
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Single-edge monotonic sequences of
graphs and linear-time algorithms for
minimal completions and deletions

Pinar Heggernes Charis Papadopoulos

REPORT NO 345 February 2007

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-345.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

Single-edge monotonic sequences of graphs and linear-time

algorithms for minimal completions and deletions∗

Pinar Heggernes† Charis Papadopoulos†

Abstract

We study graph properties that admit an increasing, or equivalently decreasing, sequence of
graphs on the same vertex set such that for any two consecutive graphs in the sequence their
difference is a single edge. This is useful for characterizing and computing minimal completions
and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and
chain graphs admit such sequences. Based on this characterization and other structural properties,
we present linear-time algorithms both for computing minimal completions and deletions into
threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a
given completion or deletion. Minimum completions and deletions into these classes are NP-hard
to compute.

1 Introduction

A graph property P is called monotone if it is closed under any edge or vertex removal. Equivalently, a
property is monotone if it is closed under taking subgraphs that are not necessarily induced. A property
is hereditary if it is closed under taking induced subgraphs. Every monotone property is hereditary but
the converse is not true. For example bipartiteness and planarity are monotone properties, as they are
characterized through forbidden subgraphs that are not necessarily induced, whereas perfectness is a
hereditary but not monotone property. Some of the most well-studied graph properties are monotone
[1, 3] or hereditary [17]. If a given monotone (hereditary) property is equivalent to belonging to a
graph class then this graph class is called monotone (hereditary).

In this paper, we introduce sandwich monotonicity of graph properties and graph classes. We
say that a graph property P is sandwich monotone if P satisfies the following: Given two graphs
G1 = (V, E) and G2 = (V, E∪F) that both satisfy P , the edges in F can be ordered f1, f2, ..., f|F | such
that when single edges of F are added to G1 one by one in this order (or removed from G2 in the re-
verse order), the graph obtained at each step satisfies P . Every monotone property is clearly sandwich
monotone as well. However every hereditary property is not necessarily sandwich monotone. Here,
we are interested in identifying non-monotone hereditary graph classes that are sandwich monotone.
Until now, sandwich monotonicity of only two such classes have been shown: chordal graphs [34] and
split graphs [18], and it has been an open question which other graph such classes are sandwich mono-
tone [2]. Simple examples exist to show that the hereditary classes of perfect graphs, comparability
graphs, permutation graphs, cographs, trivially perfect graphs, and interval graphs are not sandwich
monotone.1 In this paper we show that threshold graphs and chain graphs are sandwich monotone.

A motivation for studying sandwich monotonicity is from dynamic graph algorithms [24, 35]. Many
dynamic algorithms for maintaining a property do not allow the addition or deletion of edges unless
the property is still satisfied after this modification. Assume that we are given an initial graph and

∗This work is supported by the Research Council of Norway through grant 166429/V30.
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails: pinar@ii.uib.no,

charis@ii.uib.no
1For completeness, we give a list of examples illustrating this in an appendix at the end of the paper.

1

a set of edges which we want to add to this graph in a dynamic fashion one by one (and do some
other computations at each step). If the given graph and the graph where all the given edges are
added satisfy a sandwich monotone property, then there is an order of the edges so that we can use
a dynamic algorithm for maintaining this property to add these edges one by one. If the property
that the dynamic algorithm maintains is not sandwich monotone, then we will reach a point where we
cannot add any single edge of the given set although we know that adding all edges acquires back the
property (see [35]).

Our main motivation for studying sandwich monotonicity comes from the problem of adding edges
to or deleting edges from a given arbitrary graph so that it satisfies a desired property. For example,
a chordal completion is a chordal supergraph on the same vertex set, and a bipartite deletion is a
spanning bipartite subgraph of an arbitrary graph. Completions and deletions into other graph classes
are defined analogously. A completion (deletion) is minimum if it has the smallest possible number of
added (deleted) edges. The problems of computing minimum completions or deletions are applicable
in several areas such as molecular biology, numerical algebra and, more generally, to areas involving
graph modeling with some missing edges due to lacking data [16, 29, 33]. Unfortunately minimum
completions and deletions into most interesting graph classes, including threshold, chain, and bipartite
graphs, are NP-hard to compute [15, 7, 26, 29, 37]. However, minimum completions (deletions) are
a subset of minimal completions (deletions), and hence we can search for minimum among the set of
minimal. A completion (deletion) is minimal if no subset of the added (deleted) edges is enough to
give the desired property when added to (deleted from) the input graph.

Given as input an arbitrary graph, there are are two problems related to minimal completions
(deletions) : 1. Computing a minimal completion (deletion) of the given input graph into the desired
graph class, 2. Extracting a minimal completion (deletion) which is a subgraph (supergraph) of a
given arbitrary completion (deletion) of the input graph into the desired class. A solution for problem
2 requires a characterization of minimal completions (deletions) into a given class, and readily gives a
solution of problem 1. A solution for problem 1 might generate only a subset of all possible minimal
completions (deletions), and does not necessarily solve problem 2. Solution of problem 2 in polynomial
time is known only for completions into chordal [4, 10], split [18], and interval [21] graphs, and for
deletions into chordal [11], split [19], and planar [12, 23] graphs. Characterizations of minimal chordal
completions [34, 30, 6] have in addition made it possible to design approximation algorithms [29] and
fast exact exponential time algorithms [13] for computing minimum chordal completions. A solution
of problem 2 also allows the computation of minimal completions that are not far from minimum,
since one can generate first a completion by an established heuristic or approximation algorithm for
the minimization problem, and then extract a minimal completion that has fewer edges [5].

For a graph property P that is sandwich monotone, problem 2 of extracting a minimal completion
from a given completion of an input graph into P has always a polynomial time solution if P can be
recognized in polynomial time. Given G and a supergraph G2 of G satisfying P , if G2 is not a minimal
completion, then a minimal completion G1 exists sandwiched between G and G2. Hence by trying one
by one all edges of G2 that are not in G for removal, one obtains a minimal extraction algorithm with
a number of iterations that is quadratic in the number of edges appearing in G2 but not in G.

In this paper, by showing that threshold graphs and chain graphs are sandwich monotone, we
thus establish that minimal completions of arbitrary graphs into these graph classes can be computed
in polynomial time. Even more interesting, we are able to give linear-time algorithms for minimal
completions and deletions into these graph classes, minimal deletions into bipartite graphs, and minimal
completions into co-bipartite graphs. This does not follow from sandwich monotonicity in general.
Furthermore, we solve the problem of extracting a minimal completion or deletion from a given one
(problem 2 above) in linear time for all these graph classes. Linear-time minimal completion algorithms
have been known only into two classes previously; split [18] and proper interval [32] graphs. The only
linear-time minimal extraction algorithm known is the one into split graphs [18]. Linear-time minimal
deletion algorithms are known only into split [19] and planar graphs (which are monotone) [12, 23].

2

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V, E), we
denote its vertex and edge set by V (G) = V and E(G) = E, respectively, with n = |V | and m = |E|.
For a vertex subset S ⊆ V , the subgraph of G induced by S is denoted by G[S]. Moreover, we denote
by G−S the graph G[V \S] and by G− v the graph G[V \ {v}]. In this paper, we distinguish between
subgraphs and induced subgraphs. By a subgraph of G we mean a graph G′ on the same vertex set
containing a subset of the edges of G, and we denote it by G′ ⊆ G. If G′ contains a proper subset of
the edges of G, we write G′ ⊂ G. We write G − uv to denote the graph (V, E \ {uv}).

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighborhood of x is
defined as NG[x] = NG(x) ∪ {x}. The degree of a vertex x in a graph G, denoted by dG(x), is the
number of edges incident to x; thus, dG(x) = |NG(x)|. If S ⊆ V , then the neighbors of S, denoted by
NG(S), are given by

⋃
x∈S NG(x) \ S. We will omit the subscript when there is no ambiguity.

A graph is connected if there is a path between any pair of vertices. A connected component of a
disconnected graph is a connected subgraph of it with a maximal set of vertices and edges. A vertex x
of G is universal if NG[x] = V and is isolated if it has no neighbors in G. A clique is a set of pairwise
adjacent vertices, while an independent set is a set of pairwise non-adjacent vertices. The size of a
largest clique in G is denoted by ω(G).

A chord of a path or a cycle is an edge between two non-consecutive vertices of the path or the
cycle. A chordless cycle on k vertices is denoted by Ck and a chordless path on k vertices is denoted
by Pk . The graph consisting of only two disjoint edges is denoted by 2K2.

For a pair of vertices x, y of G we call xy a non-edge of G if xy /∈ E. The complement G of a graph
G consists of all vertices and all non-edges of G. For a graph class C, the class co-C is the set of graphs
G for which G ∈ C. A class C is self-complementary if C = co-C.

Given an arbitrary graph G = (V, E) and a graph class C, a C completion of G is a graph H =
(V, E ∪ F) such that H ∈ C. Similarly, H = (V, E \D) is a C deletion of G if H ∈ C. The edges added
to the original graph in order to obtain a completion are called fill edges, and the edges removed from
the original graph in order to obtain a deletion are called deleted edges.

Speaking about C completions or C deletions of input graphs is only meaningful if every allowed
input graph can be embedded in a graph of C by adding or removing edges, respectively. For example,
if complete graphs belong to C then any graph has a C completion, and if edgeless graphs belong to C
then any graph has a C deletion.

3 Minimal completions and deletions into sandwich monotone

graph classes

We start by giving a proper definition of the new monotonicity measure on graph classes.

Definition 3.1. A graph class C is sandwich monotone if the following is true for any pair of graphs
G = (V, E) and H = (V, E ∪ F) in C with E ∩ F = ∅: There is an ordering f1, f2, . . . , f|F | of the
edges in F such that in the sequence of graphs G = G0, G1, . . . , G|F | = H , where Gi−1 is obtained by
removing edge fi from Gi, (or equivalently, Gi is obtained by adding edge fi to Gi−1), every graph
belongs to C.

Minimal completions and deletions into sandwich monotone graph classes have the following algo-
rithmically useful characterization, as observed on chordal graphs [34] and split graphs [18] previously.

Observation 3.2. Let C be a graph class and let P be the property of belonging to C. The following
are equivalent:

(i) C is sandwich monotone.

(ii) co-C is sandwich monotone.

(iii) A C completion is minimal if and only if no single fill edge can be removed without destroying
the property P.

3

(iv) A C deletion is minimal if and only if no single deleted edge can be added without destroying the
property P.

Proof. Statements (i) and (ii) are equivalent by Definition 3.1. For statement (iii), if a C completion is
minimal then no subset of its fill edges can be removed so no single fill edge can be removed either. For
the other direction, if a C completion G2 of a given graph G is not minimal then another C completion
G1 of G exists such that G ⊆ G1 ⊂ G2. Since both G1 and G2 belong to C and C is sandwich monotone,
there is a fill edge that can be removed from G2 without destroying P . Same arguments can be used
for proving (iv).

The next observation shows that extraction of a minimal completion or deletion from a given
completion or deletion can be done in polynomial time for sandwich monotone graph classes that can
be recognized in polynomial time. This corresponds to the solution of problem 2 mentioned in the
introduction, in polynomial time. Furthermore, it implies that given only the input graph, a minimal
completion or deletion can be computed in polynomial time, too, since we can always start with a
trivial completion or deletion, like a complete graph or an edgeless graph.

Observation 3.3. Let C be a sandwich monotone graph class. Given a polynomial time algorithm
for the recognition of C, there is a polynomial time algorithm for extracting a minimal C completion
(deletion) of an arbitrary graph G from any given C completion (deletion) of G.

Proof. Let H = (V, E ∪ F) be any given C completion of an input graph G = (V, E) with E ∩ F = ∅.
For every edge f ∈ F check in polynomial time whether H − f belongs to C. If yes, remove this fill
edge, and repeat the process as long as there are more edges left in F . If no, conclude that a minimal
C completion is reached by case (iii) of Observation 3.2. This will require O(|F |2) iterations, and each
iteration requires polynomial time. For deletions, let H = (V, E \D) be any given C deletion of G with
D ⊆ E. For every edge d ∈ D check in polynomial time whether H + d belongs to C. If yes, add this
deleted edge back, and repeat the process as long as there are more edges left in D. If no, conclude that
a minimal C deletion is reached by case (iv) of Observation 3.2. This will require O(|D|2) iterations,
and each iteration is polynomial.

Note that although extraction of a minimal completion requires O(|F |2) iterations, deciding whether
a given completion is minimal requires only O(|F |) iterations since we can stop as soon as we have
found one removable fill edge, or have scanned whole F .

Even though we know that C completions and deletions can be computed in polynomial time for a
sandwich monotone graph class C, the running time described in the proof of Observation 3.3 is not
practical. In the following sections, we will give linear-time algorithms for computing and extracting
minimal completions and deletions into threshold, bipartite, and chain graphs.

For the sandwich monotone graph classes previously studied for completions and deletions, linear-
time algorithms exist for computing and extracting minimal split completions [18] and deletions [19],
and minimal planar deletions [12, 23]. As a comparison, although chordal graphs are sandwich mono-
tone and they can be recognized in linear time, the best known running time is O(n2.376) for a minimal
chordal completion algorithm [22], and O(∆m) for a minimal chordal deletion algorithm [11], where
∆ is the largest degree in the input graph.

4 Minimal threshold completions and deletions

A graph G = (V, E) is called a threshold graph if there exist nonnegative real numbers wv for v ∈ V ,
and t such that for every I ⊆ V ,

∑
v∈I wv ≤ t if and only if I is an independent set [9, 17, 28].

A graph is a split graph if its vertex set can be partitioned into a clique and an independent set.
The partition of the vertices of a split graph into an independent set S and a clique K is called split
partition (S, K), and it is not necessarily unique. Split graphs can be recognized and a split partition
can be computed in linear time [17]. It is known that a graph is split if and only if it does not contain

4

any vertex subset inducing 2K2, C4, or C5 [14]. Hence the next theorem states that a graph is threshold
if and only if it is split and does not contain any vertex set inducing a P4.

Theorem 4.1 ([9]). A graph is a threshold graph if and only if it does not contain any vertex set
inducing 2K2, C4, or P4.

Consequently, in a disconnected threshold graph there is at most one connected component that
contains an edge. An ordering v1, v2, . . . , v|S| of a subset S ⊆ V (G) of vertices is called nested neigh-
borhood ordering if it has the property that (NG(v1) \ S) ⊆ (NG(v2) \ S) ⊆ . . . ⊆ (NG(v|S|) \ S).

Theorem 4.2 ([28]). A graph is a threshold graph if and only if it is split and the vertices of the
independent set have a nested neighborhood ordering in any split partition.

Threshold graphs can be recognized and a nested neighborhood ordering can be computed in linear
time, since sorting the vertices of the independent set by their degrees readily gives such an ordering for
threshold graphs [17]. It is NP-hard to compute minimum threshold completions of arbitrary graphs;
even split graphs [31].

A split partition of a threshold graph is never unique [17]. Here we define a threshold partition
(S, K) of a threshold graph in a unique way. Note first that all vertices of degree more than ω(G)− 1
must belong to K, and all vertices of degree less than ω(G) − 1 must belong to S. The set of vertices
of degree exactly ω(G)− 1 is either an independent set or a clique [18]. If this set is a clique, we place
all of these vertices in K, and if it is an independent set we place them in S. We refine the sets S and
K further as follows: (S0, S1, S2, ..., S`) is a partition of S such that S0 is the set of isolated vertices,
and N(S1) ⊂ N(S2) ⊂ . . . ⊂ N(S`), where ` is as large as possible. Hence all vertices in Si have the
same degree for 0 ≤ i ≤ `. This also defines a partition (K1, K2, ..., K`) of K, where K1 = N(S1) and
Ki = N(Si) \N(Si−1) for 2 ≤ i ≤ `. The remaining vertices of K form another set K`+1 = K \N(S`).
Again, all vertices in Ki have the same degree for 1 ≤ i ≤ ` + 1. By definition, a graph is threshold
if and only if its vertex set admits such a threshold partition. Moreover the threshold partition of a
threshold graph is unique and all sets Si and Ki, 1 ≤ i ≤ `, are non-empty except possibly the sets S0

and K`+1. If K`+1 = ∅ then S` contains at least two vertices, and if K`+1 6= ∅ then K`+1 contains at
least two vertices [17].

Lemma 4.3. Let G be a threshold graph with threshold partition ((S0, ..., S`), (K1, ..., K`+1)) and let
uv be an edge satisfying the following: either u ∈ Si and v ∈ Ki for some i ∈ {1, ..., `}, or u, v ∈ K`+1.
Then G − uv is a threshold graph.

Proof. Assume first that u ∈ Si and v ∈ Ki for some i. Removing uv from G results in a split graph
since we remove and edge between the clique and the independent set of the split partition. In the
graph G′ = G−uv we have that NG′(Si−1) ⊆ NG′(u) ⊂ NG′(Si \ {u}). Thus the new independent set
has a nested neighborhood ordering also in G′, and hence G′ is threshold by Theorem 4.2.

Assume now that u, v ∈ K`+1. We describe the threshold partition of G′: If K`+1 contains more
than two vertices then the new threshold partition has the sets (Ki, Si), 1 ≤ i ≤ `, unchanged, and
it also contains the new sets K ′

`+1
= K`+1 \ {u, v} and S′

`+1
= {u, v}. If K`+1 has exactly two

vertices, then every set remains as before, except K`+1 which is removed and S` which now becomes
S′

` = S` ∪ {u, v}. It is easy to check that removal of uv results in exactly the described threshold
partition for G′ and thus G′ is a threshold graph.

For simplicity, we will call an edge uv of G that satisfies the condition in Lemma 4.3 a candidate
edge of G.

Lemma 4.4. Let G = (V, E) and G′ = (V, E ∪ F) be two threshold graphs such that F ∩ E = ∅ and
F 6= ∅. At least one edge in F is a candidate edge of G′.

Proof. Let ((S′
0, ..., S

′
`), (K

′
1, ..., K

′
`+1)) be the threshold partition of G′. Assume for a contradiction

that F does not contain any candidate edge, and let uv ∈ F . Since uv cannot be a candidate edge, it

5

is of one of the following three types: (i) u, v ∈ K ′
i, for some i satisfying 1 ≤ i ≤ `, (ii) u ∈ K ′

i and
v ∈ K ′

j , for some i and j satisfying 1 ≤ i < j ≤ ` + 1, or (iii) u ∈ K ′
i and v ∈ S′

j , for some i and j
satisfying 1 ≤ i < j ≤ `. (Recall that there are no edges uv in G′ with u ∈ K ′

i and v ∈ S′
j where j < i

by the definition of threshold partition.)
If uv is of type (i), then since K ′

i is non-empty, there is a vertex x ∈ S ′
i such that ux and uv are

edges of G′. Since there are no candidate edges in F , ux, uv ∈ E. Assume first that i 6= `. Then there
is a vertex y ∈ K ′

` such that uy and vy are edges of G′ and xy is not an edge of G′. If both uy and
vy belong to E, then {u, x, v, y} induces a C4 in G. If exactly one of uy and vy belongs to E, say uy,
and the other belongs to F , then {y, u, x, v} induces a P4 in G. If both uy and vy belong to F , then
there is a vertex z ∈ S ′

l such that {x, u, z, y} induces a 2K2 in G, since zy is a candidate edge of G′

and hence cannot be in F . Hence all possibilities lead to a contradiction since G is a threshold graph
and cannot contain any of the mentioned induced subgraphs. If i = ` and K ′

`+1
6= ∅ then there are at

least two vertices y and z in K ′
`+1 that can substitute the role of y and z as in the case i 6= `, since yz

is a candidate edge of G′ and hence must belong to E. If i = ` and K ′
`+1

= ∅ then we know that there
are at least two vertices y, z ∈ S ′

`, and that uy, uz, vy, vz ∈ E (since they are candidate edges). Hence
{u, y, v, z} induces a C4 in G, contradicting that G is threshold.

If uv is of type (ii), assume first that j 6= ` + 1. Then we know that there is a vertex x ∈ S ′
i and

a vertex y ∈ S′
j such that ux, vy ∈ E since they are candidate edges. We know that xv is not an edge

of G′. If yu ∈ E then {x, u, y, v} induces a P4 in G, and if yu ∈ F then the same set induces a 2K2

in G, contradicting in both cases that G is threshold. If j = ` + 1 then we know that there is at least
one more vertex z 6= v in K ′

`+1 where vz ∈ E (since it is a candidate edge). If uz belongs to F then
{v, z, u, x} induces a 2K2 in G. Otherwise this set induces a P4 in G, because zx and vx are not edges
in G or G′, contradicting that G is threshold.

If uv is of type (iii), then we know that there are vertices x ∈ S ′
i and y ∈ K ′

j such that ux, vy ∈ E
by the same arguments as before. If uy ∈ E then {x, u, y, v} induces a P4 in G, and if uy ∈ F ,
then this set induces a 2K2 in G. Hence by by Theorem 4.1, we reach a contradiction in all possible
cases. Consequently, either G is not threshold, or F must contain a candidate edge, and the proof is
complete.

Theorem 4.5. Threshold graphs are sandwich monotone.

Proof. Given G and G′ as in the premise of Lemma 4.4, we know by Lemmas 4.3 and 4.4 that there
is an edge f ∈ F such that G′ − f is threshold. Now the same argument can be applied to G and
G′ = G′ − f with F = F \ {f} repeatedly, until G′ becomes equal to G.

4.1 Characterizing and extracting minimal threshold completions and dele-

tions

Theorem 4.6. Let G be an arbitrary graph and H be a threshold completion of G. H is a minimal
threshold completion of G if and only if no fill edge is a candidate edge of H.

Proof. If H is a minimal threshold completion of G, then there cannot be any fill edge that is a
candidate edge of H , because otherwise the removal of this edge would result in a threshold graph by
Lemma 4.3, contradicting that H is minimal. If H is not a minimal threshold completion of G, then
there exists a minimal threshold completion M of G such that E(G) ⊆ E(M) ⊂ E(H). By Lemma
4.4 there is an edge e ∈ E(H) \ E(M) that is a candidate edge of H .

Now given any threshold completion H of an arbitrary graph G, let us consider the problem of ex-
tracting a minimal threshold completion H ′ of G such that G ⊆ H ′ ⊆ H . Algorithm Extr Min Threshold
describes such a way for computing H ′. The basic idea is that we visit vertices of H , remove redundant
fill edges incident to them according to Theorem 4.6, and update properly the resulting threshold-
partition.

Before proving the correctness of the algorithm it is important to note the following. Vertex v that
we choose at each step belongs to either S or K`+1, since dH′ (v) ≤ ω(H ′) − 1. Furthermore we know

6

Algorithm Extr Min Threshold
Input: A graph G = (V, E) and a threshold graph H = (V, E ∪ F) with F ∩ E = ∅.
Output: A minimal threshold completion H ′ = (V, E ∪ F ′) of G such that F ′ ⊆ F .

H ′ = H ; Unmark all vertices of H ′;

Let (S = (S0, S1, ..., S`), K = (K1, K2, ..., K`+1)) be the threshold partition of H ′;

While there is an unmarked vertex v such that dH′ (v) ≤ ω(H ′) − 1 do

Pick an unmarked vertex v of minimum dH′(v);

Find a vertex u ∈ NG(v) of minimum dH′(u);

Compute U = {u′ ∈ NG(v) | dH′ (u′) = dH′ (u)};

Compute the index i for which U ⊆ Ki;

Remove all edges between v and the vertices of (Ki \ U) ∪ Ki+1 ∪ · · · ∪ Kj from H ′;

Update the threshold-partition of H ′ and mark v;

Return H ′;

that U ⊆ Ki, for some i satisfying 1 ≤ i ≤ ` + 1, since all vertices of U are adjacent to v and have the
same degree in H ′. Note that all edges that we remove incident to v are fill edges, since we picked u
to be the neighbor of v in G with the smallest degree in H ′, and consequently i is the largest index
such that Ki contains a neighbor in G of v.

Lemma 4.7. Given an arbitrary graph G = (V, E) and a threshold completion H = (V, E∪F) of G with
F ∩E = ∅, Algorithm Extr Min Threshold computes a minimal threshold completion H ′ = (V, E ∪ F ′)
of G, such that F ′ ⊆ F .

Proof. We have already argued before the statement of the lemma that only fill edges are removed
at every step. Hence if H ′ is a threshold graph then it is a threshold completion of G, and F ′ ⊆ F .
For a proof by induction, assume that H ′ is a threshold graph and that all candidate fill edges are
incident to unmarked vertices of degree at most ω(H ′), before the step that processes vertex v. This
is trivially true before the first step. Let us denote the graph obtained after removing the described
edges incident to v by H ′′. We will show that

• H ′′ is a threshold graph, and

• if there are any candidate fill edges in H ′′ then these are incident to unmarked vertices of degree
at most ω(H ′′) − 1.

Consequently, after the last step, since no unmarked vertices of degree at most ω(H ′′) − 1 will be left
in H ′′, there will be no candidate fill edges in H ′′. We can then conclude by the above arguments and
Theorem 4.6 that the output graph is a minimal threshold completion of G and a subgraph of H .

Let us examine what changes from the threshold partition of H ′ to the threshold partition of H ′′.
Let (S′ = (S′

0, S
′
1, ..., S

′
`′), K

′ = (K ′
1, K

′
2, ..., K

′
`′+1

)) be the threshold partition H ′′. Since v belongs to
either S or K`+1 we distinguish between these two cases.

Case 1. If v belongs to Sj for some j satisfying 1 ≤ j ≤ `, then U ⊆ Ki for an i satisfying
1 ≤ i ≤ j ≤ `. Note first that if U = Kj then H ′′ = H ′. Otherwise we need to remove v from Sj and
add it into an appropriate subset of S. Observe also that v is still adjacent in H ′′ to all vertices of
K1 ∪ K2 ∪ ... ∪ Ki−1 ∪ U . According to how Ki and Sj are related to U and v, respectively, we have
the following cases.

If Ki 6= U and Sj 6= {v} then `′ = ` + 1. In particular, K ′
`′+1

= K`+1, K ′
p+1 = Kp, and S′

p+1 = Sp

for every p ∈ {i+1, . . . , `} \ {j}. Since v is removed from Sj we have K ′
j+1 = Kj and S′

j+1 = Sj \ {v}.
For the set Ki observe that v now splits it into two parts Ki\U and U . Thus K ′

i+1 = Ki\U , S′
i+1 = Si,

K ′
i = U , and S′

i = {v}. The rest of the sets remain as before, that is S ′
0 = S0, K ′

p = Kp, and S′
p = Sp

for every p ∈ {1, . . . , i − 1}.
If Ki 6= U and Sj = {v} then `′ = `. Now we have K ′

`′+1
= K`+1, S′

0 = S0, K ′
p = Kp, and S′

p = Sp

for every p ∈ {j + 2, . . . , `}. Since Sj = {v} the vertices of Kj are merged with the vertices of Kj+1

7

in H ′′. Thus we have K ′
j+1 = Kj+1 ∪ Kj and S′

j+1 = Sj+1; K ′
p = Kp−1 and S′

p = Sp−1; for every
p ∈ {i + 2, . . . , j}; K ′

i+1 = Ki \ U and S′
i+1 = Si; K ′

i = U and S′
i = {v}; and K ′

p = Kp and S′
p = Sp

for every p ∈ {1, . . . , i − 1}.
If Ki = U and Sj 6= {v} then `′ = `. In this case we obtain K ′

`′+1
= K`+1, S′

0 = S0, K ′
p = Kp,

and S′
p = Sp for every p ∈ {1, . . . , `} \ {i, j}. Since v is removed from Sj we have K ′

j = Kj and
S′

j = Sj \ {v}. Moreover v is placed into Si which gives K ′
i = Ki and S′

i = Si ∪ {v}.
If Ki = U and Sj = {v} then `′ = ` − 1. Now we have K ′

`′+1 = K`+1, S′
0 = S0, K ′

p−1 = Kp,
and S′

p−1 = Sp for every p ∈ {j + 2, . . . , `}. Since Sj = {v} the vertices of Kj are merged with the
vertices of Kj+1 in H ′′. Thus we have K ′

j = Kj+1 ∪ Kj and S′
j = Sj+1. The rest of the sets remain

as before except Si. That is, K ′
p = Kp and S′

p = Sp for every p ∈ {1, . . . , j − 1} \ {i}, K ′
i = Ki, and

S′
i = Si ∪ {v}.

Case 2. If v ∈ K`+1 then U ⊆ Ki, for an i satisfying 1 ≤ i ≤ ` + 1. Observe first that if
U = K`+1 \ {v} then H ′′ = H ′. Otherwise v is removed from K`+1 and it is placed in the independent
set according to whether Ki = U or not. The corresponding cases are analogous to the previous case.
That is, either v makes a new set by itself and splits Ki into two parts, or v is placed in a set together
with the vertices of Si. Now we describe what happens to the set K`+1. Let K∗

`+1
= K`+1 if i 6= ` + 1

and let K∗
`+1

= K`+1 \ U if i = ` + 1. Recall that K`+1 contains at least two vertices since it is non-
empty. If |K∗

`+1| ≥ 3 then v is removed from K`+1 which gives K ′
`′+1 = K∗

`+1 \ {v}. If K∗
`+1 = {v, v′}

then K ′
`′+1

= ∅. Moreover if i 6= ` + 1 then K ′
`′ ⊆ K` and S′

`′ = S` ∪ {v′}; otherwise we have K ′
`′ = U

and S′
`′ = {v, v′}.

In all cases we described the threshold partition of H ′′ which shows that H ′′ is a threshold graph.
Now we will show that if there are candidate edges in H ′′ then they are incident to unmarked vertices
of degree less than ω(H ′′).

If v ∈ Sj (Case 1 above) then v is placed into a set S ′
i for which we know that K ′

i = U . By definition
we know that U contains only vertices that are adjacent to v in G. If there are other vertices in S ′

i,
then these are already marked since their degrees were smaller than that of v before this step. Since
K ′

i = Ki in such a case, by our induction assumption, we know that there are no candidate fill edges
incident to vertices of S ′

i. Fill edges that were not candidates in H ′ might possibly become candidates
in H ′′ only when Sj = {v}. In that case we have K ′

j+1 = Kj+1 ∪ Kj and S′
j+1 = Sj+1. But now we

know that S′
j+1 contains only unmarked vertices, since the degrees in H ′ of vertices in S′

j+1 is strictly
more than dH′ (v). Moreover we know that K ′

`′+1
= K`+1 hence no fill edges inside K ′

`′+1
may have

become candidates at this step.
Let v ∈ K`+1 (Case 2 above). If |K∗

`+1| ≥ 3 then K ′
`′+1 contains only a subset of K`+1. Since

there are no fill edges in H ′′ between v and the vertices of U , no candidate fill edges are incident to
marked vertices of K`+1. If K∗

`+1
= {v, v′} then v′ belongs to S′

`′ and thus it is incident to possible
candidate fill edges whose other endpoints are in K ′

`′ . Now it suffices to show that v′ is an unmarked
vertex. Observe that vv′ is a fill edge. If v′ is a marked vertex then it means that for every vertex
x ∈ K`+1 \ {v′}, xv′ ∈ E since by marking v′ and by the definition of U , v′ has no fill edges incident
to it whose other endpoints are in K`+1. This contradicts that vv′ is a fill edge. Thus by the fact that
vv′ is a fill edge, v ∈ K`+1, and our induction assumption, we can conclude that v′ is an unmarked
vertex.

Hence at each step of the algorithm we know that every candidate edge of H ′′ that is incident to
an unmarked vertex of degree at most ω(H ′′) − 1 is an edge of G.

Lemma 4.8. The running time of Algorithm Extr Min Threshold is O(n + m + |F |).

Proof. Computing the threshold-partition of H requires scanning the adjacency lists a constant number
of times, and sorting the vertices by their degrees, and hence takes a total of O(n + m + |F |) time.
For the rest of the operations, we keep a data structure where the degree of v, and the set of the
threshold partition that v belongs to is stored in a table and can be checked in constant time, for
each vertex v ∈ V . Also, we keep a table showing whether each edge belongs to E or F . After each
single fill edge removal, it takes constant time to update the degrees of the endpoints of this edge,

8

and the degree table. Furthermore, the size of the largest clique and the threshold partition can also
be updated in O(dH (v)) time for each visited vertex, by the previous discussion, since at most dH(v)
vertices need to be placed into appropriate sets of the threshold partition. Observe that to find a vertex
of H ′ of minimum degree, we do not need to recompute the degrees of all unprocessed vertices. In the
beginning, we can sort all vertices by their degrees in H in a non-decreasing order in O(n + m + |F |)
time since largest degree is O(n). When we remove edges incident to a vertex of the independent
set, the degrees of the unprocessed vertices in the independent set do not change. Therefore we can
continue to pick vertices in the first computed order without having to recompute degrees of or sorting
the unmarked vertices. All vertices belonging to S are processed before the vertices of K`+1, and we
can detect when we have started on the vertices of K`+1 by simply comparing degrees to ω(H ′). At
this point we can sort the unmarked vertices by their current degrees once more. Finding the set U
and the set of fill edges to be deleted for each vertex v requires O(dH (v)) by scanning the adjacency
list of v in H ′ twice, once to find the vertex u in NH′(v) with the smallest degree such that uv ∈ E
and the index i such that u ∈ Ki, and once to delete each fill edge between v and u′ ∈ NH′(v) for
vertices u′ belonging to Ki ∪Ki+1, ..., Kj . Thus the overall running time is linear in the size of H .

With Algorithm Extr Min Threshold and the above two lemmas, we have thus proved the following.

Theorem 4.9. Let H = (V, E ∪ F) be a threshold completion of an arbitrary graph G = (V, E) with
F ∩E = ∅. A minimal threshold completion H ′ = (V, E ∪F ′) of G, such that F ′ ⊆ F , can be computed
in O(n + m + |F |) time.

Next we proceed to characterizing minimal threshold deletions. Since threshold graphs are both
self-complementary and sandwich monotone, H is a minimal threshold deletion of an arbitrary graph
G if and only if H is a minimal threshold completion of G. Therefore, first we relate the threshold
partition of H to the threshold partition of H , for a given threshold graph H and its complement H .
Let ((S0, ..., S`), (K1, ..., K`+1)) be the threshold partition of H , and let ((S ′

0, ..., S
′
`′), (K1, ..., K`′+1))

be the threshold partition of H . There are the following possibilities, that can be verified easily:

• S0 6= ∅: In this case, all vertices of S0 are universal in H and hence K ′
1 = S0. Since S0 6= ∅,

the vertices of K1 are not universal in H , and therefore there are no isolated vertices in H and
S′

0 = ∅. For 1 ≤ i ≤ `, the threshold partition of H is given by S ′
i = Ki and K ′

i+1 = Si. If
K`+1 = ∅ we are done. If not, `′ = ` + 1, and S′

`′ = K`+1 and K ′
`′+1

= ∅.

• S0 = ∅: In this case, vertices of K1 are universal in H and hence they become isolated in H ,
giving S′

0 = K1. For 1 ≤ i ≤ `, we get S ′
i−1 = Ki and K ′

i = Si. If K`+1 = ∅, we are done and
`′ = ` − 1. Otherwise, `′ = `, and S′

`′ = K`+1 and K ′
`′+1

= ∅.

Theorem 4.10. Let G = (V, E) be an arbitrary graph and let H be a threshold deletion of G with
threshold partition ((S0, ..., S`), (K1, ..., K`+1)). H is a minimal threshold deletion of G if and only
if there is no deleted edge with the following property: u ∈ Si−1 and v ∈ Ki for some i satisfying
1 ≤ i ≤ ` + 1, or u, v ∈ S` for K`+1 = ∅.

Proof. By Theorem 4.6 and the above discussion, we conclude that H is a minimal threshold dele-
tion if and only if no deleted edge of H is a candidate fill edge of H . Let the threshold partition
((S′

0, ..., S
′
`′), (K

′
1, ..., K

′
`′+1

)) of H be given as above. Recall that a fill edge uv of H is candidate if
either u ∈ S′

i′ and v ∈ K ′
i′ for some i′ ∈ {1, ..., `′}, or u, v ∈ K ′

`′+1
. By the above discussion, u ∈ S ′

i′

and v ∈ K ′
i′ if and only if either u ∈ Si′−1 and v ∈ Ki′ , or u ∈ Si′ and v ∈ Ki′+1. In both cases

there is an index i such that u ∈ Si−1 v ∈ Ki. For the second condition, observe first that K ′
`′+1

6= ∅
if and only if K`+1 = ∅. Hence u, v ∈ K ′

`′+1 if and only if u, v ∈ S` and K`+1 = ∅, by the above
discussion.

Theorem 4.11. Let H = (V, E \ D) be a threshold deletion of an arbitrary graph G = (V, E) with
D ⊆ E. A minimal threshold deletion H ′ = (V, E \ D′) of G, such that D′ ⊆ D can be computed in
O(n + m) time.

9

Proof. We describe such an algorithm. At start H ′ = H . Let (S = (S0, ..., S`), K = (K1, ..., K`+1))
be the threshold partition of H ′ at the start of a step. At each step, we pick an unmarked vertex of
largest degree in H ′ such that dH′(v) ≥ ω(H ′) − 1. Thus we will process all vertices of K, and all
vertices of S` if K`+1 = ∅. For the chosen vertex v of a step, we find a non-edge vu of G such that u
has maximum degree in H ′. Then we compute the set U of non-neighbors in G of v that have the same
degree as u in H ′. Let v ∈ Kj and let U ⊆ Si, for some i and j with 0 ≤ i < j. Note that if v ∈ S` then
U ⊆ Si, for some i with 0 ≤ i ≤ `. Since u ∈ U has the largest degree in H ′ among all non-neighbors
in G of v, we know that every non-edge in H ′ between v and vertices of (Si \ U) ∪ Si+1 ∪ . . . ∪ Sj−1

is a deleted edge and belongs to D. If v ∈ S` then we know that non-edges of H ′ between v and the
vertices of (Si \ U) ∪ Si+1 ∪ . . . ∪ S` \ {v} are deleted edges. In both cases we add those edges to H ′.
At the end of a step, we mark vertex v, and proceed with the next unmarked vertex of largest degree.

To prove the correctness of this algorithm we use the fact it is equivalent to applying Algorithm
Extr Min Threshold on H and G. First observe that at each step we pick a vertex v of largest degree
in H ′ such that dH′(v) ≥ ω(H) − 1. By the discussion above this means that in H ′ we pick the
vertex v of smallest degree such that dH ′ (v) ≤ ω(H ′) − 1. The set U of non-adjacent vertices to v
in G corresponds to the set of adjacent vertices to v in G with the smallest degree in H ′. Adding
the deleted edges incident to v is equivalent to removing the corresponding fill edges in H ′ just as the
Algorithm Extr Min Threshold does. Therefore the proposed algorithm computes a minimal threshold
deletion H ′ of G since by Theorem 4.9 Algorithm Extr Min Threshold computes a minimal threshold
completion H ′ of G, and H ′ is a minimal threshold deletion of G if and only if H ′ is a minimal threshold
completion of G.

The reason why we give this algorithm directly on G and H rather than just applying Algorithm
Extr Min Threshold on the complement graphs is because of the running time. Since E(G) might be
O(n2), applying the previous algorithm directly on the complements would not necessarily result in
running time which is linear in the size of G. To obtain the linear running time, like in the completion
case, we start by computing a threshold partition of H in O(n + m) time. The degree of each vertex
v, and the set of the threshold partition that v belongs to is stored in a table, whereas the knowledge
about whether an edge of E belongs to D is maintained in another table. Then we sort the vertices
by their degrees in H in a non-increasing order. Again, since we only add edges incident to the chosen
vertex, the degrees of the unmarked vertices of K do not change, and we can process all vertices in the
originally sorted order. By using ω(H) we know when we reach the vertices of S`. At that point we
sort the vertices again as we do with completion case. In order to find the set of vertices U we need to
spend O(dG(v)) time for each vertex v that we visit. For that purpose first we scan NG(v) and count
how many neighbors of v are inside a set Si, for each index i satisfying i < j if v ∈ Kj , and i ≤ `
if v ∈ S`. Then we compare these numbers with the size of each Si, and find in this way the largest
index i < j (or i ≤ `) such that Si contains a non-neighbor of in G of v. Thus in O(dG(v)) time we
know that between v and a vertex of Si there is a non-edge of G, whereas between v and the vertices
of Si+1, . . . , Sj−1 there are only deleted edges. If v ∈ S` then there are only deleted edges between v
and the vertices of Si+1, . . . , S`. Notice also that if i = j − 1 then Si = Sj−1 if v ∈ Kj , and Si = S`

if v ∈ S`. By scanning again NG(v) we find the correct set U ⊆ Si. Adding the deleted edges to H ′

takes the amount of O(dG(v)) time in order to update the threshold partition of H ′, since for at most
dG(v) vertices we need to update their sets in the threshold partition, as explained in the completion
case. Therefore summing up the time needed for each vertex we get the overall linear time complexity
of the algorithm.

Corollary 4.12. Any minimal threshold deletion of an arbitrary graph can be computed in O(n + m)
time.

Proof. Let G = (V, E) be the input graph, and let D = E. The graph H = (V, E \ D) is a threshold
graph since edgeless graphs are threshold, and hence H is a threshold deletion of G. By Theorem 4.11
a minimal threshold deletion H ′ of G can be computed in O(n + m) time. Since D = E, we have the
possibility of choosing any subset of the edges that will give a minimal deletion of G.

10

4.2 Computing a minimal threshold completion directly

Here we show how to obtain a minimal threshold completion H of G directly. The motivation for this is
that we now compute H in time linear in the size of G. The idea behind our approach is the following:
Compute a minimal split completion of G using the algorithm of [18], and then compute a minimal
threshold completion of the computed split completion by giving the vertices of the independent set a
nested neighborhood ordering. We show that this indeed results in a minimal threshold completion of
G.

Theorem 4.13. A minimal threshold completion of an arbitrary graph G can be computed in O(n+m)
time.

Proof. First we compute a minimal split completion G′ of G in O(n + m) time by the algorithm given
in [18]. The output of this algorithm does not list all edges of G′; it lists all edges of G, gives a split
partition (K, S) of G′, and the knowledge that all fill edges have both endpoints in K. In case there
are any isolated vertices in S, we define a new set S ′ which are all the non-isolated vertices of S. Now
we compute an order of the vertices of S ′ such that d(v1) ≥ d(v2) ≥ . . . ≥ d(v|S′|). The important
point is that dG′(v) = dG(v) for each v ∈ S, hence this can be done in O(n + m) time. For each
vertex vi we make it adjacent to the vertices of N({vi+1, vi+2, . . . , v|S′|}), starting from v1. That is, at
each step, we pick an unmarked vertex of the independent set with the largest degree and add edges
to the neighborhood of the unmarked vertices of the independent set except the isolated vertices. At
the end, the resulting graph remains a split graph since we only add edges between S and K, and
v1, v2, ..., v|S′|, v|S′|+1, ..., v|S| is a nested neighborhood ordering. Hence the resulting graph is threshold
by Theorem 4.2.

Regarding minimality note the following. The algorithm for the minimal split completion adds
fill edges only within the set K [18]. Given the minimal split completion G′ of G computed by this
algorithm, the algorithm described above adds fill edges only between a vertex of S and a vertex of
K. The removal of any single fill edge of the split algorithm gives a non-split graph by the results
of [18]. For an edge that we added to the split graph G′, say viuj , where vi ∈ S and uj ∈ K with
i < j, we know that uj must be a neighbor of another vertex vj , where vj ∈ S, and the edge ujvj

is an edge of G because the minimal split completion does not add edges between S and K. Then
there is another vertex ui such that ui ∈ NG′(vi) and ui /∈ NG′(vj), since dG′(vi) ≥ dG′(vj). Note
that if NG′(vi) = NG′(vj) then viuj is not a fill edge. Thus the removal of a fill edge viuj results
the P4 = viuiujvj in the graph G′′ = G′ − viuj which implies that G′′ is a non-threshold graph by
Theorem 4.1. Hence no single fill edge can be removed, since either a non-split graph is obtained or
the nested neighborhood ordering is destroyed. Therefore, by Theorem 4.5, the algorithm that we
described for computing a minimal threshold completion is correct.

To complete the argument about the running time, for each vertex vi ∈ S , starting from v1, we
give its neighbors, which lie in the clique, the label i, 1 ≤ i ≤ |S ′|. At the end, each vertex of the clique
of G′ with label k knows that it must be adjacent to every vertex from v1 to vk given in the ordering
of S′. Now adding these edges between the clique and the independent set according to the label of
each vertex of K, we get a linear time bound in the size of the output graph. To bound the running
time to be linear in the size of the input graph, instead of representing the output graph explicitly (for
example, given by its adjacency list), we output a unique O(n) space representation of it: We output
both the sequence v1, v2, ..., v|S|, and for every vertex of the clique its label. Hence, we can skip the
step of adding edges between K and S since the ordering and the resulting labels of the vertices of K,
together with the input graph, uniquely define the edges of the threshold completion. Therefore all
steps can be done in total O(n + m) time.

5 Minimal bipartite deletions and co-bipartite completions

A graph is bipartite if its vertex set can be partitioned into two independent sets. The partition of a
bipartite graph G into two independent vertex sets is called bipartition and this partition is unique if

11

and only if G is connected. Bipartite graphs are exactly the class of graphs that do not contain cycles
of odd length [27]. It is well known that simple modifications of breadth-first search (BFS) can be
used to find an odd cycle in a graph or provide a bipartition of it in linear time. The complement of a
bipartite graph is called co-bipartite graph and the bipartition into two independent sets of a bipartite
graph is a bipartition into two cliques in its complement.

Since every graph can be deleted into a bipartite graph, and every graph can be completed into
a co-bipartite graph, but bipartite completions and co-bipartite deletions are not meaningful for all
graphs, we study only minimal bipartite deletions and minimal co-bipartite completions. We should
also mention that computing minimum bipartite deletions and minimum co-bipartite completions are
NP-hard problems [15].

5.1 Minimal bipartite deletions

A minimal deletion is equivalent to a maximal spanning subgraph. If the input graph G is connected
then there exists a connected bipartite deletion of G, since G has a spanning tree, and trees are bipartite.
If G is not connected, then a minimal bipartite deletion of G is a collection of connected minimal
bipartite deletions of the connected components of G. For this reason, we give results for connected
input graphs here, and if G is disconnected then the results can be applied to each connected component
of G separately. Since bipartite graphs are monotone, they are trivially also sandwich monotone. First
we characterize minimal bipartite deletions.

Lemma 5.1. Let G be an arbitrary connected graph and let H be a bipartite deletion of G with
bipartition (X, Y). H is a minimal bipartite deletion of G if and only if H is connected and no deleted
edge has one endpoint in X and one endpoint in Y .

Proof. Since bipartite graphs are sandwich monotone, by Observation 3.2 H is minimal if and only
if no single deleted edge can be added back without destroying bipartiteness. Let H be a minimal
bipartite deletion of G. If H is not connected, then any single deleted edge of G with endpoints in two
different connected components of H can be added back without destroying bipartiteness, which gives
a contradiction to the minimality of H . Hence H is connected, and therefore its bipartition (X, Y) is
unique (upon exchanging X and Y). If there is any deleted edge that has one endpoint in X and the
other in Y , then this deleted edge can be added back without destroying bipartiteness, which again
contradicts the minimality of H . Hence, no such deleted edge can exist if H is minimal. For the other
direction, assume that H is connected and all deleted edges have both their endpoints either within
X or within Y . Since H is connected, all paths between pairs of vertices in X contain an odd number
of vertices, and the same is true for Y . Hence no single edge can be added between endpoints that
both belong to X or both belong to Y , since this will introduce an odd cycle and destroy bipartiteness.
Since no single deleted edge can be added back, H is minimal.

Theorem 5.2. Let H = (V, E \ D) be a bipartite deletion of an arbitrary graph G = (V, E) with
D ⊆ E. A minimal bipartite deletion H ′ = (V, E \ D′) of G, such that D′ ⊆ D can be computed in
O(n + m) time.

Proof. Assume that G is connected (otherwise we compute the connected components of G is O(n+m)
time, and apply the following algorithm to each of them in a total of O(n+m) time). By Lemma 5.1 we
know that H ′ must be connected. If H is disconnected, since G is connected, there are edges in D that
can be added to H to obtain a connected bipartite graph H ′′. This can be done by scanning all edges
of D and adding them to H as long as no cycles are created, in a similar way as computing spanning
trees and hence in O(n + m) time. Now, the obtained graph H ′′ is connected and it has a unique
bipartition (X, Y). This bipartition can be computed and all vertices can be marked with the set they
belong to in O(n+m) time. Finally, we add all remaining edges of D with one endpoint in X and one
endpoint in Y to H ′′ to obtain the desired bipartite deletion H ′. This takes O(|D|) = O(m) time. Let
D′ be the set of all edges of D that are not added back during this process. Clearly, H ′ = (V, E \ D′)

12

and all edges of D′ have both endpoints in X or both endpoints in Y . Hence by Lemma 5.1, H ′ is a
minimal bipartite deletion of G.

Corollary 5.3. Any minimal bipartite deletion of an arbitrary graph can be computed in O(n + m)
time.

Proof. Assume without loss of generality that G = (V, E) is an arbitrary connected graph. Let D = E.
Clearly H = (V, E \ D) is a bipartite deletion of G. Apply the algorithm in the proof of Theorem 5.2
to find a minimal bipartite deletion of G in linear time. Since D = E we have the possibility of adding
back any subset of the edges that gives a minimal deletion.

5.2 Minimal co-bipartite completions

By Observation 3.2 co-bipartite graphs are sandwich monotone. Co-bipartite graphs can be recognized
in linear time, since BFS can be applied in the complement of a graph in time linear in the size of the
input graph [8, 25]. A co-bipartition of a co-bipartite graph G is unique if and only if G is connected
because of the unique bipartition of G. First we characterize minimal co-bipartite completions.

Lemma 5.4. Let G be an arbitrary graph and let V1, V2, . . . , Vk be the vertex sets of the connected
components of G. Let H be a co-bipartite completion of G and let (A, B) be a co-bipartition of H. H
is a minimal co-bipartite completion of G if and only if H [Vi] is connected for 1 ≤ i ≤ k, and no fill
edge has one endpoint in A and one endpoint in B.

Proof. Analogous to the discussion about threshold completions and deletions, observe that H is a
minimal co-bipartite completion of G if and only if H is a minimal bipartite deletion of G, since
adding edges to G is equivalent to removing edges from G, and H is co-bipartite if and only if H is
bipartite. For each Vi, 1 ≤ i ≤ k, let (Ai, Bi) be a bipartition of H [Vi]. Consequently, by Lemma 5.1,
H [Vi] is a minimal co-bipartite completion of G[Vi] if and only if H [Vi] is connected and no fill edge of
H [Vi] has one endpoint in Ai and one endpoint in Bi, for 1 ≤ i ≤ k. To complete the proof, observe
there are no fill edges in H with an endpoint in Ai and an endpoint in Aj or Bj with i 6= j, because
there are no edges between Vi and Vj in G, which means that all edges between these two sets are
present in G. Thus, no matter how the co-bipartition (A, B) of H is chosen, there are no fill edges
between the two sides of the co-bipartition.

Theorem 5.5. Let H = (V, E ∪ F) be a co-bipartite completion of an arbitrary graph G = (V, E). A
minimal co-bipartite completion H ′ = (V, E ∪ F ′) of G, such that F ′ ⊆ F can be computed in time
O(n + m + |F |).

Proof. Observe first that n + m + |F | = Θ(n2) because at least one side of the co-bipartition must
contain Θ(n2) edges in a co-bipartite graph. Hence |E(H)| = O(m + |F |). Therefore, we can compute
G and H in O(n + m + |F |) time. By the discussion in the proof of Lemma 5.4, H is a bipartite
deletion of G. By Theorem 5.2 we can compute a minimal bipartite deletion H ′ of G, where H ′ is a
supergraph of H , in O(n + m + |F |) time. By the above discussion, H ′ is then a minimal co-bipartite
completion of G, and H ′ is a subgraph of H .

Now we give an algorithm for computing a co-bipartite completion of an input graph directly in
time which is linear in the size of the input graph.

Theorem 5.6. A minimal co-bipartite completion of an arbitrary graph can be computed in O(n+m)
time.

Proof. Let G be the input graph. Compute the vertex sets V1, V2, . . . , Vk of the connected components
of G. For each connected graph G[Vi], compute a BFS tree Ti of it. Since Ti is bipartite and connected,
we have a unique bipartition (Ai, Bi) of Ti. Now a co-bipartition (A, B) for the output graph can be
chosen by placing Ai and Bi on opposite sides of the co-bipartition for each i. We define the output

13

graph H as follows: Add to G the missing edges so that A becomes a clique and B becomes a clique.
Clearly H is a co-bipartite completion of G. Furthermore, no fill edge of H is between A and B, and
thus H is a minimal co-bipartite completion of G by Lemma 5.4 if H [Vi] is connected for each i. To
see that H [Vi] is connected, observe that every edge of Ti is between Ai and Bi, and since we have not
added any fill edges between Ai and Bi, the non-edges of G between these two sets remain non-edges
in H and hence edges in H . Therefore, since each Ti is connected, each H [Vi] is also connected.

For the running time, note that computing the connected components of G and a BFS on G can
be performed in O(n + m) time by the results of [8, 25]. Moreover instead of adding the fill edges
explicitly to H , which is time consuming, we just output the co-bipartition (A, B). Since no fill edges
are added between A and B, this together with the input graph defines the output graph uniquely.
The total O(n + m) running time follows.

6 Minimal chain completions and deletions

Yannakakis introduced chain graphs and defined a bipartite graph to be a chain graph if one of the
sides of the bipartition has nested neighborhood ordering [38]. He also showed that one side has this
property if and only if both sides have the property. Chain graphs can be recognized in linear time
[28]. It is also known that a graph is a chain graph if and only if it does not contain a vertex set
inducing 2K2, C3, or C5 as an induced subgraph [28]. Computing a minimum chain completion or a
minimum chain deletion of a bipartite graph is an NP-hard problem [37].

Theorem 6.1 ([28]). A graph G is a chain graph if and only if G is bipartite and turning one side
of the bipartition into a clique gives a threshold graph for any bipartition of G.

By Theorem 6.1, a chain graph G can have at most one connected component that contains an
edge. Isolated vertices can belong to any side of the bipartition. We will here define a unique way of
partitioning the vertices of a chain graph that we call chain partition, similar to threshold partition.
Define X0 to be the set of all isolated vertices of G. The remaining vertices induce a connected
bipartite graph which thus has a unique bipartition (X, Y). Partition X into (X1, X2, ..., X`) where
NG(X1) ⊂ NG(X2) ⊂ . . . ⊂ NG(X`), and ` is as large as possible. Hence vertices of Xi have the
same neighborhood, for each i. This defines a partition of Y into (Y1, Y2, ..., Y`), where Yi = NG(Xi) \
NG(Xi−1), 2 ≤ i ≤ `. Observe that each set Xi contains at least one vertex which implies that the set
Yi is also a non-empty set. If there are only isolated vertices in G, we let ` = 0. The chain partition
is unique (upon exchanging X with Y).

Theorem 6.2. Chain graphs are sandwich monotone.

Proof. Let G = (V, E) and G′ = (V, E ∪ F) be two chain graphs such that E ∩ F = ∅ and F 6= ∅. We
will show that there is an edge f ∈ F that can be removed from G′ so that the resulting graph remains
a chain graph, from which the result follows by induction on the edges in F .

Let ((X ′
0, X

′
1, ..., X

′
`), (Y

′
1 , Y ′

2 , ..., Y ′
`)) be the chain-partition of G′. First we prove that if F contains

an edge xy such that x ∈ X ′
i and y ∈ Y ′

i for some i ∈ {1, ..., `} then removing xy from G′ results in
a chain graph. Let G′′ be the graph that we obtain after removing xy; that is, G′′ = G′ − xy. In G′′

we have that NG′′(X ′
i−1) ⊂ NG′′(x) ⊂ NG′′(X ′

i \ {x}) ⊂ NG′′(X ′
i+1). Thus the nested neighborhood

ordering is maintained which implies that G′′ is a chain graph.
Now we prove that F contains at least one edge with one endpoint in X ′

i and one endpoint in Y ′
i , for

some i satisfying 1 ≤ i ≤ `. Assume for a contradiction that there are no edges in F with one endpoint
in X ′

i and the other in Y ′
i . Hence for every edge xy ∈ F , x ∈ X ′

j and y ∈ Y ′
i , where 1 ≤ i < j ≤ `.

Since X ′
j and Y ′

i are non-empty, X ′
i and Y ′

j are non-empty, too by definition. Let x′ ∈ X ′
i and y′ ∈ Y ′

j .
Edges xy′ and x′y cannot belong to F and hence they are edges in E by our assumption. Edge x′y′ is
not an edge of G′ by the definition of chain partition, and hence it is not an edge of G either. Since
xy is not an edge of G, {x, y′, x′, y} induces a 2K2 in G contradicting that G is a chain graph.

14

6.1 Characterizing and extracting minimal chain completions and deletions

Speaking about chain completions of arbitrary graphs is only meaningful if every graph can be em-
bedded in a chain graph by adding edges. Thus it is reasonable to restrict for chain completions the
input graph to be a bipartite graph. However any graph can be turned into chain by deleting edges,
thus, the input for chain deletion is an arbitrary graph.

Lemma 6.3. Let G be a bipartite graph, and let H be a chain completion of G with chain partition
((X0, X1, ..., X`), (Y1, Y2, ..., Y`)). H is a minimal chain completion of G if and only if no fill edge has
one endpoint in Xi and and one endpoint in Yi for some i ∈ {1, ..., `}.

Proof. By sandwich monotonicity H is a minimal chain completion of G if and only if the removal of
any single fill edge from H destroys the chain property. Assume that H is a minimal chain completion
of G. Any fill edge with one endpoint in Xi and one endpoint in Yi can be removed without destroying
the chain property as we showed in the proof of Theorem 6.2, and hence there cannot be any such fill
edges since H is minimal. If H is not minimal, then we know that there is a minimal chain completion
M of G that is a subgraph of H such that E(G) ⊆ E(M) ⊂ E(H). Hence by the proof of Theorem 6.2,
there is an edge e ∈ E(H)\E(M), with one endpoint Xi and one endpoint in Yi for some i ∈ {1, ..., `}.
This edge e is a fill edge, and the proof is complete.

Now let us consider the problem of extracting a minimal chain completion H ′ from any chain
completion H of an arbitrary bipartite graph G.

Theorem 6.4. Let H = (V, E ∪F) be a chain completion of a bipartite graph G = (V, E). A minimal
chain completion H ′ = (V, E ∪ F ′) of G, such that F ′ ⊆ F can be computed in time O(n + m + |F |).

Proof. Let (X = (X0, X1, ..., X`), Y = (Y1, ..., Y`)) be the chain partition of H . Add edges between all
pairs of vertices in Y to obtain a graph Ht. By Theorem 6.1, Ht is a threshold graph and hence a
threshold completion of G. The chain partition of H is the threshold partition of Ht, since all vertices
of Y have neighbors in X . Let us run Algorithm Extr Min Threshold with input G and Ht, and run
it as long as there are unmarked vertices in X , and stop after the last vertex of X is processed. This
modified algorithm will output a threshold completion H ′

t of G such that H ′
t is a subgraph of Ht, and

only fill edges between X and Y are removed. Let us remove all edges with both endpoints in Y from
H ′

t to obtain a bipartite graph H ′. Clearly H ′ is a chain completion of G, and H ′ is a subgraph of H .
By the proof of Lemma 4.7, H ′ is a minimal chain completion of G.

We need to argue that this can be done in time linear in the size of H . To do this, we do not
actually add all edges between the vertices of Y before running the mentioned modified algorithm.
Since we will only process the vertices of X , we do not need to compare their degrees to the largest
clique in Ht. So we simply sort all vertices of X by their degrees in H , and then process them in the
sorted order, exactly in the same way as in Algorithm Extr Min Threshold, until the last vertex of X
is processed. This takes O(n+m+ |F |) time, since these steps only consider the edges between X and
Y .

Next we consider chain deletions.

Lemma 6.5. Let G = (V, E) be an arbitrary graph, and let H be a chain deletion of G with chain
partition (X = (X0, X1, ..., X`), Y = (Y1, ..., Y`)). H is a minimal chain deletion of G if and only if
no deleted edge uv has the following property: u ∈ Xi−1 and v ∈ Yi for some 1 ≤ i ≤ `, or u ∈ X` and
v ∈ X0.

Proof. Assume that a deleted edge uv has the described property. Let H ′ be the graph obtained by
adding uv to H . If u ∈ Xi−1 and v ∈ Yi for some 1 ≤ i ≤ `, then H ′ remains bipartite and its
bipartition is (X, Y). Moreover X has a nested neighborhood ordering in H ′ since NH′(Xi−1 \ {u}) ⊂
NH′(u) ⊆ NH′(Xi). If u ∈ X` and v ∈ X0 then (X \{v}, Y ∪{v}) is a bipartition of H ′ and H ′ admits
the same chain partition as that of H except the sets X0 and Y` which become X0 \ {v} and Y` ∪ {v},

15

respectively. Hence H ′ is a chain graph, and therefore H is not a minimal chain deletion of G. We
have thus proved that if H is minimal then there cannot be any deleted edges as described.

For the opposite direction, assume that none of the deleted edges satisfies the mentioned property.
We prove that the addition of any deleted edge results in a non-chain graph in this case, from which
we can conclude that H is minimal by the sandwich monotonicity of chain graphs. Let uv be a deleted
edge, and let H ′ be the graph obtained by adding uv to H . Then uv is one of the following three
types: (i) either u, v ∈ Y or u, v ∈ X \X0, (ii) u ∈ Xi−1 and v ∈ Yj , for some 1 ≤ i < j ≤ `, (iii) either
u ∈ X0 and v ∈ X \ (X0 ∪ X`), or u, v ∈ X0 and ` ≥ 1. If uv is of type (i) then H ′ is not bipartite
since H−X0 is a connected bipartite graph with a unique bipartition and both endpoints of uv belong
to the same side of bipartition which gives an odd cycle in H ′. If uv is of type (ii) then there exist
x ∈ Xi and y ∈ Yi, such that {x, y, u, v} induces a 2K2 in H ′, since x is not adjacent to v and y is not
adjacent to u, and hence H ′ is not chain. If uv is of type (iii) then in both subcases we again obtain
a 2K2 in H ′ induced by {x, y, u, v}, where x ∈ X` and y ∈ Y`, since y is not adjacent to v.

Next we consider the problem of extracting a minimal chain deletion from any chain deletion H of
an arbitrary graph G.

Theorem 6.6. Let H = (V, E \D) be a chain deletion of an arbitrary graph G = (V, E) with D ⊆ E.
A minimal chain deletion H ′ = (V, E \D′) of G, such that D′ ⊆ D can be computed in time O(n+m).

Proof. We describe a similar algorithm to the one given in the proof of Theorem 4.11. Initially, we
unmark all vertices and set H ′ = H . Let (X = (X0, X1, ..., X`), Y = (Y1, ..., Y`)) be the chain partition
of H ′. At each step we pick an unmarked vertex v ∈ X of largest degree in H ′. Thus we start by
processing the vertices of X`. If v ∈ X` then we find the non-edge vu of G such that u ∈ X0. Otherwise,
if v ∈ Xi for some 0 ≤ i < `, then we find the non-edge vu of G such that u ∈ Y and u has the largest
degree in H ′. Since H ′ is a subgraph of G, there is an index j > i such that u ∈ Yj . Then we
compute the set U of the non-neighbors of v in G that have the same degree as u in H ′. That is,
either U ⊆ X0 or U ⊆ Yj . Observe also that every vertex u of U has the largest degree in H ′ among
non-neighbors of v in G. Thus all edges either between v and vertices of X0 \ U , or between v and
vertices of Yi+1, . . . , Yj−1, Yj \ U are deleted edges. In both cases we add those edges to H ′. At the
end of the step we mark vertex v and proceed with the next unmarked vertex of X of largest degree
in H ′.

Let us describe what happens after adding the corresponding edges incident to v. Assume that
H ′ is a chain deletion of G and a subgraph of H at the beginning of a step, and let H ′′ be the graph
obtained at the end of a step. We will show that H ′′ is a chain graph by describing its chain partition
(X ′ = (X ′

0, X
′
1, ..., X

′
`′), Y ′ = (Y ′

1 , ..., Y ′
`)). If v ∈ X` then we add edges between v and vertices of

X0 \ U . In that case we have X ′
0 = U and we consider the set X` \ {v}. If X` 6= {v} then we obtain

X ′
`+1 = {v}, Y ′

`+1 = X0 \U , and X ′
` = X` \ {v}. Otherwise, we obtain Y ′

` = Y` ∪X0 \U . In both cases
the rest of the sets remain as before. If v ∈ Xi for some 0 ≤ i < `, then we add edges between v and
the vertices of Yi+1, . . . , Yj−1, Yj \ U , for an index j satisfying i < j ≤ `. If Yj 6= U then Y ′

j = Yj \ U ,
Y ′

j+1 = U , X ′
j = {v}, and X ′

j+1 = Xj , whereas if Yj = U then X ′
j−1 = Xj−1 ∪ {v}. Moreover in both

cases we need to describe the sets Xi and Yi. If Xi 6= {v} then X ′
i = Xi \ {v}. Otherwise, X ′

i = Xi−1

and Y ′
i = Yi ∪ Yi−1. In each case the non-mentioned sets of the chain partition remain as before.

Having described the chain partition of H ′′, we know that at each step H ′ remains a chain graph,
and hence it is a chain deletion of G at the end of the algorithm. Regarding minimality, analogous
to the induction proof of Lemma 4.7, we will prove that if there are deleted edges in H ′′ with the
properties described in Lemma 6.5 then they are incident to unmarked vertices of degree less than
dH(v).

If v ∈ X` then after adding the corresponding edges no deleted edge is incident to v and a vertex
of X ′

0 = U . Moreover the rest of the marked vertices, if any, lie in X`, since they have degree at least
dH(v). For those vertices observe that no deleted edge has one endpoint to them and the other to X0,
since they have been visited by the algorithm. Thus there is no deleted edge between X` \ {v} and
X0\U . If v ∈ Xi, 0 ≤ i < `, then after adding the corresponding edges there is no deleted edge between

16

v ∈ X ′
j and a vertex of Y ′

j+1 = U , whenever Yj 6= U , neither between v ∈ X ′
j−1 and a vertex of Y ′

j = U ,
whenever Yj = U . We need also to show that the rest of the marked vertices still have no deleted
edge incident to them as described in Lemma 6.5. Observe that vertices of Xi+1, . . . , X` are marked
since they have degree greater than v and, thus, there is no deleted edge between a vertex of Xk and
a vertex of Yk+1, for i + 1 ≤ k ≤ ` − 1. This implies that between X ′

j and Y ′
j+1 there are no deleted

edges and between X ′
j−1 and Y ′

j there are no deleted edges since X ′
j−1 = Xj−1 or X ′

j−1 = Xj−1 ∪ {v}
and Y ′

j ⊆ Yj , for an index j satisfying i < j ≤ `. Moreover if Xi 6= {v} then there is no deleted edge
incident to a visited vertex of X ′

i ⊆ Xi and a vertex of Y ′
i+1 = Yi+1. If Xi = {v} then X ′

i = Xi−1 and
Y ′

i+1 = Yi+1 which means that there are some new non-edges in the resulting graph between X ′
i and

Y ′
i+1 and also between X ′

i−1 = Xi−2 and Y ′
i = Yi ∪ Yi−1. However in that case we know that every

vertex of Xi−1 ∪ . . .∪X1 ∪X0 has degree strictly less than v ∈ Xi and, hence, no vertex of that set is
marked. Thus at each step of the algorithm there is no deleted edge incident to a marked vertex with
one of the two properties given in Lemma 6.5. Therefore by marking all vertices of X we know that at
the end there are no deleted edges that can be added by Lemma 6.5 which implies that the computed
graph is a minimal chain deletion of G.

For the running time observe that the chain-partition of H and the degree sequence of H are
computed in O(n + m) time. We sort the vertices by their degree in H according to a non-increasing
order which is required in order to visit the vertices according to their degrees in H . Note that vertices
of X that are not visited maintain the same degree since no edge is added incident to them. If v ∈ X`

then we find the proper set X0 \ U by checking its adjacency in G and update at most dG(v) vertices
in O(dG(v)) time. If v ∈ Xi, 0 ≤ i < `, then the set U ⊆ Yj , j > i can be found in O(dG(v)) time by
scanning NG(v) constant times. Once we compute the number of adjacent to v vertices in each set Yk,
k > i, and then we point out the set Yj′ of minimum index j′ such that v has at least one non-neighbor
in Yj′ . Since j′ is the minimum index we know that in the sets Yi−1, . . . , Yj′−1 there are only adjacent
to v vertices. If there are some vertices in Yj′ adjacent to v in G then those vertices can be pointed out
by scanning NG(v). Thus if U = Yj′ then the added edges are between v and Yi−1, . . . , Yj′−1, whereas
if U ⊂ Yj′ then the added edges are between v and Yi−1, . . . , Yj′ \U . Adding the deleted edges implies
the proper update of the chain partition as described earlier. The number of vertices that need to be
updated does not exceed dG(v) and, thus, each visited vertex v takes O(dG(v)) time. Therefore all
steps can be done in O(n + m) time.

Corollary 6.7. Any minimal chain deletion of an arbitrary graph can be computed in O(n+m) time.

Proof. Let G = (V, E) be an arbitrary graph, let D = E, and H = (V, E \D). Since an edgeless graph
is a chain graph, H is a chain deletion of G. Now, use the algorithm in the proof of Theorem 6.6 to
find a minimal chain deletion of G in O(n+m) time. Since D = E, we have the possibility of reaching
any minimal chain deletion of G.

6.2 Computing a minimal chain completion of a bipartite graph directly

Here we give an algorithm for computing a minimal chain completion of a bipartite graph G in time
O(n + m).

Theorem 6.8. A minimal chain completion of a bipartite graph can be computed in O(n + m) time.

Proof. Let G be a bipartite graph and let (X, Y) be a bipartition of G. We start by computing an order
of the vertices of X such that dG(x1) ≥ dG(x2) ≥ . . . ≥ dG(x|X|) which can be done in O(n+m) time.
Initially, we set H = G. Starting from x1, and continuing towards x|X|, we add edges to H to make xi

adjacent to all vertices of NG({xi+1, xi+2, . . . , x|X|}). At the end H remains bipartite and x1, . . . , x|X|

is a nested neighborhood ordering. Therefore H is a chain graph, and thus a chain completion of G.
Regarding minimality, consider any fill edge xy. We know that x ∈ X and y ∈ Y . Then y

must have a neighbor z ∈ X such that yz ∈ E(G), which made it necessary to add the fill edge xy;
hence dG(x) ≥ dG(z). Therefore there is another vertex w ∈ NG(x) and w /∈ NG(z). (Note that
if NG(x) = NG(z) then xy is not a fill edge.) But then the removal of the fill edge xy results in a

17

Graph Class Sandwich
monotone?

Computing
MC

Computing
MD

Extracting MC Extracting MD

chordal Yes [34] O(n2.37) [22] O(∆m) [11] O(nm) [10] Unknown
interval No O(nm) [36] Unknown O(n11) [21] Unknown
proper interval No O(n + m) [32] Unknown Unknown Unknown
split Yes [18] O(n + m) [18] O(n + m) [19] O(n + m + |F |) [18] O(n + m) [19]
planar Yes – O(n + m) [23] – O(n + m) [23]
comparability No O(n3

m) [20] Unknown Unknown Unknown
threshold Yes* O(n + m)* O(n + m)* O(n + m + |F |)* O(n + m)*
chain Yes* O(n + m)* O(n + m)* O(n + m + |F |)* O(n + m)*
bipartite Yes – O(n + m)* – O(n + m)*
co-bipartite Yes O(n + m)* – O(n + m + |F |)* –

Table 1: Summary of known results for minimal completions and deletions. The input is an arbitrary
graph G = (V, E) whereas in the extraction columns the graph H = (V, E∪F) is assumed to be given as
a completion and the graph H = (V, E \D) as a deletion. The asterisk denotes that the corresponding
result is obtained in this work, and the dash denotes that the combination is not meaningful. For
graph classes that are not listed here, no results are known in any of the columns.

non-chain graph since we obtain a 2K2 induced by the vertices {w, x, y, z}. Hence we cannot remove
any single fill edge without destroying chain property, and therefore H is a minimal chain completion
of G by Theorem 6.2.

To achieve a time bound of O(n+m), for each vertex xi ∈ X , starting from v1, we give its neighbors
the label i, 1 ≤ i ≤ |X |. Thus at the end, each vertex of Y with label k knows that it must be adjacent
to every vertex from x1 to xk given in the ordering computed previously of X . Outputting an explicit
representation of H (for example, given by its adjacency list representation) requires linear time in the
size of H rather than G. Instead, we give a representation of H in O(n) space, which means that we
do not explicitly add the fill edges. We output both the sequence x1, x2, ..., x|X| and for every vertex
of Y its label. This defines uniquely the minimal chain completion H . Therefore all steps can be done
in total time O(n + m).

7 Concluding remarks

In Table 1 we summarize our results by presenting them together with previously known results
obtained for other graph classes. For each graph class we give whether the class is sandwich monotone,
the best known running time of an algorithm for computing a minimal completion (MC) or a minimal
deletion (MD) of an arbitrary graph into this class, and the best known running time of an algorithm
for extracting minimal completions or deletions into this class from a given completion or deletion.

It has been shown recently that minimum completions of arbitrary graphs into weakly chordal
graphs are NP-hard to compute [7]. We would like to know whether weakly chordal graphs are
sandwich monotone. Also, we repeat the open question of [2]: are chordal bipartite graphs sandwich
monotone? In addition, we would like to know whether minimum completions of arbitrary bipartite
graphs into chordal bipartite graphs are NP-hard to compute.

As a final remark, we mention another possible measure of monotonicity of graph properties.
Sandwich monotonicity is a relaxation of monotonicity, hence more graph properties are sandwich
monotone than those that are monotone. A natural way to relax sandwich monotonicity is the following:
A property P is called edge monotone if for every graph G that satisfies P there is an edge of G that can
be removed without destroying the property P . This also implies that between two graphs satisfying
P there is a sequence of graphs on the same vertex set with one edge difference satisfying P , but now
that sequence is not necessarily monotonic (increasing or decreasing). It follows that every sandwich
monotone property is edge monotone, hence there are even more properties that are edge monotone.
However not all graph classes are edge monotone, hence it might be interesting to characterize edge

18

monotone graph properties.

References

[1] N. Alon and A. Shapira. Every monotone graph property is testable. In Proceedings of STOC 2005 - 37th

Annual Symposium on Theory of Computing, pages 128–137, 2005.

[2] M. Bakonyi and A. Bono. Several results on chordal bipartite graphs. Czechoslovak Math. J., 46:577–583,
1997.

[3] J. Balogh, B. Bolobás, and D. Weinreich. Measures on monotone properties of graphs. Disc. Appl. Math.,
116:17–36, 2002.

[4] J. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theoretical

Computer Science, 250:125–141, 2001.

[5] H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete Math., 306:337–350,
2006.

[6] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J.

Comput., 31:212–232, 2001.

[7] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modification problems. Disc.

Appl. Math., 154:1824–1844, 2006.

[8] K.W. Chong, S.D. Nikolopoulos, and L. Palios. An optimal parallel co-connectivity algorithm. Theory of

Computing Systems, 37:527 – 546, 2004.

[9] V. Chvátal and P.L. Hammer. Set-packing and threshold graphs. Univ. Waterloo Res. Report, CORR
73–21, 1973.

[10] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Graph Theoretical Concepts

in Computer Science - WG ’97, pages 132–143. Springer Verlag, 1997. LNCS 1335.

[11] P. M. Dearing, D. R. Shier, and D. D. Warner. Maximal chordal subgraphs. Disc. Appl. Math., 20:181-190,
1988.

[12] H. Djidjev. A linear algorithm for finding a maximal planar subgraph. SIAM J. Disc. Math., 20:444 –462,
2006.

[13] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and minimum
fill-in. In Proceedings ICALP 2004, pages 568–580, 2004. Springer LNCS 3142.

[14] S. Földes and P. L. Hammer. Split graphs. Congressus Numerantium, 19:311–315, 1977.

[15] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical

Computer Science, 1:237–267, 1976.

[16] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical mapping of
DNA. J. Comput. Bio., 2(1):139–152, 1995.

[17] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second edition. Annals of Discrete
Mathematics 57. Elsevier, 2004.

[18] P. Heggernes and F. Mancini. Minimal split completions of graphs. In LATIN 2006: Theoretical Infor-

matics, pages 592–604. Springer Verlag, 2006. LNCS 3887.

[19] P. Heggernes and F. Mancini. A completely dynamic algorithm for split graphs. Reports in Informatics
334, University of Bergen, Norway, 2006.

[20] P. Heggernes, F. Mancini, and C. Papadopoulos. Making arbitrary graphs transitively orientable: Minimal
comparability completions. In Proceedings of ISAAC 2006 - 17th International International Symposium

on Algorithms and Computation, pages 419–428. Springer Verlag, 2006. LNCS 4288.

[21] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Characterizing minimal interval completions:
Towards better understanding of profile and pathwidth. In Proceedings of STACS 2007 - 24th International

Symposium on Theoretical Aspects of Computer Science, 2007. To appear.

[22] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) =
o(n2.376). SIAM J. Disc. Math., 19:900–913, 2005.

19

[23] W.-L. Hsu. A linear time algorithm for finding a maximal planar subgraph based on PC-trees. In
Proceedings of COCOON 2005 - 11th International Computing and Combinatorics Conference, pages
787–797. Springer Verlag, 2005. LNCS 3595.

[24] L. Ibarra. Fully dynamic algorithms for chordal graphs. In Proceedings of SODA 1999 - 10th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 923–924, 1999.

[25] H. Ito and M. Yokoyama. Linear time algorithms for graph search and connectivity determination on
complement graphs. Inform. Process. Lett., 66:209–213, 1998.

[26] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs. IEEE Symp. of Circuits

and Systems, pages 82–83, 1979.

[27] D. König. Theorie der endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig,
1936.

[28] N. Mahadev and U. Peled. Threshold graphs and related topics. Annals of Discrete Mathematics 56. North
Holland, 1995.

[29] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems.
Disc. Appl. Math., 113:109–128, 2001.

[30] A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph embeddings.
Disc. Appl. Math., 79:171–188, 1997.

[31] S.-L. Peng and C.-K. Chen. On the interval completion of chordal graphs. Disc. Appl. Math., 154:1003–
1010, 2006.

[32] I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions. In Proceedings of WG

2006 - 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, pages 217–228.
Springer Verlag, 2006. LNCS 4271.

[33] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear
equations. In R. C. Read, editor, Graph Theory and Computing, pages 183–217. Academic Press, New
York, 1972.

[34] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM

J. Comput., 5:266–283, 1976.

[35] R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition and recognition of
cographs. Disc. Appl. Math., 136:329 – 340, 2004.

[36] K. Suchan and I. Todinca. Minimal interval completion through graph exploration. In Proceedings of

ISAAC 2006 - 17th International International Symposium on Algorithms and Computation, pages 517–
526. Springer Verlag, 2006. LNCS 4288.

[37] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79, 1981.

[38] M. Yannakakis. Node deletion problems on bipartite graphs. SIAM J. Comput., 10:310–327, 1981.

20

Appendix A

Here we show that the classes of perfect graphs, comparability graphs, interval graphs, proper interval
graphs, cographs, trivially perfect graphs, permutation graphs, and (C5, C6, . . .)-free graphs are not
sandwich monotone. Proper definitions and details about the graph classes can be found in [17]. In
all cases we present a graph that belongs to C with two labeled edges. Removing one of the labeled
edges results a graph not in C. But removing both edges results a graph belonging to C. Thus between
two graphs of C on the same vertex set there is no graph of C which implies that C is not sandwich
monotone.

e1 e2

(a) Perfect graphs and comparability graphs

e1 e2

(b) Interval graphs

e1 e2

(c) Proper Interval graphs

e1

e2

(d) Cographs and trivially perfect graphs

e1

e2

(e) Permutation graphs

e1

e2

(f) (C5, C6, . . .)-free graphs

Figure 1: Examples of graphs showing that their graph classes are not sandwich monotone.

21

