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Summary

Objective : Detection and characterization of microcalcification clusters in mammo-
grams is vital in daily clinical practice. The scope of this work is to present a novel
computer-based automated method for the characterization of microcalcification
clusters in digitized mammograms.

Methods and material : The proposed method has been implemented in three stages:
(a) the cluster detection stage to identify clusters of microcalcifications, (b) the
feature extraction stage to compute the important features of each cluster and (c)
the classification stage, which provides with the final characterization. In the
classification stage, a rule-based system, an artificial neural network (ANN) and a
support vector machine (SVM) have been implemented and evaluated using receiver
operating characteristic (ROC) analysis. The proposed method was evaluated using
the Nijmegen and Mammographic Image Analysis Society (MIAS) mammographic
databases. The original feature set was enhanced by the addition of four rule-based
features.

Results and conclusions : In the case of Nijmegen dataset, the performance of the
SVM was A, =0.79 and 0.77 for the original and enhanced feature set, respectively,
while for the MIAS dataset the corresponding characterization scores were A, = 0.81
and 0.80. Utilizing neural network classification methodology, the corresponding
performance for the Nijmegen dataset was A,=0.70 and 0.76 while for the MIAS
dataset it was A, =0.73 and 0.78. Although the obtained high classification perfor-
mance can be successfully applied to microcalcification clusters characterization,
further studies must be carried out for the clinical evaluation of the system using
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larger datasets. The use of additional features originating either from the image itself
(such as cluster location and orientation) or from the patient data may further
improve the diagnostic value of the system.

© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Several methodologies have been developed in
order to improve radiologists’ efficiency in the diag-
nostic interpretation of mammograms. The success-
ful development of computer aided diagnosis (CAD)
systems would be of great value, if these systems
can provide a reliable second opinion to the radi-
ologist. CAD systems integrate image analysis and
artificial intelligent techniques, aiming to provide
accurate, objective and reproducible mammogram
interpretation procedures.

The problem of mammogram interpretation using
CAD systems can be decomposed into two sub-pro-
blems. The first deals with the detection and loca-
lisation of regions of interest (ROIs), which include
suspicious lesions. The second, and more difficult
sub-problem, is the characterization of the identi-
fied lesions as malignant or benign [1]. A successful
characterisation could contribute to the reduction
of unnecessary biopsies.

The most common approach for the development
of CAD systems involves feature extraction proce-
dures performed either by a computer system or
manually by the radiologists [2,3]. The computed
features are subsequently fed to a categorization
scheme. Automatic feature extraction procedures
utilize image analysis techniques for the computa-
tion of feature vectors characteristic of structures
detected at the segmentation stage. Several types
of feature extraction methods can be found in the
literature such as morphological [4—7], texture
[8—10], fractal [11,12], histogram statistics [13]
and wavelets [14—17]. Morphological features are
the most commonly used due to their similarity with
the characteristics taken into account by the radi-
ologists. The patient’s age and a set of 13 typical
morphological descriptors is used in ref. [18] result-
ing in a high classification performance.

Several methodologies have been proposed for
the microcalcification characterization problem,
such as decision trees [6,19], linear discriminant
analysis [5,8], k-nearest neighbours [20—23] and
artificial neural networks (ANNs) [2,3,24—30]. In
general it is very difficult to compare the efficiency
of the above methods since they have been tested in
different mammographic datasets using different
performance measures. A review of the existing
detection and classification methodologies can be
found in ref. [31].

In this work an automated system for the char-
acterization of microcalcification clusters as malig-
nant or benign is presented. The method consists of
three stages: the cluster detection stage described
in a previous work [32], the feature computation
stage and the final classification stage. Two differ-
ent classification schemes have been implemented
and tested based on ANNs and support vector
machines (SVMs). It must be noted that SVMs are
used for the first time for the cluster characteriza-
tion problem. Originally, 33 features of a 54-feature
set were selected. Moreover, a new type of features
is defined, called rule-based features, which are
obtained from the 2D graphical representation of
all pairs of features. The addition of four rule-based
features resulted in an enhanced feature set that
consisted of 37 features. The performance of the
classifiers has been evaluated using the receiver
operating characteristic (ROC) methodology [33]
and the classification rate. The obtained results
provide high classification performance and thus
our method can be considered quite promising.

2. Methods and material
2.1. Image dataset

In this study the Nijmegen [34] and MIAS [35] mam-
mographic image databases were used. The Nijme-
gen database consists of 40 images of both
craniocaudal (CC) and medio-lateral oblique
(MLO) views from 21 patients. The digitisation
sampling aperture is 0.05 mm, the sampling dis-
tance is 0.1 mm and the size of each image is
2048 x 2048 pixels. Twelve bits are used for each
pixel representation and we have rescaled the
images to 8 bit depth (256 grey levels) using a noise
equalization table set provided with the database.
The MIAS dataset contains 20 mammograms. Each
one is a MLO view and is digitized with a spatial
resolution of 50 um and 8 bit grey depth. In both
datasets, the microcalcification clusters have been
annotated in each image by expert radiologists using
acircle enclosing the abnormality. The total number
of annotated clusters in the Nijmegen dataset is
105, which corresponds to 76 malignant and 29
benign microcalcification clusters. The MIAS data-
base includes 25 annotated clusters (12 malignant
and 13 benign microcalcification clusters).
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The proposed method for the characterization of
the microcalcifications as malignant or benign has
been implemented in three stages. Initially, a clus-
ter detection procedure is used to identify clusters
of microcalcifications. Next, important features of
those clusters are computed. In the final stage the
features are used as input to a classification system
to provide the final diagnosis.

2.2. Cluster detection procedure

The objective of this stage is the identification of
clusters of microcalcifications. The procedure has
been described in an earlier work [32] and is based
on a hybrid intelligent system combining rule-based
and ANN methods. Figure 1 summarizes the stages of
the detection procedure. Initially, a pre-processing
procedure is applied in order to remove the useless
radiological marks as well as the background of the
image. Then, background correction along with con-
trast enhancement is applied to indicate potential
microcalcification objects. Morphological descrip-
tors are used to extract the region of interest
(ROI). For all objects and clusters contained in every
ROI we compute several discriminative morphologi-
cal and textural features, which are used as input to
the false positive reduction procedure. This system is
a hybrid intelligent system based on a combination of
a rule-based and an ANN component, and provides a
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characterization of each ROI, either as a true cluster
of microcalcifications or a false positive detection.

The Nijemegen database reference file reports
105 cluster areas. Applying our detection algorithm
we have identified 10 additional areas because in
some cases two distinct ROIs had been detected into
a single database annotated circle. Two of the
detected areas are false negative cases of the
detection algorithm which were added to the clas-
sification system manually. From the total of 115
ROIs, 80 are malignant and 35 are benign. False
positives are not included in the 115 ROIs since
those are excluded after the detection phase.

The MIAS database includes 25 annotated cluster
areas. The detection procedure results in the iden-
tification of 34 cluster areas which include all the
annotated clusters. The additional ROIs were
extracted due to the fact that two different ROIs
were identified within the same annotated circle.
From the 34 detected clusters, 18 are malignant and
16 are benign. All false positive findings were
excluded at the end of the detection procedure.

2.3. Features computation and selection

For each detected cluster 54 features have been
identified as shown in Table 1. Those features were
computed either from individual microcalcifications
or constitute averages of the five largest microcal-
cifications included in a cluster. The features given
in Table 1, are cluster features which are extracted
either using microcalcification features (e.g. mean
value of microcalcification area, S.D. of microcalci-
fications area, mean microcalcification background
intensity) or considering each cluster as a separate
object (e.g. cluster area, cluster entropy, cluster
elongation).

In order to reduce the number of features, a
feature selection procedure based on ROC analysis
was followed to identify the most discriminative
features. The ROC curve [33] was plotted for each
feature and the area A, under the curve is com-
puted. Initially in the case of Nijmegen database,
33 features were selected having A, value higher
than the defined threshold, as listed in Table 1.
The criterion for feature elimination is that
0.50 < A, < 0.52. It must be noted that a high per-
centage of the 33 features were used as features for
the detection procedure described above (22 fea-
tures were utilized in the detection scheme). The
use of extra features underlines the increased diffi-
culty of the classification of the clusters as benign or
malignant, compared to the cluster detection pro-
blem. In the case of MIAS dataset, the same 33
features are utilized since their A, scores are above
0.60 and none of the rest resulted in a considerable
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Table 1 Features for cluster categorization

Microcalcification cluster classification features

Area of the cluster convex hull

Cluster area

Cluster eccentricity

Cluster elongation

Cluster entropy

Clusters’ equivalent diameter

Extent of cluster

Filled area in cluster

Major cluster’s axis (equivalent ellipse)
Mean contrast

Mean distance from cluster centroid
Mean local microcalcification background
Mean microcalcification area

Mean microcalcification background intensity
Mean microcalcification compactness
Mean microcalcification elongation

Mean microcalcifications eccentricity

Mean microcalcifications intensity

Mean perimeter of microcalcifications in cluster
Minor cluster’s axis (equivalent ellipse)
Neighbouring with a larger cluster

Number of microcalcifications in cluster
Orientation of cluster

Solidity of cluster

Spreading of microcalcifications in cluster

STD of distances from cluster centroid

STD of microcalcification compactness

STD of microcalcification elongation

STD of microcalcification intensity

STD of microcalcifications area

STD of microcalcifications contrast in cluster
STD of microcalcifications perimeter in cluster
The length of the cluster convex hull

A, score. Thus, for generalization and simplicity
reasons the same feature set is used.

2.4. Classification methods

The aim of the classification stage is the character-
ization of each cluster as malignant or benign using
the selected features. In this work we have
employed rule-based expert systems, ANNs and
SVMs.

2.4.1. Rule-based expert system

The common approach in rule-based systems
involves the use of rules for applying thresholds in
selected single features. However, in our case it is
not possible to identify discriminative rules of this
type. Thus, the following approach was adopted:
Initially, for each pair of features, a 2D graphical
representation of the dataset in the two-feature
space was performed as shown in Figure 2. This
generates more that 4002-D plots. From the visual
inspection of the 2D plots, it was found that four of
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Figure2 2D plot of mean contrast vs. mean compactness
and the corresponding linear decision boundary.

those plots have the highest discriminative value.
This means that in a two-feature space a straight
line (defining a linear decision rule) can be drawn
which defines a region (half space) containing a
sufficient number of points belonging mostly (more
than 90%) to the same class. Thus, the definition of
the linear decision value is empirical.

The pairs of features corresponding to those plots
in the case of the Nijmegen database are: (a) mean
microcalcification cluster eccentricity—mean con-
trast, (b) mean local background—mean distance
from cluster centroid, (c) mean contrast—mean
compactness and (d) standard deviation of the
microcalcification distances from the cluster cen-
troid—equivalent diameter of the cluster. In the
case of MIAS dataset the corresponding feature pairs
are: (a) mean microcalcification cluster eccentri-
city—mean contrast, (b) mean local background—
mean distance from cluster centroid, (c) mean con-
trast—number of microcalcifications in cluster and
(d) mean local background—standard deviation of
the microcalcification distances from the cluster
centroid. Two of the four feature pairs, (a) and
(b), are the same for both datasets.

Both sets of rules cannot be directly used as an
independent classifier due to the resulting poor
performance as presented in Table 2. However,
the distance of a point from the corresponding linear
boundary can be considered as an additional feature
to be used by the classification system. It must be
also noted that each of these distance features has a
sign which indicates the half space (with respect to
the line) in which the data point lies. The incorpora-
tion of the additional four features into the original
selected set of features results in an enhanced
feature set, consisting of 37 features.
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Table 2 Performance of the rule-based classifier

Dataset Pairs of features Malignant Benign
(true characterization) (false characterization)
Nijmegen Mean cluster eccentricity—mean contrast 28 1
Mean local background—mean distance 44 5
from cluster centroid
Mean contrast—mean compactness 33 3
Standard deviation of the microcalcification 41 4
distances from cluster centroid—equivalent
diameter of the cluster
MIAS Mean cluster eccentricity—mean contrast 5 0
Mean local background—mean distance 11 1
from cluster centroid
Mean contrast—number of 9 1
microcalcifications in cluster
Mean local background—standard deviation 9 1

of the microcalcification distances from
the cluster centroid

2.4.2. Neural classifier

The selected ANN classifier is a feedforward multi-
layer perceptron with sigmoid hidden nodes. The
ANN architecture consists of one hidden layer with
fifteen sigmoid nodes as shown in Figure 3, and an
output layer with one sigmoid node, whose value
indicates a malignant or a benign microcalcification
cluster. Principal component analysis (PCA) has been
implemented in order to reduce the size of the input
feature vector. The output of the PCA is a reduced
feature vector composed of seven features as shown
in Figure 4, providing the best classification perfor-
mance. PCA eliminates features contributing to
more than 3% of the total variation of the original
feature set.

Those features are normalized to zero mean and
unit variance. Gradient decent, resilient backpro-
pagation, conjugate gradient and quasi-Newton
methodologies were employed for ANN training in
order to select the one with the best classification

ability [36]. The training procedure is terminated
either when the training error is less than 10> or
when 2000 iterations have been performed.
The training error used is the mean square error—
which is the average squared error between the
network output and the target output for all the
training patterns (training) or the test patterns
(evaluation). Best results were obtained using the
quasi-Newton one-step-secant (0SS) algorithm [37].
The two-fold cross validation method was used for
the performance assessment. When the enhanced
feature set is used the classification performance,
using the same ANN architecture and PCA, is
improved.

2.4.3. Support vector machines

Another category of classification methods that has
recently received considerable attention is the use
of support vector machines [38,39]. SVMs have not
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Figure 3 The performance of one-hidden layer network
architectures for several numbers of hidden nodes.
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Figure 4 The performance of ANNs (one-hidden layer,
fifteen nodes) for several values of inputs (PCA features) is
plotted. The maximum, average and standard deviation of
A, is presented for each network.
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+ kernels have been reported in the literature, such as
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Figure 5 A non-linear SVM maps the data from the
feature space D to the high dimensional feature space F
by the non-linear function &.

been used previously for the characterization of
microcalcification clusters but only for their detec-
tion [40,41]. SVMs are based on the definition of an
optimal hyperplane, which linearly separates the
training data so that minimum expected risk is
achieved. In contrast with other classification
schemes, a SVM aims to minimize the empirical risk
Remp and at the same time, maximize the distances
(geometric margin) of the data points from the
corresponding linear decision boundary as shown
graphically in Figure 5. Remp is defined as

1 |
Remp(a):ﬂZ‘yi_f(xi»aH (1)
i=1

where x; € R, i=1, ..., |, is the training vector
belonging to one of two classes, | is the number of
training points, y; € {—1,1} indicates the class of x;,
and f is the decision function. The training points in
the space R" are mapped nonlinearly into a higher
dimensional space F by the function (a priori
selected) ®: RN — F. It is in this space (feature
space) where the decision hyperplane is computed.
The training algorithm uses only the dot products
(@(x;)) @(x;)) in F. If a “kernel function” K exists,
such that

K(xi, xj) = @(x;)P(X;) (2)

in which only the knowledge of K is required by
the training algorithm. The decision function is
defined as

[
fx) = viaiK(x;,x) + b 3)
i

where g; are the weighting factors and b denotes the
bias. After training, the condition a;>0 is valid for
only a few examples, while for most «; = 0. Thus, the
final discriminant function depends only on a small
subset of the training vectors which are called sup-
port vectors.

The selection of the kernel K is very important for
the performance of the classifier. Several types of

and the Gaussian kernel

K(x;, x) = e~ Ix=xI"/20° (5)

where ¢ is the kernel width. Each kernel function
should fulfill Mercer’s condition [38,42].

In this study the SVM training algorithm provided
by the LIBSVM library [10] was implemented. It has
been proven to be stable, computationally inexpen-
sive and highly competitive compared with other
SVM codes [43—47]. As in the ANN case, the two-fold
cross validation method was employed for the per-
formance evaluation. The number of PCA compo-
nents used in the SVM classification system is seven,
as in the ANN scheme, since for this number the best
performance was obtained.

The Gaussian kernel and conducted experiments
for several values of the standard deviation o were
selected. In order to apply the SVM training algo-
rithm, the regularization parameter C and the ter-
mination criterion ¢ must also be adjusted. To
perform parameterization the training algorithm
was applied for the following values of the para-
meters: y €{107¢, 1073, ...,0.01, 0.5}, C < {1, 10,
.., 10%}and ¢ {10°°, ..., 107"}, where y = ;1.

3. Experimental results

The above described methodology has been evalu-
ated on two well established mammographic data-
sets, the Nijmegen and the MIAS datasets. ROC
analysis was employed to assess the performance
of the method in both datasets. Moreover, in order
to compare the results with those reported in the
literature, the best classification rate (BCR) was
computed, which is the ratio of the sum of true
positives and true negatives over the total number
of samples for a range of decision threshold values.

3.1. Nijmegen dataset

For the rule-based classifier, if a decision rule is
valid, the cluster is classified as malignant, other-
wise it remains unclassified. Using the expert system
with the four linear decision rules for the Nijmegen
dataset, the correct characterization of 44 (52%)
malignant clusters and the false characterization of
2 (5.8%) benign was achieved. The decision is based
on majority voting, using the characterisation pro-
vided by each rule. A cluster with two positive votes
is characterised as malignant. For each rule applied
independently, the obtained true and false charac-
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Figure 6 The performance of ANN classifier for several
feature sets with and without PCA analysis (Nijmegen
dataset), is plotted. The maximum, average and standard
deviation of A, is presented for each feature set.

terizations are shown in Table 2. It is evident that
the performance of the rule-based system is not
acceptable.

The ANN classifier has been used both for the
original and the enhanced feature sets. The perfor-
mance of the method was evaluated using two-fold
cross validation and ROC analysis. For each training
set (fold) the training algorithm was applied 10
times with different initial weight values. For the
original feature set the maximum value of A; was
found A,nax=0.70. The mean A, was 0.65 with
standard deviation 0.04 as presented in Figure 6.
For the enhanced feature set the classification per-
formance is improved remarkably resulting in
Azmax = 0.76 with mean A, 0.71 and standard devia-
tion 0.04 as shown in Figure 6. The BCR values were
0.72 and 0.77 for the original and enhanced feature
set. When only the four rule-based features consti-
tute the input vector, the characterization is worse
resulting A,max =0.72 mean 0.66 and standard
deviation 0.05.

Similarly, the SVM classifier was applied with the
original, enhanced and four rule-based feature sets.
The hyperparameters providing with the best A,
performance of the SVM scheme are: C =25 x 104,
¢=0.001and y = 10°. In the original feature set the
use of PCAwas beneficial for the method resulting in
A, =0.79 using 20 and 18 support vectors (in this
case is the same for both folds) for malignant and
benign, respectively, as illustrated in Figure 7. In the
case of the enhanced feature set A, is 0.77, while
when using only the four rule-based features
A, =0.67. The BCR values were 0.81 and 0.78 for
the original and enhanced feature set, respectively.
In contrast to the ANN procedure, the use of the
enhanced dataset does not lead to performance
improvement.

Features sets

Figure 7 The performance of ANN and SVM classification
methodologies for several feature sets, for both mammo-
graphic databases.

In order to evaluate the use of the PCA analysis to
the classification system, additional experiments
were realized for both classification systems. Sev-
eral network architectures were utilized including
one or two hidden layers. For the original feature
set, the maximum value of A, was A,nax = 0.69 with
mean A, = 0.66 and standard deviation 0.03. For the
enhanced feature set the best classification perfor-
mance was Aymax = 0.71 with mean A,=0.68 and
standard deviation 0.02 as shown in Figure 6.

Figure 7 presents the performance of the SVM
classifier without PCA achieving A,=0.75 and
A, =0.72 for the original and the enhanced feature
sets, respectively. Two groups of support vectors
were generated for each training fold consisting
of (26,18) and (26,17) vectors for the original fea-
ture set and (22,16) and (22,17) for the enhanced
feature set.

3.2. MIAS dataset

Following the same methodology for evaluation, we
achieved the correct characterization of 11 (61%)
malignant clusters and the false classification of 1
(7.6%) benign. The above obtained true and false
characterizations for the independent application
of each rule, are quite low and thus a rule based
classifier could not provide useful diagnostic infor-
mation.

The ANN classifier using the same architecture as
in the Nijmegen dataset was applied on the original
and the enhanced feature sets. For the original
feature set the maximum value of A, was
Azmax = 0.73, the mean A, =0.66 and the standard
deviation 0.05. For the enhanced feature set, A, is
higher corresponding to maximum performance
(Azmax = 0.78), the mean value is 0.73 and the stan-
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dard deviation 0.05 as shown in Figure 7. The BCR
values were 0.74 and 0.80 for the original and
enhanced feature set, respectively. When only the
four rule-based features were used, A,max =0.70,
the mean is 0.67 and the standard deviation is 0.03.

In addition, we utilized the SVM classifier for the
three groups of features. The hyperparameters
which provide the highest A, performance are:
C=2x10° ¢£=0.001 and y=10". Employing the
original feature set, the SVM algorithm produced
two pairs of vectors (one for each fold) composed of
(16,14) and (17,16) support vectors for the malig-
nant and benign samples, respectively. The classi-
fication performance is A,=0.81. Utilizing the
enhanced feature set the classification performance
is lower, A, =0.80 as presented in Figure 7. More-
over, utilizing the rule-based features only,
A,=0.68. The BCR values are 0.83 and 0.82 for
the original and enhanced feature set, respectively.

The use of the ANN classification system without
PCA is assessed in the MIAS dataset. For the original
feature set the maximum value of A, was
Azmax = 0.71 with mean 0.69 and standard deviation
0.02. For the enhanced feature set the classification
performance was A;max = 0.73 with mean 0.70 and
standard deviation 0.03 as shown in Figure 7. The
BCR values were 0.73 and 0.74 for the original and
the enhanced feature sets, respectively.

Employing the SVM classifier without PCA,
A,=0.77 and A, = 0.73 were achieved for the origi-
nal and the enhance feature set, respectively. The
BCR values are 0.79 and 0.75 for the two feature
sets. Two groups of support vectors were generated
for each training fold which consist of (14,12) and
(15,14) vectors for the original feature set and
(16,13) and (18,17) vectors for the enhanced fea-
ture set.

4. Discussion and conclusions

A methodology for the characterization of micro-
calcification clusters in digitised mammograms as
malignant or benign has been developed. In the final
stage of the methodology two major classes of
classifiers have been used: ANNs and SVMs. SVMs
using a Gaussian kernel function provided the best
performance (classification rate for Nijmegen data-
set is 0.81 and A, = 0.79, classification rate for MIAS
dataset is 0.83 and A,=0.81) using the original
feature set, which consists of 33 features. The
classification performances are shown graphically
in Figure 8.

Comparison of our methodology with others
reported in the literature is not straightforward
because experiments were conducted on different
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Figure 8 The ROC curves of SVM and ANN classifiers for
the original and the enhanced feature sets evaluated for
both mammographic datasets (best cases).

datasets. Using human extracted feature character-
ization A,=0.89 has been reported [2,3], while
manual cluster specification resulted in A,=0.83
[25] and A, = 0.89 [8]. Experiments with the Nijme-
gen database are reported in [27] where an auto-
mated method is presented exhibiting sensitivity
0.77 with specificity 0.90. For the same dataset
BCR =0.75 is reported in [30].

In addition, the proposed approach compares
well with other methods. The k-nearest neighbour
classification technique proposed by Zadeh et al.
[23] results in A, =0.82 for the Nijmegen dataset.
Kramer and Aghdasi [20] report a classification
accuracy 100% in the Nijmegen dataset using wave-
let and co-occurrance feature vector as input to
their characterization system. A multiple classifier
system composed of two separate (parallel) classi-
fiers, the “pnC-Expert” and the “Cluster Expert” is
used in [48] and results in A, = 0.79 for the Nijmegen
dataset.

The selection of the methodology providing the
best results in the microcalcification characteriza-
tion is a difficult task, since most of the techniques
are evaluated in different, and in some cases in
custom datasets. In addition several research groups
employ manually identified cluster ROIs in order to
train and test their system, thus resulting in more
subjective detections and performance (A, < 0.90).
It is noted that the radiologists interpretation per-
formance corresponds to A, values in the range
0.54—0.72 for attendants and in the range 0.53—
0.66 for residents [49].

The two classification approaches, ANNs and
SVMs, are based on different theoretical concepts.
The ANN methodology aims at drawing a non-linear
decision boundary in the data space through the
minimization of a quadratic error function assuming
a specific network architectural design (number of
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hidden nodes). On the other hand, the SVM method
draws a linear decision boundary on a higher dimen-
sional space (specified by the kernel function) and
attempts to minimize the number of training exam-
ples that fall inside the margin of the separation
between the two classes. For both methodologies
there are some issues to be considered during their
application. In the case of SVM, the major difficulty
concerns the identification of a ““good” kernel func-
tion. On the other hand, the problem with ANNs is
the specification of the neural architecture (number
of hidden nodes). However, regularization methods
have been integrated into the training techniques in
order to deal with model complexity.

An advantage of SVM methodology is that the
training procedure always converges to a specific
solution corresponding to the global minimum of the
objective function. In ANNs the existence of several
poor local minima that may trap the training pro-
cedure constitutes a considerable drawback.

The present work has proposed a methodology to
extract a new type of features, called the rule-
based features. The addition of such features
improves significantly the performance of ANNs
but the same does not happen for SVMs as shown
in Figure 8. We have also found that the reduction of
feature dimensionality using PCA was beneficial for
both classification methods. Finally, the best per-
formance was achieved with SVMs, which offer the
additional advantage that their performance does
not depend on parameter initialisation, as happens
with ANN methods.

The proposed approach is novel, in the sense that
the classifier uses features which are not demo-
graphic or image extracted. This leads to better
performance in the case of ANNs. Those features
are considered meta-features and are expressed as
linear rules, which are extracted visually. This
approach can be proven extremely useful in other
CAD systems.

The characterization procedure of the proposed
methodology is fully automated. It is executed in
three stages and to our knowledge exhibits better
performance compared with other fully automated
methods for the Nijmegen or the MIAS database. Its
performance can be further improved if the cluster
boundaries were more precisely identified. This
constitutes a subject for future work.

Although the obtained high classification perfor-
mance can be successfully applied to microcalcifi-
cation clusters characterization, further studies
must be carried out for the clinical evaluation of
the system using larger datasets. Also, the use of
additional features originating either from the
image itself (such as cluster location and orienta-
tion) or from the patient data may further improve

the diagnostic value of the system. Finally, it would
be interesting to experiment with image fusion
techniques to combine information obtained from
both mammographic views (MLO and CC).
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