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Abstract. In this paper we consider the problem of computing the number of
spanning trees in the class of quasi-threshold graphs, or QT-graphs for short. We
show that such a graph admits important structural and algorithmic properties
among which a unique tree representation, up to isomorphism, called cent-tree.
Based on the properties of the cent-tree of a QT-graph G we derive a formula
which gives the number of spanning trees of the graph G; the proof is based on
the Kirchhoff matrix tree theorem. Our result generalizes and extends previous
results regarding the number of spanning trees of QT-graphs [16].

1 Introduction

We consider finite undirected graphs with no loops nor multiple edges. Let G be such
a graph on n vertices. A spanning tree of G is an acyclic (n — 1)-edge subgraph. The
problem of calculating the number of spanning trees on the graph G is an important,
well-studied problem in graph theory. Deriving formulas for different types of graphs
can prove to be helpful in identifying those graphs that contain the maximum number
of spanning trees. Such an investigation has practical consequences related to network
reliability [13, 20].

Thus, for both theoretical and practical purposes, we are interested in deriving
formulas for the number of spanning trees of classes of graphs. Many cases have been
examined depending on the choice of G. It has been studied when G is a labelled
molecular graph [2], when G is a circulant graph [25], when G is a complete multipartite
graph [23], when G is a cubic cycle and quadruple cycle graph [24], when G is a threshold
graph [7] and so on (see Berge [1] for an exposition of the main results; also see [4, 11,
18,16, 19,21-23]).

The purpose of this paper is to study the problem of finding the number of span-
ning trees in the class of quasi-threshold graphs. We point out that a graph G is called
quasi-threshold graph if it contains no induced subgraph isomorphic to Py or Cy [6,15,
16]. A quasi-threshold graph G has a unique tree representation 7.(G) called cent-tree.
Our proofs are based on a classic result known as the Kirchhoff Matrixz Tree Theorem
[8], which expresses the number of spanning trees of a graph G as a function of the
determinant of a matrix (Kirchhoff Matrix) that can be easily construct from the ad-
jacency relation (adjacency matrix, adjacency lists, ect) of the graph G. Calculating
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the determinant of the Kirchhoff Matrix seems to be a promising approach for com-
puting the number of spanning trees of families of graphs (see [1,4,5,18,23]). In our
case, we compute the number of spanning trees of a quasi-threshold G, using standard
techniques from linear algebra and matrix theory. Our ideas and techniques will be
formalized and further clarified in the sequel.

The paper is organized as follows. In Section 2 we establish the notation and re-
lated terminology and we present background results. In particular, we show structural
properties for the quasi-threshold graphs and define a unique tree representation on
such a graph. In Sections 3 we present a formula for the number of spanning trees of a
quasi-threshold graph. Finally, in Section 4 we conclude the paper and discuss possible
future extensions.

2 Definitions and Background Results

Let G be a graph with vertex set V(G) and edge set E(G). The neighborhood N(x)
of a vertex z € V(@) is the set of all the vertices of G which are adjacent to z. The
closed neighborhood of z is defined as N[z] := {z} U N(z) [8].

The subgraph of a graph G induced by a subset S of the vertex set V(G) is denoted
by G[S]. For a vertex subset S of G, we define G — S := G[V(G) — S].

2.1 Quasi-threshold Graphs

A graph G is called a quasi-threshold graph, or QT-graph for short, if G has no induced
subgraph isomorphic to Py or Cy [6,15,16]. We next provide characterizations and
structural properties of QT-graphs and show that such a graph has a unique tree
representation. The following lemma follows immediately from the fact that for every
subset S C V(G) and for a vertex u € S, we have Ngg[u] = Nu] NS and that
G[V(G) — S] is an induced subgraph.

Lemma 2.1. ([10]): If G is a QT-graph, then for every subset S C V(G), both G[S]
and G[V(G) — S] are also QT-graphs.

The following theorem provides important properties for the class of QT-graphs. For
convenience, we define

cent(G) = {x € V(G) | N[z] = V(G)}.

Theorem 2.1. ([10,15]): The following three statements hold.

(i) A graph G is a QT-graph if and only if every connected induced subgraph G[S],S C
V(G), satisfies cent(G[S]) # 0.
(it) A graph G is a QT-graph if and only if G[V(G) — cent(G)] is a QT-graph.
(iii) Let G be a connected QT-graph. If V(G) — cent(G) # 0, then G[V (G) — cent(G)]
contains at least two connected components.
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Let G be a connected QT-graph. Then V; := cent(G) is not an empty set by Theorem
2.1. Put G; := G, and G[V(G) — V1] = Gy UG5 U ... U G,, where each G; is a
connected component of the graph G[V(G) — Vi] and r > 3. Then since each G; is
an induced subgraph of G, G; is also a QT-graph, and so let V; := cent(G;) # 0 for
2 <i < r. Since each connected component of G;[V (G;) — cent(G;)] is also a QT-graph,
we can continue this procedure until we get an empty graph. Then we finally obtain
the following partition of V(G).

V(G)=Vi+Vo+...+V;, whereV; = cent(G;).

Moreover we can define a partial order < on {Vi,Va,...,V;} as follows:
Vi 2V if Vi =cent(G;) and V; CV(Gy).

It is easy to see that the above partition of V(G) possesses the following properties.

Fig. 1: A cent-tree T,(Q) of a QT-graph on 12 vertices.

Theorem 2.2. ([10,15]): Let G be a connected QT-graph, and let V(G) = Vi + Vo +
...+ V. be the partition defined above; in particular, Vi := cent(G). Then this partition
and the partially ordered set ({V;}, X) have the following properties:

(P1) If V; <V}, then every vertex of V; and every vertex of V; are joined by an edge of
G.

(P2) For every V;, cent(G[{UV; | V; X V;}]) = V.

(P3) For every two Vs and V; such that Vs XV, G[{UV; | Vs X V; X V;}] is a complete
graph. Moreover, for every mazimal element Vi of ({V;},=X), G[{UV; | Vi XV, <
Vi} is a mazimal complete subgraph of G.

The results of Theorem 2.2 provide structural properties for the class of QT-graphs.
We shall refer to the structure that meets the properties of Theorem 2.2 as cent-tree
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of the graph G and denote it by T.(G). The cent-tree is a rooted tree with root Vi;
every node V; of the tree T,(G) is either a leaf or has at least two children. Moreover,
Vs <V} if and only if V; is an ancestor of V; in T,.(G). Here, we define ch(V;) to be the
set which contains the children of the node V; € T.(G); we shall use ch(i) to denote
ch(V;), 1 <i < k.

In Figure 1 we show a cent-tree of a QT-graph on 12 vertices. Nodes V3 and V contain
two vertices, while all the other contain one vertex; ch(V3) = {V7, Vs } and ch(Vig) = 0.
Notice that the degree of a vertex in node V3 is 4.

2.2 Kirchhoff Matrix

For an n x n matrix A, the ijth minor is the determinant of the (n — 1) x (n — 1)
matrix M;; obtained from A deleting row ¢ and column j. The ith cofactor denoted
A; equals det(M;;).
Let G be a graph on n vertices. Then the Kirchhoff matriz K for the graph G has
d; ifi=j,
ki,j =<q¢-—1 ifg ;é] and (’L,]) € F,
0 otherwise,

elements, where d; is the number of edges incident to vertex v; in the graph G. The
Kirhhoff Matrix Tree Theorem is one of the most famous results in graph theory. It
provides a formula for the number of spanning trees of a graph G, in terms of the
cofactors of its Kirhhoff Matrix.

Theorem 2.3. (Kirchhoff Matrix Tree Theorem [8]): For any graph G with K defined
as above, the cofactors of K have the same value, and this value equals the number of
spanning trees of G.

3 The Number of Spanning Trees

In this section we derive a formula for the number of spanning trees of a QT-graph G;
hereafter, 7(G) denotes the number of spanning trees of G.

Let G be a QT-graph on n vertices and let V1, V5, ..., Vi be the nodes of its cent-tree
T.(G) containing ny,ne,...,ny vertices, respectively; that is, n = n; + na + ... + ng.
We let d; denote the degree of an arbitrary vertex of the node V;. Recall that all the
vertices u € V(G) of a node V; have the same degree.

Let V1, Va,..., Vi be the nodes of the cent-tree T.(G) of a QT-graph on n vertices. We
denote L; the set which contains the nodes of the ith level of T,.(G), 1 < i < h; that is,

Ly = {‘/1}7
Ll = {‘/27‘/37--'7‘/;"}7

thl = {VS:Vs+17 .. '7‘/[71}7
Ly ={Ve,Vigr, .-, Vi }.
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3.1 The Formula

We next form the Kirhhoff matrix K for the QT-graph G based on the structure of
the cent-tree T.(G).

Let G be a QT-graph on n vertices and let Vy,..., Vs, ..., Vo1, Vi, ..., Vi be the
nodes of its cent-tree T.(G). Then, we label the vertices of the graph G from 1 to n as
follows: First, we label the vertices in node Vi from 1 to nj; next, we label the vertices
in Vi1 from ny + 1 to ng + ni_1; finally, we label the vertices in node V;.

Then, we construct the matrix K of the QT-graph G, using the above defined
labelling of the vertices of GG, and we focus on the determinant of the matrix K,
obtained from K by deleting its last row and its last column. It is easy to see that K,
isan (n — 1) x (n — 1) matrix and has the following form:

My,
[—1]i

[—1]:;

M, |

where M; is an n; x n; submatrix of the form

d —1-- 1

1d; =1
My=1| . . . .|,

11 d

for 2 <i <k and My is an (ny — 1) x (ny — 1) submatrix of the same form. All the
diagonal positions of the matrix M; have the same value d; which equals the degree of
an arbitrary vertex in node V; € T.(G); the entries [—1];; and [—1];; of the off-diagonal
positions (i,7) and (j,4) correspond to n; x n; and n; x n; submatrices with all their
elements —1 if node V; is a descendant of node V; in T.(G) and all their elements 0
otherwise, 2 < i, j < k; the entries [—1]; ; and [—1];1 of the off-diagonal positions
(1,7) and (j,1) correspond to (nq —1) x n; and n; x (nq — 1) submatrices with all their
elements —1 since every node Vj; is descendant of the root V; of the cent-tree T.(G).

In order to compute the determinant of the matrix K,, we first simplify the determi-
nants of the matrices M;, 2 < i < k, and we obtain:
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d; +1
di+1
det(M;) = - = (di + )™~ Hd; — (ni — 1)),
-1 -1 di +1—mn;

and

det(Ml) = (d1 + 1)”172(d1 — (n1 — 2))

It now suffices to substitute the above values in the determinant of the matrix K,,.
We point out that after simplifying the determinants of matrices M; only the diagonal
and the last row of each matrix M; have non-zero’s entries. Thus, we have:

k

det(Kpp) = (m1 — 1)(dy + 1)™ 2 - [ ni(ds + 1)™ " - det(Bn), (2)
=2
where
o i
(—1)ji
oy
O¢—1
Bpnn = (3)
Os
(—=1)ij
L 01 |

is a k x k matrix with diagonal elements o; = % for 2 < i <k, and o4 =
dlf(n172).

~—1; the entry (—1);; of the off-diagonal position (i,j) is —1 if node V; is a
descendant of node V; in T.(G) and 0 otherwise.

The idea now is to compute the determinant of the k x k matrix B,,. To this end, we
first apply the following operations to each row i = 1,2,...,k of the matrix B,,,:

e we find the minimum index j such that i < j < k and Bp,[i, j] # 0, and then
e we multiply the jth column by —1 and add it to the ¢th column if By,[i, (] =
Bpyliyjland j +1 <0 <k.

Next, we apply similar operations to each column j = 1,2, ...,k of the matrix By;:

e we find the minimum index ¢ such that 1 < j < i and B,,,[i,j] # 0, and then

e we multiply the ith row by —1 and add it to to the ¢th row if B,,[¢, j] = Bnnli, j]
and i+ 1</l <k.
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Thus, we obtain:

det(Bnn) = det(Ann) )

where

a
(7)ji
as
ap—1
Ann - )
as
(’Y)ij
L ar |
is a k x k matrix and
o; if V; is a leaf of T.(G),
a; =
o + Z (0j +2) otherwise,
i€eh(i)
jnot a leaf
and
-1 it V; € ch(V;) and V; is a leaf of T.(G),
(7)ij = § —(o: +1) if V; € ch(V;) and Vj is not a leaf of T.(G),
0 otherwise.

Recall that

d. —_ R

di=Mi=2) iy

n; — 1
o; =
di —(n; —1 .
L otherwise.

T
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In the case where each node of the cent-tree T,.(G) contains a single vertex, we have
o; = d; for every ¢ = 2,3,...,k; note that ¢ > 2, since we delete the last row and
column of the matrix K.

We next define the following function ¢ on the nodes on the cent-tree of a QT-graph
G:

a; if V; is a leaf of T.(G),

o(i) = 2 (9)
a; — Z % otherwise,

jEch(i)

where a; and (7y);; are defined in Eq. (6) and Eq. (7), respectively. We call the function
@(i) cent-function of the node V;; hereafter, we use ¢; to denote ¢(i), 1 <17 < k.

Lemma 3.1. Let Vi, Va,...,V} be the nodes of the cent-tree T.(G) of a QT-graph G
and let ¢(i) be the cent-function of V;, 1 <i < k. Then,

k

I ¢0) = det(A,.,),

i=1
where Ay, is the k X k matriz defined in Eq. (5).
Proof. In order to compute the determinant det(A,,), we start by multiplying each

column ¢, 1 < i < ¢, of the matrix A,, by —(7);;/a; and adding it to the column j if
(7)ij # 0 (i < j < k). This, makes all the strictly upper-diagonal entries (vy);;, that is,

1 < j, into zeros. Now expand in terms of the 1,2, ... ¢ rows, getting
Je—1
¢ (7)ji ¢
i=1 . i=1
(V)i
fi
where

¢; = a;, for 1 < i < £, since the nodes 1,2,..., /¢ are leaves of T,.(G), and

\2
fi=ar— Y M for (+1<t<k.

i€eh(t) 4

1<i<e
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We observe that the (k—£) x (k — £) matrix Dy, has a structure similar to that of the
initial matrix A,,; see Eq. 5. Thus, for the computation of its determinant det(D,,,), we
follow a similar simplification; that is, we start by multiplying each column i, 1 < i < s,
of the matrix D,,,, by —(v):;/ f; and adding it to the column j if (y);; # 0,for s < j < k.
Thus, continuing in the same fashion we can finally show that

k
det(Dnn) - H (bia
i=1

where ¢; is the cent-function of the node V; € T,.(G) and k is the number of nodes of
the cent-tree T.(G). g

Based on Eq. (2), (4) and Lemma 3.1 we can obtain a formula for the number of
spanning trees 7(G) of a quasi-threshold graph G. Thus, we present the following
result.

Theorem 3.1. Let G be a quasi-threshold graph on n vertices and let Vi, Va,...,V}, be
the nodes of the cent-tree T.(G) rooted at node Vi. Then,

k
nl_]' n;—1
27” ildy + 1) 77 - gy,
7(G) (@t D) iz1n(d+) 10

where n; is the number of vertices of the node V;, d; is the degree of an arbitrary vertex
of Vi and ¢; is the cent-function of the node V;, 1 <i < k.

Remark 3.1. Based on the above formula, we propose a linear-time algorithm for
determining the number of spanning trees of a QT-graph; it works as follows: First
it computes the cent-tree T.(G) of the quasi-threshold graph; let Vi, Vs, ..., Vi be the
nodes of the cent-tree T.(G). Then, it computes the cent-function ¢; of each node
Vi € T.(G), 1 <i <k, and, finally, it computes the number of spanning trees of the
quasi-threshold graph based on the result presented in Theorem 3.1.

We point out that the number of spanning trees of a QT-graph G on n vertices and
m edges can be computed in O(n + m) time. The construction of a cent-tree T.(G)
takes O(n + m) time using a DFS traversal on the input QT-graph. Moreover, the
computation of all the cent-functions ¢;, 1 < i < k, can be performed in O(n) time,
since the number of the nodes of the cent-tree T.(G) is k < n. Thus, the proposed
algorithm runs in O(n 4+ m) time.

The time complexity is measured according to the uniform cost criterion. Under
this criterion each instruction requires one unit of time and each register requires one
unit of space. Despite the fact that the arithmetic operations involve arbitrarily large
integers, we count each operation as a single step (the number of spanning trees of a
graph G on n vertices can be at most n”2; the complete graph K, has n™ 2 spanning
trees). O
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4 Concluding Remarks

In this paper we derived a formula for the number of spanning trees of a quasi-threshold
graph using the Kirchhoff Matrix Tree Theorem and taking advantage of the structural
properties of the cent-tree of a quasi-threshold graph.

Another class of perfect graphs, called cographs, are precisely the graphs containing
no chordless path on four vertices (termed a Py). In [17], a linear-time algorithm is given
for computing the number of spanning trees of cographs based on a unique rooted tree,
called the cotree. Thus, an interesting question is whether we can derive a formula for
the number of spanning trees in the class of cographs.

More general classes of perfect graphs, such as the classes of P;-reducible and P;-
sparse graphs, also admit unique tree representations. Thus, it is reasonable to ask
whether the structural properties of these tree representations are helpful to derive
formulas regarding the number of spanning trees of the corresponding graphs.

It has been shown that a permutation graph G[r], a well-known class of perfect
graphs, can be transform into a directed acyclic graph and, then, into a rooted tree by
exploiting the inversion relation on the elements of the permutation 7 [14]. Based on
these results, one can work towards the investigation whether the class of permutation
graphs G[r] belong to the family of graphs that admit formulas for the number of their
spanning trees.

References

1. C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, (1973)

2. T.J. Brown, R.B. Mallion, P. Pollak, A. Roth, Some Methods for Counting the Spanning
Trees in Labeled Molecular Graphs, Examined in Relation to Certain Fullerness, Discrete
Applied Mathematics, 67:51-66, (1996)

3. D.G. Corneil, Y. Perl, L.K. Stewart, A Linear Recognition Algorithm for Cographs, SIAM
Journal on Computing, 14:926-984, (1985)

4. K.L. Chung, W.M. Yan, On the Number of Spanning Trees of a Multi-complete/star
Related Graph, Information Processing Letters, 76:113-119, (2000)

5. B. Gilbert, W. Myrvold, Maximizing Spanning Trees in Almost Complete Graphs, Net-
works, 30:23-30, (1997)

6. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, (1980)

7. P.L. Hammer, A.K. Kelmans, Laplacian Spectra and Spanning Trees of Threshold Graphs,
Discrete Applied Mathematics, 65:255-273, (1996)

8. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, (1969)

9. B. Jamison, S. Olariu, A Tree Representation for Pj-sparse Graphs, Discrete Applied
Mathematics, 35:115-129, (1992)

10. M. Kano, S.D. Nikolopoulos, On the Structure of A-free Graphs: Part IT, Technical Report
TR-25-99, Department of Computer Science, University of Ioannina, (1999)

11. A K. Kelmans, On Graphs with the Maximum Number of Spanning Trees, Random Struc-
tures and Algorithms, 1-2:177-192, (1996)

12. H. Lerchs, On Cliqus and Kernels, Department of Computer Science, University of
Toronto, (1971)

13. W. Myrvold, K.H. Cheung, L.B. Page, J.E. Perry, Uniformly-most Reliable Networks do
not Always Exist, Networks, 21:417-419, (1991)



202

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

S.D. Nikolopoulos, Coloring Permutation Graphs in Parallel, Discrete Applied Mathemat-
ics, 120:165-195, (2002)

S.D. Nikolopoulos, Recognizing Cographs and Threshold Graphs through a Classification
of their Edges, Information Processing Letters, 74:129-139, (2000)

S.D. Nikolopoulos, C. Papadopoulos, The Number of Spanning Trees in Quasi-threshold
Graphs, Graphs and Combinatorics, (to appear)

S.D. Nikolopoulos, C. Papadopoulos, Counting Spanning Trees in Cographs, Proceedings
Workshop on Graphs and Combinatorial Optimization (CTW), Enschede, The Nether-
lands, (2003). Also in: ENDM, 13:87-95, (2003)

S.D. Nikolopoulos, P. Rondogiannis, On the Number of Spanning Trees of Multi-star
Related Graphs, Information Processing Letters, 65:183-188, (1998)

P.V. O’Neil, The Number of Trees in Certain Network, Notices American Mathematical
Society, 10:569, (1963)

L. Petingi, F. Boesch, C. Suffel, On the Characterization of Graphs with Maximum Num-
ber of Spanning Trees, Discrete Applied Mathematics, 179:155-166, (1998)

L. Petingi, J. Rodriguez, A New Technique for the Characterization of Graphs with a
Maximum Number of Spanning Trees, Discrete Mathematics, 244:351-373, (2002)

L. Weinberg, Number of Trees in a Graph, Proceedings IRE, 46:1954-1955, (1958)

W.M. Yan, W. Myrnold, K.L. Chung, A Formula for the Number of Spanning Trees of a
Multi-star Related Graph, Information Processing Letters, 68:295-298, (1998)

X. Yong, Talip, Acenjian, The Numbers of Spanning Trees of the Cubic Cycle C2 and the
Quadruple Cycle Cp, Discrete Mathematics, 169:293-298, (1997)

Y. Zang, X. Yong, M.J. Golin, The Number of Spanning Trees in Circulant Graphs,
Discrete Applied Mathematics, 223:337-350, (2000)



