
REPORTS
IN

INFORMATICS

ISSN 0333-3590

A new representation of proper interval
graphs with an application to clique-width

Pinar Heggernes Daniel Meister
Charis Papadopoulos

REPORT NO 354 June 2007

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway



This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-354.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway



A new representation of proper interval graphs

with an application to clique-width∗

Pinar Heggernes† Daniel Meister† Charis Papadopoulos†

Abstract

We introduce a new representation of proper interval graphs that can be computed in linear
time, and stored in O(n) space. This representation is a two dimensional vertex partition and it is
particularly interesting with respect to clique-width. Based on this, we prove new non-trivial upper
bounds on the clique-width of proper interval graphs.

1 Introduction

Proper interval graphs are the intersection graphs of intervals of the real line where no interval properly

contains another. The latter property is equivalent to all intervals being of the same (unit) size [18], hence

these graphs are also referred to as unit interval graphs. Among applications of proper interval graphs

is the Physical Mapping of DNA, or genome reconstruction, where fragments of a chromosome and the

overlap information between pairs of these fragments are used to get information on the arrangement

of genes on the chromosome [9, 19], and in some biological frameworks the fragments are always of

the same length [13]. This graph class has been subject to extensive theoretical study, and there are

several representations and many characterisations of proper interval graphs. In this paper we give a

new representation of them that can be seen as a generalisation of previous representations, and we show

how some problems can be solved very easily on proper interval graphs by finding simple patterns in this

representation.

An important characterisation of proper interval graphs is through proper interval orderings [15]. If

a proper interval ordering is given together with the leftmost neighbour of each vertex according to the

ordering then this is an O(n)-space representation of proper interval graphs that can be computed in

linear time [3, 7]. Also other characterisations of this graph class exist through vertex orderings, with

properties that neighbourhoods of each vertex, or the cliques of the graph, appearing consecutively, or

the ordering and its reverse being a perfect elimination ordering [10]. These can all be seen as equivalent

to proper interval orderings. During the last decade, many linear-time recognition algorithms for proper

interval graphs have been developed. More recent ones generate vertex orderings that happen to be

one of the above kind if and only if the input graph is a proper interval graph [2, 16, 12, 17]. Most of

these algorithms are elegantly based on special breadth-first search (BFS) strategies. Other recognition

algorithms also apply BFS strategies but with a different approach: for every connected component, find

a vertex of special kind and run BFS starting with this vertex. A graph is then a proper interval graph

if and only if the BFS-levels are cliques and the neighbourhoods between consecutive levels satisfy the

so called chain property [3, 14]. On the representation side, these latter algorithms compute an ordered
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vertex partition and verify neighbourhood properties. Similar to the linear orderings mentioned above,

these partitions can be turned into graph representation by adding adjacency information.

For the representation of proper interval graphs that we introduce in this paper, we define a 2-

dimensional structure similar to a matrix. The elements, called bubbles, are sets of vertices, and they

define a partition of the vertex set of graph. Two vertices are adjacent only if they belong to bubbles

appearing in the same column or in consecutive columns. This new representation is called a bubble model,

and the exact definition is given in Section 3. The two types of representations mentioned above, orderings

and vertex partitions, are captured by the bubble model, which means that those representations can

be “embedded” into our representation, hence it generalises previous representations. Besides this, the

bubble model provides structural information that can particularly be useful for the design of simple

algorithms. To illustrate this we discuss the listing of maximal cliques and maximal independent sets in

Section 5. We show that finding such objects reduces to finding simple patterns in the bubble model.

Before this we explain that our new representation of proper interval graphs can be computed in linear

time from an adjacency list representation of the graph, and in O(n) time from a proper interval ordering

representation of the graph. It requires O(n) space through a compact storage scheme that we will

explain in Section 4.

In Section 6, we address a more challenging algorithmic task, and we give two new non-trivial upper

bounds for the clique-width of proper interval graphs. Clique-width is a graph parameter similar to

treewidth and pathwidth, that can be used for measuring the complexity of problems. In particular, all

problems that can be expressed in a certain kind of monadic second order logic can be solved in linear time

on graph classes whose clique-width is bounded by a constant. Naturally, computing the clique-width in

general is an NP-hard problem, even when restricted to complements of bipartite graphs [8]. Courcelle

and Olariu showed that the clique-width of a graph cannot be more than 2t+1 + 1 for t the treewidth of

the graph [6]. Corneil and Rotics improved this bound slightly and showed that a dramatic improvement

is not possible [4]. Fellows et al. showed that the clique-width of a graph is bounded by its pathwidth

plus 2 [8], which automatically gives that the clique-width of a proper interval graph is at most the size of

its largest clique plus 1. By now, grids are the only class known with unbounded clique-width for which

the clique-width can be computed in polynomial time [11]. Golumbic and Rotics showed that proper

interval graphs have unbounded clique-width [11], hence upper bounds are particularly of interest for this

graph class. In this paper, we give two new upper bounds on the clique-width of proper interval graphs

that are not based on pathwidth or maximum clique size. We show that there are graphs on which our

results give a better upper bound than the size of the maximum clique. In particular, we show that the

clique-width of a proper interval graph is bounded by the size of its largest independent set, which also

enables us to give a tight bound on the clique-width of co-chain graphs. Our new representation is of

essential importance for proving this bound. Furthermore, we are able to efficiently construct a clique-

width expression that corresponds to the computed bound. This is a non-trivial task in general, since

such bounds may also follow from purely combinatorial arguments, and not necessarily have constructive

proofs.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V, E), we denote

its vertex and edge set by V (G) = V and E(G) = E, respectively, with n = |V | and m = |E|. For a

vertex subset S ⊆ V , the subgraph of G induced by S is denoted by G[S]. Moreover, we denote by G− S

the graph G[V \ S] and by G − v the graph G[V \ {v}].

The neighbourhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighbourhood of x

is NG[x] = NG(x) ∪ {x}. The degree of a vertex x in a graph G is dG(x) = |NG(x)|. For S ⊆ V ,
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NG(S) =
⋃

x∈S NG(x) \ S. Two vertices x, y of G are called true twins if NG[x] = NG[y].

A graph is connected if there is a path between any pair of vertices. A connected component of a

disconnected graph is a maximal connected subgraph of it. A clique is a set of pairwise adjacent vertices,

while an independent set is a set of pairwise non-adjacent vertices. The clique number of G, ω(G), is

the size of a largest clique in G, and the independent set number of G, α(G), is the size of a largest

independent set.

The notion of clique-width of graphs was first introduced by Courcelle, Engelfriet, and Rozenberg in

[5]. The clique-width of a graph G, denoted by cwd(G), is defined as the minimum number of labels

needed to construct G, using the following operations:

(i) Creation of a new vertex v with label i, denoted by i(v);

(ii) Disjoint union, denoted by ⊕;

(iii) Changing all labels i to j, denoted by ρi→j ;

(iv) Adding edges between all vertices with label i and all vertices with label j, i 6= j, denoted by

ηi,j = ηj,i.

An expression built by using the above four operations is called a clique-width expression. If k labels

are used in a clique-width expression then it is called a k-expression. We say that a k-expression t defines

a graph G if G is isomorphic to the graph obtained by using the operations in t in the order given by t.

A graph G = (V, E) is called proper interval graph if every vertex of G can be assigned an interval

of the real line such that no interval is properly contained in another (equivalently, every interval has a

unit length [18]), and two vertices are adjacent if and only if their corresponding intervals overlap. An

ordering σ on an arbitrary graph G = (V, E) is a permutation of V . We write u ≺σ v if u appears before

v in the ordering. Ordering σ is called a proper interval ordering if for every triple u, v, w of vertices of

G where u ≺σ v ≺σ w, the following condition is satisfied: uw ∈ E ⇒ uv ∈ E and vw ∈ E. We call this

condition the umbrella property.

Theorem 1 ([15]). A graph G is a proper interval graph if and only if G has a proper interval ordering.

A proper interval ordering representation of G is obtained by storing both the vertices in the order

σ and for each vertex its leftmost neighbour according to σ. It is not difficult to see that if a vertex

ordering σ is a proper interval ordering, so is its reversal. If a connected proper interval graph G has no

twin vertices then G admits exactly two proper interval orderings [7]. Thus a proper interval ordering of

a connected graph with no true twins is unique up to reversal.

3 A representation of proper interval graphs – bubble models

We introduce a new representation of proper interval graphs that places vertices in a 2-dimensional

structure. Let A be a finite and non-empty set. A 2-dimensional bubbles structure B for A is a 2-

dimensional arrangement of bubbles, 〈Bi,j〉1≤j≤k,1≤i≤rj
, and every bubble Bi,j contains a subset of A

where every object of A appears in exactly one bubble. Some bubbles may be empty. To give an

intuition, bubbles are put into a matrix-like setting, and bubble Bi,j appears in row i and column j. For

every j ∈ {1, . . . , k}, bubbles B1,j , . . . , Brj ,j are grouped to the j-th column of B. Column j starts with

bubble B1,j and ends with bubble Brj ,j .

Definition 1. Let A be a finite and non-empty set. Let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be a 2-dimensional

bubbles structure for A. The graph defined by B, denoted as G(B), is defined as follows:
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Figure 1: (a) A proper interval graph G, (b) a proper interval model for G and (c) a bubble model for G.

(1) G(B) has a vertex for every element in A, and

(2) uv is an edge of G(B) if and only if there are indices i, j, i′, j′ such that au ∈ Bi,j and av ∈ Bi′,j′ ,

where au and av are the elements of A corresponding to u and v, respectively, and |j − j ′| ≤ 1 and

one of the two conditions holds: either j = j ′ or (i − i′) · (j − j′) < 0.

In particular, adjacent vertices of the graph defined by a 2-dimensional bubbles structure are contained

in the same column or in neighbouring columns. It follows directly that vertices that appear in the same

column form a clique. Furthermore, vertices in the same bubble are true twins, since they are adjacent

and they have the same neighbours in the neighbouring columns. An alternative definition for adjacency

of vertices in neighbouring columns is: u ∈ Bi,j and v ∈ Bi′,j+1 are adjacent if and only if i > i′. We can

say that u is in a “lower row” than v.

Definition 2. A bubble model for a graph G = (V, E) is a 2-dimensional bubbles structure B for V such

that G = G(B).

Figure 1 shows an example of a proper interval graph, that is represented by a proper interval model,

and a bubble model for the same graph. The line segments between bubbles in neighbouring columns

emphasise the neighbourhood property. For example, vertex 10 is adjacent to 7 and 8 but not to 4, 5, 6.

A first property of bubble models might be that the columns give a partition of the vertex set of

the defined graph. And if the defined graph is connected, there is no column containing no vertex. Let

G = (V, E) be a graph, and let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be a bubble model for G. B defines a partial

order on the vertices of G: we say that vertex u is to the left of v, if u ∈ Bi,j and v ∈ Bi′,j′ and j < j′

or j = j′ and i < i′. Informally, u is to the left of v if the column of u is before the column of v or if

the two vertices are in the same column but the bubble containing u has a lower row index. Vertices in

the same bubble are not comparable. We call this partial order the partial order defined by B. A linear

extension of a partial order is an ordering that obeys the partial order. A linear extension of the partial

order defined by a bubble model just adds orders on vertices contained in the same bubble.

Theorem 2. A graph is a proper interval graph if and only if it has a bubble model.

Proof We show two implications. Let G = (V, E) be a graph, and let B = 〈Bi,j〉1≤i≤k,1≤j≤ri
be a

bubble model for G. Let P be the partial order on V defined by B. Let σ be a vertex ordering for G

defining a linear extension of P . We show that σ is a proper interval ordering for G, which means we

have to verify the umbrella property for every triple of vertices. Let u and w be adjacent vertices of G,

u ≺σ w, and let i, j, i′′, j′′ be such that u ∈ Bi,j and w ∈ Bi′′,j′′ . If j = j′′, the definition of σ shows that

i ≤ i′′, and if j 6= j′′, Definition 1 shows that j ′′ = j + 1 and i′′ < i. Let v be a vertex of G such that

u ≺σ v ≺σ w. We need to show that v is a neighbour of u and w in G. Let i′, j′ such that v ∈ Bi′,j′ .

With arguments analogous to the ones above, it follows that j ≤ j ′ ≤ j′′ and i ≤ i′ (if j = j′) or i′ ≤ i′′
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(if j′ = j′′). Clearly, v is adjacent to u (if j = j ′) or w (if j′ = j′′). If j = j′ = j′′ then u, v and w are

in the same column and pairwise adjacent. If j = j ′ = j′′ − 1 then i′′ + 1 ≤ i ≤ i′, i.e., i′′ < i′, and v

and w are adjacent in G. If j + 1 = j ′ = j′′ then i′ ≤ i′′ ≤ i − 1, i.e., i′ < i, and v and u are adjacent in

G. Hence, u, v and w are pairwise adjacent in G. It follows that σ satisfies the umbrella property, i.e.,

σ is a proper interval ordering for G, thus G is a proper interval graph due to Theorem 1. Since σ was

an arbitrary linear extension of the partial order defined by B, we conclude that G is a proper interval

graph.

For the converse, we give an algorithm that computes a bubble model by iteratively adding vertices.

Let G = (V, E) be a proper interval graph, and let σ = 〈x1, . . . , xn〉 be a proper interval ordering for G.

Let Gi =def G[{x1, . . . , xi}] for i ∈ {1, . . . , n}. Based on σ, we define 2-dimensional bubbles structures,

B1, . . . ,Bn, for which we will prove that they are bubble models for G1, . . . , Gn, respectively. A crucial

property of the constructed bubbles structures will be that they respect ordering σ. Bubbles structure B1

contains only one bubble, that contains vertex x1. Obviously, B1 is a bubble model for G1. Since B1

contains exactly one column, it satisfies the property that every vertex in a column that is not the first

column has a non-neighbour in the previous column. We call this property the “non-neighbour” property.

We show by induction that there is a bubble model Bi for Gi for every i ∈ {1, . . . , n} that has the following

properties:

• Bi respects the order defined by 〈x1, . . . , xi〉

• Bi has the non-neighbour property.

It is obvious that B1 has both properties. Now, assume that Bi has been defined and proved to be a

bubble model for Gi, i ∈ {1, . . . , n−1}, that has the two properties. For constructing Bi+1, we distinguish

three cases with respect to xi+1.

(a) xi+1 is a true twin in Gi+1. Then, by the definition of proper interval orderings, xi+1 and xi are

true twins in Gi+1. To obtain Bi+1, add vertex xi+1 to the bubble of Bi containing xi. Since Bi is

a bubble model for Gi and xi and xi+1 have the same closed neighbourhood in the graph defined

by Bi+1, Bi+1 is a bubble model for Gi+1 that has the two properties.

The two other cases assume that xi+1 is not a true twin vertex in Gi+1. This particularly means that,

if xi and xi+1 are adjacent, xi has a neighbour in Gi+1 that is not a neighbour of xi+1 in Gi+1. This

distinction vertex can be in the last or second last column of Bi.

(b) xi+1 is not a true twin vertex in Gi+1 and it is adjacent to every vertex in the last column of Bi.

Let Bi have k columns. By the discussion above, k ≥ 2. Let a be largest possible such that the

bubble at position (a, k−1) in Bi contains a non-neighbour of xi+1. Note that a exists, since xi has

a neighbour in column k − 1 that is not a neighbour of xi+1. Since Bi respects the order defined

by 〈x1, . . . , xi〉 and according to the umbrella property of σ, all vertices in bubbles below row a in

column k − 1 are neighbours of xi+1 and xi. Let column k of Bi contain r bubbles. Certainly, xi is

contained in the bubble at position (r, k). Definition 1 then shows that a > r. To define the bubble

model for Gi+1, we distinguish two cases.

(b1) Assume that the non-empty bubble at position (a, k − 1) contains only non-neighbours of

xi+1. Let Bi+1 be obtained from Bi by adding a− 1− r many empty bubbles to column k and

then adding a bubble that contains xi+1. This means that xi+1 is contained in the bubble at

position (a, k) in Bi+1. By the considerations above, Bi+1 is indeed a bubble model for Gi+1,

since the neighbours of xi+1 appear consecutively in the ordering 〈x1, . . . , xi+1〉. Furthermore,

Bi+1 has the two properties.
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(b2) Assume that the non-empty bubble at position (a, k − 1) contains a neighbour of xi+1. Then,

the vertices in this bubble are not true twins in Gi+1, which means that they have to be in

different bubbles. We modify Bi by splitting the bubble at position (a, k − 1). We first add

an “empty row” in the following way: shift all bubbles below row a by one row further down

and add empty bubbles in row a + 1 of every column (unless a column has no bubble below

row a). Let the result be B′
i. It is easy to check that B′

i is still a bubble model for Gi. Now,

obtain B′′
i from B′

i by moving the neighbours of xi+1 in the bubble at position (a, k − 1) to

the bubble at position (a + 1, k − 1). Since the bubble at position (a + 1, k − 2) is empty (if

it exists), B′′
i is also a bubble model for Gi, and the neighbours of xi+1 in column k − 1 are

exactly the vertices in the bubbles below row a. By the umbrella property, B′′
i respects the

order defined by 〈x1, . . . , xi〉, so that we can conclude that B′′
i has the two properties. Now,

B′′
i also satisfies the condition of case (b1), which we apply to obtain Bi+1.

(c) xi+1 is not a true twin vertex in Gi+1 and it is not adjacent to a vertex in the last column of Bi.

This case is analogous to case (b) with the difference that a new column is added. The rest is similar

and obtained by just transferring the arguments for column k − 1 to column k.

The final bubble model for G then is Bn.

The proof of Theorem 2 also shows that a vertex ordering for a proper interval graph is a proper

interval ordering for the graph if and only if it is a linear extension of the partial order defined by a

bubble model of the graph. As a second result, we obtain that a bubble model of a proper interval graph

can be computed in O(n2) time. In the next section, we will study a special type of bubble models, that

have desirable properties which are useful for the design of algorithms.

4 Restricting bubble models for algorithmic purposes

Regarding representations of graph classes in general, for characterisation purposes and efficient design

of algorithms it is common to define and use a restricted version of the representation. Observe that a

proper interval graph can have many different bubble models. In this section we define a bubble models

that are minimal with respect to a vertex being placed in the first possible bubble. We will see that a

proper interval graph has a unique representation (up to reversal) through such bubble models.

For the definition of the restricted bubble model, we need the following relation on bubble models.

Let B and B′ be bubble models for a graph G with bubbles Bi,j and B′
i,j , respectively. We say that a

vertex x improves its position in B′ with respect to B, if x ∈ Bi,j and x ∈ B′
i′,j′ and j′ < j (x appears in

an earlier column in B′ with respect to B) or j = j ′ and i′ < i (x appears in the same column in B and

B′ but “improves” its row number).

Definition 3. Let B be a bubble model for a graph G = (V, E), and let P be the partial order on V defined

by B. We call B a first-fit bubble model ( ff-bubble model), for G if and only if no column ends with an

empty bubble and there is no bubble model for G that respects P and contains a vertex that improves its

position with respect to B.

It is clear that a graph has a first-fit bubble model if and only if it has a bubble model. A first

observation is that true twins appear in the same bubble of an ff-bubble model. Thus a connected proper

interval graph has exactly two ff-bubble models by the corresponding uniqueness of its proper interval

ordering. The following result provides a characterisation of ff-bubble models through patterns in the

model.
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Theorem 3. Let G = (V, E) be a graph, and let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be a bubble model for G. B is

an ff-bubble model for G if and only if B does not satisfy any of the following conditions:

(1) a column of B ends with an empty bubble

(2) there are j ∈ {2, . . . , k} and i ∈ {1, . . . , rj} such that B1,j−1, . . . , Bi,j−1 all are empty and Bi,j is

non-empty

(3) there are j ∈ {1, . . . , k} and i ∈ {2, . . . , rj} such that Bi,j−1 and Bi−1,j+1 are empty and Bi,j is

non-empty.

Proof We first show that B cannot be an ff-bubble model for G, if it satisfies any of the conditions (1–

3). If B satisfies condition (1), then B is clearly not an ff-bubble model for G according to Definition 3.

Let P be the partial order on V defined by B. For the two other conditions, we explicitly construct a

bubble model for G that respects P and contains a vertex that improves its position. Assume that B

does not satisfy condition (1).

(a) Assume that B satisfies condition (3). Let j ∈ {1, . . . , k} and i ∈ {2, . . . , rj} such that Bi,j−1 and

Bi−1,j+1 are empty and Bi,j is non-empty. We obtain B′ from B by the following operation: move

the vertices in Bi,j to Bi−1,j and if i = rj , delete Bi,j . It is obvious that B′ is a bubble model for

G, since B′ defines the same neighbourhood for the vertices in Bi,j as B. Furthermore, B′ clearly

respects P ; to be precise, the partial order defined by B′ is equal to P . Since B does not satisfy

condition (1), B′ does not satisfy condition (1) either. The vertices in Bi,j have improved their

position in B′ with respect to B, so that B is not an ff-bubble model according to Definition 3. Note

that it is crucial for the conclusion that Bi,j is a non-empty bubble.

(b) Assume that B satisfies condition (2). Let j ∈ {2, . . . , k} and i ∈ {1, . . . , rj} such that B1,j−1, . . . , Bi,j−1

are empty and Bi,j is non-empty. Choose j largest possible and then i smallest possible. In par-

ticular, B1,j , . . . , Bi−1,j are empty and B1,j+1, . . . , Bi−1,j+1 are empty. If i ≥ 2 then B satisfies

condition (3) with the bubbles Bi,j−1, Bi,j , Bi−1,j+1, and B is not an ff-bubble model for G due to

case (a). Let i = 1. We construct B′ from B in the following way: let r =def max{rj−2 − 1, rj−1, rj}

(where we assume r0 = 0); add a bubble at position (r + 1, j − 1) containing the vertices in Bi,j (if

necessary, i.e., if r > rj−1, add empty bubbles to column j−1) and make Bi,j into an empty bubble.

By assumption and choice of j and i, the vertices in Bi,j are adjacent in G exactly to the vertices in

columns j−1 and j. By the definition of r, these vertices still have the same neighbourhoods in B ′.

Thus, B′ is a bubble model for G and respects P . If column j of B′ contains a non-empty bubble,

no column of B′ ends with an empty bubble, and we conclude analogous to case (a) that B is not an

ff-bubble model. If column j of B′ does not contain a non-empty bubble, Bi,j is the only non-empty

bubble in column j of B. Modify B′ by adding r empty bubbles to the top of columns j + 1, . . . , k

and then delete column j. The result is a bubble model for G with the required properties.

We conclude that a bubble model satisfying one of the three conditions (1–3) is not an ff-bubble model

for G.

For the converse, assume that B does not contain a column that ends with an empty bubble. Oth-

erwise, B satisfies condition (1). Furthermore, assume that B does not satisfy condition (2). Let

B′ = 〈B′
i,j〉1≤j≤k′ ,1≤i≤r′

j
be a bubble model for G respecting P (the partial order defined by B) and

containing a vertex that improves its position with respect to B. By assumption about satisfaction of

condition (2), B and B′ have the same number of columns, i.e., k = k′, and the vertex sets of correspond-

ing columns are equal (otherwise the leftmost column of B containing a vertex that improves its position

in B′ with respect to B by jumping to another column contains a pattern satisfying condition (2)). Let
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j ∈ {1, . . . , k} and i ∈ {2, . . . , rj} be such that Bi,j contains a vertex x that improves its position in B′

with respect to B. We show that B satisfies condition (3). Consider the following marking procedure:

mark Bi,j . If j + 1 ≤ k and i − 1 ≥ 1 and Bi−1,j+1 is non-empty, mark Bi−1,j+1 and repeat this

marking step with Bi−1,j+1 in place of Bi,j .

Consider the last marked bubble Ba,b. Suppose that a = 1. Note that every vertex in the marked

bubbles must improve its position in B′ with respect to B, since the vertices in Bi,j improve their

positions. However, the vertices in B1,b can improve their positions only by moving to the previous

column, and this contradicts our assumptions. Hence, a > 1, and Ba−1,b+1 is empty. If Ba,b−1 is empty,

B satisfies condition (3). Let Ba,b−1 be non-empty. Since the vertices in Ba,b improve their positions

in B′ with respect to B, the vertices in Ba,b−1 must improve their positions in B′ with respect to B, as

well. Otherwise, the vertices in Ba,b and Ba,b−1 would be adjacent in the graph defined by B′, which

contradicts B′ being a bubble model for G. Start at Ba,b−1 and execute the marking procedure; let Ba′,b′

be the bubble on which the procedure stops. With similar arguments as above, a′ > 1 and b′ ≤ k and

Ba′,b′ is non-empty and Ba′−1,b′+1 is empty. If Ba′,b′−1 is empty, B satisfies condition (3). If Ba′,b′−1 is

non-empty, we repeat the construction. Since the start row always decreases, there must be an iteration

that finds a pattern in B that satisfies condition (3). If not, the vertices in Bi,j could not improve their

positions in B′ with respect to B. Thus, if B is not an ff-bubble model for G then B satisfies one of the

conditions (1–3), which concludes the proof.

The proof of Theorem 3 implicitly gives an algorithm for obtaining an ff-bubble model from a given

bubble model: find a forbidden pattern and apply the appropriate operation from the proof. This

algorithm is certainly polynomial in the size of the input bubble model. Note that the size of an arbitrary

bubble model is not related to the size of the represented graph, since empty bubbles destroy every

relationship.

The next result presents an O(n) time algorithm for computing an ff-bubble model of a proper interval

graph. Since an ff-bubble model can have Θ(n2) bubbles, our algorithm does not output the model in

the full representation. Observe that at most n bubbles of a bubble model are non-empty. This leads

to the following space efficient representation. A compact representation of a bubble model only lists

the non-empty bubbles which are partitioned into columns and ordered, and additionally stores the row

number of each bubble. To reconstruct the actual bubble model from a given compact representation,

the number of empty bubbles preceding a non-empty bubble B has to be computed, and this number

is determined by the row number of B and the bubble preceding B. A compact representation of a

bubble model requires then only linear space in the number of vertices, which is comparable to previous

representations of proper interval graphs.

Theorem 4. Let G be a proper interval graph, given in a proper interval ordering representation. An

ff-bubble model for G can be computed in O(n) time, that is output in compact representation.

Proof We give an algorithm for computing an ff-bubble model, that runs in two phases. The first

phase will compute the vertex partition into columns and find dependencies between non-empty bubbles

in different columns, and the second phase assigns the proper row to each non-empty bubble. Let σ be

the given proper interval ordering.

For the first phase, we apply the algorithm for computing a bubble model from the proof of Theorem 2,

where non-empty bubbles are not added. The result B is a 2-dimensional bubbles structure, that is

obtained from the output of the algorithm by deleting all empty bubbles. Note that B also has the

two properties considered in the proof of Theorem 2 (B respects the order defined by σ, and it has the

non-neighbour property).
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In the second phase of the algorithm, we compute the row number for every bubble of B, which gives

the compact representation of an ff-bubble model. We define a directed graph, which will be acyclic,

for which we can compute a topological ordering. Following this topological ordering, we obtain the row

numbers by easy calculations. Let H have a vertex for every bubble of B and the following arcs:

let x be a vertex of H , then there are arcs pointing to x from the vertices corresponding to these

bubbles: downmost bubble containing a non-neighbour in the preceding column, bubble preceding

x in the same column, downmost bubble containing a neighbour in the next column. If a described

bubble does not exist, the corresponding arc does not exist.

In particular, the vertices corresponding to the bubbles of a column form an induced directed path in H .

We show some properties of H .

Claim. (1) H is acyclic and (2) H contains exactly one source vertex.

Proof (1) Suppose the contrary and let H contain a (directed) cycle C = (y1, . . . , yl). We show that

H then also contains a cycle of a restricted form. Let C contain vertices from the columns b′, . . . , b′′. Since

vertices from different columns are connected only if the columns are consecutive, C really contains a

vertex from every of the columns b′, . . . , b′′. Suppose there are numbers a′ and a′′ where a′ < a′′ such that

ya′ and ya′′ are in the same column b and not all of the vertices ya′+1, . . . , ya′′−1 and ya′′+1, . . . , ya′−1 are

in column b (here, we mean two subpaths in C, so that indices have to be adjusted). Informally, C leaves

column b on the path from ya′ to ya′′ and on the path from ya′′ to ya′ . Without loss of generality, we can

assume that there is a path from ya′ to ya′′ in H containing only vertices from column b (otherwise, re-

index the vertices of C). Furthermore, we can assume that C does not contain another vertex from C on

the ya′ , ya′′ -path in column b. Obtain C ′ from C by replacing the path (ya′ , . . . , ya′′) by the path from ya′

to ya′′ containing only vertices from column b. Note that this path is unique. Repeated application of this

argument shows the existence of a cycle C∗ in H where the vertices from a column appear consecutively.

And this implies that C∗ contains vertices from only two columns (as we have already noticed the vertices

of a single column induce a path). Let C∗ = (z1, . . . , zq), and let p be such that z1, . . . , zp are in one

column, say b∗, and zp+1, . . . , zq are in the other column, b∗ + 1. By construction, zq corresponds to the

downmost bubble in column b∗ + 1 containing a neighbour of the vertices in the bubble corresponding to

z1, and zp corresponds to the downmost bubble in column b∗ containing a non-neighbour of the vertices

in the bubble corresponding to zp+1. Let u1, u2, u3, u4 be vertices from the bubbles corresponding to

z1, zp, zp+1, zq. Note that u1 and u2 as well as u3 and u4 might be equal. It follows that u1 and u4 are

adjacent and u2 and u3 are non-adjacent in G. Now, from the definition of a proper interval ordering,

the vertices from u1 to u4 in σ form a clique, and this contradicts u2 and u3 being non-adjacent. Hence,

H is acyclic.

(2) By construction, every vertex of H not corresponding to the first bubble in a column of B is

endpoint of an arc from the vertex corresponding to the previous bubble in the same column. Hence,

source vertices in H can correspond only to first bubbles in columns. A vertex is in the first bubble of

a column, that is not the first column, if there is a non-neighbour in the previous column. Thus, every

vertex of H corresponding to the first bubble of a column that is not the first column is endpoint of an

arc. So, at most one vertex of H is not endpoint of an arc, and since every acyclic graph has a source

vertex, H contains exactly one source vertex. This source vertex corresponds to the first bubble of the

first column of B.

Let τ be a topological ordering for H . Assign 1 to the unique source vertex of H and assign numbers

to the other vertices of H that are computed as follows: let u be a vertex of H and let v1, v2, v3 be

the predecessors of u, where v1 corresponds to a bubble in the column preceding the column for u. Let

a1, a2, a3 be the numbers already assigned to v1, v2, v3, respectively. Then, max{a1 − 1, a2, a3} + 1 is
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assigned to u. Since the number assignment can follow τ , every vertex can be assigned a number. Let B∗

be the bubbles structure obtained from B by placing the bubbles in the rows determined by the assigned

numbers and filling the space between these bubbles with empty bubbles.

Claim. (1) B∗ is a bubble model for G and (2) B∗ is an ff-bubble model for G.

Proof (1) We prove the statement in two steps: we first consider adjacent vertices, and then we

consider non-adjacent vertices. But note first that B∗ respects the order defined by σ, since the row

number of a bubble in a column is greater than the row number of the preceding bubble. Furthermore,

the construction of B and the properties of proper interval orderings guarantee that the vertices in a

column of B∗ are pairwise adjacent in G. So, we have to consider only vertices in different columns. Let

u and v be adjacent vertices in G, and let u be in column b of B∗ and v in column b + 1. Let u and v

be in bubbles B and B′ in rows a and a′, respectively. Let a′′ be the row of the downmost bubble in

column b+1 containing a neighbour of v. By construction, the vertex in H corresponding to B is endpoint

of an arc from the vertex corresponding to the bubble at position (a′′, b + 1) in B∗. Hence, a > a′′, and

since a′′ ≥ a′, we obtain a > a′, which means that u and v are adjacent in the graph defined by B∗. Now,

let u and v be non-adjacent vertices. As seen above, u and v are not contained in the same column of B∗.

If u and v are not contained in consecutive columns, u and v are non-adjacent in the graph defined by

B∗. So, let u and v be contained in consecutive columns, in the bubbles at positions (a, b) and (a′, b+ 1),

respectively. Let a′′ be the row number of the downmost bubble in column b containing a non-neighbour

of v. By construction, a ≥ a′′. And by definition of proper interval orderings and properties above,

a′′ ≥ a′, so that we conclude a ≥ a′. Hence, u and v are non-adjacent in the graph defined by B∗. Thus,

B∗ is a bubble model for G.

(2) We prove the statement by applying the characterisation of Theorem 3. By construction, B∗

does not satisfy condition (1) of Theorem 3, and the non-neighbour property for B guarantees that B∗

does not satisfy condition (2). So, it remain to prove that B∗ does not satisfy condition (3). Suppose

the contrary and let B, B′, B′′, B′′′ be bubbles at positions (a, b), (a, b − 1), (a − 1, b), (a − 1, b + 1) in

B∗ such that B is non-empty and B′ and B′′′ are empty. Then, B′′ must be non-empty. This means

that the vertices in B and B′′ are true twins in G (according to statement (1), B∗ is a bubble model

for G), which contradicts the construction of B: true twin vertices of G are true twins in every induced

subgraph containing these vertices, so that the algorithm puts these vertices into the same bubble. Since

no later added vertex implies a splitting for these vertices, they remain in the same bubble. This is a

contradiction, which shows that B∗ does not satisfy condition (3), i.e., B∗ is an ff-bubble model.

It remains to discuss the running time of the algorithm. The first algorithm phase can be executed in

O(n) time. The computed bubbles structures are implemented as chained lists: the columns are chained

lists, and the vertices in a bubble are stored as chained list, an element for every vertex. The list for a

bubble keeps the vertices in order defined by σ. For case (a) (algorithm in the proof of Theorem 2), xi and

xi+1 are true twins if and only if they have the same leftmost neighbour. Adding a vertex to an already

existing bubble is a simple list operation. For cases (b–c), adding a new bubble to a column and adding

a new column are also simple list operations. Distinguishing between the two cases is done by looking at

the leftmost neighbour. The leftmost neighbour also determines the bubble that has to be split. Visiting

the vertices in the order defined by σ starting with the non-neighbours finds the splitting point in time

proportional to the number of non-neighbours in the bubble. This is due to the umbrella property of

proper interval orderings and the vertex order in the chained list of the bubble. However, non-neighbours

of xi+1 are non-neighbours of every further vertex, which means that the bubble containing the visited

non-neighbours will never be visited again. Hence, B can be obtained in O(n) time.

For the second algorithm step, the crucial part is to construct graph H . We have to find (at most)

three bubbles for every bubble. The downmost bubble in the previous column containing a non-neighbour
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is the bubble containing xd−1 where xd is the leftmost neighbour. The preceding bubble in the same

column is directly taken from the list. And the downmost bubble in the next column containing a

neighbour is obtained by the inverse leftmost neighbour. Hence, H can be constructed in O(n) time.

Note that H has at most 3n arcs, and since a topological ordering of an acyclic graph can be computed

in linear time, a topological ordering for H is obtained in O(n) time. The assignment of the row numbers

then is straightforward in O(n) time. We conclude that a first-fit model for G can be computed in O(n)

time given a proper interval ordering with leftmost neighbour assignment.

5 Maximal independent sets and cliques in proper interval graphs

In this section, we give two applications of ff-bubble models. We show that all maximal independent sets

and cliques can be listed by scanning the bubble model from left to right and making only local decisions.

The main advantage is that the characterisation of maximal independent sets and cliques relies on finding

local patterns, which only consider columns, rows and emptiness. We first consider maximal independent

sets.

Proposition 5. Let G be a proper interval graph, and let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be an ff-bubble model

for G. Then, {u1, . . . , ul} is a maximal independent set of size l of G if and only if there are inte-

gers a1, b1, . . . , al, bl and a permutation π over {1, . . . , l} such that uπ(i) ∈ Bai,bi
for every i ∈ {1, . . . , l}

and the following three conditions hold for every i ∈ {2, . . . , l}:

(1) b1 = 1

(2) if bi ≤ bi−1 + 1 then bi = bi−1 + 1 and ai ≥ ai−1

(3) if bi > bi−1 + 1 then bi = bi−1 + 2 and either ai < ai−1 or Bai−1,bi−1+1 ∪ · · · ∪ Bai,bi−1+1 = ∅.

Proof Let U = {u1, . . . , ul} be a maximal independent set in G. Since every column of B defines a

clique in G, the vertices in U are in different columns. Let π be the permutation over {1, . . . , l} that

orders the vertices according to the columns they appear in. Let ai, bi be such that uπ(i) ∈ Bai,bi
for

every i ∈ {1, . . . , l}. As an intermediate result, we know that b1 < · · · < bl. Let i ∈ {2, . . . , l}. If

bi ≤ bi−1 + 1 then bi = bi−1 + 1, which directly follows from bi−1 < bi, and ai ≥ ai−1, which follows

from the adjacency definition for vertices in consecutive columns. Let bi > bi−1 + 1. If bi > bi−1 + 2

then we can choose a vertex in column bi + 2 that is not adjacent to any vertex in column bi + 3. Such

a vertex exists due to condition (2) of Theorem 3, and it is not adjacent to any vertex in U . Then,

however, U cannot be a maximal independent set in G. Hence, bi = bi−1 + 2. If ai ≥ ai−1 and one of

the bubbles Bai−1,bi−1+1, . . . , Bai,bi−1+1 is non-empty then a vertex can be picked that can be added to

U and still obtain an independent set. Thus we know that ai < ai−1 or all these bubbles are empty.

Finally, condition (2) of Theorem 3 implies that U must contain a vertex contained in column 1. The

converse directly follows with similar arguments.

Corollary 6. Let G be a proper interval graph, and let B be an ff-bubble model for G. The number of

columns of B is equal to α(G).

Proof According to Proposition 5, the cardinality of independent sets of G is bounded above by the

number of columns of B. For equality, let U be a set containing a vertex from the topmost non-empty

bubble of every column of B. Condition (2) of Theorem 3 shows that no column of B contains only empty

bubbles and that U indeed is an independent set. Hence, the number of columns of B is bounded above

by the independent-set number of G, which shows the result.
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It follows directly that ff-bubble models have the smallest possible number of columns among all

bubble models for a proper interval graph.

Maximal cliques can be listed even more easily in ff-bubble models compared to maximal independent

sets, as shown in the following result.

Proposition 7. Let G be a proper interval graph, and let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be an ff-bubble model

for G. Then U is a maximal clique of G if and only if there are a, a′, b where a ≥ 1 and a′ > a and

1 ≤ b ≤ k such that the following three conditions hold:

(1) U = Ba+1,b−1 ∪ · · · ∪ Brb−1,b−1 ∪ B1,b ∪ · · · ∪ Ba,b

(2) Ba,b is non-empty

(3) either a = rb or Ba+1,b ∪ · · · ∪ Ba′−1,b = ∅ and Ba′,b 6= ∅ and Ba+1,b−1 ∪ · · · ∪ Ba′,b−1 6= ∅.

Proof First, let b ∈ {1, . . . , k} and a ≥ 1 and a′ > a such that the assumptions of the lemma are

satisfied. According to Definition 2, Ba+1,b−1 ∪ · · · ∪ Brb−1,b−1 and B1,b ∪ · · · ∪ Ba,b are cliques in G.

Furthermore, the vertices of both sets are pairwise adjacent, so that the union U of both sets is also a

clique in G. If there is a vertex x such that U ∪{x} is a clique in G then x must be vertex in column b−1

or b; otherwise x cannot be adjacent to vertices in these two columns. If x is vertex in column b− 1 then

it is contained in B1,b−1 ∪ · · · ∪Ba,b−1 and therefore not adjacent to a vertex in Ba,b, which is non-empty

by assumption. If x is vertex in column b then we know that a < rb and x is contained in Ba′,b∪· · ·∪Brb,b

by assumption. But then there is a vertex of U contained in column b − 1 which is not adjacent to x.

Hence, U is a maximal clique in G. For the converse, let U be a maximal clique in G. Since vertices in

non-consecutive columns are non-adjacent and U is non-empty, there are numbers a, b such that Ba,b is

non-empty and U is contained in U ′ =def Ba+1,b−1∪· · ·∪Brb−1,b−1∪B1,b∪· · ·∪Ba,b. Since U ′ is a clique,

U and U ′ are equal by maximality of U . Let a 6= rb. Then, U contains a vertex that is not adjacent to

all vertices in Brb,b, which means that b > 1. Let a′ be smallest such that a′ > a and Ba′,b is non-empty,

and let x be a vertex in Ba′,b. Clearly, Ba+1,b, . . . , Ba′−1,b are empty by the choice of a′. Since x is not

in U and U is a maximal clique, U contains a vertex y that is non-adjacent t x. Since y is adjacent to

the vertices of Ba,b, y is contained in Ba+1,b−1 ∪ · · · ∪ Ba′,b−1, and we conclude the proof.

6 Upper bounds on the clique-width of proper interval graphs

In this section we show two different approaches for computing a clique-width expression of a proper

interval graph. For computing both of them efficiently we take advantage of an ff-bubble model. It is

well-known that for any graph G, cwd(G) = max{cwd(G′) | G′ is a connected component of G} [6]. Hence

for the rest of the section we will consider connected proper interval graphs. First we give an upper bound

on the clique-width with respect to the number of columns of an ff-bubble model of a proper interval

graph G. Recall that this number is unique by Corollary 6.

Theorem 8. Let G be a proper interval graph. Then cwd(G) ≤ α(G) + 1. Moreover, given a compact

representation of an ff-bubble model for G, an (α(G) + 1)-expression defining G can be constructed in

O(n) time.

Proof Let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be an ff-bubble model for G. First we give an algorithm for

constructing a (k + 1)-expression, which defines G. We use labels 1, . . . , k + 1, where the first k labels

are assigned to the columns of B, and label k + 1 is used to add a new vertex. Our algorithm visits the

bubbles of B row by row in a top-down manner and within a row from left to right. Vertices in the same
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bubble are treated sequentially. This defines an ordering on the vertices of G. Let x be the first vertex.

The expression for G[{x}] is 1(x). Now, let y be a vertex of G, and assume that the expression t for

the graph on the vertices preceding y has already been defined. Let y be in a bubble in column j. The

expression for the graph induced by the vertices not succeeding y then is

ρk+1→j(ηk+1,j+1(ηk+1,j((k + 1)(y) ⊕ t))).

Correctness follows directly from the properties of ff-bubble models, since the neighbours of y are only

in the subgraph in columns j and j + 1. Note that, if j = k, the subexpression involving column j + 1 is

obsolete. Corollary 6 then shows that k = α(G), which implies cwd(G) ≤ α(G) + 1.

For the running time, note that an (α(G) + 1)-expression for G can be computed in O(n) time given

the vertex ordering. Since vertices in the same bubble appear consecutively in the ordering, it suffices to

show that the corresponding ordering of the non-empty bubbles of B can be computed in O(n) time. Let

r be the largest row number among the non-empty bubbles of B. We start with an array of size r, whose

entries point to ordered lists. Every list corresponds to a row of B containing the non-empty bubbles

in the left-right order. The algorithm scans the bubbles of B in the compact representation column by

column from left to right. A bubble is appended to the list corresponding to its row number. It is clear

then that the required vertex ordering can be obtained in O(n) time, which concludes the proof.

As an interesting consequence, we mention that the previous result immediately gives a bound on the

clique-width of co-chain graphs, which constitute a subclass of proper interval graphs1. Combining the

already known results on the clique-width of chain graphs [11] and complements of graphs [6], clique-

width of co-chain graphs is at most 6. Hence by the following corollary, we are able to give a better

bound. Furthermore, the bound given below is tight, as it is known that cographs are exactly the class

of graphs of clique-width at most 2 [6], and there exist co-chain graphs that are not cographs. Observe

that every co-chain graph G has α(G) ≤ 2 since G is the complement of a bipartite graph. Therefore the

following result holds by combining the fact that a proper interval ordering can be obtained in O(n + m)

time [3, 7], and Theorems 4 and 8.

Corollary 9. For every co-chain graph G, cwd(G) ≤ 3, and a 3-expression defining it can be constructed

in O(n + m) time.

Next we proceed with the second approach regarding the clique-width of a proper interval graph. For

that purpose we need to introduce the following notion. Let G be a connected proper interval graph let

B be an ff-bubble model for G. A set of non-empty bubbles of a given column j of B is called a group

if the vertices of the bubbles have the same neighbourhood in G with respect to the vertices of column

j + 1. By the definition of the bubble models, we know that every vertex of G belongs to exactly one

group. Moreover observe that only consecutive non-empty bubbles may belong to the same group. That

is, if Bi,j and Bi′,j belong to the same group such that i < i′ then every non-empty bubble Bi′′,j for

which i < i′′ < i′ belongs to the given group. For instance, in Figure 1 every non-empty bubble of the

first column defines a group by itself, whereas in the second column there are three groups defined as

{{4}, {5, 6}, {7, 8}}, and in the third column altogether the non-empty bubbles define a single group.

The notion of groups gives rise to a new parameter for proper interval graphs that we will call the group

number. Let v be a vertex of G and let L(B, v) be the set of vertices to the left of v or in the same bubble

as v (excluding v) in B. Let nB(v) be the number of groups consisting of vertices from L(B, v) containing

at least one neighbour of v. Notice that for G there are exactly two ff-bubble models, B and B ′. The group

number of G, denoted by ϕ(G), is defined as follows: ϕ(G) = min{maxv∈V nB(v) , maxv∈V nB′(v)}. We

show how to compute ϕ(G) in linear time and we prove that it gives an upper bound for the clique-width

of G.
1We refer to [1, 10] for the definitions of graph classes mentioned in this paragraph.
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Theorem 10. Let G be a proper interval graph. Then cwd(G) ≤ ϕ(G) + 2 ≤ ω(G) + 1. Moreover, a

(ϕ(G) + 2)-expression defining G can be constructed in O(n + m) time.

Proof First we prove that ϕ(G) + 1 ≤ ω(G). Let B be an ff-bubble model for G. Let us consider

nB(v) for any vertex v. We call active groups of v those groups consisting of vertices from L(B, v) and

that contain at least a neighbour of v. We show that the vertices of the active groups of v together with

v form a clique in G for each vertex v. Observe that by the definition of the groups every vertex of an

active group is adjacent to v. Moreover the vertices of any group induce a clique in G as they belong

to the same column of B. Consider the active group F of v that is furtherest away from v in B. Then,

for any other group F ′ which is between F and v we know that every vertex of F is adjacent to every

vertex of F ′, and furthermore, every vertex of F ′ is adjacent to v by the properties of B. This means

that every group between F and v is active and an easy induction on the groups consisting of vertices of

L(B, v) shows that every vertex of an active group of v is adjacent to v and to every vertex of another

active group of v. Thus the vertices of the active groups of v together with v form a clique in G which

implies that ϕ(G) + 1 ≤ ω(G).

Now we show that there exists a (ϕ(G) + 2)-expression defining G. For a vertex v, a group consisting

of vertices from L(B, v) that is not active is called a dead group of v. ¿From the discussion above it

follows that a dead group of v cannot become an active group of another vertex u such that v is to the

left of u. Without loss of generality assume that ϕ(G) = maxv∈V nB(v). For every vertex v starting from

the leftmost vertex in B, we add v in a proper way to an expression t defined by the vertices of L(B, v).

Let q = nB(v) for a vertex v. Assume that a label is assigned for every group and all the vertices that

belong to the same group have the same label. First we change the labels of all the vertices of the dead

groups of v to 1 and then we assign a distinct label from {2, . . . , q + 1} for every active group of v. This

can be done by using the appropriate ρ operation at most q + 1 times. Next we use label q + 2 in order

to add v and join the vertices of label i ∈ {2, . . . , q + 1} with the vertex v of label q + 2. Thus (q + 2)v

and ηi,q+2 define the appropriate operations. Recall that v is adjacent to every vertex of an active group

of v. Finally we put v into the group that v belongs to. Notice that v cannot belong to a dead group

of v since G is connected. If v belongs to an already existed group consisting of vertices of L(B, v) then

we change the label q + 2 to the label of that group. Otherwise, v does not belong to any of the active

groups of v and there is no need to change the expression as v belongs to a group that does not appear

in t. We keep applying the same operations for every vertex of B so that every vertex of G is defined by

the expression and the join operations imply edges of G. Therefore, cwd(G) ≤ ϕ(G) + 2 ≤ ω(G) + 1.

What is left to prove is the running time for the construction of the given expression. By using one

of the linear-time algorithms [3, 7] together with Theorem 4, we obtain a compact representation of an

ff-bubble model B for G. In order to compute the groups of B we use the following observation. Let B

and B′ be two non-empty bubbles of column j in B with row number i and i′, respectively, such that

i < i′. Let B′′ be the bubble of column j +1 that contains a neighbour of a vertex of B ′ such that its row

number i′′ is as large as possible. If i > i′′ then both B, B′ belong to the same group since the vertices

of B have the same neighbourhood with the vertices of B ′. Otherwise, i ≤ i′′, which implies that B′

belongs to a different group of B, since the vertices of B ′ are adjacent to at least one vertex x of column

j + 1 so that x is non-adjacent to the vertices of B. We visit every column of the compact representation

starting from the first row and we apply the previous observation on two consecutive bubbles in order to

compute the groups. Notice that for every bubble B′ we need to find the bubble B′′ of the next column

of maximum row number that is adjacent to B′. This can be done in O(dG(v)) time for a vertex v ∈ B′

by looking one by one the bubbles of the next column and starting from the first row, since v is adjacent

to every vertex of those bubbles. Hence computing the groups takes linear time in the size of G. As

explained before, for computing the expression we apply a vertex-incremental approach by visiting the

bubbles of B column by column and within a column in a top-down manner. Having the groups, we
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require O(dG(v)) time for every vertex v that we visit, since v is adjacent to every vertex of an active

group of v. Thus the overall running time for constructing a (ϕ(G) + 2)-expression is O(n + m).

By Theorems 8 and 10 we obtain the following result.

Theorem 11. For a proper interval graph G, cwd(G) ≤ min{α(G) + 1, ϕ(G) + 2} ≤ ω(G) + 1.

We point out that there are proper interval graphs G for which ϕ(G) or α(G) is significantly smaller

than ω(G). An easy example can be derived from the graph G shown in Figure 1 by extending the three

columns of the bubble model so that 2 ϕ(G) = ω(G). Hence our bounds are better than the previously

known bound on clique-width of proper interval graphs.
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