

is non-adjacent to a neighbour of yk−1 in Lδ(yk−1). Thus, adδ(yk−1) = 1, and gw(Ck, δ) ≥ 4.
Finally, let k = 6. Then, Lδ(yk−1) induces a C4 in Ck. Similar to the previous cases, Lδ(yk−2)
has three groups and adδ(yk−2) = 1, so that gw(Ck, δ) ≥ 4 also in this case. We have seen that
for Ck, k ≥ 6, and an arbitrary layout δ, gw(Ck, δ) ≥ 4, which establishes the lower bound of
gw(Ck) ≥ 4. Therefore, lc3-graphs are also anti-hole-free, and thus, weakly-chordal graphs.

Note that holes and anti-holes have linear clique-width 4-expressions. Together with the
result of Proposition 16, it follows that the linear clique-width of holes and anti-holes is exactly
4. It is an interesting observation that no cycle has linear clique-width 3. C3 and C4 have linear
clique-width 2, but their complements have linear clique-width 1 and 3, respectively.

We only mention here that there are cocomparability graphs and weakly chordal graphs that
are not lc3-graphs.

7 Recognition of graphs of linear clique-width at most 3

As the last main contribution of this paper, we give an efficient algorithm for recognising graphs
of linear clique-width at most 3. The algorithm tries to recursively build an lc3-expression for
the input graph. Here, we distinguish two different situations: a single graph is given or a graph
and a vertex partition are given. Efficient recognition requires different approaches for the two
situations. We begin with the case when a graph G and a vertex partition (B,C) for G are
given. The question is whether there is an lc3-expression T for G that associates G(T ) with
partition (B,C) or its reverse. An important subroutine is to decide whether the given graph is
the result of an lc3-composition that respects the given partition. This problem can be solved
in linear time, and it is our first result.

Lemma 17. There is a linear-time algorithm that, on input a graph G and a vertex parti-
tion (B,C) for G, B and C non-empty, checks whether G is the complete or incomplete lc3-
composition of at least two non-empty graphs G1, G2, G3,H1,H2,H3 where H1,H2,H3 are edge-
less graphs and G1, G2, G3 are an edgeless graph, a simple cograph and an arbitrary graph and
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Figure 4: Different situations in a special case in the proof of Lemma 17. The first level corresponds to set B,
the second and third level correspond to sets C1 and C2, respectively.

there is i ∈ {1, 2, 3} such that V (Gi) ∪ V (Hi) is equal to one of the two partition sets. In the
positive case, the algorithm can output an appropriate decomposition.

Proof The algorithm is not difficult but has to check a number of different cases. First,
compute the groups in B and C only with respect to the other set of vertices; that is, sets of
vertices of B (or C) having the same neighbours in C (or B). If G is an lc3-composition of
the requested kind, B or C can have at most two groups (one being V (Gi) and the other being
V (Hi)). So, if both B and C have at least three groups, the algorithm rejects. Checking the
three cases in Figure 3, we conclude: if a set has exactly two groups then these groups can be
ordered such that the neighbourhood of the one group towards the other set is properly included
in the neighbourhood of the other group. If this is not possible, the algorithm rejects. Note
that, if both sets have exactly two groups, this inclusion property holds either for none or for
both sets.

Now, assume that the algorithm has not yet rejected. Let exactly one set have exactly one
group. Then, the other set has exactly two groups; without loss of generality, let C have two
groups C1, C2 and let the join be between B and C1 in G. If G is an lc3-composition where C
corresponds to some V (Gi)∪V (Hi) then C1 and C2 correspond to V (Gi) and V (Hi), respectively,
and C2 is an independent set in G and G[C] = G[C1]⊕G[C2]. Checking all situations, this means
that G[B] or G[C] is a simple cograph. So, accept if and only if G[B] or G[C] is a simple cograph.
Now, we assume that B corresponds to some V (Gi)∪V (Hi). If both Gi and Hi are non-empty,
they have to have the same neighbourhood in C, so that we can restrict to the case that Gi is
non-empty and Hi is empty. Remember that if Gi is a simple cograph then Gi ⊕ Hi is a simple
cograph, too. To decide whether G is an lc3-composition, we have to check several cases, that
are obtained from the scheme in Figure 3 by deleting an H-vertex. The obtained schemes are
depicted in Figure 4. The full (black) circles represent an edgeless graph, a simple cograph and
an arbitrary graph, and the empty (white) circles represent edgeless graphs. The upper circle
represents Gi, the second level represents G[C1] and the last level represents G[C2]. Note that
a sixth case is missing; this case cannot happen since it allows only one group in C. Given
the sets C1 and C2, each case can be checked in linear time. Note that the third level of the
first case is a complete bipartite graph, for which the two colour classes are uniquely defined.
Finally, let B be an independent set in G. Then, B can also correspond to V (Hi). We obtain
the different schemes by deleting full-circle vertices in Figure 3: two cases are not possible, since
C1 then must be empty, three cases turn out to be subcases of situations in Figure 4 (namely
situations 4 and 5), and the last situation, that is not covered by the previous cases, requires
G = (G[B] ⊗ G[C1]) ⊕ G[C2] where G[B] is edgeless and G[C1] and G[C2] are a simple cograph
and an arbitrary graph. This case can be handled in linear time.

As a second case, let both sets have exactly one group each. Then, G = G[B] ⊗ G[C] or
G = G[B] ⊕ G[C]. If G[B] or G[C] is a simple cograph, the algorithm accepts; then, G is
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a complete or incomplete lc3-composition with four empty graphs where the two non-empty
graphs go into G2 and G3 of Figure 3. Now, let both G[B] and G[C] not be simple cographs.
Similar to the argumentation in the previous case, we can restrict to the case that one of the two
graphs corresponds to V (Gi) with V (Hi) empty. The situation becomes similar to the previous
case where C1 or C2 is empty. Listing all possible situations (for instance by deleting the second
or third level in Figure 4), we see that G cannot be an lc3-composition of an edgeless graph, a
simple cograph, an arbitrary graph and three edgeless graphs in this case. This follows from the
closure of simple cographs under join and union with edgeless graphs. Hence, if G[B] and G[C]
are not simple cographs, the algorithm rejects.

As the third case, let B or C have exactly two groups; without loss of generality, we assume
that B has exactly two groups. If both sets have exactly two groups, we first try B and if B leads
to rejection we try C. Let B1 and B2 be the two groups of B and let the neighbours of B2 in C
be neighbours of B1. According to the definition of lc3-composition, B2 is an independent set in
G, and there is no edge between B1 and B2; otherwise the algorithm can reject (or has to retry
with C). The algorithm then checks similar to the first case whether C admits an appropriate
partition. This can be done in linear time for each case, so in total linear time. Hence, we can
conclude the proof of the lemma.

In a second step, we show that the question of whether a graph is an lc3-graph and whether
it can be associated with a given vertex partition can be reduced to the question of whether a
proper induced subgraph is an lc3-graph, without specifying a vertex partition. The algorithm
is called Simplify and given in Figure 5. We apply this algorithm to only graphs with vertex
partitions that do not have false twin vertices in the same partition set. The follwing technical
lemma shows that this property is true throughout the execution of the algorithm.

Lemma 18. Let G = (V,E) be a graph, and let (B,C) be a vertex partition for G. Let G
not have false twin vertices in B and in C. Then, at the beginning of every execution of the
while-loop of Simplify, G has no false twin vertices in the same partition set. Furthermore,
an output graph does not contain false twin vertices.

Proof The statement is clearly true at the beginning of the first execution. We first consider
the definitions in conditionals number (3–5). In conditional number 3, the chosen vertex u is
adjacent to all (other) vertices in a partition set or to none. So, G−u cannot have two false
twins in one partition set. Similarly for conditionals number 4 and 5. Now, if a graph is the
return result (conditionals number 2 and 6), it is induced by vertices from only one partition
set and a module. Hence, false twin vertices in the output graph are false twin vertices also in
the bigger graph, which would be a contradiction.

Besides an answer or a graph, Simplify outputs lc3-expression operations and an addi-
tional command “turn”. These operations can be used to construct an lc3-expression for the
input graph. The next lemma states and proves the main properties of Simplify. The proof
particularly shows that an lc3-expression can be constructed and how the “turn” command is
used.

Lemma 19. Let G = (V,E) be a graph, and let (B,C) be a vertex partition for G. Let G not
have false twin vertices in B and in C.

(1) If Simplify applied to G and (B,C) returns accept then G is an lc3-graph and there is
an lc3-expression T for G that associates G(T ) with vertex partition (B,C) or (C,B).
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Algorithm Simplify

Input a graph G and a vertex partition (B, C) for G
Result an answer accept or reject or a graph G′

while no return do

1. if G is edgeless then output “(B, C)”; return accept

2. else-if B = ∅ or C = ∅ then output “turn+(l[·], ∅)” or “(l[·], ∅)”; return G

3. else-if G has a vertex u such that
NG(u) = ∅ or NG(u) = B or NG(u) = C or

NG[u] = V (G) or NG[u] = B or NG[u] = C then

output “⊗(∅|{u}, •)” or “⊗(•, ∅|{u})” or “⊗({u}|∅, •)” or “⊗(•, {u}|∅)”
“⊕(∅|{u}, •)” or “⊕(•, ∅|{u})” or “⊕({u}|∅, •)” or “⊕(•, {u}|∅)”;

set G := G−u and (B, C) := (B \ {u}, C \ {u})

4. else-if there is a pair u, v of non-adjacent vertices where v is almost-universal such that
u, v ∈ B and NG(u) = B \ {u, v} or

u, v ∈ C and NG(u) = C \ {u, v} then

output “⊗({u}|{v}, •)” or “⊗(•, {u}|{v})”;
set G := G − {u, v} and (B,C) := (B \ {u, v}, C \ {u, v})

5. else-if B or C is singleton set containing vertex u and

|V (G) \ NG[u]| 6= 2 or V (G) \ NG[u] = {x, z} and the sets
NG(x) \ {z} and NG(z) \ {x} can be ordered by inclusion then

output “(l[·], {u})” or “turn+(l[·], {u})”;
set G := G−u and (B, C) := (V (G) \ NG[u], NG(u))

6. else-if G is the result of an lc3-composition of at least two non-empty graphs
that respects the given vertex partition then

output an lc3-composition scheme and, if necessary, “turn”;
if all partition graphs are simple cographs then return accept

else return the partition graph that is not a simple cograph end if

7. else return reject end if

end while.

Figure 5: The simplification procedure.

(2) If Simplify applied to G and (B,C) returns reject then G is not an lc3-graph or there
is no lc3-expression T for G that associates G(T ) with vertex partition (B,C) or (C,B).

(3) If Simplify applied to G and (B,C) returns a graph G′ then G is an lc3-graph and there
is an lc3-expression T for G that associates G(T ) with vertex partition (B,C) or (C,B)
if and only if G′ is an lc3-graph. Furthermore, G′ is a module and subgraph of G that is
induced by vertices only in B or in C.

Proof We prove the lemma by induction over the number of while-loop executions. We show
the three statements simultaneously by considering the two situations: the algorithm returns
accept or a graph and the input graph is an lc3-graph with lc3-expression T that associates
G(T ) with vertex partition (B,C) or (C,B).

Let Simplify return accept or a graph. We show the existence of an lc3-expression (if
possible). We also show that the “turn” command can be used to know whether the constructed
lc3-expression corresponds to the given vertex partition or to its reverse. The “turn” command
can be ‘active’ or ‘inactive’. If G is edgeless then (B) ⊕ (•, C|∅) is an lc3-expression that
associates G with vertex partition (B,C). The “turn” command is set ‘inactive’. If B or C
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is empty and G is an lc3-graph then (l[T ], ∅) for T an (arbitrary) lc3-expression for G is an
lc3-expression for G with associated vertex partition (V (G), ∅). If G is no lc3-graph, there is
no lc3-expression for G. Thus, if B or C is empty, G is an lc3-graph with associated vertex
partition (B,C) or (C,B) if and only if G is an lc3-graph. Similar for conditional number 6:
if a graph is returned, G is an lc3-graph with associated vertex partition (B,C) or (C,B) if
and only if the returned graph is an lc3-graph due to Lemmata 11 and 9. For the cases of
conditionals number 3 and 4, remember that every induced subgraph of G is an lc3-graph and
can be associated with a restriction of (B,C) or (C,B) due to Lemma 9. Applying the induction
hypothesis, we conclude these two cases. For an lc3-expression, one of the output operations can
be appended. The “turn” command remains unchanged in its state. For conditional number 5,
let Simplify accept G−u with vertex partition (V (G)\NG[u],NG(u)) or return an lc3-graph G′.
By induction hypothesis, there is an lc3-expression T ′ for G−u that associates G(T ′) with vertex
partition (V (G)\NG[u], NG(u)) or its reverse. Then, (l[T ], {u}) or (r[T ], {u}) is an lc3-expression
for G with associated vertex partition (B,C) or (C,B). The choice of l and r depends on whether
the “turn” command is ‘active’ or ‘inactive’. If the associated vertex partition is (B,C) then
the “turn” command becomes ‘inactive’, otherwise ‘active’. If G′ is no lc3-graph, then G is no
lc3-graph. This completes the first part of the proof.

Now, let G be an lc3-graph, and let T be an lc3-expression for G that associates G(T ) with
vertex partition (B,C) or (C,B). We show that the algorithm returns accept or a graph G′.
Since G′ is an induced subgraph of G, G′ is an lc3-graph if G is an lc3-graph due to Lemma 9. If
G is edgeless, then Simplify returns accept (conditional number 1). If B or C is empty, then
Simplify returns a graph (conditional number 2). So, assume that B and C are non-empty. If
the condition of conditional number 3 or 4 is positive, then Lemma 9 shows that the obtained
lc3-graph can be associated with the obtained vertex partition or its reverse, and Simplify

then returns accept or a graph due to induction hypothesis. Conditionals number 5 and 6
need more arguments. We assume that the execution reaches conditional number 5. Consider
the last operation of T . Since the procedure execution passed the first four conditionals, the
last operation cannot be of the forms (A) or ⊙(A1|A2, •) or ⊙(•, A1|A2), where ⊙ ∈ {⊗,⊕}.
It is important to note that an operation ⊕(A1|A2, •) can be partitioned into two operations,
⊕(A1|∅, •)⊕(∅|A2 , •). So, let the last operation be of the form (d[T ′], A) for T ′ an lc3-expression
and d ∈ {l, r}. Since G does not contain false twin vertices in the same partition set, A contains
at most one vertex, that is, according to assumption about B and C, A contains exactly one
vertex, say u. Let (B′, C ′) be the vertex partition associated with G(T ′). Then, NG(u) = B′ or
NG(u) = C ′, which means that G−u is an lc3-graph and has an lc3-expression that associates
vertex partition (NG(u), V (G)\NG[u]) or its reverse. By induction hypothesis, Simplify returns
accept or a graph when applied to G−u and partition (NG(u), V (G) \ NG[u]). Suppose that
G fails to satisfy the condition about the vertices in V (G) \ NG[u]. Then, V (G) \ NG[u] and
NG(u) contain four vertices satisfying the property of the second statement of Lemma 10. This
is a contradiction, and we complete this case.

As a second case, let the last operation of T be of the form ◦(A1, A2|A3, A4, d[p]) or (A1|A2,
d[T ′], A3|A4), which means that G is the result of an lc3-composition. If B and C contain at
least two vertices then the execution continues with conditional number 6 and returns accept

or a graph due to Lemma 11. So, assume that either B or C contains exactly one vertex; let this
vertex be u. We know that G−u is the result of an lc3-composition, but we have to show that the
new vertex partition works. This means that we have to show that there is an lc3-expression that
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Figure 6: Subcases of the general lc3-composition, considered in the proof of Lemma 19.

associates partition (NG(u), V (G) \ NG[u]) or its reverse with G−u. Let G1, G2, G3,H1,H2,H3

be the composition graphs in the sense of Figure 3, whose lc3-composition yields G. Without
loss of generality, we can assume that there is i ∈ {1, 2, 3} such that {u} = V (Gi)∪V (Hi), which
means that there is i ∈ {1, 2, 3} such that {u} = V (Gi) or {u} = V (Hi) and the other graph
is empty. We consider the different cases of lc3-composition without Gi and Hi with respect to
the vertex partition (NG(u), V (G) \ NG[u]). In Figure 6, we find all twelve cases depending on
whether u is in Gi or in Hi and whether the lc3-composition is complete or incomplete. The
full (black) circles represent a simple cograph and an arbitrary graph, and the empty (white)
circles represent edgeless graphs. The upper level composition graphs constitute G[NG(u)] and
the lower level composition graphs constitute G−NG[u]. By checking every case, we finally see
that every case except one can be obtained from an appropriate lc3-composition respecting the
new vertex partition. The most interesting case probably is the first case in the second row.
This case becomes a special case of the last case in the first row, since an edgeless graph and
the full circle graph in the lower level can be merged into a single graph. This can be done,
since their neighbourhoods with respect to the two other composition graphs are equal and
simple cographs are closed under union with edgeless graphs. The cases with only one level
cannot happen since u then would be a universal or an isolated vertex. In the ‘good’ cases we
apply Lemma 11 to show that G−u is an lc3-graph which can be associated with the computed
vertex partition. The only ‘bad’ case is the first case of the first row. If all four graphs are
non-empty, the algorithm would reject in the next step. However, then V (G) \ NG[u] contains
exactly two vertices (remember that there are no false twin vertices), and the neighbourhoods
of these two vertices partition NG(u) in exactly two sets. Then, V (G)\NG[u] fails to satisfy the
neighbourhood condition of conditional number 5, and the execution continues with conditional
number 6. With previous arguments, Simplify returns accept or a graph. This completes the
proof of the lemma.

The recognition algorithm for lc3-graphs can be summarised and described as a sequence of
iterated reductions by lc3-decomposition (the inverse of lc3-composition) and application of Sim-

plify. To apply Simplify, a vertex partition has to be determined. Fortunately, the structure
of lc3-graphs allows to restrict to only a few such vertex partitions. The complete algorithm is
given in Figure 7. The applied procedure SimplifyMod is a variant of Simplify, with the only
difference that it outputs a graph on a single vertex instead of an answer accept. This modifi-
cation helps to present Lc3-graphRecognition as short as possible (otherwise the algorithm
had to distinguish more cases). Note that also Lc3-graphRecognition provides additional
output for constructing an lc3-expression for the input graph. We show in the following that
Lc3-graphRecognition is correct, i.e., that it accepts exactly the lc3-graphs and therefore
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Algorithm Lc3-graphRecognition

Input a graph G = (V, E)
Result an answer accept and a pseudo lc3-expression for G, if G is an lc3-graph, or

an answer reject, if G is not an lc3-graph.

set G := G/∼ft;

while no return do

1. if G is edgeless then output (V (G)); return accept

2. else-if G is the result of an lc3-composition of at least two non-empty graphs then

output an lc3-composition scheme;
if all partition graphs are simple cographs then return accept

else set G to the partition graph that is not a simple cograph end if;

3. else-if there is a vertex u such that
SimplifyMod on G−u with partition (NG(u), V (G) \ NG[u]) returns a graph G′ then

output “⊗({u}|∅, •)”; set G := G′

4. else-if there is a pair u, v of non-adjacent vertices where the degree of v is |V (G)| − 2 such that
SimplifyMod on G − {u, v} with partition (NG(u), V (G) \ (NG(u) ∪ {u, v}))
returns a graph G′ then

output “⊗({u}|{v}, •)”; set G := G′

5. else return reject end if

end while.

Figure 7: The recognition algorithm for lc3-graphs.

the graphs of linear clique-width at most 3.

Theorem 20. Algorithm Lc3-graphRecognition is an lc3-graph recognition algorithm.

Proof We show that Algorithm Lc3-graphRecognition accepts an input graph if and only
if it is an lc3-graph. Due to Lemma 4 and Theorem 14, a graph G is an lc3-graph if and only
if G/∼ft is an lc3-graph. Hence, we can restrict to consider only graphs without non-trivial
independent-set modules and show that the while-loop finally ends with answer accept if and
only if the input graph is an lc3-graph. We proof the statement by induction over the number
of vertices of the input graph. A graph is edgeless if and only if it has exactly one vertex.
Edgeless graphs are lc3-graphs, and the algorithm accepts. Now, let the input graph have at
least two vertices, which means in particular that it contains an edge. Let G be the result of
an lc3-composition of an edgeless graph, a simple cograph, an arbitrary graph G′ and three
edgeless graphs. Since G′ is a module of G, G′ does not contain false twin vertices. (Otherwise
G would contain false twin vertices, contradicting the assumption that G does not contain
non-trivial independent-set modules.) Applying the induction hypothesis, G′ is accepted by
Lc3-graphRecognition if and only if G′ is an lc3-graph. If G is an lc3-graph, then G′ is an
lc3-graph according to Lemma 9. If G is not an lc3-graph, then G′ cannot be an lc3-graph due
to Lemma 11. Hence, Lc3-graphRecognition accepts if and only if G is an lc3-graph. For
the rest of the proof, let G not be the result of an lc3-composition.

First, let G be accepted by Lc3-graphRecognition. This means that conditional number 3
or 4 is positive for G. Let there be a vertex u such that SimplifyMod on G−u and vertex
partition (NG(u), V (G) \ NG[u]) returns a graph G′. Since u is neither isolated nor universal,
NG(u) and V (G) \ NG[u] are non-empty. Thus, G′ is a proper induced subgraph of G without
false twin vertices due to assumption and by Lemma 19. By induction hypothesis, G−u is an
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lc3-graph, and due to Lemma 19, there is an lc3-expression T for G−u that associates G(T )
with vertex partition (NG(u), V (G)\NG[u]) or its reverse. Then, T ⊗ ({u}|∅, •) or T ⊗ (•, {u}|∅)
is an lc3-expression for G. The proof for conditional number 4 is similar. Thus, we can conclude
that every accepted graph is an lc3-graph.

For the converse, we can particularly assume that G does not contain universal or isolated
vertices; otherwise G is the result of an lc3-composition. Let T be an lc3-expression for G. We
distinguish different cases with respect to the last operation in T . By assumption and since G is
not edgeless, the last operation cannot be of the forms (d1) and (d3) and the complex operation of
(d4). Let the last operation in T be of the form (d2). Then, there is a vertex u such that G−u is an
lc3-graph with lc3-expression T ′ that associates G(T ′) with the vertex partition (NG(u), V (G) \
NG[u]) or its reverse. Due to Lemma 19, SimplifyMod outputs a proper subgraph of G, and by
induction hypothesis, this subgraph is accepted. Now, let the last operation of T be of the form
⊙(A1|A2, •) or ⊙(•, A1|A2). If ⊙ = ⊕ then A1 is empty, since G contains no isolated vertex.
The vertex in A2, say u, defines vertex partition (V (G)\NG[u],NG(u)) or (NG(u), V (G)\NG[u])
for G−u, and this partition corresponds to the vertex partition associated with G(T )−u. We
conclude as in the previous case that G is accepted. Let ⊙ = ⊗. If A2 is empty, the case is
similar to the previous. If A1 is empty, the vertex in A2 is universal. Thus, A1 and A2 are
non-empty. The vertex in A2 is adjacent to all vertices but the vertex in A1, and the vertex in
A1 defines a vertex partition for G. Similar to the previous cases, the algorithm accepts. So, we
can conclude that Lc3-graphRecognition exactly accepts the lc3-graphs.

It remains to consider the running time of the presented algorithms. We will show that
Algorithm Lc3-graphRecognition has an O(n2m)-time implementation. This result is parti-
tioned into three subresults. The first subresult has already been given in Lemma 17. We show
next that Simplify has a linear-time implementation.

Lemma 21. The Algorithm Simplify has a linear-time implementation.

Proof We define a data structure that allows checking for satisfaction of the conditions of
the first four conditionals in constant time. For every vertex, we store the number of neighbours
in its own partition set and in the other partition set. For every number between 0 and |V (G)|,
there are five types of buckets containing vertices: two bucket types for each partition set and
a bucket type for the total vertex degree. Vertices appear in these buckets according to their
degrees:

– every vertex appears in the bucket of the fifth type that corresponds to its total degree

– a vertex of the left partition set appears in a bucket of the first type, if it has neighbours
only in the left partition set; if it has neighbours only in the right partition set, it appears
in a bucket of the second type

– analogous to the previous case, vertices of the right partition set appear in buckets of the
third and fourth type, if they have neighbours only in one of the two partition sets.

Finally, there are two variables for the cardinalities of the two partition sets and a variable for
the number of edges in the graph.

Conditionals number 1 and 2 can be decided in constant time. For conditional number 3,
at most six buckets have to be checked: buckets of the fifth type answer whether a vertex is
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isolated or universal. Buckets of the first and second type answer whether there is a vertex u in
the left partition set such that NG[u] = B or NG(u) = C. So, using these buckets, satisfaction
of the condition of conditional number 3 can be checked in constant time. For the condition
of conditional number 4, an almost-universal vertex can be found using the buckets of the fifth
type. However, it is not easy to find the required second vertex. We additionally assign to every
vertex of degree |V (G)| − 2 the unique non-neighbour, and vice versa, if the two vertices are in
the same partition set. If the condition is satisfied, there are two non-adjacent vertices u, v in
the left partition set such that v is almost-universal and u is adjacent to only vertices in the
left partition set, or similarly with vertices in the right partition set. To decide the condition
in constant time, we check the buckets of the first and third type for a vertex of degree |B| − 2
or |C| − 2, respectively, and with an assigned non-neighbour. For a fast implementation, we
partition the buckets of the first and third type into two subbuckets, one for vertices with
assigned non-neighbour and one for vertices without. Now, if conditional number 3 or 4 is
positive, we have to update the data. The update affects only neighbours, whose degrees are
decreased. Then, they have to be moved into other buckets, which takes constant time for
each vertex. Note that vertices now may have to be added to a bucket of the first four types.
Finally, a non-neighbour may have become almost-universal. Here it is to observe that a vertex
becomes almost-universal at most once. So, when a vertex becomes almost-universal, its unique
non-neighbour can be found in time proportional to its degree, and the link can be established.

For the condition of conditional number 5, it takes constant time to determine whether a
partition set contains only one vertex, say u, and whether u has exactly two non-neighbours. In
time proportional to the degree of u, the two non-neighbours can be determined. Comparing
the adjacency lists of the two non-neighbour vertices shows whether the neighbourhoods can
be ordered. If the test fails, the procedure stops with conditional number 6 or the return

command. Conditional number 6 requires linear time due to Lemma 17 and Corollary 6. If the
test does not fail, Simplify continues with a completely new partition, for which the vertex
degrees have to be re-computed. Visiting every neighbour of u once, the array representing the
current vertex partition can be modified to represent the new vertex partition. For the vertex
degrees, we show that the modification can be done by considering only edges that are incident
to vertices in one of the two partition sets. Let A be the left or right partition set. The numbers
of neighbours in the two partition sets can be computed straightforward for every vertex in A
by reading the adjacency lists. Whenever a vertex from the other partition set appears, its
degree pair is modified (decrease the number of neighbours in the same partition set, increase
the number of neighbours in the other partition set). When a vertex has a neighbour in the
other partition set, it is removed from the bucket of one of the first four types. When this update
is done the next time, one of the two partition sets will be empty, so that, when we choose the
correct set A, we obtain overall linear running time. The algorithm does not know the correct
partition set. However, it can compute the degree sum for the two partition sets and choose the
partition set of smaller degree sum as A. Then, vertices may be considered several times, but
the effort is always balanced with the deleted vertices. To finish the analysis, it is important
to observe that there is at most one vertex of degree 0 in A, and this will be deleted before
execution reaches conditional number 5 the next time. And for computing the degree sums,
only the degree sum of the smaller partition set is computed and the degree sum of the other
partition set is determined by subtraction.

If the input graph is an lc3-graph, an appropriate lc3-expression can be obtained from the
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output operations as shown in the proof of Theorem 20. Care has to be taken of only the “turn”
command. This completes the proof.

As a second step, we show that there is a linear-time algorithm for checking whether a graph
is the result of an lc3-composition.

Lemma 22. There is a linear-time algorithm that checks whether a given graph is the complete
or incomplete lc3-composition of at least two non-empty graphs G1, G2, G3,H1,H2,H3 where
H1,H2,H3 are edgeless graphs and G1, G2, G3 are an edgeless graph, a simple cograph and an
arbitrary graph. In the positive case, the algorithm can output an appropriate decomposition.

Proof The algorithm considers several cases. First, let G be disconnected. If one of the
connected components is a simple cograph then accept; otherwise reject. In the positive case, G
is an incomplete lc3-composition where G1,H1,H2,H3 of Figure 3 are empty, a simple cograph
connected component goes into G2 and all other connected components go into G3. For the
negative case, observe the following. None of the connected components is edgeless as they are
not simple cographs, so they all have to go into the graphs G1, G2, G3 of Figure 3. If G1 is not
empty, the resulting lc3-composition is not disconnected, so that G1 has to be empty. But with
only G2 and G3 non-empty, G cannot be obtained as an lc3-composition with none of the two
composition graphs being a simple cograph.

Second, let G be connected and let the complement of G be disconnected. If one of the
co-connected components is a simple cograph then accept; otherwise reject. Similar to the first
case, G can be obtained as the complete lc3-composition of a simple cograph (in G2) and another
graph (in G3). The negative case is more complex. We distinguish between two cases depending
on whether G is an incomplete or complete lc3-composition.

– Let G be an incomplete lc3-composition. By assumption, H2 and H3 of Figure 3 are empty.
Suppose that H1 is non-empty. If G3 is empty then G = (G1 ⊕ H1) ⊗ G2, and every co-
connected component of G is completely contained in either G1 ⊕ H1 or G2. Hence, G
contains a co-connected component that is a simple cograph. If G3 is non-empty then G1

and G2 are also non-empty. But then, the complement of G is not disconnected, so that
this case cannot happen. Now, let H1 be empty. Then, G = G1 ⊗ (G2 ⊕ G3), and similar
to the case about, G1 or G2 ⊕ G3 is a simple cograph, and G contains a co-connected
component that is a simple cograph.

– Now, let G be a complete lc3-composition. If H1 is non-empty then G2 is non-empty.
Now consider H2. If H2 is non-empty then the complement of G is connected. Thus H2 is
empty. Then G results from an incomplete lc3-composition since G1 and G2 can be merged
into G1 and H1 and H2 can be merged into H1. Thus by the previous case we conclude
that H1 is empty. Let G1 be non-empty. By a connectivity argument, Gi is non-empty
and Hi is empty for i = 2 or i = 3, and by symmetry, we can assume that H3 is empty and
G3 is non-empty. Note then that every co-connected component of G is entirely contained
either in G3 or in (G1 ⊗ G2) ⊕ H2. According to assumption, G3 is a simple cograph or
(G1 ⊗G2)⊕H2 is a simple cograph. Hence, G contains a co-connected component that is
a simple cograph. Finally, if G1 is non-empty then G = (G2 ⊕H2)⊗ (G3 ⊕H3), and every
co-connected component of G is entirely contained in either G2 ⊕ H2 or G3 ⊕ H3. Hence,
G contains a co-connected component that is a simple cograph.
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Third, let G be connected and co-connected. We first describe the different situations. If G
is an incomplete lc3-composition then H2 and H3 of Figure 3 are empty and G1, G2, G3,H1 are
non-empty (otherwise, G or its complement would be disconnected) and maximal modules of G
in a P4-structure. If G is a complete lc3-composition then we distinguish the following cases:

– If G1 is empty then H2, (G3 ⊕H3), G2,H1 are non-empty and maximal modules of G in a
P4-structure.

– If G2 is empty then H1 is empty, too. By assumption, G1, G3,H2,H3 are non-empty and
maximal modules of G in a P4-structure.

– If G3 is empty then (G1 ⊕H1), G2,H3,H2 are non-empty and maximal modules of G in a
P4-structure.

– If H2 is empty then G2 is empty too, since G is co-connected. With a similar argument
for the rest of the composition graphs we conclude that H2 must be non-empty since G is
connected and co-connected.

– If H3 is empty then we have the following two cases. If G1 is empty then H1, G2, G3,H2

are maximal modules of G in a P4-structure. If G1 is non-empty then G1, G2, G3,H1,H2

are maximal modules of G in a bull-structure. In any other case, G would be neither
connected nor co-connected.

– If H1 is empty then G1,H2,H3 and at least one of G2 and G3 must be non-empty. If G2

is empty then G1, G3,H2,H3 are maximal modules of G in a P4-structure. Similarly, if G3

is empty then G1, G2,H3,H2 are maximal modules of G in a P4-structure. If both G2 and
G3 are non-empty then G1, G2, G3,H2,H3 are maximal modules of G in a house-structure.

– If G1, G2, G3,H1,H2,H3 are non-empty then, all these graphs are maximal modules of G
in a situation exactly described by Figure 3.

Hence for the decision algorithm, compute the maximal modules of G and the corresponding
prime graph. Check for the prime graph whether it is one of the above-mentioned (P4, house,
bull, the graph shown in Figure 3), check for edgeless graphs and simple cographs and test
whether the graphs that are not edgeless are in the correct positions. If all conditions are
satisfied then accept; otherwise reject. Correctness immediately follows from the study above.

For the running time, we observe the following: (1) edgeless graphs and simple cographs can
be recognised in linear time due to Corollary 6, (2) connected components and co-connected
components can be computed in linear time, (3) maximal modules and corresponding prime
graphs can be computed in linear time [7]. Then, only a finite number of configurations have to
checked (in the third case), so that all this sums up to total linear running time. The output is
obtained as described and we conclude the proof.

We combine the three subresults to the following main result of this section.

Theorem 23. There is an algorithm that decides in O(n2m) time whether a given graph has
linear clique-width at most 3. If so, a linear clique-width 3-expression is output.
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Proof By Theorem 14 and Theorem 20 it suffices to analyse the running time of Algo-
rithm Lc3-graphRecognition. For a given graph G, G/∼ft can be computed in linear time.
Every while-loop execution is done with a smaller graph, so that there are at most n while-loop
executions. A single while-loop execution takes time O(nm): linear time for checking for result
of an lc3-composition (Lemma 22) and at most 2n applications of Simplify (SimplifyMod,
more precisely, which also has a linear-time implementation) that require linear time each due to
Lemma 21. This shows the total O(n2m) running time. The linear clique-width 3-expression is
obtained by first constructing an lc3-expression and then converting it into a linear clique-width
expression according to the rules established in the proof of Theorem 14. Note that the length
of both expressions is linear in the number of vertices.

8 Final remarks

We have introduced the class of lc3-graphs in order to characterise graphs of linear clique-width
at most 3. We have shown that such graphs are cocomparability and weakly-chordal graphs,
which provides a set of graphs that are not induced subgraphs of lc3-graphs. In order to better
understand graphs of linear clique-width at most 3 and even graphs of clique-width at most 3, a
complete characterisation of lc3-graphs by a set of forbidden subgraphs is an important future
goal.
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