
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Characterizing and computing minimal cograph
completions

Daniel Lokshtanov Federico Mancini
Charis Papadopoulos

REPORT NO 352 February 2008
B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-352.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-352.pdf
http://www.ii.uib.no/publikasjoner/texrap/

Characterizing and computing minimal cograph completions ∗

Daniel Lokshtanov† Federico Mancini† Charis Papadopoulos†

Abstract

A cograph completion of an arbitrary graph G is a cograph supergraph of G on the same vertex set. Such
a completion is called minimal if the set of edges added to G is inclusion minimal. In this paper we present
two results on minimal cograph completions. The first is a a characterization that allows us to check in linear
time whether a given cograph completion is minimal. The second result is a vertex incremental algorithm to
compute a minimal cograph completion H of an arbitrary input graph G in O(|V (H)| + |E(H)|) time.

1 Introduction
Cographs are exactly the graphs with no induced path on four vertices. Any graph can be embedded into a
cograph by adding edges to the original graph and the resulting graph is called a cograph completion, whereas
the added edges are called fill edges. A cograph completion with the minimum number of edges is called
minimum, while it is called minimal if no proper subset of the fill edges produces a cograph when added to the
original graph.

Computing a minimum completion of an arbitrary graph into a specific graph class is an important and well
studied problem with applications in molecular biology, numerical algebra, and more generally areas involving
graph modelling with missing edges due to lacking data [17, 33, 37]. Unfortunately minimum completions
into most interesting graph classes, including cographs, are NP-hard to compute [11, 30, 27, 33, 40]. This
fact encouraged researchers to focus on various alternatives that are computationally more efficient, at the
cost of optimality or generality. Examples of the approaches that have been attempted include approximation
[34], restricted input [7, 6, 32, 29, 10, 28], parameterization [12, 26, 23, 15, 31] and minimal completions
[19, 21, 22, 25, 36, 38]. Here we consider the last alternative.

The reason why minimal completions can be used as a tool to understand minimum completions better, is
that every minimum completion must also be a minimal one. Hence, if one is able to efficiently sample from the
space of minimal completions, it is possible to pick the one in the sample with fewest fill edges and have good
chances to produce a completion close to the minimum. This process, while only being a heuristic without any
approximation guarantees, has proven to often be good enough for practical purposes [4, 2]. In addition, the
study of minimal completions gives a deep insight in the structure of the graph class we consider. It is often the
case that new tools created to characterize minimal completions are applied to design new exact algorithms for
minimum completions [16, 7, 39], or to efficiently solve other problems on the specific graph class in question.
In particular, from a new minimal completion algorithm there can easily follow new recognition algorithms
[5, 20], since completion can be regarded as a generalization of recognition. Finally, as shown in [5] for the
case of chordal graphs, completions can also be useful to efficiently solve problems that otherwise are hard on
the original input graph.

In this paper we consider minimal cograph completions, and we study them both from a graph theoretic and
from an algorithmic point of view. Our main graph theoretic result is a theorem that captures the essence of what
makes a cograph completion minimal. We apply this characterization to obtain several algorithmic results. First
we give a linear time algorithm for the characterization problem, that is, for checking whether a given cograph
completion is minimal. Second we show how this algorithm can be applied to solve the extraction problem,
i.e., the problem of extracting a minimal completion from a non-minimal one by removing fill edges. Finally

∗This work is supported by the Research Council of Norway through grant 166429/V30.
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails: {dlo011, federico,

charis}@ii.uib.no

1

we present our main algorithmic result: an algorithm that solves computation problem, namely the problem
of compting a minimal cograph completion of an arbitrary input graph. This algorithm can be viewed as a
generalization of the cograph recognition algorithm given in [14], due to its incremental nature. We consider,
in fact, the input graph one vertex at the time, and we complete it locally in an on-line fashion. Thanks to this
feature it is likely that the algorithm can be extended to a dynamic completion algorithm, like the one for split
graphs presented in [20]. The running time is linear in the size of the computed minimal cograph completion,
and therefore optimal if an explicit representation of the output graph is required.

One should notice that, for cographs, as for other classes for which completions are interesting, an algorithm
for the extraction problem can easily be applied to solve the computation problem as well. The reason why we
provide a separate algorithm for each problem, is the big difference between their time complexity. While our
computation algorithm is linear in output size, the one for the extraction problem runs in time O(|V (G)|4) in
the worst case.

Although we have argued why minimal completions are important in general, we have not yet explained
why it is interesting to study minimal cograph completions. An obvious reason is that cographs arise naturally
in many different fields. It is not by chance that they have been re-discovered various times and have so many
different characterizations [13]. Even more interesting is the fact that many problems that are NP-hard on
general graphs, can be solved very efficiently when the input is restricted to being a cograph (see [8] for a
summary of such results).

However, as noticed by Corneil et. al [14], in most typical applications, the graphs encountered may not
be cographs but in fact will be very close to being a cograph. Due to this they asked for good heuristics for
the problem of adding and deleting as few edges of the input graph as possible to achieve a cograph. Our
computation alorithm can be used as such a heuristic, both in the case of adding and in the case of deleting
edges. The reason for this is that the class cographs is self-complementary. Besides, an advantage of using a
minimal completion algorithm as a heuristic is that the minimality guarantees that we never add unnecessary fill
edges. Also, since our completion algorithm is fast it is possible to improve the performance of the heuristic by
trying several different completions and picking the one with fewest edges.

Another reason to study cographs with respect to minimal completions, is that this graph class is not sand-
wich monotone (see [22] for an exact definition). If a graph class has this property, then a completion into the
class is minimal if and only if no single fill edge can be removed keeping the completed graph in the class.
Hence, for polynomial time recognizable classes with this property, it becomes trivial to solve the characteri-
zation problem, and very easy to solve both the extraction and the computation problems as well. Examples of
algorithms that exploit sandwich monotonicity for efficiently extracting and computing a minimal completion,
are those for chordal [4], split [19], threshold and chain graph [22] completions. In contrast, among the classes
that do not have the sandwich monotone property, the only one for which a solution to the characterization
and extraction probems is known, is the class of interval graphs [24]. When viewed from this perspective,
our characterization of minimal cograph completions becomes interesting. It allows us to check minimality
efficiently and provides a straightforward way to solve the extraction problem for cograph completions, even
though cographs do not have the sandwich monotone property.

Before we begin the technical exposition, we should note that it is possible to adapt the algorithm for
the cograph sandwich problem given in [18] to yield a polynomial time algorithm for the extraction problem.
However such an algorithm would only be a smart brute force approach and would not give any graph theoretical
characterization or intuition on how a minimal cograph completion should look like, which is what we aim for.
Also, the running time of the algorithm we would get from such an approach would be too high for any practical
purpose.

The paper is organized in three main sections: Section 2 with background and definitions, Section 3 with the
details of the characterization and finally, Section 4 with the computation algorithm. The latest section is split
in two. The first part contains a high level description of the algorithm for easing the understanding and proving
correctness. The second part contains a version more suitable for implementation, together with a running time
analysis of the algorithm.

2

2 Preliminaries
We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E), V (G) = V
and E(G) = E. For S ⊆ V , the subgraph of G induced by S is denoted by G[S]. Moreover, we denote by
G−S the graph G[V \S] and by G− v the graph G[V \ {v}]. We distinguish between subgraphs and induced
subgraphs. By a subgraph of G we mean a graph G′ on the same vertex set containing a subset of the edges of
G, and we denote it by G′ ⊆ G. If G′ contains a proper subset of the edges of G, we write G′ ⊂ G.

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The degree of x in G is dG(x). For S ⊆ V
NG(S) =

⋃
x∈S NG(x) \S. The complement G of a graph G consists of all vertices and all non-edges of G. A

vertex x of G is universal if NG(x) = V \ {x} and is isolated if it has no neighbors in G. A clique is a set of
pairwise adjacent vertices while an independent set is a set of pairwise non-adjacent vertices. Given two graphs
G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, their union is G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). Their join
G1 + G2 is the graph obtained from G1 ∪G2 by adding all the edges between the vertices of V1 and V2.

A connected component of a disconnected graph G is a connected subgraph of G with a maximal set of
vertices and edges. The co-connected components of G are the connected components of G. By C(G) and Ĉ(G)
we denote the family of the vertex sets of the connected components and co-connected components, respectively,
of G. More formally, C(G) = {Ci | G[Ci] is a connected component of G} and Ĉ(G) = {Ĉi | G[Ĉi] is a co-
connected component of G}.

Given an arbitrary graph G = (V,E) and a graph class Π, a Π completion of G is a graph H = (V,E ∪ F)
such that H ∈ Π, and H is a minimal Π completion of G if (V,E ∪ F ′) fails to be in Π for every F ′ ⊂ F . The
edges added to the original graph in order to obtain a Π completion are called fill edges.

2.1 Cographs
The class of cographs, also known as complement reducible graphs, is defined recursively as follows: (i) a
single vertex is a cograph, (ii) if G1 and G2 are cographs, then G1 ∪G2 is also a cograph, (iii) if G1 and G2 are
cographs, then G1 + G2 is also a cograph. Here we shall use the following characterization of cographs.

Theorem 2.1 ([13]). G is a cograph if and only if the complement of any nontrivial connected induced subgraph
of G is disconnected.

Along with other properties, it is known that cographs admit a unique tree representation, called a cotree
[13]. For a cograph G its cotree, denoted by T (G), is a rooted tree having O(|V |) nodes. Notice that we also
consider T () as a function that, given a cograph as argument, returns the corresponding cotree. Similarly, we
define the function Co(), that takes as an input a cotree and returns the corresponding cograph; that is, for a
cograph G, Co(T (G)) = G. The vertices of G are precisely the leaves of T (G) and every internal node of
T (G) is labelled by either 0 (0-node) or 1 (1-node). Two vertices are adjacent in G if and only if their least
common ancestor in T (G) is a 1-node. Moreover, if G has at least two vertices then each internal node of the
tree has at least two children and any path from the root to any node of the tree consists of alternating 0- and
1-nodes. The complement of any cograph G is a cograph and the cotree of the complement of G is obtained
from T (G) with inverted labeling on the internal nodes of T (G). Cographs can be recognized and their cotrees
can be computed in linear time [14].

For a node t of T (G) we denote by Tt the subtree rooted at t. The set of t’s children in T (G) is denoted by
Q(t) and the set of leaves of Tt is denoted by M(t). If S ⊆ V (T (G)) then M(S) =

⋃
t∈S M(t). Let Q(t) =

{t1, . . . , tq}. If t is a 0-node then G[M(t)] is disconnected with q connected components and M(ti) = Ci, for
Ci ∈ C(G[M(t)]). Otherwise, if t is a 1-node then G[M(t)] is connected with q co-connected components and
M(ti) = Ĉi, for Ĉi ∈ Ĉ(G[M(t)]).

Observation 2.2. Let G = (V,E) be a cograph, T (G) be its cotree, and let a(G) be the set of the 1-nodes of
T (G).

∑
t∈a(G)

∑
ti,tj∈Q(t)

|M(ti)| · |M(tj)| = |E|.

Proof. To prove the statement we use the fact that two vertices are adjacent in G if and only if their least
common ancestor (LCA) in T (G) is a 1-node. Therefore we can write that |E| =

∑
t∈a(G) |{u, v | t is the

3

LCA of u, v}|. Since for a given 1-node t, t is the least common ancestor of two vertices x, y if and only if
x ∈ M(ti) and y ∈ M(tj) for distinct ti, tj ∈ Q(t), thus |{u, v | t is the LCA of u, v}| = |M(ti)| · |M(tj)|,
and the result follows.

3 Characterizing minimal cograph completions
Here we exploit certain properties of cographs in order to characterize minimal cograph completions.

Lemma 3.1. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). H is a minimal cograph
completion of G if and only if H[Ci] is a minimal cograph completion of G[Ci] for every Ci ∈ C(H).

Proof. Assume H[Ci] is not a minimal cograph completion of G[Ci] for some Ci ∈ C(H). Then there exists
a graph H ′ between G[Ci] and H[Ci] that is a cograph and a strict subgraph of H[Ci]. Since H[V \ Ci] ∪ H ′

is still a cograph and is a strict subgraph of H , H is not minimal. For the other direction, assume that for each
Ci ∈ C(H), H[Ci] is a minimal cograph completion of G[Ci]. Then no subset of the fill edges in each connected
component of H can be removed producing a new cograph. Since there are no edges between the connected
components of H , it means that no subset of the fill edges can be removed. Hence, H is minimal.

Let H = (V,E∪F) be a cograph completion of a graph G = (V,E). Next we focus on a connected cograph
completion H of G. Note that H has at least two co-connected components since it is connected. In order to
characterize minimality of H , the idea is to consider any two co-connected components of H , remove all the
fill edges between them in H , and then simply check the connectivity of the resulting graph. More formally, if
H is disconnected, let Ĉ(H) = {Ĉ1, . . . , Ĉ`}. Given two vertex sets Ĉu, Ĉv ∈ Ĉ(H), we consider the induced
subgraph H[Ĉu ∪ Ĉv]. We build a graph Guv by taking H[Ĉu ∪ Ĉv] and removing all the fill edges between
the two vertex sets Ĉu and Ĉv . We define

Guv = (Ĉu ∪ Ĉv, E(H[Ĉu]) ∪ E(H[Ĉv]) ∪ Euv),

where Euv = {xy | x ∈ Ĉu, y ∈ Ĉv, xy ∈ E}. Let us consider now, the subgraphs of H induced by the vertex
sets of the connected components of Guv . We define Huv =

⋃
Yi∈C(Guv) H[Yi]. Notice that if Guv is connected,

then Huv = H[Ĉu ∪ Ĉv]; otherwise Huv is disconnected and G[Ĉu ∪ Ĉv] ⊆ Guv ⊆ Huv ⊂ H[Ĉu ∪ Ĉv].

Lemma 3.2. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). H is a minimal cograph
completion of G if and only if H[Ĉi] is a minimal cograph completion of G[Ĉi], for every Ĉi ∈ Ĉ(H) and Guv

is a connected graph for any two distinct Ĉu, Ĉv ∈ Ĉ(H).

Proof. Assume that either H[Ĉi] is not a minimal cograph completion of G[Ĉi] for some Ĉi ∈ Ĉ(H), or Guv

is not a connected graph for some distinct Ĉu, Ĉv ∈ Ĉ(H). We will show that in both cases H = (V,E ∪ F)
is not a minimal cograph completion of G = (V,E), because we can build a cograph H ′ = (V,E ∪ F ′),
where F ′ ⊂ F . In the first case there exists a cograph H ′

i which is a strict subgraph of H[Ĉi]. Therefore we
can define the cograph H ′ = H[V \ Ĉi] + H ′

i , that is clearly a strict subgraph of H . For the second case
assume that for every Ĉi ∈ Ĉ(H), H[Ĉi] is a minimal cograph completion of G[Ĉi], but for at least two distinct
Ĉu, Ĉv ∈ Ĉ(H), Guv is not connected. Since Guv is not connected, the cograph Huv is a strict subgraph of
H[Ĉu ∪ Ĉv]. Thus the graph H ′ = H[V \ (Ĉu ∪ Ĉv)] + Huv is a cograph by Theorem 2.1 and by construction
we know that G ⊆ H ′ ⊂ H . Hence H is not minimal.

To prove the other direction we show that if H[Ĉi] is a minimal cograph completion of G[Ĉi] for each
Ĉi ∈ Ĉ(H), and Guv is a connected graph for each two distinct Ĉu, Ĉv ∈ Ĉ(H), then H is a minimal cograph
completion of G. Since H[Ĉi] is a minimal cograph completion of G[Ĉi], no fill edge can be removed from these
subgraphs. Assume for the sake of contradiction that H is not minimal. Then there must exist a cograph H ′

such that G ⊆ H ′ ⊂ H . By assumption we know that H ′[Ĉi] = H[Ĉi] for each Ĉi ∈ Ĉ(H), and H ′[Ĉu∪Ĉv] is
connected as a supergraph of Guv , for any two distinct Ĉu, Ĉv ∈ Ĉ(H). We show that H ′ cannot be a cograph,
contradicting the existence of H ′. Since H ′ ⊂ H , there is at least a non-edge in H ′ between two vertex sets

4

Ĉu, Ĉv ∈ Ĉ(H), so that H ′[Ĉu] is not universal for H ′[Ĉv]. This means that H ′[Ĉu ∪ Ĉv] is a connected graph
because both H ′[Ĉu] and H ′[Ĉv] are connected graphs (since they are connected components in H) and there
is at least one edge between them. Hence, both H ′[Ĉu ∪ Ĉv] and H ′[Ĉu ∪ Ĉv] are connected and H ′ cannot be
a cograph by Theorem 2.1.

As we are about to see, in order to check the connectivity of Guv it is enough to consider only the edges
between the co-connected components Ĉu and Ĉv and not the ones that are inside Ĉu and Ĉv . For that reason
we introduce the graph G∗

uv which can be viewed as the graph obtained from Guv by replacing every connected
component of H[Ĉu] and H[Ĉv] with a single vertex.

We formally define the graph G∗
uv over the cotree T (H) of H . Let tu, tv be two children of the root of T (H).

If Q(tu) 6= ∅ then let Au = Q(tu); otherwise let Au = {tu}. Similarly if Q(tv) 6= ∅ then let Av = Q(tv);
otherwise let Av = {tv}. Observe that Au and Av contain nodes of T (H). Given the two nodes tu, tv we define
the graph G∗

uv as follows.
G∗

uv = (Au ∪Av, E∗
uv),

where E∗
uv = {(au, av) ∈ Au × Av | (M(au) × M(av)) ∩ E 6= ∅}. In other words, edges are between Au

and Av , and a vertex au of Au is adjacent to a vertex av of Av if and only if there is an edge xy ∈ E such that
x ∈ M(au) and y ∈ M(av). This also means that G∗

uv is a bipartite graph.
An example of the graphs Guv and G∗

uv is given in Figure 1.

Cu

^ Cv

^

v1

v2

Guv
*

A v

Cu

^ Cv

^

Guv

Cu

^ Cv

^

Huv

t u

u1 u2
v1 v2

t v

T(H[C U C])u v
^^

uH[C U C]v
^^

A u

u1

u2

f

e

fb

c g

d

e

fb

c g

a

da

d

a e

fb

c g

e 1

0

g

0

11

1

b c

d

a

Figure 1: An example of the graphs Guv , G∗
uv and Huv . The dashed lines represent fill edges added to the

original graph. We depict the way that Guv is obtained from H[Ĉu ∪ Ĉv] by removing the fill edges between
H[Ĉu] and H[Ĉv]. Then we can think of G∗

uv as either the graph obtained from Guv by contracting the con-
nected component in each side, or directly defined on the cotree of H[Ĉu ∪ Ĉv] when we do not consider fill
edges between the children of tu and the children of tv .

Observation 3.3. Let T (H) be the cotree of a connected cograph completion H of G and let t be the root
of T (H) and tu, tv ∈ Q(t). G∗

uv is connected if and only if Guv is connected, where Ĉu = M(tu) and
Ĉv = M(tv). Moreover, for any element Yi ∈ C(G∗

uv), M(Yi) ∈ C(Guv).

Proof. Let us explain the graph G∗
uv with respect to Guv . Given two distinct sets Ĉu, Ĉv ∈ Ĉ(H), notice

that Guv[Ĉu] = H[Ĉu] and Guv[Ĉv] = H[Ĉv] are disconnected cographs or a single vertex, since H[M(t)]
is connected. Thus every connected component of Guv[Ĉu] and Guv[Ĉv] corresponds to a vertex of Au and
Av , respectively of G∗

uv . Moreover there is at least one edge between two connected components of Guv[Ĉu]

5

and Guv[Ĉv] if and only if there is an edge between the corresponding vertices of G∗
uv . Hence the statement

follows.

We can now rephrase Lemma 3.2 in terms of the cotree of H instead of H itself, and using G∗
uv instead of

Guv .

Theorem 3.4. Let H be a cograph completion of a graph G and let T (H) be its cotree. H is a minimal
cograph completion of G if and only if for every 1-node t of T (H) the graph G∗

uv is connected for any two
nodes tu, tv ∈ Q(t).

Proof. Suppose H is a minimal cograph completion of G. Consider a 1-node t of T (H), and let tu,tv ∈ Q(t).
The subtree of T (H) rooted at t is the cotree of H[M(t)]. Furthermore H[M(t)] is a minimal connected
cograph completion of G[M(t)], M(tu) ∈ Ĉ(H[M(t)]) and M(tv) ∈ Ĉ(H[M(t)]). Now, by Lemma 3.2 and
Observation 3.3 G∗

uv is connected.
We prove the other direction of the equivalence by induction on |V (T (H))|. If |V (T (H))| = 1 then G has

only one vertex and the result follows. Assume that the statement of the theorem holds whenever |V (T (H))| <
k. Consider now the case when |V (T (H))| = k. By the induction hypothesis H[M(tu)] is a minimal cograph
completion of G[M(tu)] for every tu ∈ Q(root(T (H))). Thus, if root(T (H))) is a 0-node then the result
follows by Lemma 3.1. Furthermore if root(T (H))) is a 1-node then we know that G∗

uv is connected for every
pair of children of the root. Therefore H is a minimal cograph completion of G by Lemma 3.2 and Observation
3.3.

Based on the previous theorem we obtain a linear-time algorithm for deciding whether a given cograph
completion is minimal.

Theorem 3.5. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). Recognizing whether H
is a minimal cograph completion of G can be done in O(|V |+ |E|+ |F |) time.

Proof. We describe such an algorithm. First we compute the cotree T (H) of H . Then we visit each 1-node t
of T (H). Let Q(t) = {t1, . . . , t`}. For every pair of nodes (tu, tv) ∈ Q(t) we construct the graph G∗

uv and
check its connectivity. If at least one of the graphs G∗

uv is disconnected then we output that H is not a minimal
cograph completion of G; otherwise we output that H is a minimal cograph completion of G. The correctness
follows by Theorem 3.4.

Let us now show that the algorithm runs in linear time. Observe that the cotree can be computed in time
linear in the size of H and has O(|V |) nodes [14]. Let t be a 1-node in T (H) and let Q(t) = {t1, . . . , t`}. We
need to construct the graph G∗

uv for each pair of nodes (tu, tv) ∈ Q(t). Let nu = |M(tu)| and nv = |M(tv)|.
Note that the subtrees Ttu and Ttv have O(nu) and O(nv) nodes, respectively. Thus finding the sets M(tu) and
M(tv) takes time O(nu + nv). For the edges of G∗

uv we do not need to check any edge inside H[M(tu)] and
H[M(tv)], but only the edges in between. This implies that building and checking the connectivity of G∗

uv take
time O(nunv) using an adjacency matrix, since nu + nv ≤ nunv + 1 (note that using a trick in [1], the matrix
can be allocated in linear time). Observe that t is a 1-node meaning that there are O(nunv) edges in H[M(t)].
Thus summing up the time needed for each distinct pair of nodes (tu, tv) in T (G), gives time linear in the size
of H by Observation 2.2. Therefore the overall running time is O(|V |+ |E|+ |F |).

Using the previous theorem, we can give an algorithm for extracting a minimal cograph completion from
a given one. The idea is quite simple. On input G and H we use the algorithm from Theorem 3.5 to check
whether H is a minimal cograph completion of G. If the answer is yes we can output H , while if the answer
is no, there must be a 1-node t of T (H) with children u and v such that the graph G∗

uv is disconnected. In
that case Huv is a cograph completion of G[M(u) ∪ M(v)] such that Huv ⊂ H[M(u) ∪ M(v)]. Thus H ′ =
(H \ (M(u) ∪ M(v))) + Huv) is a cograph completion of G such that H ′ ⊂ H . We can now reiterate this
process with H ′ as a candidate cograph completion. Since each such iteration can be done in O(|V |+ |E|+ |F |)
time and we remove at least one fill edge for each iteration, this algorithm runs in O((|V |+ |E|+ |F |)|F |) time.
One should notice that our extraction algorithm has many similarities with the generic extraction algorithm for
sandwich monotone graph classes [22]. Similarly to sandwich monotonicity, our characterization states that in
some sense, a cograph completion is minimal if and only if it is locally minimal.

6

Theorem 3.6. Given a cograph completion H = (V,E ∪ F) of a graph G = (V,E), a minimal cograph
completion H ′ with G ⊆ H ′ ⊆ H , can be computed in time O((|V |+ |E|+ |F |) · |F |).

4 Computing a minimal cograph completion directly
In this section we give an algorithm to solve the problem of computing a minimal cograph completion of an
arbitrary input graph, in time linear in the size of the output graph. We use a vertex incremental scheme proposed
in [21] for computing minimal cograph completions.

It is known that given a graph class that is hereditary1 and has the universal vertex property2, minimal
completions of arbitrary graphs into this class can be computed in a vertex incremental way [3, 21]. Cographs
satisfy both properties by Theorem 2.1 and thus we state this result in the following lemma.

Proposition 4.1. Let H be a minimal cograph completion of an arbitrary graph G, and let Gx be a graph ob-
tained from G by adding a new vertex x adjacent to some vertices of G. There is a minimal cograph completion
Hx of Gx such that Hx − x = H .

At all times we maintain a minimal cograph completion of the part of the input graph that already has been
considered. The algorithm starts off with the empty graph and adds in the vertices of the input graph one at a
time, at each step updating the minimal completion by adding fill edges incident to the new vertex. The main
technical part of this section is the design and analysis of an algorithm for one incremental step.

4.1 Adding a vertex to a cograph
In this section we give an algorithm for one incremental step of our completion algorithm. Hereafter we use
G = (V,E) to denote a cograph, unless otherwise specified. Given a vertex x together with a list of vertices
Nx ⊆ V , we denote by Gx the graph obtained by adding x to G. That is, Gx = (V ∪{x}, E ∪{xy : y ∈ Nx}).
Given a cograph G and a vertex set Nx ⊆ V the algorithm computes a vertex set S ⊆ V such that Nx ⊆ S and
Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a minimal cograph completion of Gx.

The algorithm is fairly simple. We start off with Gx and consider G = Gx − x. If G is disconnected we
only need to add edges to the connected components of G that x is already adjacent to. If x is adjacent to only
one connected component we run the algorithm recursively on that connected component. However, if x is
adjacent to more than one connected component of G we make x universal to all connected components of G
that are adjacent to x. When G is connected we have to be a bit more careful. The basic idea is the following:
We try adding x to a particular co-connected component Ĉ. To do this we have to make x universal to all other
co-connected components of G and make sure not to make x universal to Ĉ. If we find out that x cannot be
added to any co-connected component in this way, we make x universal to all co-connected components of G
that x is adjacent to in Gx. In order to justify these choices, we will apply Theorem 3.1.

1A graph class Π is called hereditary if all induced subgraphs of graphs in Π also belong to Π.
2A graph class Π has the universal vertex property if, for every graph G ∈ Π and a vertex x 6∈ V , G + x ∈ Π.

7

Algorithm: Minimal x Cograph Completion – MxCC (G, Nx)
Input: A cograph G, and a set of vertices Nx which are to be made adjacent to a vertex x /∈ V
Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and Hx = (V ∪ {x}, E ∪ {xy : y ∈ S})

is a cograph
if G is connected then

if there are Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) s.t. Ĉi ∩Nx 6= ∅ and Cj ∩Nx = ∅ then
S = MxCC(G[Ĉi], Nx ∩ Ĉi) ∪ (V \ Ĉi);

else
S =

⋃ bCi∈bC(G) : bCi∩Nx 6=∅ Ĉi;

else
if there is a Ci ∈ C(G) such that Nx ⊆ Ci then

S = MxCC(G[Ci], Nx);
else

S =
⋃

Ci∈C(G) : Ci∩Nx 6=∅ Ci;

return S;

Observe that the algorithm always terminates because each recursive call takes as an argument a subgraph
of G induced by a strict subset of V . We are now ready to prove the correctness of Algorithm MxCC.

Lemma 4.2. Given a cograph G and a set of vertices Nx, Algorithm MxCC returns a set of vertices S such
that Hx is a cograph completion of Gx.

Proof. Observe that as Nx ⊆ S we know that Gx ⊆ Hx. Thus it is sufficient to show that Hx is a cograph. We
prove this by induction on |V |. If |V | ≤ 1 then Hx has at most two vertices and is a cograph. Assume now that
the statement of the lemma holds whenever the input graph has less than k vertices and consider the execution
of Algorithm MxCC(G, Nx) on a graph G on k vertices. For each of the following cases we will prove that
Hx can be constructed by either taking the union or the join of two cographs. This implies that Hx is a cograph
by Theorem 2.1.

First we consider the case when G is connected. If S = MxCC(G[Ĉi], Nx ∩ Ĉi) ∪ (V \ Ĉi) then let S′

be the set returned by MxCC(G[Ĉi], Nx ∩ Ĉi) and let H ′
x = (Ĉi ∪ {x}, E(G[Ĉi]) ∪ {xy : y ∈ S′}). By the

induction hypothesis H ′
x is a cograph. Thus Hx = H ′

x + G[V \ Ĉi] is a cograph. If S =
⋃ bCi∈bC(G): bCi∩Nx 6=∅ Ĉi

then Hx = (G[V \ S] ∪ {x}) + G[S] is a cograph.
Now consider the case when G is disconnected. If there is a Ci ∈ C(G) such that Ci ⊆ Nx, then let S′ be

the set returned by MxCC(G[Ci], Nx) and H ′
x = (Ci ∪ {x}, E(G[Ci]) ∪ {xy : y ∈ S′}). By the induction

hypothesis H ′
x is a cograph. Thus Hx = H ′

x ∪ G[V \ Ci] is a cograph. If S =
⋃

Ci∈C(G) : Ci∩Nx 6=∅ Ci then
Hx = (G[S] + x) ∪G[V \ S] is a cograph.

Observation 4.3. If G is disconnected, Ci ∈ C(G), Nx ∩ Ci = ∅, and S = MxCC(G, Nx) then S ∩ Ci = ∅.

Proof. If Nx ⊆ Cj for a Cj ∈ C(G) and Cj 6= Ci then the claim follows immediately as S ⊆ Cj . If Ci = Cj

then the call to MxCC(G[Cj], Nx) returns an empty set as Nx = ∅. Finally, if there is no Cj ∈ Ĉ(G) so that
Nx ⊆ Cj , then S =

⋃
Ck∈C(G) : Ck∩Nx 6=∅ Ck and the result follows.

Theorem 4.4. Given a cograph G and a set of vertices Nx, Algorithm MxCC returns a set of vertices S such
that Hx is a minimal cograph completion of Gx.

Proof. By Lemma 4.2, Hx is a cograph completion of Gx. Thus it is sufficient to show minimality. We prove
that Hx is a minimal cograph completion of Gx by induction on |V |. If |V | ≤ 1, Hx is trivially a minimal
completion of Gx. Now, assume that the statement of the theorem holds whenever the input graph has less than
k vertices and consider the execution of Algorithm MxCC(G, Nx) on a graph G on k vertices. We distinguish
between two cases according to the connectivity of G and prove that at each case Hx is a minimal cograph
completion of Gx by using Lemmas 3.1 and 3.2.

8

First we consider the case when G is connected. If there are Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) such that
Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅, then let S′ be the set returned by MxCC(G[Ĉi], Nx ∩ Ĉi). Given the set S′,
consider the graphs G′

x = (Ĉi∪{x}, E(G[Ĉi])∪{xy : y ∈ Ĉi∩Nx}) and H ′
x = (Ĉi∪{x}, E(H[Ĉi])∪{xy :

y ∈ S′}). Now, since Ĉi ∩Nx 6= ∅ and Cj ∩Nx = ∅ we know that Cj ⊂ Ĉi, G[Ĉi] is disconnected, and G[Cj]
is a connected component of G[Ĉi]. Thus, by Observation 4.3, Cj ∩ S′ = ∅. From this it follows that in Hx,
x has a non-neighbour in Ĉi. Furthermore, as G[Ĉi] is a co-connected component of G and x is universal to
V \ Ĉi in Hx we conclude that H[Ĉi ∪ {x}] is a co-connected component of Hx. Finally, as G is connected
and Nx is nonempty, Hx is connected.

We wish to apply Lemma 3.2 in order to show that Hx is a minimal cograph completion of Gx. Let Ĉu

and Ĉv be the vertex sets of two distinct co-connected components of Hx. If neither Ĉu nor Ĉv contains x
we know that both G[Ĉu] and G[Ĉv] are co-connected components of G. Thus Guv is just G[Cu ∪ Cv], so
Guv is connected. Now, without loss of generality, Ĉu contains x. By the discussion in the paragraph above,
Ĉu = Ĉi ∪ {x} = V (H ′

x). By the induction hypothesis Hx[Ĉu] is a minimal cograph completion of Gx[Ĉu].
Again Hx[Ĉv] = Gx[Ĉv]. We now proceed to show the connectivity of Guv . Obviously, G[Ĉu ∪ Ĉv \ {x}] =
G[Ĉi ∪ Ĉv] ⊆ (Guv − x). Additionally, as Ĉi and Ĉv are vertex sets of co-connected components of G,
G[Ĉi ∪ Ĉv] is connected. As G[Ĉi ∪ Ĉv] ⊆ (Guv − x), (Guv − x) is connected. But since Ĉi ∩ Nx 6= ∅, x
has a neighbour in Ci so Guv is connected as well. Therefore Hx is a minimal cograph completion of Gx by
Lemma 3.2.

Now suppose that there are no Ĉi ∈ C(G) and Cj ∈ C(G[Ĉi]) such that Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅.
If Nx = ∅ then S = ∅ and Hx is trivially a minimal completion of Gx. Otherwise, let us describe the co-
connected components of Hx. Let Ĉ1, ..., Ĉn be the elements of Ĉ(G) such that Ĉs ∩ Nx 6= ∅ for 1 ≤ s ≤ n,
and let Ĉ ′

n+1 =
⋃ bC∈bC(G): bC∩Nx=∅ Ĉ. In Hx, x is adjacent to every vertex of Ĉ1, ..., Ĉn and isolated to Ĉ ′

n+1.

Thus Hx has n + 1 co-connected components, induced by the sets Ĉ1, ..., Ĉn and {x} ∪ Ĉ ′
n+1. Observe

that Hx[{x} ∪ Ĉ ′
n+1] = Gx[{x} ∪ Ĉ ′

n+1] and thus Hx[{x} ∪ Ĉ ′
n+1] is a minimal cograph completion of

Gx[{x} ∪ Ĉ ′
n+1]. The same holds for Hx[Ĉs], 1 ≤ s ≤ n, since x is not contained in Ĉs. Furthermore, for any

two distinct integers u and v between 1 and n, the graph Guv is just G[Ĉu ∪ Ĉu] and is connected. To complete
the proof, we prove that the graph obtained from Hx[{x} ∪ Ĉ ′

n+1], Hx[Ĉs] and by adding the edges of Gx in
between, namely Guv , is connected. The minimality then follows by Lemma 3.2. Notice that every vertex of
Ĉ ′

n+1 is adjacent to every vertex of Ĉs as a vertex set of a co-connected component of G. What remains to show
is that Gx[{x} ∪ Ĉs] is connected for any s between 1 and n. Indeed Gx[Ĉs] = G[Ĉs] is disconnected but x

is adjacent to at least one vertex of each of G[Ĉs]’s connected components, since by construction Ĉs ∩ Nx is
nonempty, and thus by assumption Cj ∩ Nx is nonempty for every Cj ∈ C(G[Ĉs]). We conclude that Hx is a
minimal cograph completion of Gx by Lemma 3.2.

Next we consider the case when G is disconnected. If there is a Ci ∈ C(G) such that Nx ⊆ Ci then Hx is
a disconnected cograph and Hx[Ci ∪ {x}] is a minimal cograph completion of Gx[Ci ∪ {x}] by the induction
hypothesis. Moreover for every other Cj ∈ C(G) such that Cj 6= Ci, Hx[Cj] is a connected component of Hx

and Hx[Cj] = Gx[Cj]. Thus by Lemma 3.1 Hx is a minimal cograph completion of Gx.
Otherwise, let H ′

x be the connected component of Hx containing x, and let G′
x = Gx[V (H ′

x)]. By Lemma
3.1, it is enough to prove that H ′

x is a minimal cograph completion of G′
x to show the minimality of Hx. By

construction H ′
x = G[

⋃
Ci∈C(G) : Ci∩Nx 6=∅ Ci] + x. Also, by assumption, |Ci ∈ C(G) : Ci ∩Nx 6= ∅| ≥ 2.

Thus, H ′
x has two co-connected components: H ′

x[{x}] and H ′
x − x. Let Cu = {x} and Cv = V (H ′

x) \ {x}.
By definition Guv = G′

x, and since x has neighbors in each connected component of H ′
x[Cv] = G′

x[Cv], it is
easy to see that Guv is connected. Hence the result follows by Lemma 3.2.

4.2 Implementing Algorithm MxCC using a cotree representation
In order to obtain a good running time for Algorithm MxCC we give an algorithm that works directly on the
cotree of the input graph. That is, we give an algorithm, namely CMxCC, that takes as an input the cotree
T (G) of a cograph G and a set Nx of vertices in G and returns a set of vertices S of G so that Hx is a minimal

9

cograph completion of Gx. For a node t in T (G), recall that Q(t) is the set of t’s children in T (G). Let
Qx(t) = {ti ∈ Q(t) : M(ti) ∩Nx 6= ∅}. Thus Qx(t) ⊆ Q(t).

Algorithm: Cotree Minimal x Cograph Completion – CMxCC (T, Nx)
Input: A cotree T of a cograph G = (V,E) and a set of vertices Nx which are to be made adjacent to a

vertex x /∈ V
Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is

a cograph

r = root(T) ;
if r is a 1-node then

if there is a t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) then
S = CMxCC(Tt, Nx ∩M(t)) ∪ (M(r) \M(t));

else
S =

⋃
t∈Qx(r) M(t);

else
if there is a t ∈ Q(r) such that Qx(r) ⊆ {t} then

S = CMxCC(Tt, Nx);
else

S =
⋃

t∈Qx(r) M(t);

return S;

The correctness of the algorithm follows from the following two observations which imply that Algorithm
CMxCC returns the same set S as Algorithm MxCC.

Observation 4.5. Let G be a connected cograph and let r be the root of T (G). There are vertex sets Ĉi ∈ Ĉ(G)
and Cj ∈ C(G[Ĉi]) such that Ĉi ∩Nx 6= ∅ and Cj ∩Nx = ∅ if and only if there is a node t ∈ Qx(r) such that
∅ ⊂ Qx(t) ⊂ Q(t) 6= ∅.

Proof. In one direction, suppose r has a child t in Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) 6= ∅. Then Qx(t) \Q(t)
Let Ĉi = M(r), and let c be an element of Q(r) \Qx(r). By construction, G[Ĉi] is a co-connected component
of G, G[Cj] is a connected component of G[Ĉi], Ĉi∩Nx 6= ∅ and Cj ∩Nx = ∅. In the other direction, suppose
there are vertex sets Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) such that Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅. As Ĉi ∈ Ĉ(G),
r has a child t such that Ĉi = M(t). Furthermore, as there is a Cj ∈ C(G[Ĉi]) such that Ĉj ∩ Nx = ∅, t has a
child c with M(c) = Cj and thus c ∈ Q(t) \Qx(t) and thus Qx(t) ⊂ Q(t). As M(t) ∩Nx 6= ∅ it follows that
t ∈ Qx(r) and ∅ ⊂ Qx(t).

Observation 4.6. Let G be a disconnected cograph and let r be the root of T (G). There is a set Ci ∈ C(G)
such that Nx ⊆ Ci if and only if there is a node t ∈ Q(r) such that Qx(r) ⊆ {t}.

Proof. Suppose there is a set Ci ∈ C(G) such that Nx ⊆ Ci. Then, let t be the child of r so that M(t) = Ci.
For any other child t′ of r, clearly M(t′) = ∅. Thus Qx(r) ⊆ {t}. In the other direction, suppose Qx(r) ⊆ {t}
for some child t of r. Let Ci = M(t). We know that Ci ∈ C(G). We prove that for every Cj ∈ C(G) so that
Cj 6= Ci, Cj ∩Nx = ∅. Suppose for contradiction that Cj ∩Nx 6= ∅. Let c be the child of r so that M(c) = Cj .
Clearly c 6= t and c ∈ Qx(r) contradicting that Qx(r) ⊆ {t}.

Now we are ready to prove a bound on the running time for computing a minimal cograph completion Hx

of Gx, and give the final theorem about the existence of an algorithm to compute a minimal cograph completion
in time linear in the size of the output graph.

Theorem 4.7. Given a cograph G and its cotree T (G), there is an algorithm for computing the set of vertices
S that are adjacent to x in a minimal cograph completion of Gx which runs in O(|S|+ 1) time.

10

Proof. We describe such an algorithm. First we compute the set Qx(t) for every node t in T (G) and then
we apply Algorithm CMxCC on T (G). By the previous arguments and Theorem 4.4 the set S returned by
Algorithm CMxCC contains the vertices that are adjacent to x in a minimal cograph completion Hx of Gx.
Now we analyze the running time.

In addition to the work described below the algorithm does a constant amount of work. This does not pose
any problem if S 6= ∅. However if S = ∅ then we need to add a constant to the running time bound to cover this
case. If S = ∅ it is easy to see that the algorithm requires constant time. Thus, in the rest of the proof we will
assume that S 6= ∅.

Let us show first that given the set Qx(t) for every node t in T (G), Algorithm CMxCC makes O(|S|) calls.
Let R = {r1, r2, . . . , r`} where ri be the root of the subtree considered at the ith call of Algorithm CMxCC.
Now we show that ` = O(|S|). The nodes of R form a path in T (G) starting from the root (= r1), since at
most one child of an internal node of T (G) is given as an argument in each call of CMxCC. Observe that the
labels of the internal nodes (0- or 1-nodes) of a cotree T (G) alternate along any path starting at the root. Thus
at least b `

2c nodes of R are 1-nodes. For the 1-nodes the algorithm adds at least one vertex of G in S. Hence
` = O(|S|).

Next we prove that we can compute the set Qx(t) for every node t in O(|S|) time. Before executing
Algorithm CMxCC we start from the leaves of T (G) which correspond to the neighbors of x and then in a
bottom up fashion we construct the set P of all internal nodes t in T (G) that satisfy |Qx(t)| > 0. We need to
show that |P | = O(|S|). Observe that R ⊆ P , since ri+1 ∈ Qx(ri) where ri, ri+1 ∈ R. Recall that ` = |R|
and ` = O(|S|). Thus we need to show that |P \ R| = O(|S|). For a node t in P \ R observe that M(t) ⊆ S
since by the algorithm

⋃
t∈Qx(r) M(t) ⊆ S where r ∈ R. Therefore |P \R| = O(|S|).

Having computed the set Qx(t) for each node t in T (G) we show that checking the conditions in the if
statements can be done in constant time. In order to do this we traverse the nodes of P once more. Let t be
a node in P and let r be t’s parent in T (G). Note that if |Qx(t)| > 0 then t ∈ Qx(r). If t is a 0-node and
0 < |Qx(t)| < |Q(t)| then r marks its child t, unless r already has a marked child. If r already has a marked
child we do nothing.

If r is a 1-node we now can test whether there is a t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) in constant time,
simply by checking whether r has a marked child or not. Moreover if r is a 0-node, we can test whether there
is a t ∈ Q(r) such that Qx(r) ⊆ {t} in constant time, by checking that |Qx(r)| ≤ 1. This implies that the
algorithm terminates in O(|S|+ 1) time.

Theorem 4.8. There is an algorithm for computing a minimal cograph completion H = (V,E ∪ F) of an
arbitrary graph G = (V,E) in O(|V |+ |E|+ |F |) time.

Proof. Let n = |V |. Order the vertices of G from v1 to vn, let Vi = {v1, v2, . . . vi} and Gi = G[Vi]. Let
H1 = G1 and Si+1 = CMxCC(Ti, NGi+1(vi+1)) where Ti is the cotree of Hi. Construct Hi+1 from Hi by
adding the vertex vi+1 and making vi+1 adjacent to Si+1. Obviously, T1 is the cotree of a minimal cograph
completion of G1. If Ti is the cotree of a minimal cograph completion Hi of Gi, then Theorem 4.4 yields that
Ti+1 is the cotree of a minimal cograph completion Hi+1 of Gi+1. Thus, by induction, Tn is the cotree of a
minimal cograph completion Hn = H of Gn = G. Finally, we consider the running time for computing H by
using the adjacency list of G. Computing Si+1 from Ti takes O(|Si+1|+1) time by Theorem 4.7, where Si+1 =
NHi+1(vi+1). Note also that Ti+1 can be computed directly from Ti and Si+1 in O(|Si+1|) time since updating
the cotree requires O(d) time whenever the addition of a vertex of degree d results in a cograph [14]. Therefore
the total running time becomes

∑n
i=2 O(|Si|+ 1) = O(|V |) + O(

∑n
i=2 dH(vi)) = O(|V |+ |E|+ |F |).

5 Concluding remarks
We have studied minimal cograph completions from two different points of view. Our results include an efficient
algorithm for the computation problem and a precise characterization of minimal cograph completions. Such
characterizations are rarely known for graph classes that do not have the sandwich monotone property. Observe,
in fact, that for comparability and proper interval graphs, there exists a computation algorithm [21, 36] while

11

no characterization of minimal completions is known. This makes our characterization and the consequent
extraction algorithm particularly interesting.

Three interesting problems we leave open are:

1. Can one design a faster extraction algorithm, possibly linear in the size of the given completion?

2. Does there exist a computation algorithm running in time linear in the size of the input graph?

3. Is the problem of finding a minimum cograph completion of a graph obtained by adding one vertex to a
cograph polynomial time solvable?

To solve the first of these problems it might be enough to give a clever implementation of our naive extraction
algorithm. For the second one, however, a clever implementation does not help as long as we output an explicit
representation of the completed graph. All the other known algorithms that compute minimal completions in
linear time [19, 22, 36], in fact, use some implicit representation. For cographs we can always use cotrees, but
there are also other interesting representations that might be even more suitable for our problem, like the vertex
ordering suggested in [9].

The third problem can be viewed as a generalization of the problem solved in [35], in which the addition of
an edge instead of a vertex is considered.

Acknowledgement The authors would like to express their thanks to Pinar Heggernes for her helpful sugges-
tions which improved the presentation of the paper.

References
[1] A. V. Aho, I. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley,

1974. 3

[2] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal triangulation process. In
Proceedings WG 2003 - 29th Workshop on Graph Theoretic Concepts in Computer Science, pages 58–70, 2003. LNCS
2880. 1

[3] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for dynamically maintaining chordal graphs.
Discrete Math., 306:318 – 336, 2006. 4

[4] J. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theoretical Computer
Science, 250:125–141, 2001. 1

[5] H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete Math., 306:337–350, 2006. 1

[6] H.L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth and minimum fill-in on d-trapezoid graphs. J. Graph
Algorithms Appl., 2(5):1–28 ,1998. 1

[7] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput.,
31(1):212–232 2001. 1

[8] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and
Applications, 1999. 1

[9] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph Recognition Algorithm.
SIAM J. Disc. Math., to appear. 5

[10] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill-in and treewidth for distance
hereditary graphs. Discrete Applied Mathematics, 99(1):367–400, 2000. 1

[11] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modification problems. Disc. Appl. Math.,
154:1824–1844, 2006. 1

[12] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett.,
58(4):171–176, 1996. 1

[13] D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Disc. Appl. Math., 3:163 – 174, 1981. 1,
2.1

12

[14] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14:926 – 934,
1985. 1, 2.1, 3, 4.2

[15] M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Error compensation in leaf power problems. Algorithmica,
44(4):363–381, 2006. 1

[16] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and minimum fill-in. In Pro-
ceedings ICALP 2004, pages 568–580, 2004. Springer LNCS 3142. 1

[17] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical mapping of DNA. J.
Comput. Bio., 2(1):139–152, 1995. 1

[18] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algorithms, 19:449 – 473, 1995. 1

[19] P. Heggernes and F. Mancini. Minimal split completions of graphs. In LATIN 2006: Theoretical Informatics, pages
592–604. Springer Verlag, 2006. LNCS 3887. 1, 5

[20] P. Heggernes and F. Mancini. Dinamically maintaining split graphs. Tech report: http://www.ii.uib.no/∼
federico/papers/dynsplit-rev2.pdf. 1

[21] P. Heggernes, F. Mancini, and C. Papadopoulos. Minimal comparability completions of arbitrary graphs. Disc. Appl.
Math., to appear. 1, 4, 5

[22] P. Heggernes and C. Papadopoulos. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal
completions and deletions. In Proceedings of COCOON 2007 - 13th Annual International Conference on Computing
and Combinatorics, pages 406–416. Springer Verlag, 2007. LNCS 4598. 1, 3, 5

[23] P. Heggernes, C. Paul, J. A. Telle, and Y. Villanger. Interval Completion is Fixed Parameter Tractable. In Proceedings
of STOC 2007 - 39th Annual ACM Symposium on Theory of Computing, pages 374–381, 2007. 1

[24] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Characterizing minimal interval completions: Towards better
understanding of profile and pathwidth. In Proceedings of STACS 2007 - 24th International Symposium on Theoretical
Aspects of Computer Science, pages 236 - 247. Springer Verlag, 2007. LNCS 4393. 1

[25] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) = o(n2.376). In
Proceedings of SODA 2005 - 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 907–916, 2005. 1

[26] H. Kaplan, R. Shamir, and R.E. Tarjan. Tractability of parameterized completion problems on chordal and interval
graphs: Minimum Fill-in and Physical Mapping. In Proceedings of FOCS 2004 - 35th Annual Symposium on Founda-
tions of Computer Science, pages 780–791, 2004. 1

[27] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs. IEEE Symp. of Circuits and Systems,
pages 82–83, 1979. 1

[28] T. Kloks, D. Kratsch, and C. K. Wong. Minimum fill-in on circle and circular-arc graphs. Journal of Algorithms,
28(2):272–289, 1998. 1

[29] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of asteroidal triple-free graphs. Theor. Comput.
Sci., 175(2):309–335,1997. 1

[30] E. El-Mallah and C. Colbourn. The complexity of some edge deletion problems. IEEE Transactions on Circuits and
Systems, 35:354 – 362, 1988. 1

[31] F. Mancini. Minimum fill-in and treewidth of split+ ke and split+kv graphs. In Proceedings of ISAAC’07 - 18th
International Symposium on Algorithms and Computation, pages:881–892, 2007. LNCS 4835. 1

[32] D. Meister Computing treewidth and minimum fill-in for permutation graphs in linear time. In Proceedings of WG
2005 - 31st International Workshop on Graph-Theoretic Concepts in Computer Science, pages 91–102, 2005. LNCS
3787. 1

[33] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems. Disc. Appl.
Math., 113:109–128, 2001. 1

[34] A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the minimum fill-in problem. In
Proceedings of STOC’98 - 30th Annual ACM Symposium on Theory of Computing, pages 41–47, 1998. 1

[35] S.D. Nikolopoulos and L. Palios. Adding an edge in a cograph. In Graph Theoretic Concepts in Computer Science -
WG 2005, pages 214 – 226. Springer Verlag, 2005. LNCS 3787. 5

[36] I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions. In Proceedings of WG 2006 - 32nd
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 217–228. Springer Verlag, 2006.
LNCS 4271. 1, 5, 5

13

[37] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations.
In R. C. Read, editor, Graph Theory and Computing, pages 183–217. Academic Press, New York, 1972. 1

[38] K. Suchan and I. Todinca. Minimal interval completion through graph exploration. In Proceedings of ISAAC 2006 -
17th International International Symposium on Algorithms and Computation, pages 517–526. Springer Verlag, 2006.
LNCS 4288. 1

[39] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in. In Proceedings of LATIN 2006
- 7th Latin American Theoretical Informatics Symposium, pages 800–811, 2006. LNCS 3887. 1

[40] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79, 1981. 1

14

	Introduction
	Preliminaries
	Cographs

	Characterizing minimal cograph completions
	Computing a minimal cograph completion directly
	Adding a vertex to a cograph
	Implementing Algorithm MxCC using a cotree representation

	Concluding remarks

